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Abstract6

Extracting physical parameters for damage identification problems from full-field mea-7

surements is a promising research because of the recent spread of vision-based measurement8

techniques in the experimental mechanics. This paper presents a vision-based measurement9

framework using the camera system for damage identification. The framework is composed10

of four procedures: camera calibration, image processing, system identification and sensitiv-11

ity analysis. In contrast to traditional finite-point measurements, the camera system allows12

considerably greater non-contact measurement flexibility. Such flexibility has two impor-13

tant benefits: first, less number of modes is required for modal-based damage identification14

problems; and second, more physical parameters could be extracted, taking advantage of the15

plentiful experimental data. A laboratory test comparing the camera system to traditional16

accelerometer measurement is conducted to confirm the above advantages. Further statistic17

analysis shows that the major drawback of this technique is that the camera system presents18

high levels of noise in small vibration responses at higher frequencies. Suitable strategies19

to circumvent this disadvantage are developed. Moreover, a technique for practical camera20

calibration without the requirement that the objective plane should be strictly perpendicular21

to the camera axis is also demonstrated and verified by the proposed laboratory test.22

Keywords: vision-based measurement, damage identification, sensitivity analysis, ho-23

mography estimation24

1 Introduction25

The main difficulty in localizing damages by means of model-based damage identification meth-26

ods with dynamic responses of structures, resides in that the number of the physical parameters27
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to be recovered is by far larger than the number of measurements. This always makes the1

identification problem underdetermined with infinite number of possible solutions, or typically2

ill-posed. In practice, using more than one set of measurements could improve the identifiability3

and robustness of the identification procedure and thus provide a remedy for the possible uniden-4

tifiability of the identification approach [1]. However, a large number of tests can be extremely5

time and labor consuming and are sometimes not easy to be conducted in tough environments6

or for in-situ measurements. The recently spread vision-based full-field vibration measurement7

techniques and the improvements in image processing offer potentials to achieve an important8

breakthrough for this problem [2, 3]. Compared to traditional finite-point measurement tech-9

niques, full-field vibration measurements, normally by using industrial or consumer-grade video10

cameras, allow to extract more information from small numbers of tests and thus more phys-11

ical parameters may be identified. Superiority of the camera system also includes its flexible12

measurement distance and commonplace availability [4–6].13

The process of the vision-based vibration measurements using a camera system mainly in-14

volves two key steps: camera calibration and image processing. Camera calibration is the15

process of determining the intrinsic and extrinsic parameters of the camera setup and it allows16

the camera system to determine a relationship between what appears on an image and where17

it is located in the world [7]. The scale factor approach [8, 9] has been widely used to convert18

the image coordinates measured by a camera system into space coordinates with the require-19

ment that the objective plane should be perpendicular to the camera axis. For more general20

cases, many calibration methods are proposed based on planar homography [10, 11]. However,21

research shows that result accuracy of intrinsic parameters depends greatly on homography es-22

timation and thus it is sensitive to noise [12]. An accurate and efficient numerical method for23

homography estimation should be carefully chosen for the success of vision-based measurement.24

After camera calibration, image processing could be adopted. In vibration measurements, the25

objective of image processing is mainly to extract structural motions from recorded successive26

images. Three methods are commonly used: point-tracking, digital image correlation (DIC), and27

target-less approaches [13]. The DIC [14, 15] works based on gray-scale variations of continuous28

patterns. The performance of DIC is greatly affected by the quality of speckle patterns [16, 17].29

As regards the point tracking technique, it uses cameras to identify the coordinates of discrete30

points (markers) mounted to test structures and the only requirement of the markers used in31

the point-tracking technique is that they should have high contrast or be retro reflective, which32

makes this technique much easier to be applied for field measurements [9].33
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Despite extensive efforts being made towards reliable and accurate digital data acquisition1

and system identification [18–20], the study of practical vision-based applications for damage2

identification is still limited. The methods using dynamic response data in the damage identi-3

fication process can be simply classified into two groups: methods based on local singularity in4

signals and methods based on finite element model updating. Singularity based methods (e.g.,5

wavelet analysis [21], Fourier spectral-based modal curvature analysis [22], etc.) received much6

attention in recent years for the capability to avoid modeling errors and high computational7

cost by directly detecting the discontinuities and breakdown points of measurement data, while8

the methods based on finite element model updating identify damages by comparing the dis-9

crepancy between analytical and experimental models and modifying the corresponding physical10

parameters until the correlation of analytical model and experimetnal results satisfies practical11

requirements [23]. In this research, the sensitivity method in finite element model updating12

