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SUMMARY

Neurons store information and participate in memory engrams as a result of experience-dependent

changes in synaptic weights and in membrane excitability. Here, we examine excitatory postsynaptic

potential (EPSP) amplitude and neuronal excitability in relation to these twomechanisms of plasticity.

We analyze somato-dendritic double-patch recordings from cerebellar Purkinje cells while inducing

intrinsic, SK2 channel-dependent plasticity or blocking SK channels with bath application of apamin.

Both manipulations increase the build-up of EPSP amplitudes during an EPSP train and enhance the

number of EPSP-evoked spikes, yielding insights into the mechanistic contribution of EPSP amplitude

to single spikes and spike bursts. EPSP amplitude has an impact onwhether spikes are fired or not, but

direct measures of excitability (spike threshold/AHP) are better predictors of whether individual

spikes or spike bursts are fired. Our findings show that Purkinje cell spiking is synaptically driven

but that burst firing is gated by SK2 channel modulation and plasticity.

INTRODUCTION

It has previously been argued that changes in the intrinsic excitability of neurons (‘‘intrinsic plasticity’’) may

provide a second group of plasticity phenomena that play a role in learning—independent from synaptic

plasticity (e.g., long-term potentiation; LTP) or complementing it (Marder et al., 1996; Hansel et al., 2001). In

further development of an ‘‘intrinsic theory’’ of learning, we have recently hypothesized that synaptic plas-

ticity primarily establishes connectivity patterns between neurons, whereas intrinsic plasticity provides the

main mechanism for the integration of neurons into active engrams (Titley et al., 2017; see also Piochon

et al., 2016). A prediction from this hypothesis is that in some types of neurons, particularly in neurons

with long primary dendrites, such as layer V pyramidal neurons, synaptic weight is a poor predictor of

the spike outcome. Purkinje cells do have relatively short primary dendrites (in rodents, the molecular layer

is �150–200 mm thick; e.g., Piochon et al., 2014) that, however, show a high degree of branching. The com-

plex dendritic geometry (Vetter et al., 2001) and the low density of specific Na+ channel a-subunits (Nav1.1

channel; De Ruiter et al., 2006) are seen as factors contributing to the absence of Na+ spike backpropaga-

tion into Purkinje cell dendrites (Stuart and Häusser, 1994). A consequence of the shortness of the dendrite,

combined with the low Na+ channel density and the lack of spike backpropagation is that these dendrites

are electronically compact, which reduces the impact of attenuating factors on the excitatory postsynaptic

potential (EPSP) amplitude (Roth and Häusser, 2001). Purkinje cells, however, face the challenge that burst

firing is needed to transiently override the high spontaneous discharge activity (up to 150 Hz; Häusser and

Clark, 1997) to influence spike firing in target neurons in the cerebellar nuclei (Aizenman and Linden, 1999).

We therefore analyzed somato-dendritic double-patch recordings from rat Purkinje cells, in which spike

and spike burst activity were enhanced by SK2 channel modulation/plasticity, thereby exploring the impact

of increased EPSP amplitude and excitability on neuronal burst firing.
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RESULTS

Double-patch recordings were obtained from Purkinje cells in young adult (P25-37) Sprague-Dawley rats at

near-physiological temperature (31–34�C). Dendritic recordings were performed at 3 distances of

50–140 mm from the soma (average: 91.3 G 4.8 mm, n=18; Figure 1A; Data S1). At both the dendritic

and somatic recording site a negative bias current was injected (100–350 pA) to stabilize the membrane

potential below the threshold for spontaneous spike activity, in the range of �70 to �80 mV. To assess

the effect of SK2 channel plasticity on spike firing, we used previously established intrinsic plasticity pro-

tocols or bath-applied the SK channel blocker apamin (Belmeguenai et al., 2010; see also Sourdet et al.,
iScience 1, 49–54, March 23, 2018 ª 2018 The Author(s).
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Figure 1. The Spike Output of Purkinje Cells Changes after Tetanization or Bath Application of Apamin

(A) Differential interference contrast (DIC) image illustrating the somato-dendritic patch-clamp configuration. Glass

pipettes are used for recordings from the soma (left) and the dendrite (right; here a double dendrite recording is shown)

as well as for PF stimulation (lower right). The yellow arrows point out the course of the primary dendrite.

