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Critical exponents in mean-field classical spin systems
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For mean-field classical spin systems exhibiting a second-order phase transition in the stationary state, we
obtain within the corresponding phase-space evolution according to the Vlasov equation the values of the critical
exponents describing power-law behavior of response to a small external field. The exponent values so obtained
significantly differ from the ones obtained on the basis of an analysis of the static phase-space distribution, with
no reference to dynamics. This work serves as an illustration that cautions against relying on a static approach,
with no reference to the dynamical evolution, to extract critical exponent values for mean-field systems.
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I. INTRODUCTION

Since the early days of statistical mechanics, studying
phase transitions in physical systems has been a theme of
active research in the field. Phase transitions can occur only in
the thermodynamic limit. Second-order or continuous phase
transitions are characterized by a power-law behavior of
macroscopic quantities close to the critical point of transition.
Such transitions in different systems may be broadly clas-
sified into universality classes identified by different values
of critical exponents describing the power-law behavior. For
example, for a ferromagnet exhibiting a second-order phase
transition as a function of temperature T , the magnetization
close to and on the lower side of the critical point Tc has
a power-law dependence on the separation (Tc − T ) from
the critical point, with the corresponding exponent being β.
On applying an external field, the magnetization increases
as a function of the field strength, and in the limit of an
infinitesimal field, a linear growth for T �= Tc implying a
linear response determines the zero-field susceptibility χ . The
susceptibility diverges as a power law close to and on both
sides of the critical point, with the corresponding exponents
denoted by γ + and γ − on the disordered (T > Tc) and the
magnetized (T < Tc) phase, respectively. At the critical point,
the response becomes nonlinear, being characterized by the
critical exponent δ. These critical exponents are known to
satisfy the scaling relation γ ± = β(δ − 1) [1–3].

One representative class of systems exhibiting second-
order phase transitions is that of mean-field systems. In
thermal equilibrium of such systems, statistical mechanical
predictions for the critical exponents, based on an analysis
of the thermal equilibrium phase-space distribution with no
reference to dynamics, yield the values β = 1/2, γ ± = 1,
δ = 3 [2]. However, due to the mean-field nature of the
time evolution, critical exponents obtained on the basis of
dynamics may well have different values. Indeed, dynamics of
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a mean-field system in the thermodynamic limit is described
by the so-called Vlasov equation that allows a vast number
of stable stationary states, and thermal equilibrium is just
one of them [4–7]. This implies that once the system is in a
stable stationary state other than thermal equilibrium, it would
not relax to thermal equilibrium. A large but finite system
remains trapped in so-called quasistationary states (QSSs)
identified as stable stationary solutions of the Vlasov equation,
with finite-size effects allowing a slow evolution of the QSSs
toward thermal equilibrium over a timescale that diverges with
the system size [8,9].

Existence of QSSs allows nonequilibrium phase transi-
tions: A generic initial state undergoes a violent relaxation to
relax to a QSS [10], and the nonequilibrium phase transition
can, for example, be defined with respect to the value of the
order parameter in the QSS. In a given system, these nonequi-
librium phase transitions may not necessarily be continuous
even when the equilibrium phase transition is continuous, and
several discontinuous nonequilibrium phase transitions have
been reported in the literature [11–14]. In this article, we,
however, focus on families of QSSs that exhibit continuous
phase transitions and to which an external field is applied
in order to investigate the values of the critical exponents
characterizing the response.

The aforementioned trapping scenario holds even when an
external field is applied to the system prepared in a thermal
equilibrium state: With the field on, a finite system goes from
the initial to a new thermal equilibrium state via intermediate
QSSs, while a thermodynamic system remains trapped in a
QSS and does not relax to thermal equilibrium [15]. The latter
fact requires that one invokes an alternative strategy of obtain-
ing susceptibility that is based on the Vlasov dynamics when
addressing the issue of response of mean-field systems in
thermal equilibrium to an external field. The critical exponents
γ ± so obtained may not necessarily coincide with the ones
computed within equilibrium statistical mechanics. Indeed, in
the so-called Hamiltonian mean-field (HMF) model [16,17],
a paradigmatic mean-field system exhibiting a second-order
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phase transition, the critical exponents obtained within the
Vlasov dynamics have been shown to be γ + = 1, γ −1 =
1/4 for a family of stable stationary initial states with β =
1/2 [15]. Moreover, at the critical point, the Vlasov dynamics
gives δ = 3/2. More generally, the critical exponents within
the Vlasov dynamics have been obtained as γ + = 2β, γ − =
β/2, δ = 3/2 for a class of Hamiltonian particle systems
including the HMF model [18]. Interestingly, the critical ex-
ponents obtained within the two approaches satisfy the same
scaling relation, namely, γ − = β(δ − 1).

The difference in the values of the critical exponents that
are obtained based on statistical mechanics and dynamics
stems from the existence of an infinite number of so-called
Casimir invariants that are constants of motion for the Vlasov
dynamics and which make the dynamics nonergodic. In gen-
eral, existence of constraints suppresses susceptibility [19,20]
and accordingly the values of the critical exponents γ ±.
This fact is borne out by the values of the critical expo-
nents obtained in the HMF model by taking into account
the Casimir constraints. Another important remark is that
divergence of susceptibility is observed even when the dy-
namics is nonergodic, as is found in the case of the HMF
model [15].

The HMF model mimics the classical XY model, with an
additional kinetic energy term assigned to individual spins.
Due to the latter whose range is the whole real set, the one-
particle phase space of the HMF model is a cylinder. In the
HMF model, the Poisson bracket between the spin compo-
nents is taken to vanish identically, In this work, we con-
sider Heisenberg spin systems with mean-field interactions, in
which the Poisson brackets between the spin components are
strictly nonzero, and the single-particle phase space is the unit
sphere. Considering the time evolution of the spin components
according to a Hamiltonian with a mean-field interaction
and a local anisotropy, we address here several questions of
theoretical and practical relevance: Does the universality class
for usual Hamiltonian systems defined on a cylinder, e.g., the
HMF model, include spin systems defined on the unit sphere?
What is the effect of the anisotropy on the critical exponents?
Would the scaling relation γ − = β(δ − 1) still hold even if
the spin system is found to be in a different universality class?