[24] is used for damage identification for its ability to identify the damage location and severity13

simultaneously and capability to take into account all of the available structural information. It14

should be noted that there is no constraint to apply the vision-based measurements into both the15

singularity-based method as well as the finite element model updating method, especially that16

the access to full-field displacement data accommodates the modal curvature analysis or other17

derivatives based analysis in a very natural way. Research using full-field vibration measurement18

data in damage identification can be referred to [25–27].19

Problems rise by using the vision-based measurement for damage identification, for the reason20

that identification of parameters using large sets of measured data requires especially careful21

calibration processes and suitable computational strategies. Inaccurate frame rate and noisy22

measurement data at higher frequencies might have a pronounced effect on the final identifica-23

tion results yet get side stepped by the preliminary research. Moreover, the overall advantages24

of using rich vibration measurement data in damage identification have not been clarified. Fi-25

nally, many of the vision-based measurement techniques are still limited to laboratory tests,26

which are not suitable for practical damage identification. The objective of this paper is to27

present experimental investigations and comparative studies on the synthetic research of vision-28

based displacement measurement obtained by the camera system and damage identification. In29

contrast to traditional finite-point measurements, the camera system is equipped as features ex-30

tracted from images that allow considerably greater non-contact measurement flexibility. Such31

flexibility has two important benefits: first, less number of modes is required for modal-based32

damage identification problems; and second, the information of large numbers of physical pa-33
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rameters could be extracted, taking advantage of the plentiful experimental data. The chosen1

identified parameters are most often associated with constitutive properties of the test sample2

material and should be sensitive to changes in the measurement data. Detailed study that in-3

cludes several strategies of different parameterisations is described in [28]. A laboratory test4

comparing the camera system to the accelerometer measurement is carried out on a plane frame5

structure to confirm the above advantages of the vision-based measurement technique. Based6

on the statistic analysis of the laboratory test, a major drawback of this technique has also been7

found that the camera system presents high levels of noise in small vibration responses at higher8

frequency range. The effect of the uncertainties of the corresponding identified modal proper-9

ties on the accuracy of structural damage identification is investigated. Suitable computational10

strategies by choosing the optimal weights for the sensitivity-based damage identification method11

to circumvent this disadvantage are proposed. Furthermore, a technique for practical camera12

calibration without the requirement that the objective plane should be strictly perpendicular to13

the camera axis is also demonstrated and verified by the proposed laboratory test.14

2 Vision-based measurement system15

2.1 Camera calibration16

Camera calibration is the process of estimating parameters of the camera system so as to measure17

structural responses from the captured video images. To translate the image coordinates (pixels)18

into space coordinates (meters), the scaling factor approach is widely employed in previous19

research for two-dimensional (2D) displacement measurements. However, the prerequisite of this20

approach is the perpendicularity of the axis of camera to the object plane. It is shown that the21

performance of the scale factor approach deteriorates greatly when the angle of inclination occurs22

[10]. Making the object plane strictly perpendicular to the camera axis is difficult for practical23

applications. To solve this problem, the direct linear transformation (DLT) for homography24

estimation is introduced herein.25

A homography maps from P 2 → P 2 by using a non-singular 3 × 3 homogenous matrix H26

with 8 degrees of freedom such that for any point in P 2 represented by vector x, its mapped27

point x′ equals Hx. There are many kinds of methods for homography estimation, where the28

DLT algorithm is the most practical and convenient one due to its linearity and simplicity. In29
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homogenous coordinates, the relationship between x and x′ could be expressed as1

x′ =


u

v

1

 =


h11 h12 h13

h21 h22 h23

h31 h32 h33



x

y

1

 = Hx (1)

Dividing the first row of Eq. (1) by the third row and the second row by the third row one2

obtains:3

Aih = 0 (2)

where4

Ai =

−x −y −1 0 0 0 ux uy u

0 0 0 −x −y −1 vx vy v


h = (h11 h12 h13 h21 h22 h23 h31 h32 h33)T

(3)

Since each pair of coordinates for one calibration point provides 2 equations, 4 points are suf-5

ficient to solve for the 8 degrees of freedom of H. The restriction is that no 3 points can be6

collinear. In practice, a better solution of h could be obtained by more than 4 calibration points.7

The problem then becomes to solve for a vector h that minimizes a suitable cost function. More-8

over, as the DLT algorithm is dependent on the origin and scale of the coordinate system in9

the image, a normalization step is required to ensure that the solution converges to the correct10

result. For comprehensive study about this algorithm, the reader is referred to [29].11

The following table is used to show the above camera calibration procedure more clearly.12

• Identify the calibration point correspondences (x,x′) between the image plane and the

measured object plane.