(B) Somato-dendritic double-patch recording showing the emergence of spike firing (EPSP 5) after application of the

somatic depolarization protocol. The dendritic recording was obtained at a distance of�98 mm from the soma. The traces

were collected in response to five PF stimuli (indicated below the traces) during the baseline (pre) and 20 min after

tetanization (post). The schematic depicts the somato-dendritic recording configuration shown in (A).

(C) The number of spikes evoked by stimulus 5 is enhanced after tetanization (n = 12; note that several data points overlap

in their pre/post values; left) as well as after bath application of apamin (10 nM; n = 6; right). Colored symbols showmeans

and SEM.

(D) The amplitude of the dendritically recorded EPSP 5 is enhanced after tetanization/apamin (n = 18; left). The AHP

amplitude is reduced after tetanization/apamin (n = 16; right). All data shown in (C) and (D) were obtained from traces

recorded during the baseline and >20 min after tetanization/apamin.

(E) Example of a somatic recording showing that in the presence of apamin spikes were evoked by EPSPs (EPSP 3 in apa)

that were smaller in amplitude than larger EPSPs recorded during the baseline that did not evoke spikes (EPSP 4 in pre;

arrows).

Error bars indicate SEM. *p < 0.05; **p < 0.01.
2003). Intrinsic plasticity was evoked by injection of depolarizing currents into the soma (300–400 pA/

100 ms) or activation of parallel fiber (PF) bursts at 50 Hz (5 pulses). In both protocols, these stimuli were

applied at 5 Hz for 3–4 s (n = 12).

As previously demonstrated, these protocols enhance excitability by downregulation of small-conduc-

tance, calcium-dependent SK2-type potassium channels (Belmeguenai et al., 2010; Grasselli et al.,

2016). To directly assess the effects of SK channel downregulation, we also analyzed experiments in which

apamin (10 nM) was applied to the bath (n = 6). In the test periods before and after tetanization or apamin

wash-in, we applied five stimuli at 50 Hz to the PF input (20-s intervals). These stimuli mimic temporal

summation—a potential mechanism for enhancing the impact of synaptic input—by eliciting EPSP trains

of increasing amplitude (Figure 1B). Our analysis focuses on EPSP 5, which typically depolarizes the mem-

brane sufficiently to reach the spike threshold range (see Transparent Methods). In none of these exper-

iments did we observe a significant difference in the amplitude of dendritically recorded EPSPs (EPSP 5)

and somatically recorded potentials during the baseline (dendrite: 10.76 G 1.07 mV; soma: 10.29 G

0.74 mV; p = 0.5429; n = 18). Thus, in the relatively short primary dendrites of cerebellar Purkinje cells

we do not see the large attenuation/amplification effects during propagation of EPSPs toward the

soma that have been reported for layer V pyramidal cells (Larkum et al., 2001). In the following, we

base our calculation of EPSP amplitudes on the dendritic recordings to obtain more accurate measures
50 iScience 1, 49–54, March 23, 2018



that are, owing to the lack of spike backpropagation in Purkinje cell dendrites (Stuart and Häusser, 1994),

less confounded by spike activity than somatic measures, particularly at distances R80 mm from the soma

(Ohtsuki et al., 2012).

Application of the 5-Hz tetanization protocol (depolarization or synaptic activation) enhanced

the average spike number triggered by EPSP 5 (pre: 0.83 G 0.42 spikes; post: 2.0 G 0.49 spikes; p =

0.012; n = 12; Figures 1B and 1C). The same effect was observed after bath application of apamin

(pre: 1.0 G 0.36; post: 3.33 G 0.88; p = 0.022; n = 6; Figure 1C). As 5-Hz tetanization enhances excit-

ability as a result of a downregulation of SK channels (Belmeguenai et al., 2010; Grasselli et al.,

2016), which is similarly achieved by application of the SK channel blocker apamin, the two datasets

were merged for the following analysis. To determine the cause for the enhanced spike rate, we

measured the amplitude of dendritically recorded EPSPs and local AHPs before and after tetaniza-

tion/apamin. We observed that the EPSP amplitude was significantly enhanced (pre: 10.76 G