This paper is organized as follows. The spin model we
study is introduced in Sec. II. Here, the dynamics described
by the canonical equations of motion is also discussed, as is
the characterization of the dynamics in the thermodynamic
limit in terms of the Vlasov equation. Based on the latter, we
discuss the setting and the definition of the critical exponents
in Sec. III, while our theoretical predictions for the critical ex-
ponents are derived in Sec. IV. Detailed numerical checks of
our theoretical predictions are pursued in Sec. V. Section VI
concludes the paper with discussions.

II. THE MODEL

A. Definition

Our model of study consists of N globally coupled classical
Heisenberg spins of unit length denoted by

Si = (Six, Siy, Siz ); i = 1, 2, . . . , N. (1)

The N-body Hamiltonian of the model is given by

HN = − J

2N

N∑
i, j=1

Si · S j + D
N∑

i=1

S2n
iz − h(t ) ·

N∑
i=1

Si. (2)

Here the first term with J > 0 on the right-hand side models a
ferromagnetic mean-field interaction between the spins. The
coupling constant J has been scaled down by the system
size N in order to make the energy extensive, in accordance
with the Kac prescription [21]. The system (2) is, however,
intrinsically nonadditive: It cannot be trivially subdivided into
independent macroscopic parts. In the following, we set J = 1
without loss of generality.

In Eq. (2), the second term with D > 0 on the right-hand
side accounts for local anisotropy; restricting to the subclass
of models that are symmetric under Siz → −Siz, we have
made here the choice of even exponent equal to 2n, with
n being a non-negative integer. We refer to the model with
exponent 2n as Model-n. Note that Model-0 is completely
isotropic in the spin space, and there is no preferred direction
of orientation of spins. Model-1 has been studied previously
in the context of QSSs in Refs. [22,23]. Model-2 is the special
case of a quartic anisotropy; it may be noted that thermo-
dynamic properties of a Heisenberg spin model containing a
quartic term have been studied in Ref. [24].

The third term on the right-hand side of Eq. (2) arises
due to the application of a time-dependent external magnetic
field h(t ) ≡ [hx(t ), hy(t ), hz(t )]. In this work, we consider the
external field to be absent for times previous to instant t0,
i.e., for times t < t0, when the system will be assumed to
be existing in a reference state, e.g., a thermal equilibrium
state. For times t � t0, on the other hand, we would put on a
constant field in order to measure the response of the reference
state to the external field. The explicit form of h(t ) is thus
given by

h(t ) = �(t − t0)h, (3)

where �(t ) is the unit step function and h is a vector of
constant length equal to h. The singularity of the unit step
function �(t ) will have no effect on the values of the critical
exponents obtained based on the Vlasov dynamics, and we
may replace �(t ) with a smooth function [25].

B. Spin dynamics

In dimensionless times, the time evolution of system (2) is
governed by the set of coupled first-order differential equa-
tions,

Ṡi = {Si, HN }; i = 1, 2, . . . , N, (4)

where the dot denotes derivative with respect to time. The
Poisson bracket {·, ·} is bilinear and skew symmetric and
satisfies the Leibniz’s rule

{XY, Z} = {X, Z}Y + X {Y, Z} (5)

for any functions X , Y, and Z of the spins. The Poisson
brackets between two spins are given by

{Six, S jy} = δi jSiz, {Siy, S jz} = δi jSix, {Siz, S jx} = δi jSiy.

(6)
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Using Eqs. (2), (4), and (6), we obtain the time evolution of
the spin components as

Ṡix = Siy(mz + hz ) − Siz(my + hy) − 2nDSiyS2n−1
iz ,

Ṡiy = Siz(mx + hx ) − Six(mz + hz ) + 2nDSixS2n−1
iz ,

Ṡiz = Six(my + hy) − Siy(mx + hx ), (7)

where

m ≡ 1

N

N∑
i=1

Si = (mx, my, mz ) (8)

is the magnetization vector that serves as the mean field
governing the time evolution of the individual spins. Summing
the third equation of (7) over i, we find that mz is a constant of
motion if the condition

mxhy − myhx = 0 (9)

is satisfied. The length of each spin is a constant of motion,
and so is the total energy of the system when the field h is
time independent.

Writing the spin components in terms of spherical polar
angles θi ∈ [0, π ] and φi ∈ [0, 2π ), as

Six = sin θi cos φi, Siy = sin θi sin φi, Siz = cos θi, (10)

we obtain from Eq. (7) the time evolution of the variables θi

and φi as

θ̇i = (mx + hx ) sin φi − (my + hy) cos φi,

φ̇i = (mx + hx ) cot θi cos φi + (my + hy) cot θi sin φi

− (mz + hz ) + 2nD cos2n−1 θi. (11)

For later convenience, we introduce a new variable, pi ≡
cos θi, in terms of which we have

Six =
√

1 − p2
i cos φi, Siy =

√
1 − p2

i sin φi, Siz = pi. (12)

In terms of pi, which is in fact canonically conjugate to φi, the
Poisson bracket {·, ·} reads [22]

{X,Y } =
N∑

i=1

(
∂X

∂φi

∂Y

∂ pi
− ∂X

∂ pi

∂Y

∂φi

)
. (13)

The dynamical variables of the ith spin are thus φi and pi,
while a volume element in the (φi, pi ) space is dφid pi.