• Normalize the correspondences (x,x′) to (x̃, x̃′) so as to ensure the solution coverges

to the correct result [7].

• Apply the DLT algorithm using x̃ and x̃′ to obtain homography matrix H̃.

• Get the final homography matrix H considering the normalization step.

• Apply the above homography matrix H to every frame of the given video.

An example of using the homography estimation from images by the DLT algorithm for13

camera calibration is shown in Figure 1. In this example, the calibration points were acquired14

by installing a calibration board. In the following laboratory test, however, six known-position15

reference markers were utilized as the calibration points for the reason that these six reference16
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orthonormal vieworiginal view

Calibration 

board

(a) (b)

orthonormal vieworiginal view

Calibration 

board

Figure 1 Example of homography estimation: (a) before calibration; (b) after calibration

markers and the other markers defined the measured object plane. This procedure will be1

described in detail in Section 4.2

2.2 Image processing3

After the construction of the camera calibration matrix H, image processing could be adopted4

by a commercial software. In this research, image processing refers to converting an image5

into digital form in order to extract the motions of the structure by point tracking method.6

Natural features or artificial markers with high contrast in the object plane can be selected as7

the tracked points for motion extraction (Figure 2(a)). Then correlation trackers are assigned8

to the selected points. After the trackers are set up, the correlation tracking function is used so9

as to look in each successive image for the part of the image contained within the correlation10

circle (the purple template in Figure 2(b)). Tracker tolerance should be set carefully as it is a11

threshold that defines if a point is to be considered lost or not. Set a higher value to increase12

the tolerance, e.g. in a situation where the tracker is producing accurate results, but the noise13

level in the images causes them to be rejected because they are outside the default tolerance.14

Tracking results from all images are recorded as the space coordinates of the tracked points and15

physical displacements could be determined accordingly.16

The aforementioned vision-based measurement procedures (sections 2.1 and 2.2) are sum-17

marized in Figure 3.18
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(a) (b)(a) (b)

Figure 2 Markers for image processing: (a) different types of markers used in the laboratory

test; (b) correlation circle of a marker

Camera 

Calibration

Image 

coordinates

Space 

coordinates

Physical 

displacements

Selected 

points

Correlation 

tracker

Image processing

Figure 3 Overview of the vision-based measurement system

3 Sensitivity analysis for damage identification1

Damage identification is an inverse problem of finding the appropriate unknown physical pa-2

rameters θ = (θ1, · · · , θn) or damages/changes ∆θ = θ − θ0 (θ0: intact physical parameters)3

from a set of observation data. This process is usually formulated as a nonlinear optimization4

problem whose objective function is the weighted least squares of the error between measured5

data R̂ and the corresponding analytically predicted data R(θ), i.e.,6

∆θ∗ = arg min g(∆θ) :=‖ R̂−R(θ0 + ∆θ) ‖2W (4)

where ∆θ∗ are the identified damages and W = diag([W1, · · · ,Wl]) is the positive definite7

weight matrix. Eq. (4) is the basic expression for the above nonlinear optimization problem.8

Practically, regularization terms, namely Tikhonov regularization [30, 31] and sparse regular-9

ization [32, 33], are always additionally introduced to allow a robust approximation of the final10

result. In this research, Tikhonov regularization is used, for the convenience and effectiveness11

of its application. The change vector of R̂ − R(θ0 + ∆θ) can be obtained iteratively by the12

sensitivity method [23, 24]. In the sensitivity method, a truncated Taylor series expansion of13

the predicted data R(θ) in terms of the damage parameters θ at given θ̄ is used, which leads to14
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the linear approximation of the original nonlinear optimization problem, as shown in Eq. (5):1

R̂−R(θ) = ∆R(θ̄)− S(θ̄)∆θ (5)

To this end, sensitivity analysis should be involved so as to get the sensitivity matrix S(θ̄).2

S(θ̄) = ∇R(θ̄) :=

[
∂R

∂θ1
,
∂R

∂θ2
, · · · , ∂R

∂θm

]
(6)

