# LESによる粗面上の乱流境界層の数値計算

## NUMERICAL CALCULATION OF TURBULENT BOUNDARY LAYER OVER ROUGH SURFACE USING LARGE EDDY SIMULATION

#### 丸山 敬

## Takashi MARUYAMA

#### ABSTRACT

The demand of numerical prediction of wind flow over rough surfaces such as urban areas is increasing. Reproduction of the roughness configuration in the mesh discretization is a direct way for numerical calculations. However, the roughnesses near the ground such as buildings or houses are complicated. Therefore the reproduction increases the computational load and can cost a lot of time and money. In order to reduce this, we applied a filtering operation, that is an averaging in a space containing solid obstacles, to the Navier-Stokes equations and derived filtered equations with a subgrid scale turbulent modeling for the Large Eddy Simulation. Consequently, we can take the obstacles to be porous media distributed uniformly in the mesh. The configuration of the obstacles does not need to be reproduced any further. We can calculate the space-averaged property of flows with coarse meshes and a reduced computational load. We present some calculations of turbulent boundary layer over a rough surface. The performance and effectiveness of the calculation method are examined by comparing with the measured data by wind tunnel experiments.

Key Words: LES, Turbulent boundary layer, Rough surface, Numerical simulation

## 1. はじめに

数値流体計算の発達により、建築分野でも種々の流体計算が行われ、耐風設計用の風速分布や建物周りの 風環境の予測例が数多く報告されている.最近では、接地境界層内の非定常乱流場の数値計算に関する計算 手法の研究も盛んで、流入変動風の発生方法、複雑粗度や複雑地形上の気流性状の予測手法に関する研究が 多く行われるようになってきた.本報では、市街地のようにビルなどの粗度が分布する地表面上に発達する 乱流境界層を、ラージエディシミュレーションを用いて数値計算で再現する際の粗度の取り扱いを中心に検 討を行う.

粗度の影響を取り込む方法としては粗度形状を解析領域に直接再現する方法が素直な方法であるが、粗度 要素周囲の気流性状を詳細に再現しようとすると、計算格子の解像度を粗度要素よりも十分に細かく取らね ばならない.とくに、実際の市街地のように形状が複雑で、様々なスケールを持った粗度が混在する場合に は、必要となる計算格子数が膨大なものとなり、実用計算が可能な解析領域の大きさにも限界がある.一方、 上空に発達する乱流境界層内の気流性状の予測という視点からは、地面付近の粗度要素周囲の気流性状を詳 細には再現せずに、粗度要素の影響を空間平均値として取り込むことによって計算格子数を減らし、計算負 荷を低減する方法が考えられる.本報ではこの考え方に基づく方程式系と乱流モデルを提案し、その有効性 を実験結果と比較しながら検討する.

京都大学防災研究所 助教授 (〒611-0011 宇治市五ヶ庄)



z (mm)

600

400

200

n

-0.2 0 0.2 0.4 0.6

0

0

 $\boxtimes 2$ 

O u/Uo △ v/Uo ▽ w/Uo

σ\_²/Ue²

▼ σ\_²/Ue²

□ -u'w'/Uo ■ k/Uo<sup>2</sup>

1 1.2 u, v, w/Uo

0. 02 k,  $\sigma_{u}^{2}$ ,  $\sigma_{v}^{2}$ ,  $\sigma_{w}^{2}/Uo^{2}$ 

(1)

0.004 -u'w'/Uo<sup>2</sup>

主な統計量のプロフィル

0.8

平均、分散、*u*と*w*変動成分の相関、 乱れのエネルギー*k*. *x*=11, *y*=0 m.

0.01

0.002

∇ w/Uo
 Φ σ<sup>2</sup>/Uo<sup>2</sup>

## 2. 解析対象

解析対象とするのは、図1に示すような風洞内に千鳥状に 配置された立方体粗度ブロック上に発達する乱流境界層で、 下流における境界層内の気流性状を数値的に再現することを 目標とする.実験条件、測定方法などを表1に、測定された 主な統計量のプロフィルを図2に示す.下流の測定点x = 11m, y = 0m では境界層が約 60cm、-u'w'の鉛直分布から見て高 さ 30cm 程度まで応力一定の領域が発達している.