C. Description in the thermodynamic limit

In the thermodynamic limit N → ∞, the dynamics of
system (2) is described by the Vlasov equation

∂ f

∂t
+ ∂H

∂ p

∂ f

∂φ
− ∂H

∂φ

∂ f

∂ p
= 0, (14)

where f (φ, p, t ) is the single-spin distribution function that
measures the probability density to find a spin (φ, p) at time
t , while the single-spin Hamiltonian H is

H (φ, p, t ) = Dp2n − [m(t ) + h(t )] · S, (15)

with

S ≡ (
√

1 − p2 cos φ,
√

1 − p2 sin φ, p), (16)

and the magnetization vector m = (mx, my, my) given by

m(t ) =
∫∫

μ

S f (φ, p, t )dφd p. (17)

The double integral over any function X (φ, p) in the single-
spin phase space μ ≡ (φ, p) is defined as∫∫

μ

X (φ, p)dφd p ≡
∫ 2π

0
dφ

∫ 1

−1
d p X (φ, p). (18)

Note that the single-spin Hamiltonian (15) depends on time
t through the magnetization m(t ) and the external field h(t ).
Normalization of f (φ, p, t ) reads

∫∫
μ

f (φ, p, t ) = 1 for any
time t .

Any quantity

C[ f ](t ) =
∫∫

μ

c( f )dφd p (19)

is a constant of motion for any smooth function c, as may be
seen by considering the time variation of C and using Eq. (14).
These invariants of motion are called Casimir invariants,
which hold even when the single-spin Hamiltonian depends
on time. The Casimir invariants do not allow an initial state
with h = 0 to relax to the thermal equilibrium state with h �= 0
when at least one of the Casimir invariants C[ f ] between the
two states is not the same.

III. SETTING AND DEFINITION OF THE
CRITICAL EXPONENTS

A. Setting

For t < t0, we consider system (2) to be existing in one of
a family of stable stationary states with external field h = 0.
In order that we may study the critical exponents associated
with the response of the system to an external field that we
put on for times t � t0, we restrict to a family of states that
allow a second-order phase transition and, consequently, a
critical point in the stationary state. We refer to such a family
of states as our reference states and denote the states by f0.
From Eq. (14), it is evident that f0 of the form

f0(φ, p) = F [H0(φ, p)] = G[H0(φ, p)]∫∫
μ

G[H0(φ, p)]dφd p
, (20)

with G an arbitrary function, is a stationary solution of the
Vlasov equation, and we have

H0(φ, p) = Dp2n − m0 · S (21)

and

m0 = (m0x, m0y, m0z ) (22)

satisfying the self-consistent equation,

m0 =
∫∫

μ

S f0(φ, p)dφd p. (23)

The family of functions G may be parametrized by a pa-
rameter T , which in the case of thermal equilibrium coincides
with the temperature [26]:

G(x) = exp(−x/T ). (24)

032131-3



YAMAGUCHI, DAS, AND GUPTA PHYSICAL REVIEW E 100, 032131 (2019)

However, the analysis presented in the following applies to
other family of functions G, such as the Fermi-Dirac-type
family:

G(x) = 1

exp[(x − a)/b] + 1
. (25)

In this case, the parameter T may be identified with either of
the two parameters a and b.

Now, from the rotational symmetry of H0(φ, p) on the
(Sx, Sy) plane, we may set m0y = 0 without loss of generality.
Moreover, we may assume m0z = 0, which solves the self-
consistent equation for m0z. Denoting m0x by m0, so that
m0 = (m0, 0, 0), we have

H0(φ, p) = Dp2n − m0

√
1 − p2 cos φ, (26)

while the self-consistent equation (23) reads

m0 =
∫∫

μ

√
1 − p2 cos φF [H0(φ, p)]dφd p. (27)

At t = t0, we turn on a constant external field h = (h, 0, 0)
pointing in the direction of the reference magnetization m0 =
(m0, 0, 0). In the presence of the external field, the system
evolving under the Vlasov dynamics (14) relaxes from the
reference state f0 to a stationary state fh with magnetization
mh = (mh, 0, 0). The single-spin Hamiltonian corresponding
to the state fh is

Hh(φ, p) = Dp2n − (mh + h)
√

1 − p2 cos φ. (28)

We stress that fh is not necessarily the thermal equilibrium
state proportional to exp[−Hh(φ, p)/T ], and thus could be
an out-of-equilibrium state, see Sec. II C. Within the Vlasov
dynamics, the response to the external field is measured by

δm ≡ mh − m0. (29)

In the above setting, we recall the definitions of the critical
exponents β, γ +, γ −, and δ given in any standard reference
on critical phenomena, e.g., Ref. [1].

B. Definition of the critical exponents

The critical exponent β is defined with respect to the
reference state, as

m0(T ) ∝ (Tc − T )β ; T → T −
c , (30)

where Tc is the critical point. Here m0 is the positive solution
of the self-consistent equation (27), and the value of β may
depend on the choice of the family F of the reference state.
The self-consistent equation (27), however, implies quite gen-
erally that β = 1/2, see Appendix A.

The critical exponents γ ± are defined in the regime of
linear response. The response δm depends on T and h, and
the susceptibility χ (T ) is defined as

χ (T ) ≡ ∂ (δm)

∂h

∣∣∣∣
h→0

. (31)

The susceptibility diverges at the critical point Tc as

χ (T ) ∝
{

(T − Tc)−γ +
(T → T +

c )

(Tc − T )−γ −
(T → T −

c )
, (32)

which defines the exponents γ ±.
At the critical point Tc, one has

δm ∝ h1/δ, (T = Tc), (33)

which defines the critical exponent δ. Usually, one has δ > 1,
since the leading response is nonlinear and is stronger than the
linear response.

C. Statistical mechanics predictions for the critical exponents

Statistical mechanics analysis that considers studying the
equivalent of Eqs. (20), (21), and (23) in the presence of a
constant field h = (h, 0, 0), with no reference to dynamics,
gives

β = 1
2 , γ ± = 1, δ = 3, (34)

irrespective of the value of the exponent n, see Appendix A
for details. In the next section, we derive the values of the
critical exponents within the Vlasov dynamics. We will obtain
the response δm within the Vlasov dynamics, and hence the
exponents γ ± and δ may very well take values different from
the ones in Eq. (34).