1.07 mV; post: 13.37 G 1.31 mV; n = 18; p = 0.002; Figure 1D) without accompanying changes in the

resting membrane potential (pre: �75.6 G 0.94 mV; post: �76.1 G 0.68 mV; n = 18; p = 0.678). This

increase in the EPSP amplitude may result from an LTP mechanism that can be co-induced with intrinsic

plasticity (Belmeguenai et al., 2010), but it may also be a direct result of enhanced excitability. Indeed,

the amplitude of EPSP 1 was not significantly changed (1.15 G 0.27 mV; post: 1.31 G 0.26 mV; n = 18;

p = 0.245; data not shown). This observation suggests that LTP did not occur (LTP would be expected to

change the amplitude of EPSP 1 regardless of the initial amplitude). Thus, it is likely that increased excit-

ability at least partially contributes to the increase in EPSP 5, potentially in concert with other factors,

such as short-term plasticity.

The dendritically recorded AHP was significantly reduced after tetanization/apamin (pre:�1.85G 0.25 mV;

post:�1.35G 0.29 mV; n = 16; p = 0.045; Figure 1D), which matches the known dendritic localization of SK2

channels in Purkinje cells (Belmeguenai et al., 2010; Hosy et al., 2011; note that, of the three types of SK

channel subunits, Purkinje cells express only SK2 channels; Cingolani et al., 2002) and the participation

of SK conductances in the AHPs following trains of input (Edgerton and Reinhart, 2003; Womack and Kho-

dakhah, 2003). These data identify both the EPSP amplitude and intrinsic excitability as potential contrib-

utors to the enhanced spike output following tetanization/apamin. Remarkably, we observed that, in 5 of

the 16 Purkinje cells that showed spike activity during PF-EPSP trains, higher spike numbers (1 vs 0,

or >1 vs 1) resulted after tetanization/apamin from EPSPs that were smaller in amplitude than the less effi-

cient baseline EPSPs (for an example, see Figure 1E), pointing toward a limited role of the EPSP amplitude

in determining the spike output.

To obtain better access to details of the spike output pattern, we analyzed individual sweeps regardless

of experimental history (tetanization/apamin application) and sorted them into groups in which no spike

was evoked by EPSP 5 or one, two, or more than two (3–6) spikes were evoked. Over the entire range of

recordings, there was a monotonic relationship between the EPSP 5 amplitude and spike activity (Spear-

man’s rank correlation coefficient r = 0.45; p = 0.00568; n = 36), suggesting that the EPSP amplitude

build-up provides an efficient drive for spike generation (Figure 2A). However, a comparison of EPSP

amplitudes between specific spike output groups revealed a more complex picture. When no spike

was evoked, the amplitude of EPSP 5 was significantly lower than in traces where one or more spikes

were evoked (0 spikes: 8.27 G 1.07 mV, n = 11; R1 spike: 13.73 G 0.96 mV, n = 25; p = 0.023). The

EPSP amplitude did not predict, however, whether one or more spikes were evoked (1 spike:

13.33 G 1.51 mV, n = 11; >1 spikes: 14.05 G 1.22 mV, n = 14; p = 0.764; for all sweeps, in which R1

spike was fired: Spearman’s r = 0.05, p = 0.7990, n = 25) or whether more than two spikes were evoked

rather than one or two spikes (1–2 spikes: 13.63 G 1.11 mV, n = 17; >2 spikes: 13.94 G 1.84 mV, n = 8;

p = 0.928; Figure 2A).

Next, we asked the question whether measures of excitability are better predictors of the spike output

pattern. We found a monotonic relationship between the AHP amplitude and the spike output for

sweeps with 0–2 spikes (Spearman’s r = �0.47; p = 0.0156; n = 26), but no such relationship when

sweeps with strong bursts (3–6 spikes) were included (Spearman’s r = �0.03; p = 0.8744; n = 33). In

fact, a low AHP amplitude distinguished sweeps with strong burst activity from those with one or two

spikes (>2 spikes: �0.85 G 0.42 mV, n = 7; 1–2 spikes: �2.21 G 0.24 mV, n = 16; p = 0.049; Figure 2B).

These findings are in line with the fact that calcium-dependent K+ conductances underlying the AHP

require calcium influx for activation (hence the increase in AHP amplitude with the emergence of spike
iScience 1, 49–54, March 23, 2018 51
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Figure 2. EPSP Amplitude and Intrinsic Excitability as Predictors of Spike and Spike Burst Firing

(A) Plot of the spike output versus the amplitude of EPSP 5. The spike output was categorized into four groups: no spike

(n = 11), one spike (n = 11), weak burst (2 spikes; n = 6), and strong burst (3–6 spikes; n = 8). These groups are color coded

to illustrate the strength of spike output.