It is noteworthy that for different types of measured data R̂, the sensitivity matrix S is derived3

differently. In this research, measured data R̂ refer to the vision-based identified structural4

natural frequencies and mode shapes. The basic objective function combining frequency changes5

and mode shape changes for damage identification takes the form6

g(θ) =
m∑
j=1

W 2
λj

(
λ̂j − λj(θ0 + ∆θ)

λ̂j

)2

+
m∑
j=1

W 2
φj

np∑
i=1

(
φ̂ji − φji(θ0 + ∆θ)

)2
(7)

where λj is the jth eigenvalue and {φji} is the ith component of the jth normalized mode shape7

φj . The sensitivity of the jth eigenvalue λj and the corresponding mode shape φj to the damage8

parameter θk is formulated as9

∂λj
∂θk

= φT
j

(
−λj

∂M

∂θk
+
∂K

∂θk

)
φj

∂φj
∂θk

= vj + cjφj

(8)

where M , K ∈ Rn×n are the mass and stiffness matrices, respectively. The mode shape deriva-10

tive is given in two parts vj and cjφj :11

vj =
[
K̄ − λjM̄

]−1
f̄ ,f = −

[
∂K

∂θk
− λj

∂M

∂θk
− φT

j

[
∂K

∂θk
− λj

∂M

∂θk

]
φjM

]
φj

cj = −φT
jMvj −

1

2
φT
j

∂M

∂θk
φj .

(9)

Suppose the jth mode shape |{φji}| reaches the maximum value at the location r, K̄,M̄ ∈12

R(n−1)×(n−1) are extracted from M and K by eliminating the rth row and the rth column.13

f̄ ∈ Rn−1 is obtained by eliminating the rth term of f̄ . The reason for this elimination is14

that rank of K − λjM equals to n− 1 and the rth equation should be strongly coupled to the15

redundancy and can therefore be removed [34].16

4 Laboratory test of a two-story plane frame structure17

4.1 Test setup18

To validate the effectiveness of the proposed vision-based technique combined with its application19

to damage identification, a two-story frame structure was designed as the analyzed structure to20

be tested, as shown in Figure 4. In this test, there are four main systems to be setup:21
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Camera system

Analyzed structure & 

Markers

Exicter

Camera system

Analyzed structure & 

Markers

Exicter

Figure 4 Four main systems

1. Camera system: One high-speed camera (model FASTCAM SA6 75K-M3IT) with a full1

resolution of 1920×1440 pixels and aperture set at f/8 is used to record the in-plane2

dynamic behaviors of the analyzed structure and the seismic table. The camera shutter3

time is 1/1000s. For this test, full resolution images were used with a frame rate of 5004

fps. The camera system uses 72 mm lenses with focal length of 24-85 mm and field angle5

of 33.4◦. In order to improve the accuracy of the measurement system, a black background6

and two 260× 188 mm2 LED light panels with the power of 4680 lumens were used. The7

video images captured by the camera were streamed into the camera onboard memory8

(64GB) first through an Ethernet cable and then saved into the computer. Structural9

displacements were obtained by the commercial software TEMA 4.0.10

2. Analyzed structure: Figure 5 shows the details of the selected plane frame structure.11

Parameters of this frame are: height of the first story H1 = 0.225m, height of the sec-12

ond story H2 = 0.25m, width B = 0.2m, rectangular cross-section of the first story’s13

beam/column b1 × h1 = 40mm × 1mm, rectangular cross-section of the second story’s14

beam/column b2 × h2 = 30mm × 1mm, lumped mass pair of the first story m1 = 1.16kg,15

lumped mass pair of the second story m2 = 1.09kg. Young’s modulus and mass density16

of the beam/column are estimated as E = 200GPa, ρ = 7.7 × 103kg/m3. The size of the17

lumped mass is measured as 50mm × 50mm × 50mm. Lumped mass and beam/column18

are connected by L-angles with size 40mm × 20mm × 2mm. Damage is introduced by19

reducing half of the width of the rectangular cross section in the area of left 1/2 length of20

the beam at the first story (b′1 = 20mm). As a result, the approximated stiffness reduction21
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Figure 5 Overview of the analyzed structure