IV. THEORETICAL PREDICTIONS FOR THE CRITICAL
EXPONENTS BASED ON THE VLASOV DYNAMICS

In this section, we derive our results for the critical expo-
nents based on the Vlasov dynamics. As already mentioned
above, we have β = 1/2 quite generally for all choices of the
family F of the reference state. In the following, we discuss
the computation of the critical exponents γ ± and δ for a given
value of the exponent β.

A. Model-0

The single-spin Hamiltonian of Model-0 is

Hh = −(mh + h)Sx. (35)

The equations of motion are obtained from Eq. (7) as

Ṡix = 0, Ṡiy = Siz(mh + h), Ṡiz = −Siy(mh + h). (36)

Clearly, Six for any i and, consequently, mx are constant
of motion for any external field h irrespective of its time
dependence. Dynamically, each spin rotates on a Sx = const
plane. The fact that the variable Sx is a constant of motion for
both cases of h = 0 and h �= 0 implies that the reference state
f0 = F (H0) = F (−m0Sx ) is stationary even after the external
field is turned on, and we have mh = m0. Consequently, no
response to the external field is obtained within the Vlasov
dynamics. If we have to assign values to the critical exponents,
then we may say

β = 1
2 , γ ± = 0, δ = 1, (37)

due to the fact that no divergence of the susceptibility is
obtained within the Vlasov dynamics. The aforementioned
exponent values are quite different from the ones obtained
within statistical mechanics, Eq. (34). For the case G(x) =
exp(−x/T ), the critical point is Tc = 1/3 [obtained by using
the results in Appendix A, in particular, by substituting such a
form of G(x) into the function A(T ) defined by Eq. (A6) and
then solving A(Tc) = 0].
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The isotropic spin model, Model-0, shows no response to
the external field and thus provides a simple and extreme
example of dynamical suppression of response, but Model-n
with n � 1 does show nonzero response. In the following
subsection, we obtain the values of the critical exponents for
n � 1.

B. Model-n with n � 1

To compute the values of the critical exponents γ ± and δ,
our task is to obtain within the Vlasov dynamics starting from
the state f0 the asymptotic state fh and hence the response δm.
For this purpose, we remark that the Hamiltonian Hh given
in Eq. (28) is integrable and has the associated angle-action
variables (w, I ). In this setting, the response formula

fh(I ) = 〈 f0(φ, p)〉h (38)

has been proposed for Hamiltonian systems [18,25], where
〈·〉h is defined as the average over the angle variable w, as

〈A〉h ≡ 1

2π

∫ 2π

0
A[φ(w, I ), p(w, I )]dw. (39)

In Appendix B, we summarize the derivation of Eq. (38).
Using Hh = Hh(I ) and

〈ϕ(I )〉h = ϕ(I ) (40)

for any function ϕ, and the expansion of the single-spin
Hamiltonian as

Hh = H0 + δH, δH = −(δm + h)Sx, (41)

with Sx =
√

1 − p2 cos φ, we have the expansion of fh(I ) as

fh = f0 − (δm + h)[Sx − 〈Sx〉0]F ′(H0)

− (δm + h)[〈Sx〉0F ′(H0) − 〈Sx〉hF ′(Hh)]. (42)

Note that, for instance, one has F ′(x) = −F (x)/T for thermal
equilibrium reference state (24). The average 〈·〉0 is defined
as an average over the angle variable associated with the
integrable system H0.

Multiplying Eq. (42) by Sx =
√

1 − p2 cos φ and then inte-
grating over φ and p, we have the self-consistent equation for
the response δm as

L(δm + h) + N (δm + h) − h = (higher-order terms in h),
(43)

where the coefficient L of the linear part is

L(T ) = 1 +
∫∫

μ

[
S2

x − 〈Sx〉2
0

]
F ′(H0(φ, p))dφd p, (44)

while N concerns the leading nonlinear part:

N (T ) =
∫∫

μ

[〈Sx〉2
0F ′(H0) − 〈Sx〉2

hF ′(Hh)
]
dφd p. (45)

The linear part L gives the values of the critical exponents γ ±,
while the nonlinear part N gives the value of the exponent δ.

Note that L(Tc) = 0, so that the contribution of only the
nonlinear response appears at the critical point Tc. Away from
the critical point, it is the linear part that gives the dominant
contribution in Eq. (43), so that neglecting the nonlinear

contribution, we have the linear response

δm = 1 − L

L
h. (46)

Then, within linear response, the divergence of the suscepti-
bility,

χ = 1 − L

L
, (47)

is determined by the convergence behavior of L as T → T ±
c .

1. Linear response in the disordered phase

In the disordered phase, the angle variable w is nothing but
φ, and we have

〈Sx〉0 = 〈
√

1 − p2 cos φ〉0 = 0. (48)

This result implies that L has no contribution from the dynam-
ics and hence may be expanded in a Taylor series in (T − Tc)
around Tc, resulting in its convergence being proportional to
T − Tc. The critical exponent γ + is, therefore, given by

γ + = 1. (49)

2. Linear response in the ordered phase

In the ordered phase, let us divide L into the two parts:

L(T ) = L1(T ) + L2(T ), (50)

with

L1(T ) ≡ 1 +
∫∫

μ

S2
x F ′[H0(φ, p)]dφd p (51)

and

L2(T ) ≡ −
∫∫

μ

〈Sx〉2
0F ′[H0(φ, p)]dφd p. (52)

The behavior of L1(T ) is as in the disordered phase discussed
above: L1(T ) = O(Tc − T ). If L2(T ) has slower convergence
than L1(T ), then the convergence of L(T ) will be dominated
by that of L2(T ).