### 3.計算

## 3.1 支配方程式

計算には空間フィルタリングを施した支配方程式を用い、 非定常流れ場を数値的に解く.空間フィルタリングには平岡 ら<sup>1)</sup>が $\mathbf{k} - \epsilon$  乱流モデルに用いた方法と同様な粗度を含めた 空間平均操作を用いる.すなわち、関数  $f(\mathbf{x},t)$ の空間平均は

$$|\mathbf{x}| \to \infty \quad \forall \quad H(\mathbf{x}) \to 0$$

評価空間の大きさ $V_0$ が

$$V_0 = \int_{V} H(\mathbf{x}) dV(\mathbf{x})$$
<sup>(2)</sup>

であるような、時間方向に変化しない十分滑らかなフィルター関数 H(x) との合成積として

$$\bar{f}(\mathbf{x},t) \equiv \frac{1}{V_a(\mathbf{x},t)} \int_{V} H(\mathbf{y} - \mathbf{x}) f(\mathbf{y},t) dV(\mathbf{y})$$
(3)

と定義する.フィルター関数 Hによって与えられる評価空間  $V_0$ における流体部分の体積を有効体積  $V_a(\mathbf{x},t)$ とし、 $V_a$ の評価体積  $V_0$ に対する割合を

$$G(\mathbf{x},t) \equiv \frac{V_a(\mathbf{x},t)}{V_0}$$
(4)

と定義し、Gが時間方向に変化しない、すなわち、粗度の変化や移動がないとすると、時間方向の偏 微分に対する平均は

$$\frac{\partial f(\mathbf{x},t)}{\partial t} = \frac{\partial f(\mathbf{x},t)}{\partial t}$$
(5)



fに対する空間方向の偏微分に対する平均は

$$\frac{\partial f(\mathbf{x},t)}{\partial x_j} = \frac{1}{G(\mathbf{x})} \frac{\partial G(\mathbf{x}) \overline{f}(\mathbf{x},t)}{\partial x_j} + \frac{1}{V_a(\mathbf{x},t)} \int_{S} H(\mathbf{y} - \mathbf{x}) f(\mathbf{y},t) n_j(\mathbf{y},t) dS(\mathbf{y})$$
(6)

となり、右辺第一項の平均値に対する空間微分項の他に右辺第二項が附加項として現れる.ここで、*n<sub>j</sub>* は粗度界面上の位置 y において流体側から物体側に向かう方向を正とする単位法線ベクトル n の *x<sub>j</sub>* 軸 方向成分を表し、界面 s における物体と流体間の f のやりとりを表している.なお、空間平均操作に 関する詳細は文献1)を参照されたい.以上の演算規則に従う空間平均操作を施し、粗視化された流れ の基礎方程式系においてサブグリッドスケール以下の乱流の影響を渦動粘性係数*v<sub>SGS</sub>* として取り込 むラージエディシミュレーション(以下LESと記す)に準じた方程式系を導くと以下のようになる. 連続の式

$$\frac{\partial Gu_j}{\partial x_i} = 0 \tag{7}$$

運動方程式

$$G\frac{\partial u_i}{\partial t} + \frac{\partial Gu_i u_j}{\partial x_j} = -\frac{\partial Gp/\rho}{\partial x_j} + \frac{\partial 2Gv_e D_{ij}}{\partial x_j} - GF_{xi}$$
(8)

ここで、 $u_i$ は粗視化された $x_i$ 軸方向( $x_1 = x$ 、 $x_2 = y$ 、 $x_3 = z$ )の風速、pは圧力でそれぞれ流体単位体積あたりの値. $\rho$ は空気密度、 $v_e$ は実効粘性で空気の粘性vとサブグリッドスケールの渦動粘性係数 $v_{scs}$ の和である.ここでは、渦動粘性係数に及ぼす粗度の影響が以下で述べる附加項 $F_{xi}$ の影響に比べて小さいとし、 $v_{scs}$ に関してはスマゴリンスキーモデルに倣い

$$V_{SGS} \cong (C_S L)^2 |D|, \quad |D| = \sqrt{2D_{ij}D_{ij}},$$
(9)