(kdamage/k0 = b′1/b1, where k = EI is the bending stiffness and I = bh3/12 is the second1

moment of inertia of beam cross-section) for this area is estimated as 50%.2

3. Exciter : A series of harmonic excitations at natural frequencies 2.7 Hz (mode 1), 8.0 Hz3

(mode 2), 46.2 Hz (mode 4) and 53.2 Hz (mode 5) for the analyzed structure were provided4

by the seismic table in the structure laboratory in Kyoto University. Harmonic excitations5

at each frequency were repeated 4-8 times. Between the repeats at the same excitation6

frequency, small differences could be observed from the following system identification7

results and the mean values as well as the standard deviations of the structural natural8

frequencies and mode shapes were obtained consequently, which is discussed in detail in9

section 4.3. The analyzed structure was bolted on the seismic table. Stainless L-angle10

connection was used for the column base connection. Displacement of the seismic table11

was also captured by the camera system.12

4. Markers: 65 dense markers were used in the test as shown in Figure 6, including 6313

artificial markers (T1-T63) glued to the object plane and 2 bolt points (B1-B2) being14

selected due to their natural high-contrast features. Among all of the markers, six markers15

(yellow circles in Figure 6) were utilized as reference markers for camera calibration with16

accurate measurement of their physical dimension on the object plane. Through those six17

known-position points, one can obtain the camera calibration matrix H and thus translate18

the image coordinates into space coordinates for any point in the objective plane.19
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Figure 6 User interface of TEMA Motion Analysis Software and markers setup

Table 1 Measured frequencies with coefficients of variation

Measurement Frequency
Mode

1 2 3 4 5 6

Vision-based
Mean (Hz) 2.64 7.97 - 45.49 53.13 -

COV (×10−2) 0.13 0.18 - 0.21 0.20 -

Accelerometer
Mean (Hz) 2.65 8.02 26.56 - 53.27 67.36

COV (×10−2) 0.02 0.04 0.07 - 0.05 0.20

4.2 Displacement results1

Steady-state displacements from two markers (T3 and T9 in Figure 6) of the analyzed structure2

at harmonic excitation 53.2 Hz are illustrated in Figure 7 (a)-(b). Compared with marker T3,3

a systematic data shift due to the sensor drift could be clearly found in marker T9. This4

phenomenon happened during the marker tracking and it is obviously not meaningful. As a5

result, a linear detrending process was conducted. The displacement responses of T3 and T96

after detrending are shown in Figure 7 (c)-(d).7

For higher modes of the analyzed structure, the frame was weakly excited (amplitude8

≈ 0.5mm in Figure 7). To eliminate unwanted noises so as to make the following system9

identification results more robust, filtered displacement responses were obtained by the appli-10

cation of a band pass filter with a passband frequency 40-50 Hz (mode 4) and 50-60 Hz (mode11

5), as shown in Figure 7 ((e)-(f)). Based on the filtered displacement responses, the structural12

dynamic responses around the harmonic excitation frequency could be clearly identified.13
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(a) (b)

(c) (d)

(e) (f)

(a) (b)

(c) (d)

(e) (f)

Figure 7 Steady-state displacements at 53 Hz: (a) original signal of T3; (b) original signal of

T9; (c) T3 after detrending; (d) T9 after detrending; (e) T3 after filtering; (f) T9 after filtering

4.3 System identification results1

Natural frequencies and mode shapes of the analyzed structure were then determined by the2

subspace identification algorithm. The mean value of identified natural frequencies with coef-3

ficients of variation (COV) over several repeated tests are listed in Table 1, comparing with4

the results obtained by accelerometers. The mean and mean ± one standard deviation of the5

identified mode shapes are additionally depicted in Figure 8, where mass normalization for6

mode shapes was used.7

From these statistics properties of the modal data, several conclusions can be made. (1) The8

accelerometer achieved more accurate results than the vision-based measurement in regard to9

the COV of the natural frequencies in Table 1. The mean value of the vision-based frequencies10

is also subject to bias errors. This is because the vision-based measurement had shorter mea-11

surement duration than the accelerometer due to the camera’s limited onboard memory. (2) For12

mode shape measurement, the camera system presents high levels of noise in small vibration re-13

sponses at higher frequencies than traditional accelerometers. One can find that the vision-based14

measurement failed to identify mode 3 of the analyzed structure and although modes 4-5 were15

successfully identified, they had quite high standard deviations in the identified mode shapes (as16

shown in Figure 8). The reason behind this phenomenon is that due to the control limitation of17

the operating area of the seismic table, the higher the excitation frequency is applied, the lower18
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Mode 1 Mode 2 Mode 4 Mode 5