(B) Excitability measures. As the spike threshold measure could be performed only when spiking occurred, the ‘‘no spike’’

group is not included. Left: Plot of the spike output versus the AHP amplitude: one spike (n = 10), weak burst (n = 6), and

strong burst (n = 7). Right: Plot of the spike output versus the membrane potential at which anywhere in the EPSP train

the first spike was fired (an approximation of the spike threshold): one spike (n = 10), weak burst (n = 6), and strong burst

(n = 8).

Error bars indicate SEM. *p < 0.05. The colored boxes indicate the groups from which recordings were included for

statistical comparison.
firing) while at the same time reflecting the permissive function of AHP modulation for strong burst firing

(e.g., SK2 plasticity/blockade prevents full activation under strong calcium influx conditions and enables

burst firing). Thus, when spike firing is evoked, a low AHP amplitude becomes predictive of strong burst

activity.

As a second measure of excitability, we monitored the membrane potential at which the first spike was

elicited within the EPSP train, which constitutes an approximation of the spike threshold. This threshold

was significantly lower (more negative) when >1 spike was triggered than when one spike was evoked

(1 spike: �62.33 G 0.84 mV, n = 10; >1 spike: �66.38 G 1.11 mV, n = 14; p = 0.021), and it was lower

when more than two spikes were evoked rather than one or two spikes (1–2 spikes: �63.82 G 1.12 mV,

n = 16; >2 spikes: �66.45 mV G 0.88 mV, n = 8; p = 0.03; Figure 2B). Measured for all recordings, in which

spike activity occurred at all (n = 25), there was a monotonic relationship between the spike threshold and

the spike outcome (Spearman’s r = �0.53; p = 0.0075).
DISCUSSION

The central finding of this study is that the EPSP amplitude shows no relation to the type of spike firing

output that is generated by Purkinje cells. Instead, whether individual spikes or spike bursts are fired de-

pends on the modulatory state of SK2 channels. From a mechanistic perspective, a prediction resulting

from this observation is that learning/plasticity-related changes in EPSP amplitude (as in LTP) will be less

efficient in driving spike burst firing than activity-dependent SK2 channel plasticity, a phenomenon that
52 iScience 1, 49–54, March 23, 2018



we have previously described in Purkinje cells (Belmeguenai et al., 2010; Ohtsuki et al., 2012; Grasselli et al.,

2016). Our findings are in line with the hypothesis that synaptic plasticity largely plays a role in establishing

synaptic connectivity maps, whereas non-synaptic plasticity regulates spike firing in neurons (Titley et al.,

2017).

Spike bursts are a particularly relevant output signal of Purkinje cells as they efficiently initiate hyper-

polarization in cerebellar nuclei neurons, which may drive rebound activity and spike firing (for discus-

sion, see Aizenman and Linden, 1999; Telgkamp and Raman, 2002; Alvina et al., 2008; Person and

Raman, 2012; Dykstra et al., 2016). In contrast, the addition or removal of individual spikes is likely

to remain inconsequential for signal propagation from the cerebellar cortex to the nuclei. The partic-

ularly low AHP values (�0.85 mV on average) measured when 3–6 spikes were evoked, in addition to

the observation that in all but one cell these bursts emerged after SK2 channel-dependent intrinsic

plasticity, or application of the SK channel blocker apamin, suggest that burst firing is gated by a

downregulation of SK channels. A similar gating function of calcium-dependent K+ conductances

has been predicted based on studies of a realistic Purkinje cell computer model (De Schutter, 1998;

note that in hippocampal CA2 pyramidal neurons gating by dendritic Na+ spikes has been observed;

Sun et al., 2014). Our findings provide experimental support for this suggestion. A scenario emerges in

which synapses convey specific information content to neurons and provide synaptic drive to initiate

spike firing, whereas intrinsic plasticity affects the ability of a neuron to influence signal propagation

within its respective neural circuit, possibly in the absence of accompanying changes in synaptic weight

(see Titley et al., 2017).