In the HMF model, we can construct the angle-action
variables explicitly, and the estimation of L2(T ) is rather
straightforward. In our spin model, such an explicit construc-
tion does not seem feasible due to the form of the single-spin
Hamiltonian H0, so that we have to invoke some physical
observations and assumptions in order to estimate L2(T ).
Details of the estimation are presented in Appendix C, and
one gets

L2(T ) = O[(m0)1/(n+1)] = O[(Tc − T )β/(n+1)]. (53)

We remark that this estimation does not depend on the choice
of the reference family G. From the above equation, it follows
that the critical exponent γ − is

γ − = β

n + 1
, (54)

provided β � n + 1, which is satisfied for β = 1/2 and n � 1.
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TABLE I. Critical exponents of the spin model (2) obtained
within the Vlasov dynamics. The critical exponents γ ± and δ in
Model-0 reflect no response within the Vlasov dynamics. The scaling
relation γ − = β(δ − 1) holds for all cases.

Model-n β γ + γ − δ

Statistical mechanics n � 0 1/2 1 1 3

Vlasov dynamics n = 0 1/2 0 0 1
n � 1 1

2 1 β

n+1
n+2
n+1

3. Nonlinear response at the critical point

As mentioned earlier, L(Tc) = 0, and Eq. (43) gives to
leading order in h the result

N (Tc)(δm + h) − h = 0 (55)

at the critical point Tc. The first term of N (T ), see Eq. (45),
vanishes on using the fact that m0 = 0 at T = Tc gives 〈Sx〉0 =
0. As a result, N (Tc) becomes

N (Tc) = −
∫∫

μ

〈Sx〉2
hF ′[Hh(φ, p)]dφd p, (56)

a form that reduces to the one for L2(T ), Eq. (52), on replacing
in the latter the reference state f0 with the asymptotic state fh

in performing the average over Sx. We thus have an estimation
of N (Tc) as

N (Tc) = O[(δm + h)1/(n+1)], (57)

where we have used Eq. (53) and have replaced m0 in it with
mh + h = δm + h. This estimation gives

(δm + h)(n+2)/(n+1) ∝ h (58)

and hence that

δm ∝ h(n+1)/(n+2). (59)

The critical exponent δ is thus

δ = n + 2

n + 1
. (60)

4. Predicted critical exponents and the scaling relation

The theoretically predicted critical exponents, obtained
within the Vlasov dynamics, are thus

β = 1

2
, γ + = 1, γ − = β

n + 1
, δ = n + 2

n + 1
, (n � 1).

(61)
These exponents satisfy the scaling relation

γ − = β(δ − 1), (62)

irrespective of the value of β.
We remark that Model-0 corresponds to the limit n →

∞, since this limit eliminates from the Hamiltonian the
anisotropic term Dp2n for |p| < 1. In this limit, we have γ − =
0 and δ = 1, which is consistent with (37) and no response
in Model-0. The obtained critical exponents are displayed in
Table I.

0 5 10 15 20 25 30
t

−0.0002

−0.0001

0.0000

0.0001

0.0002

0.0003

0.0004

m
x

FIG. 1. Model-1: Considering D = 5 and N = 106, the figure
shows the temporal evolution of mx . The initial state is the thermal
equilibrium state at temperature T (> Tc ≈ 0.476) = 12.8. A con-
stant field of strength h = 0.01 along the x axis is turned on at time
t0 = 10. The dashed line gives the value of the magnetization induced
by the field and given by Eq. (46) to be ≈0.00028. The data are
obtained by numerically integrating the equations of motion (7) and
averaging over 100 realizations of the dynamics.

V. NUMERICAL TESTS

In this section, we discuss numerical checks of our theo-
retical predictions for the critical exponents obtained in the
preceding section. As a representative case, we focus on
thermal equilibrium states as the reference states, which are
represented by Eq. (24) and give β = 1/2. We, however,
underline that the theoretical results developed in Sec. IV hold
for other families of reference states.

The numerical simulations of the equations of motion (7)
are performed by using a fourth-order Runge-Kutta algorithm
with the time step δt = 0.01. We choose sufficiently large
numbers of spins, namely N = 106 or 107. We will refer to
T as the temperature, but it is just a parameter characterizing
the reference state (24) and there is no thermal noise in the
dynamics.

A. Temporal evolution of magnetization

Considering n = 1, and preparing the system in the thermal
equilibrium state at a temperature T > Tc, we show in Fig. 1
the behavior of the magnetization mx as a function of time
when a constant field of strength h = 0.01 along the x axis is
turned on at t0 = 10. In the figure, we also show by the dashed
line the value of the magnetization induced by the field and
given by Eq. (46). We can numerically examine the critical
exponents γ ± and δ by varying the temperature T and observ-
ing the response that corresponds to the difference between
the zero level and the dashed-line level of the magnetization
in the figure.

The external field may have induced periodic oscillations
in the magnetization [27], but in our case, one may ob-
serve from Fig. 1 that the magnetization does not exhibit
stable oscillations after the field is turned on. It rather ex-
hibits due to finiteness of the number of spins only fluc-
tuations about the theoretically predicted value valid in the
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0

FIG. 2. Model-0: Spontaneous magnetization m0 (points), ob-
tained by solving the self-consistent equation (27) with thermal
equilibrium as the reference state. The critical point is Tc = 1/3. The
line corresponds to the behavior (30), with β given by our theoretical
analysis as β = 1/2, see Table I.

thermodynamic limit, as has also been observed in the HMF
model [15].

B. Critical exponents

Turning on a constant external field at t = 10, we study
numerically the response of the system (2) with N = 107. Our
results, presented in Figs. 2 and 3 for Model-0, Figs. 4–6
for Model-1, and in Figs. 7–9 for Model-2 are all consistent
with our theoretical predictions in Table I. For Model-1,
we take D = 5 for which Tc ≈ 0.476 is obtained by using
G(x) = exp(−x/T ) in the expression given by Eq. (A6) for
the quantity A(T ) and then solving A(Tc) = 0, while for
Model-2, we take D = 15 for which one has Tc ≈ 0.47. Note
that in Figs. 5 and 8, our theoretical results match with our
numerical results only for sufficiently small h, as expected on
the basis of the fact that our theoretical analysis is valid in
the linear response regime obtained in the limit h → 0. Let
us remark that very close to Tc, numerical results for finite N
shown in Figs. 5 and 8 do not show the divergence predicted
by our theory and shown in these figures by red lines, due
to finiteness of the field strength h (the theoretical results are
valid in the limit h → 0 and N → ∞ while satisfying the
condition h > 1/

√
N that ensures that the response dominates

over finite-size fluctuations; in these figures, N is large enough
that the condition h > 1/

√
N is satisfied, although not the

limit h → 0). Moreover, the convergence to the h → 0 limit
is slower for Model-2 than for Model-1.