(a) (b) (c) (d)

Mode 1 Mode 2 Mode 4 Mode 5

(a) (b) (c) (d)

Figure 8 Mean (black) and mean ± 20×standard deviation (gray) of identified mode shapes

by vision-based measurement

displacement amplitude can be obtained for the seismic table. Thus structural displacement re-1

sponses of these modes are hard to be caught. It is well known that the displacement amplitude2

of the higher mode for practical structures is also very small. Using accelerometers could attain3

better results since accelerations are more sensitive to higher frequencies than displacements.4

Awareness of these drawbacks is important because special attentions should be paid in the5

following damage identification process.6

4.4 Damage identification7

The numerical baseline model is established according to the geometric and physical properties8

of the analyzed structure with 85 elements and 85 nodes, as shown in Figure 9(c). Each node9

has three degrees of freedom (DOFs) and the model has 255 DOFs in total. Among all of the10

elements, elements 1-63 refer to the possibly damaged beam/column elements where unknown11

damage parameters θ = (θ1, · · · , θ63) are assigned to, while elements 64-85 refer to the lumped12

mass and L-angle parts with known stiffness value. The initial values of the damage parameters13

θ are set to be 1 (stiffness reduction set to be zero), assuming no damage for the structure14

before damage identification. The desired identified values of the damage parameters should be15

(θ12, θ13, θ14, θ15) = 0.5 and the values for other θ should not deviate from the initial value.16

Only modal data of modes 1-2 and 4-5 were used for damage identification. The mean values17

of identified mode shapes (φ̂ji) in Figure 8, the mean values of vision-based identified natural18

frequency of mode 4 and accelerometer identified natural frequencies of mode 1,2 and 5 were19

being set as input in Eq. (7) (λ̂j = (2πf̂j)
2). The reason why some accelerometer identified20

frequencies were needed is that the statistics analysis in Table 1 shows that the data from21

accelerometers achieved much more accurate system identification results in terms of natural22

13



Approximated reduction for element 12-15Approximated reduction for element 12-15

(a) (b)

Element 12-15

Approximated reduction for element 12-15

(a) (b)

Element 12-15

(d)

4444 5656

1616 202016 201212 151512 15

1111

11

11

1

3232

2121

32

21

4343

3333

43

33

6363

5353

63

53

(c)

Approximated reduction for element 12-15

Element 12-15

6666

6464 6565

7171 7272 7777

7878 8181 8282 8585

Approximated reduction for element 12-15

(a) (b)

Element 12-15

(d)

44 56

16 2012 15

11

1

32

21

43

33

63

53

(c)

Approximated reduction for element 12-15

Element 12-15

66

64 65

71 72 77

78 81 82 85

Figure 9 Identification results using vision-based measurements: (a) with optimal weights; (b)

history of convergence; (c) numerical model; (d) with identity weights

frequencies. As the identification of large numbers of unknown physical parameters is more1

sensitive to the measurement noise, it is safe to directly use these more accurate data. Careful2

verifications should be conducted if only the vision-based identified natural frequencies are being3

used, see Section 5.1 for more details. The final damage identification results are shown in4

Figure 9(a)-(b). Figure 9(a) shows that nearly all of the elements 12-15 are detected as having5

damages close to 50% stiffness reduction except that error in element 15 is relatively large (only6

20% stiffness reduction). This can be explained since element 15 is at the edge of the damage7

area and the vibration energy in this kind of elements would be much more disturbed than8

those in other elements, which coincides with the observations in literature [35]. The capability9

of identification was also demonstrated by investigating its convergence behavior during the10

iterations of damage identification. Figure 9(b) proves that the proposed approach converges11

to the desirable solution very fast.12

Table 2 and Figure 10 demonstrate the frequency and mode shape comparisons of the13

numerical model before (Initial) and after (Updated) identification. As it is observed in Table 2,14

the reproduction of the frequencies of modes 1-2 and 4-5 have been updated to a better extent.15

Moreover, the 3th and 6th natural frequencies, which were not involved in the identification16
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Table 2 Comparison of frequencies (Hz)

Mode 1 2 3 4 5 6

Measured 2.652 8.02 26.561 45.493 53.272 67.361

Initial 2.80 8.00 26.99 46.68 55.59 70.79

Updated 2.66 8.01 26.53 46.20 53.13 67.60

1 not used in damage identification.

2 obtained from accelerometer.

3 obtained from vision-based measurement.