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Transparent Methods and can be found with this article online at

https://doi.org/10.1016/j.isci.2018.02.001.
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Häusser, M., and Clark, B.A. (1997). Tonic synaptic
inhibition modulates neuronal output pattern
and spatiotemporal synaptic integration. Neuron
19, 665–678.

Hosy, E., Piochon, C., Teuling, E., Rinaldo, L., and
Hansel, C. (2011). SK2 channel expression and
54 iScience 1, 49–54, March 23, 2018
function in cerebellar Purkinje cells. J. Physiol.
589, 3433–3440.

Larkum, M.E., Zhu, J.J., and Sakmann, B. (2001).
Dendritic mechanisms underlying the coupling of
the dendritic with the axonal action potential
initiation zone of adult rat layer 5 pyramidal
neurons. J. Physiol. 533, 447–466.

Marder, E., Abbott, L.F., Turrigiano, G.G., Liu, Z.,
and Golowasch, J. (1996). Memory from the
dynamics of intrinsic membrane currents. Proc.
Natl. Acad. Sci. USA 93, 13481–13486.

Ohtsuki, G., Piochon, C., Adelman, J.P., and
Hansel, C. (2012). SK2 channel modulation
contributes to compartment-specific dendritic
plasticity in cerebellar Purkinje cells. Neuron 75,
108–120.

Person, A.L., and Raman, I.M. (2012). Purkinje
neuron synchrony elicits time-locked spiking in
the cerebellar nuclei. Nature 481, 502–505.

Piochon, C., Kloth, A.D., Grasselli, G., Titley, H.K.,
Nakayama, H., Hashimoto, K., Wan, V., Simmons,
D.H., Eissa, T., Nakatani, J., et al. (2014).
Cerebellar plasticity and motor learning deficits
in a copy-number variation mouse model of
autism. Nat. Commun. 5, 5586.

Piochon, C., Kano, M., and Hansel, C. (2016). LTD-
like molecular pathways in developmental
synaptic pruning. Nat. Neurosci. 19, 1299–1310.
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Stuart, G., and Häusser, M. (1994). Initiation and
spread of sodium action potentials in cerebellar
Purkinje cells. Neuron 13, 703–712.

Sun, Q., Srinivas, K.V., Sotayo, A., and
Siegelbaum, S.A. (2014). Dendritic Na+ spikes
enable cortical input to drive action potential
output from hippocampal CA2 pyramidal
neurons. Elife 3, e04551.

Telgkamp, P., and Raman, I.M. (2002). Depression
of inhibitory synaptic transmission between
Purkinje cells and neurons of the cerebellar
nuclei. J. Neurosci. 22, 8447–8457.

Titley, H.K., Brunel, N., and Hansel, C. (2017).
Toward a neurocentric view of learning. Neuron
95, 19–32.

Vetter, P., Roth, A., and Häusser, M. (2001).
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Transparent	Methods	

	

Animals	and	slice	preparation	

Sagittal	slices	of	the	cerebellar	vermis	(220µm	thick)	were	prepared	from	P25-37	Sprague-Dawley	rats	after	

isoflurane	anesthesia	and	decapitation.	The	procedure	is	in	accordance	with	the	guidelines	of	the	Animal	Care	and	

Use	Committee	of	the	University	of	Chicago.	Slices	were	cut	on	a	vibratome	(Leica	VT1000S)	using	ceramic	blades.	

Slices	were	kept	in	ACSF	containing	the	following	(in	mM):	124	NaCl,	5	KCl,	1.25	Na2HPO4,	2	MgSO4,	2	CaCl2,	26	

NaHCO3	and	10	D-glucose,	bubbled	with	95%	O2	and	5%	CO2.	

	

Patch-clamp	recordings	

The	recordings	were	performed	in	a	recording	chamber	superfused	with	ACSF	at	near-physiological	temperature	

(31-34°C).		The	ACSF	was	supplemented	with	100µM	picrotoxin	to	block	GABAA	receptors.	Somato-dendritic	

double-patch	recordings	were	performed	under	visual	control	using	differential	interference	contrast	optics	in	

combination	with	near-infrared	light	illumination	(IR-DIC)	using	a	Zeiss	AxioCam	MRm	camera	and	a	x40	IR-