VI. CONCLUSIONS

In this work, we have discussed response to an external
field in mean-field systems of classical Heisenberg spins
exhibiting a second-order phase transition in the stationary
state. The time evolution in the thermodynamic limit of such
systems is described by the so-called Vlasov equation for the
single-spin phase-space distribution function. We have shown
that for Vlasov-stationary states that allow a second-order

10−3 10−2 10−1 100

h

10−4

2 × 10−4

3 × 10−4

4 × 10−4

6 × 10−4

m
h

T = 0.383

0.733

1.133

10−3 10−2 10−1 100

h

10−2

10−1

100

m
h

T = 0.3133

0.3313

0.3331

FIG. 3. Model-0: For T > Tc = 1/3 (upper panel) and T < Tc

(lower panel), the figure shows the magnetization mh obtained by
numerically integrating the equations of motion (36) with N = 107

and performing a time average of the instantaneous magnetization
over an interval of length 20, which is further averaged over five
realizations of the dynamics. The magnetization mh is independent
of h in both cases, thus lending support to the behavior (32), with γ ±

given by our theoretical analysis as γ + = γ − = 0, see Table I.

phase transition and when subject to a small external field,
the critical exponents characterizing power-law behavior of
response close to the critical point and obtained within the
Vlasov dynamics may take values different from the ones
obtained on the basis of a statistical mechanical analysis,
with no reference to the dynamics of the initial state in the
presence of the external field. Interestingly, we find that both
the sets of values of the critical exponents satisfy the same
scaling relation, which is incidentally the same as the one
known for mean-field Hamiltonian particle systems that are
quite different from the studied spin systems. This work hints
on one hand at the universality of critical behavior for mean-
field systems evolving under Vlasov dynamics, and cautions
on the other hand against relying on a static approach, with
no reference to the dynamical evolution, to extract critical
exponent values for mean-field systems.

The reason that one has to resort to the dynamics in
order to extract the correct critical exponents is the following.
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FIG. 4. Model-1: For D = 5, the figure shows the spontaneous
magnetization m0 (points), obtained by solving the self-consistent
equation (27) with thermal equilibrium as the reference state. The
critical point is Tc ≈ 0.476. The line corresponds to the behav-
ior (30), with β given by our theoretical analysis as β = 1/2, see
Table I.

Let us first recall the protocol we employ in extracting the
critical exponents. We prepare the system in Vlasov-stationary
states parametrized by a parameter T and which allow a
second-order phase transition and consequently a critical
point Tc. An example of such states is the thermal equilib-
rium state for which the parameter T is the temperature.
We then subject the system to a constant external field. As
mentioned in the introduction, mean-field systems like ours
when considered in the thermodynamic limit remain trapped
in Vlasov-stationary states forever in time. The dynamics in
such states is nonergodic due to existence of the Casimir
invariants, so that one may not apply tools from Boltzmann-
Gibbs equilibrium statistical mechanics to extract the critical
exponents characterizing the response of such states to the
external field for the simple reason that ergodicity lies at
the heart of the very foundation of equilibrium statistical
mechanics.

It may be noted that one could very well have a class of
Vlasov-stationary states that for our model do not allow a
second-order but a first-order phase transition. One may men-
tion the case of the HMF model where the Vlasov-stationary
thermal equilibrium state allows for a second-order phase
transition, but there are other classes of Vlasov-stationary
states that allow a first-order phase transition [11–14]. It
would be interesting in the context of our model to study
the response for other classes of Vlasov-stationary reference
states that allow a first-order phase transition and differ from
the ones studied here. Another immediate follow up of this
work would be to investigate the validity, in the context of
the studied spin model, of the Kubo fluctuation-dissipation
theorem valid for short-range systems prepared in thermal
equilibrium and subject to small external fields. Studies in
this direction are underway and comparison with the HMF
model results [28] will be reported elsewhere. Collective 1/ f
fluctuation due to the Casimir invariants is also an interesting
topic to pursue [29].

10−3 10−2 10−1 100

T Tc

0.3

0.5

0.7

1.0

3.0

5.0

10.0

χ

h = 0.007

0.01

0.05

0.07

0.1

10−5 10−4 10−3 10−2 10−1

Tc T

100

101

χ

h = 0.007

0.01

0.05

0.07

0.1

FIG. 5. Model-1: For D = 5, the figure shows the susceptibility
χ (T ) denoted by points; here, the magnetization mh is obtained by
numerically integrating the equations of motion (7) with N = 107

and performing a time average of the instantaneous magnetization
over an interval of length 20, which is further averaged over two
realizations of the dynamics. The upper panel corresponds to the
disordered phase T > Tc ≈ 0.476, while the lower panel is for the
ordered phase T < Tc. In either case, the black dashed line cor-
responds to the behavior close to Tc, Eq. (32), with γ + = 1 and
γ − = 1/4 as given by our theoretical predictions, see Table I. The
red continuous lines in the figures are our theoretical result (47),
with L given by Eq. (44) computed numerically by using the method
detailed in Appendix D.
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FIG. 6. Model-1: For D = 5, the figure shows the nonlinear
response at the critical point Tc ≈ 0.476. The magnetization mh, de-
noted by points, is obtained by numerically integrating the equations
of motion (7) with N = 107 and performing a time average of the
instantaneous magnetization over an interval of length 20, which is
further averaged over two realizations of the dynamics. The black
line corresponds to the behavior (33), with δ given by our theoretical
analysis as δ = 3/2, see Table I. As expected, only for small h does
our theory match with numerical results.