とし、ひずみ速度テンソル

$$D_{ij} \equiv \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i}\right)/2 \tag{10}$$

と、*x*,軸方向の格子幅 Δ*x*,により決まるスケール

$$L \cong \sqrt[3]{\Delta x_1 \Delta x_2 \Delta x_3} \tag{11}$$

およびモデル定数  $C_s$ = 0.1で与える. 粗度の影響を表す項  $F_{xi}$ は以下のように流体単位体積あたりの  $x_i$ 軸方向の物体の見つけ面積  $a_{xi}$ (1/mの次元をもつ)と抵抗係数  $C_{di}$ を用いて

$$F_{xi} = \frac{1}{2} a_{xi} C_{di} | u | u_i$$
(12)

とモデル化する.なお、式(12)では下付きのiに関しては総和をとらない.ここで、

$$|u| = \sqrt{u_1^2 + u_2^2 + u_2^2} \tag{13}$$

である.以下では、粗度の影響をGおよび付加項F<sub>xi</sub>で取り込む方法をキャノピー条件と呼ぶことにする. なお、サブグリッドスケールの乱流モデルに対する粗度の影響はShaw ら<sup>2)</sup>、日野ら<sup>3)</sup>、奥野ら<sup>4)</sup>等が植生層 に関して提案しているが、いずれも評価空間内の粗度要素の体積変化は陽に扱っていない.

## 3.2 計算方法

以上の式を差分法で離散化し、数値計算を行っ た.離散化の方法および境界条件の詳細を表2に まとめる.解析領域は図3に示すとおりで、粗度 の中央部分、V軸方向には平均量がほぼ変化しな い範囲、y=±0.36mとした.計算格子は基本的に はx, y軸方向に粗度ブロックの幅0.06mの等間 隔、2軸方向は床面付近で2=0.09mまで0.01mの 等間隔.上空にいくに従って、格子幅が0.062mま で等比級数的に大きくなるように設定し、上空で 等間隔0.062mとした. 粗度に関しては、粗度ブロ ックを固体として再現したCase 1.3.1節で述べ た支配方程式中で流体体積率G、見つけ面積a<sub>vi</sub>、 抵抗係数 C<sub>d</sub> としてその影響を取り込むキャノピ 一条件を用いたCase 2. 両者を用いたCase 3. さ らに、格子幅の影響を見るために、キャノピー条 件を用いる領域でx軸方向に格子幅を変化させ たCase4の4ケースについて計算を行った.

#### 3.3 計算手法の検討

初めに、乱流境界層の発達が再現されるかどう かを確かめ、LESによる乱流のモデル化と計算 手法の有効性、および格子解像度の検証を行うた めに、粗度部分では固体条件 (u = v = w = 0) とし たCase1の計算を行った.計算は一様場(u=1.85、 *v* = *w* = 0 m/s) から始め、境界層が発達し流れが十 分乱れるまで行い、その後約55秒間の統計量を求 めた.なお、この場合は、上述の方程式系におい て、G = 1、 $F_{xi} = 0$ となり、通常のLESと同 様な式となる.結果を見ると、図4および図5に 示されるように、計算結果は乱流境界層の発達お よび気流性状の統計量をほぼ再現することが確 かめられた.

#### 4. 粗度モデルの有効性

次に、2.1に示した粗度を含めた空間平均操作 により粗度の影響を乱流モデルに取り込んだL ESの方程式系の有効性を検証する.格子はCase 1と同様のものを用い、粗度が存在する領域に対 してキャノピー条件を用いた計算Case 2 を行っ た. すなわち、 $G_{,a_{y}}$ に対しては粗度形状から決 まる値G = 0.875,  $a_x = a_y = 2.38$ ,  $a_z = 0.0$  [1/m]を、 抵抗係数*C*<sub>d</sub>に関しては、同様の定式化を行った