Table 3 Comparison of MAC

Mode 1 2 4 5

Initial vs. Measured 0.9991 0.9977 0.9696 0.9508

Updated vs. Measured 0.9995 0.9978 0.9953 0.9969

process, also got improved significantly.1

The comparison of mode shapes was further done by calculating the modal assurance cri-2

teria (MAC) in Table 3. A large MAC value between measured data and numerical data3

indicates greater correlation in these two mode shapes. The reproduced mode shapes matched4

the measured data very well, indicating the success of the identification.5

As mentioned above, the objective function of damage identification is in the weighted least-6

squares form for which the residual between the measured data and the corresponding analytic7

data and a weight matrix are involved. Normally, the choice of the weight matrix (W in Eq. (4))8

would have a significant effect on the success of the identification results. The optimal weight9

matrix is found to be inverse proportional to the measurement error covariance by minimizing the10
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Figure 10 Measured and numerical mode shapes using vision-based measurements
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Table 4 Different sets of weight matrices considered in the objective function

Scenario Weight
Mode

1 2 4 5

Optimal weight
Wλj 1 0.5 0.1 0.4

WΦj 0.2 0.05 0.01 0.01

Identity weight [37]
Wλj 1 1 1 1

WΦj 0.01 0.01 0.01 0.01

expectation of squares error of the whole identification results [36]. In this research, the relative1

measurement error of frequency and mode shape is assumed to be independent and follows a2

normal distribution with zero mean and given variance σ2, which results in a diagonal optimal3

weight matrix with different values of main diagonal entries. The variance of the frequency4

error could be directly obtained from Table 1 and the mode shape counterpart is calculated5

from the statistic properties in Figure 8. The final optimal weights used in this example6

have been shown in Table 4. Table 4 also shows the frequently used identity weights (for7

the same type of measured data) in preliminary damage identification researches [37] and the8

corresponding identified results are demonstrated in Figure 9(d). It turns out that much less9

accurate identification results are yielded based on the identity weights. This is due to the10

above-mentioned different levels of noise in different modes in the camera system. As noise11

levels for different modes may vary greatly, the weight matrix shall be carefully selected in the12

sensitivity analysis for vision-based damage identification.13

To have an impression on the superiority of using vision-based measurement, damage iden-14

tification using traditional acceleration measurement is further conducted as follows. Nine ac-15

celerometers (one for ground motion and eight for structural responses) were installed, as shown16

in Figure 11(a) (blue solid circles). The sampling frequency was set to 200Hz. Because of the17

limited number of measurement data obtained in this test, two remedy strategies were employed18

so as to solve the possible ill-posed problem:19

• A numerical model was re-established using much less elements (20 elements to be identified20

in total) than the one used during vision-based damage identification (63 elements to be21

identified), as shown in Figure 11(a). In this new model, the damage parameter in22

element 3 is expected to be identified as θ3 = 0.5.23

• More mode shapes and frequencies were required. Whereas using the acceleration data24

failed to identify mode 4 of the structure, the frequencies and mode shapes of mode 3 and25
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Figure 11 Numerical model and mode shapes using acceleration measurements: (a) numerical

model; (b)-(f) identified mode shapes

mode 6 were additionally identified, as shown in Figure 11(b)-(f).1

The damage identification results by using traditional acceleration measurement data are shown2

in Figure 12. On can find that although more modes are used and less elements are identified,3

the identification results are still not as satisfying as that from vision-based measurements. For4

one thing, the stiffness reduction in the damaged element 3 is not close to 50% enough; for the5

other thing, errors in the undamaged elements are large (some equal to 20%). These observations6

imply that measurement data is still not sufficient for successful damage identification. Data7

from more accelerometers or higher modes should be involved. However, this tough situation8

can be easily circumvented by the vision-based measurement technique.9

5 Discussions10

5.1 Natural frequency measuring accuracy11

In section 4.3, it was mentioned that the natural frequencies obtained by the traditional ac-12

celerometer are more accurate than those obtained by vision-based measurements because the13

17
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Figure 13 Overview of the two-story isolated based shear building
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Table 5 Measured frequencies of the shear building structure

Measurement Mode Set 1 (Hz) Set 2 (Hz) Set 3 (Hz) Mean (Hz) COV (×10−2)

Accelerometer
1 2.744 2.741 2.740 2.74 0.062

2 12.549 12.547 12.550 12.55 0.009

Vision-based
1 2.741 2.745 2.745 2.74 0.069

2 12.543 12.541 12.550 12.54 0.031

limited camera onboard memory made the vision-based measurement duration very short (only1