APPENDIX A: DERIVATION OF THE CRITICAL
EXPONENTS (34)

Here we discuss how one may obtain the values of the
critical exponents given in Eq. (34). The starting point is
the equivalent of Eqs. (20), (21), and (23) in presence of a
constant field h = (h, 0, 0):

fh(φ, p) = F (Hh(φ, p)) = G[Hh(φ, p)]∫∫
μ

G[Hh(φ, p)]dφd p
, (A1)
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FIG. 7. Model-2: For D = 15, the figure shows the spontaneous
magnetization m0 (points), obtained by solving the self-consistent
equation (27) with thermal equilibrium as the reference state. The
critical point is Tc ≈ 0.47. The line corresponds to the behavior (30),
with β = 1/2, as predicted by our theory, see Table I.
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FIG. 8. Model-2: For D = 15, the figure shows the susceptibility
χ (T ), denoted by points; here, the field-induced magnetization mh

is obtained by numerically integrating the equations of motion (7)
with N = 107 and performing a time average of the instantaneous
magnetization over an interval of length 20, which is further averaged
over two realizations of the dynamics. The upper panel corresponds
to the disordered phase T > Tc ≈ 0.47, while the lower panel is
for the ordered phase T < Tc. In either case, the black dashed line
corresponds to the behavior close to Tc, Eq. (32), with γ + = 1 and
γ − = 1/6 as given by our theoretical predictions, see Table I. The red
continuous lines in the figures are our theoretical result (47), with L
given by Eq. (44) computed numerically by using the method given
in Appendix D.

with

Hh(φ, p) = Dp2n − (mh + h) · S (A2)

and

mh =
∫∫

μ

S fh(φ, p)dφd p. (A3)

The last equation gives

mh =
∫∫

μ
SxG[Dp2n − (mh + h)Sx]dφd p∫∫

μ
G[Dp2n − (mh + h)Sx]dφd p

, (A4)

with Sx =
√

1 − p2 cos φ. We assume G to be a smooth func-
tion of its argument. Since we take G to be parametrized
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FIG. 9. Model-2: For D = 15, the figure shows the nonlinear re-
sponse at the critical point Tc ≈ 0.47. The magnetization mh, denoted
by red points, is obtained by numerically integrating the equations
of motion (7) with N = 107 and performing a time average of the
instantaneous magnetization over an interval of length 20, which is
further averaged over two realizations of the dynamics. The black
line corresponds to the behavior (33), with δ given by our theoretical
analysis as δ = 4/3, see Table I. As expected, only for small h does
our theory match with numerical results.

by the parameter T , this means that G is also smooth with
respect to T . Let us expand G in a Taylor series around Dp2n.
Substituting the Taylor series and then integrating over φ, we
see that in the numerator on the right-hand side of Eq. (A4),
only odd order terms in (mh + h) survive. In the denominator,
on the contrary, only even order terms survive. Consequently,
the right-hand side of Eq. (A4) has only odd order terms of
mh, and the equation gives

A(T )(mh + h) + B(T )(mh + h)3 − h = 0, (A5)

with

A(T ) ≡ 1 + 1

2

∫ 1
−1(1 − p2)G′(Dp2n)d p∫ 1

−1 G(Dp2n)d p
, (A6)

and we have neglected the higher-order terms in (mh + h) in
obtaining Eq. (A5). Consider now the latter for h = 0. Assum-
ing B(T ) > 0, one has a nonzero solution for m0 for T < Tc

and only a zero solution for T > Tc, where the critical point
T = Tc is where we have A(Tc) = 0, while A(T ) is positive
(respectively, negative) for T > Tc (respectively, T < Tc). The
nonzero solution, giving the spontaneous magnetization for
T < Tc, is m0 = √−A/B. The smoothness of G with respect
to the parameter T allows A(T ) to be expanded in a Taylor
series around Tc, giving A(T ) ∝ (T − Tc) close to Tc, and this
gives β = 1/2.

The linear response is obtained by deriving Eq. (A5) with
respect to h, and we have

χ (T ) = dmh

dh

∣∣∣∣
h=0

=
{

(1 − A)/A (T > Tc)

(1 + 2A)/(−2A) (T < Tc)
. (A7)

From the behavior A(T ) ∝ (T − Tc) around T = Tc, we get
γ ± = 1.

At the critical point, the self-consistent equation (A5)
reduces to

B(Tc)(mh + h)3 = h. (A8)

The response mh ∝ h1/δ (δ > 1) is larger than h for small h,
so that we have m3

h ∝ h, implying δ = 3.

APPENDIX B: DERIVATION OF THE RESPONSE
FORMULA, EQ. (38)

In this Appendix, we summarize the derivation of the
response formula (38) by following Ref. [30]. Noting that the
Vlasov equation is governed by the single-spin Hamiltonian
H , which depends on f through the magnetization m, the idea
is to expand the Hamiltonian H as

H = Hh + K, (B1)

where Hh defined in (28) is the asymptotic part, characterizing
the stationary (t → ∞) state fh, while K is the transient part.
For our spin model, the explicit form of the transient part is

K (φ, p, t ) = −mT (t )
√

1 − p2 cos φ, (B2)

where the transient magnetization mT (t ) is obtained as

mT (t ) =
∫∫

μ

√
1 − p2 cos φ g(φ, p)dφd p, (B3)

and the transient state g is defined by g = f − fh. The tran-
sient quantities, g, K , and mT (t ), are not known a priori, but
they do not appear in the final result of the response formula.