Achroplan	objective,	mounted	on	a	Zeiss	Axioscope	2FS	microscope	(Carl	Zeiss	MicroImaging).	Patch-clamp	

recordings	were	performed	in	current-clamp	mode	(Rs	compensation	off	/	fast	capacitance	compensation	on)	

using	an	EPC-10	quadro	amplifier	(HEKA	Electronics).	Membrane	voltage	and	current	were	filtered	at	3kHz,	

digitized	at	25kHz,	and	acquired	using	Patchmaster	software.	We	used	patch	pipettes	pulled	from	borosilicate	glass	

for	both	the	dendritic	and	somatic	recordings,	which	were	filled	with	a	solution	containing	(in	mM):	9	KCl,	10	KOH,	

120	K-gluconate,	3.48	MgCl2,	10	HEPES,	4	NaCl,	4	Na2ATP,	0.4	Na3GTP,	and	17.5	sucrose	(pH	7.25).	The	membrane	

voltage	was	corrected	for	liquid	junction	potentials	(11.7mV).	Dendritic	patch	electrodes	had	electrode	resistances	

of	7-10MΩ,	while	the	somatic	patch	electrodes	had	electrode	resistances	of	2-5MΩ.	Hyperpolarizing	bias	currents	

(100-350pA)	were	injected	to	stabilize	the	membrane	potential	at	about	-75mV	and	to	prevent	spontaneous	spike	

activity	that	would	interfere	with	the	analysis	of	evoked	spiking.	For	PF	stimulation	(1-8µA	/	200µs	pulses),	glass	

pipettes	were	placed	in	the	molecular	layer.	Trains	of	five	stimuli	were	applied	at	50Hz	to	obtain	trains	of	EPSPs	

with	rising	amplitude.	It	should	be	noted	that	application	of	the	synaptic	activation	pattern	from	a	holding	

potential	of	~	-75mV	does	not	faithfully	mimic	synaptic	activation	and	spike	initiation	under	physiological	

conditions.	However,	it	is	important	to	perform	these	recordings	in	the	absence	of	confounding	spontaneous	spike	



activity,	which	made	it	necessary	to	inject	bias	currents.	We	adjusted	the	EPSP	amplitude	such	that	at	least	EPSP	5	

would	be	able	to	evoke	spike	firing.	This	strategy	allowed	us	to	probe	for	the	efficiency	of	EPSP	amplitude	and	

intrinsic	excitability,	respectively,	in	triggering	spikes	and	spike	bursts,	while	only	permitting	evoked	spike	

activity.	In	the	presence	of	spikes,	the	EPSP	amplitude	was	measured	as	the	amplitude	of	the	slow	response	

component.	The	AHP	amplitude	was	determined	by	measuring	the	negative	peak.	Three	cells	were	excluded	from	

the	AHP	analysis,	because	of	problems	with	the	AHP	measure	(spike	activity	and	one	outlier	value,	respectively).	

For	tetanization,	we	used	PF	burst	stimulation	(50Hz;	5	pulses),	or	injection	of	depolarizing	currents	(300-400pA	/	

100ms),	both	at	5Hz	for	3-4s.	In	the	test	periods	before	and	after	tetanization,	the	EPSPs	were	not	continuously	

monitored,	but	acquisition	of	PF	responses	was	restricted	to	the	baseline	and	the	end	of	the	recordings,	20min	

after	tetanization.		

	

Data	analysis	

The	data	shown	here	result	from	an	extended	analysis	of	recordings	presented	in	a	published	study	(Ohtsuki	et	al.,	

2012).	Data	were	analyzed	using	Fitmaster	software	(HEKA	Electronics)	and	Igor	Pro	software	(WaveMetrics).	

Statistical	significance	was	determined	by	using	the	paired	Student’s	t	test	(to	test	for	significance	of	changes	after	

an	experimental	manipulation	in	comparison	to	baseline)	and	the	Mann-Whitney	U	test	(between-group	

comparison),	when	appropriate.	Spearman’s	rank	correlation	coefficient	ρ	was	calculated	to	determine	whether	or	

not	there	were	monotonic	(progressively	increasing	/	decreasing;	no	linearity	needed)	correlations	between	the	

amplitude	of	EPSP	5	or	the	AHP	/	spike	threshold,	respectively,	and	the	spike	output,	organized	in	the	ordinal	

categories	‘no	spike’,	‘one	spike’,	‘weak	burst’	(2	spikes)	and	‘strong	burst’	(3-6	spikes).	All	data	are	shown	as	mean	

±	SEM.	
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