15 seconds). To compare the natural frequency accuracy using different measurements under the2

same condition, an additional laboratory test of a two-story base-isolated shear building struc-3

ture (Figure 13) measured by accelerometers and camera system simultaneously was conducted4

after the camera onboard memory was expanded. The mass of the isolation story, first story5

and second story is 2.1kg, 3.247kg and 1.531kg. The stiffness of the spring in the isolation story,6

first story and second story is about 2.3× 103N/m, 2.3× 104N/m and 7.5× 103N/m, separately.7

The structure is subjected to a stationary ground excitation of white noise with the duration8

of two minutes. The sampling rate of the accelerometer in each floor is set to 200Hz. The9

setup of the camera system is almost the same as section 4.1, except that the frame rate of the10

camera is set to 200 fps. After three times repeated tests, the mean values of the identified first11

two natural frequencies with coefficient of variation (COV) of the structure can be obtained, as12

listed in Table 5. Compared with the results in Table 1, obvious improvements in the natural13

frequencies obtained by the vision-based measurement can be seen, which verifies the feasibility14

of the camera system in measuring structural natural frequencies and the suitability in damage15

identification. To this end, using part of the accelerometer identified natural frequencies in the16

identification algorithm is unnecessary. Only vision-based measurement is enough.17

5.2 Measuring efficiency18

In the framework of the proposed method, computation time for each procedure is given as19

follows: (1) camera calibration: 15 minutes, (2) image processing: 55 minutes, (3) system20

identification: 58 seconds, and (4) sensitivity analysis: 6.8 seconds. Obviously, the vision-based21

displacement measurement procedure (1)+(2) leads to the highest computational cost. Some22

real-time displacement measurement techniques (e.g., [9, 38]) are the possible way to avoid this23

high computational cost, on the condition that only one target point was selected to be tracked24

during the field test in reference [38], or low frame rate (30-60 fps) was applied [9]. To measure25

19



the displacements of multiple locations or full-field simultaneously with high frame rate in real1

time is still a challenging issue.2

5.3 Lens distortion3

Lens distortion was also considered during the process of camera calibration and the first two4

terms of radial distortion were estimated, where k1 = −0.2096 and k2 = 0.7519. As the radial5

distortion is shown to be small, it is reasonable to simply ignore the undistorition step for6

computational efficiency. The reader is referred to [39, 40] for details of the distortion model7

and the solving process for the radial distortion coefficients. Note that for the wide-angle lens8

or the low-end webcam, the camera usually exhibits significant lens distortion and thus the9

undistortion step is inevitable.10

5.4 Field of view (FOV)11

Another challenging issue in full-field vision-based measurement is the tradeoff between the12

measurement resolution and the field of view (FOV) [41]. A lower measurement resolution and13

a larger FOV has to be set when measuring multiple points for practical large-scale structures.14

Such limitations should also be considered for damage identification problems. One possible way15

to solve this problem is to use multiple synchronized camera, as described in references [42, 43].16

5.5 Further research17

The proposed approach takes advantage of the rich measured data, which allows considerably18

greater flexibility for the identified parameters. The current approach in this research is mainly19

focused on the application with homogeneous conditions. Further research will include the20

identification of large sets of anisotropic or non-homogeneous constitutive properties.21

6 Conclusions22

This paper demonstrated how the newly developed vision-based measurement techniques could23

be used to localize and quantify structural damages for frame structures. This procedure is24

composed of four steps: camera calibration using homography estimation with the direct linear25

transformation (DLT) algorithm, image processing with correlation trackers to extract motions26

of the selected points through each successive image, system identification by the subspace27

method and sensitivity analysis for damage identification. Different from the traditional finite-28

point measurement techniques, experimental results of a two-story frame structure showed that29

20



vision-based measurement allowed to extract more information from small numbers of test at1

reasonable levels of accuracy for damage identification problems. Despite the aforementioned2

advantages, new problem arose when applying this technique. The camera system has been3

found that it suffered high level of noise in small structural vibration responses at higher fre-4

quency range. To alleviate this negative effect, the strategy to choose the optimal weights for the5

sensitivity-based damage identification method was discussed. Further works involves the iden-6

tification of large sets of more complex constitutive properties for practical large-scale structures7

using cost-effective vision-based measurement.8
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