Let us write the Vlasov equation (14) as

∂ f

∂t
= LH f = LHh f + LK f , (B4)

where the linear operator LH is defined as

LH f ≡ ∂H

∂φ

∂ f

∂ p
− ∂H

∂ p

∂ f

∂φ
. (B5)

Equation (B4) is still exact. Now we assume that contribution
from the transient part, LK f , is negligible, which is justified
under some assumptions for Hamiltonian systems and may be
related to the phenomenon of Landau damping, see Ref. [30]
for details.

Under the aforementioned assumption, the formal solution
to the Vlasov equation (B4) is

f (φ, p, t ) = exp[tLh] f0(φ, p), (B6)

which represents temporal evolution of f0 under Hamiltonian
flow associated with the asymptotic Hamiltonian Hh. Assum-
ing ergodicity, a formula that replaces the time average with
a partial phase-space average with respect to a iso-Hh surface
gives

lim
t→∞

1

t

∫ t

0
esLH f0(φ, p)ds = 〈 f0〉h. (B7)

Noting that the left-hand side is nothing but the asymptotic
stationary state fh, we obtain the response formula (38).
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APPENDIX C: DERIVATION OF THE ESTIMATION (53)
FOR THE QUANTITY L2

Here we derive Eq. (53). For simplicity of notation, we use
the same symbols (w, I ) for angle-action variables associated
with the single-spin Hamiltonian H0 as the ones used for Hh

in Sec. IV B, but the latter do not appear in this section and no
confusion should arise. Here we consider positive n.

We start with Eq. (52). Noting that 〈Sx〉2
0 and H0 depend on

only the action variable I , we rewrite L2 as

L2 =
∫∫

μ

ψ (I )

2π
dwdI =

∫
ψ (I )dI, (C1)

where

ψ (I ) = −2π〈Sx〉2
0F ′[H0(I )], (C2)

and we have used the fact that canonical transformation from
(φ, p) to (w, I ) gives dφd p = dwdI . The single-spin Hamil-
tonian H0 has a separatrix which consists of the stable and
unstable manifolds of the fixed point (Sx, Sy, Sz ) = (−1, 0, 0)
and encloses the point O = (1, 0, 0) on the phase space of
the unit sphere. On the basis of this observation, we make an
essential assumption for estimating L2, namely that the main
contribution to L2 comes from the region around the point O.
We now change twice the variables of integration in L2. First,
to divide the phase space into the inside and the outside of the
separatrix, the integration variable I is changed to energy E as

L2 =
∫ Esep

Emin

ψ (I )

(I )
dE +

∫ Emax

Esep

ψ (I )

(I )
dE , (C3)

where the frequency (I ) is defined by

(I ) ≡ dH0

dI
(I ). (C4)

Let Emin, Esep, and Emax denote respectively the minimum
energy, the separatrix energy, and the maximum energy. Fol-
lowing the essential assumption, we omit the second term of
L2 in (C3). Second, to eliminate the dependence on m0 of the
integration interval, E is changed to a variable k defined as

k ≡ E − Emin

Esep − Emin
. (C5)

Consequently, one has

L2 
∫ 1

0
ψ[I (k)]

Esep − Emin

[I (k)]
dk = 2m0

∫ 1

0

ψ (k)

(k)
dk, (C6)

where ψ[I (k)] is simply denoted as ψ (k), for instance.
To estimate  around the point O, which corresponds to

(φ, p) = (0, 0), we approximate H0 as

H0(φ, p)  Dp2n + m0

2
φ2. (C7)

The action variable is the area enclosed by a periodic orbit,
and hence we have

I = 1

2π

∮
φd p = 2

π

√
2

m0

∫ pmax

0

√
E − Dp2nd p, (C8)

with pmax = (E/D)1/(2n). In terms of

p ≡
(

E

D

)1/(2n)

u, (C9)

we have the action variable as

I = I0
E (n+1)/2n

√
m0

, I0 = 2
√

2

πD1/(2n)

∫ 1

0

√
1 − u2ndu, (C10)

which gives

E = mn/(n+1)
0

(
I

I0

)2n/(n+1)

. (C11)

The frequency  is therefore

 = mn/(n+1)
0 ̃, ̃ = 2n

n + 1

1

I0

(
I

I0

)(n−1)/(n+1)

. (C12)

Putting all together, we have the estimation of L2 as

L2  2m1/(n+1)
0

∫ 1

0

ψ (k)

̃(k)
dk. (C13)

We remark that 〈Sx〉0 is zero in the disordered phase, but it
does not vanish in the ordered phase even when the limit
m0 → 0 is taken, because the iso-H0 line is confined to the
direction φ around the point O corresponding to (φ, p) =
(0, 0). Equation (C13) yields the estimation (53) of the main
text.

APPENDIX D: A METHOD TO COMPUTE
AVERAGES 〈·〉0 OVER ANGLES

In this Appendix, we discuss a method to compute the
angle average 〈·〉0. The single-spin Hamiltonian H0 has the
angle-action variables (w, I ) whose temporal evolution is

w(t ) = w(0) + (I )t, I (t ) = I (0), (D1)

where (I ) = dH0/dI . Changing the variable from w to t , we
have the average as

〈B〉0 =
∫ 2π

0 B(w, I )dw∫ 2π

0 dw
=

∫ Tp

0 B(w(t ), I )(I )dt∫ Tp

0 (I )dt

=
∫ Tp

0 B(w(t ), I )dt∫ Tp

0 dt
, (D2)

where Tp is the period on the considered iso-I line. We
may write down the canonical equations of motion for H0 =
Dp2n − m0

√
1 − p2 cos φ as

dφ

dt
= 2nDp2n−1 + m0

p√
1 − p2

cos φ,

d p

dt
= −m0

√
1 − p2 sin φ, (D3)

and the average 〈
√

1 − p2 cos φ〉0 is computed as

〈
√

1 − p2 cos φ〉0 =
∫ Tp

0

√
1 − p2(t ) cos φ(t ) dt∫ Tp

0 dt
. (D4)

Note that the left-hand side depends on the action I only, with
the initial condition [φ(0), p(0)] determining the value of I .
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