| 離散化                                                | 差分法                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 空間方向                                               | 2次中心差分                                                                                                                                                                                                                                                                                                                                               |
| 時間方向                                               | アダムスバシュフォース                                                                                                                                                                                                                                                                                                                                          |
| ポアソン解法                                             | 部分段階法                                                                                                                                                                                                                                                                                                                                                |
| 変数配置                                               | スタッガードメッシュ系                                                                                                                                                                                                                                                                                                                                          |
| 計算格子                                               | 図3参照                                                                                                                                                                                                                                                                                                                                                 |
| x方向:等間隔                                            | i (6cm) および不等間隔 (6-12cm)                                                                                                                                                                                                                                                                                                                             |
| <i>y</i> 方向:等間隔                                    | 5 (6cm)                                                                                                                                                                                                                                                                                                                                              |
| z 方向:不等間隔(z = 9cm まで 1cm の等間隔、                     |                                                                                                                                                                                                                                                                                                                                                      |
| それより上方では不等間隔1-6.2cm)                               |                                                                                                                                                                                                                                                                                                                                                      |
| 上方境界条件                                             | $\partial / \partial z = 0$                                                                                                                                                                                                                                                                                                                          |
| 側面境界条件                                             | free slip 条件                                                                                                                                                                                                                                                                                                                                         |
| 流入境界条件                                             | 一様流( $u=1$ 、 $v=w=0$ )                                                                                                                                                                                                                                                                                                                               |
| 流出境界条件                                             | 移流境界条件                                                                                                                                                                                                                                                                                                                                               |
| 地面境界条件                                             | no-slip 条件                                                                                                                                                                                                                                                                                                                                           |
| キャノピー条件                                            | 粗度形状の影響を乱流モデル                                                                                                                                                                                                                                                                                                                                        |
|                                                    | に取り込む. 3.1節参照                                                                                                                                                                                                                                                                                                                                        |
| 固体条件                                               | u = v = w = 0                                                                                                                                                                                                                                                                                                                                        |
| Z 🔺                                                |                                                                                                                                                                                                                                                                                                                                                      |
|                                                    |                                                                                                                                                                                                                                                                                                                                                      |
| Case 1: $x$ , y万回<br>等問隔:6cm 2古                    |                                                                                                                                                                                                                                                                                                                                                      |
| 向不等間隔 1~                                           |                                                                                                                                                                                                                                                                                                                                                      |
| 6.2cm. 粗度は固体                                       |                                                                                                                                                                                                                                                                                                                                                      |
| ブロックとする.                                           |                                                                                                                                                                                                                                                                                                                                                      |
|                                                    |                                                                                                                                                                                                                                                                                                                                                      |
| $-0.84$ 0 roughness $4_11.8$ 測定位置:11.0             |                                                                                                                                                                                                                                                                                                                                                      |
| Case 2:x、 v 方向 毌                                   |                                                                                                                                                                                                                                                                                                                                                      |
| 等間隔; 6cm、 z 方                                      |                                                                                                                                                                                                                                                                                                                                                      |
| 向不等間隔 1~                                           |                                                                                                                                                                                                                                                                                                                                                      |
| 6.2cm. 粗度はキャ                                       |                                                                                                                                                                                                                                                                                                                                                      |
| クロー衆FFこり<br>る.                                     |                                                                                                                                                                                                                                                                                                                                                      |
| -                                                  | canopy                                                                                                                                                                                                                                                                                                                                               |
|                                                    |                                                                                                                                                                                                                                                                                                                                                      |
| Case 3: $x$ , y万回<br>等問隔:6cm $z$ 方                 |                                                                                                                                                                                                                                                                                                                                                      |
| 向不等間隔 1~                                           | dal (arteni dialaman, mangi ini dalah (arteni arteni arteni arteni arteni arteni arteni arteni arteni arteni a<br>1991 - Arteni arteni<br>1991 - Arteni |
| 6.2cm. 粗度は固体                                       |                                                                                                                                                                                                                                                                                                                                                      |
| ブロックとキャノ                                           | an a                                                                                                                                                                                                                                                                                                             |
| ビー条件を用い ■                                          |                                                                                                                                                                                                                                                                                                                                                      |
| -                                                  | roughness Canoby                                                                                                                                                                                                                                                                                                                                     |
| Touginess entry                                    |                                                                                                                                                                                                                                                                                                                                                      |
| Case 4: x方向不                                       |                                                                                                                                                                                                                                                                                                                                                      |
| ·等间隔; 6~12cm、 ···································· |                                                                                                                                                                                                                                                                                                                                                      |
| 2方向不等間隔 1                                          |                                                                                                                                                                                                                                                                                                                                                      |
| ~6.2cm. 粗度は固                                       |                                                                                                                                                                                                                                                                                                                                                      |
| 体ブロックとキャ                                           |                                                                                                                                                                                                                                                                                                                                                      |
| ノビー 宋叶を用い0.84                                      | 0 roughness 4.9 canopy 11.8                                                                                                                                                                                                                                                                                                                          |

図3 Case 名、格子分割、粗度の配置 縦方向は5倍に拡大して表示、図中の単位は m



図6 中央鉛直断面内の u 成分の分布 等値線は u /Uo = 0.1 間隔 縦方向は 5 倍に拡大して表示

k-ε 乱流モデルによる計算結果と実験結果の比較 5)により求められた最適値 1.75 を用いた.なお、評価空間 V<sub>0</sub>の大きさは、各計算点における格子体積としている.結果は、図6 a および図7 に示されるように、境界層の発達が少なく、統計量のプロフィルも実験値からははずれたものとなった.とくに、粗度前縁付近で



の乱れの発生がなく、下流での変動も小さいために鉛直方向の運動量の交換が少なくなり、境界層の発達が 不十分となった.これは、空間平均化操作により、粗度の効果が平滑化され、粗度前縁での空間的な風速変 動が緩やかになっていのが大きな原因と考えられる.そこで、上流部分には粗度形状を再現して乱れを発生 させ、下流部分にキャノピー条件を用いた計算 Case 3 を行った.この場合には、図6 bおよび図7 に示され るように、ラフネス高さ以上で実験結果および Case 1 とほぼ同様な結果が得られ、キャノピー条件が有効に 働いていることがわかる.さらに、キャノピー条件を用いた領域の流れ方向の格子幅を2 倍まで広げた計算 Case 4 を行い、格子幅の影響を見た.その結果、図6 c および図7 に示されるように平均風速分布の計算結 果には大きな変化が見られないことがわかった.ただし、この場合、x 軸方向の変動のスケールが大きくな り、格子幅が大きくなった影響が出ている.また、u成分の乱れも地面近くで大きくなった.

## 5. まとめ

本報ではLESによる粗面上の乱流境界層の再現性と、粗度の影響を支配方程式中にモデル化して取り込 んだ手法の有効性を検討した.計算結果より、ここで示した粗度モデルは、乱れの少ない流れが粗面に流入 するような遷移領域では有効ではないが、境界層が発達し、乱れた状態であれば、空間平均された粗度の影 響を再現できる可能性があることがわかった.この手法は、粗度形状を解析領域に再現せず、計算格子も大 きくとれることから計算容量および計算負荷の軽減に役立つものである.今後、抵抗係数の最適化や、多孔 質物体への応用などを検討する予定である.

#### 謝 辞

本研究で用いた計算プログラムは、九州大学応用力学研究所、大屋研究室から提供していただいたものに 変更を加えたものである.ここに記して謝意を表す.

#### 参考文献

- 1) 平岡久司・丸山 敬・中村泰人・桂 順治:植物群落内および都市キャノピー内の乱流モデルに関する 研究(その1)乱流モデルの作成、日本建築学会計画系論文報告集第406号、1989.12、 pp.1-9.
- 2) R. H. Shaw and U. Schumann : Large Eddy Simulation of Turbulent Flow above and within a Forest, Boundary-layer Meteorology, vol. 61, 1992, pp.47-64.
- 3) 日野、神田学、稲垣総:植生-大気境界面での運動量輸送に関するLESモデルによる検討、水工学論文 集、vol.36、 1992、 pp.689-692.
- 4) 奥野東、田村哲郎、稲葉貴人:境界層乱流のLES解析における植生のモデル化、日本風工学会誌、vol.99、 2004、pp.45-46.
- 5) 丸山 敬: 粗度要素の抵抗および体積変化を考慮した k-e モデルによる乱流境界層の数値計算、日本建築学会構造系論文報告集第404号、1989.10、 pp.75-81.