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Abstract

The objective of this paper is to provide a new damage identification method

using frequency response data. In this approach, the inverse identification prob-

lem is treated as a nonlinear optimization problem whose objective function is

just the constitutive relation error (CRE). To circumvent the ill-posedness of

the inverse problem which is caused by use of the possibly insufficient data and

enhance the robustness of the identification process, the sparse regularization is

introduced where the `1-norm regularization term is added to the original CRE

function. In regard to the minimum solution of the sparse-regularized CRE ob-

jective function, the alternating minimization (AM) method is established. The

attractive features of the present damage identification approach are: (a) while

coping with the sparse regularization, a closed-form solution is obtained due

to the decoupling of the CRE function with respect to the damage parameters

and hence the sparse regularization term would introduce little computational

complexity; (b) the sparse regularization parameters are directly determined by

a simple threshold setting method; (c) no sensitivity analysis is involved herein.

Numerical examples are conducted to verify the proposed approach and the re-

sults show that the sparse regularization obviously improves the accuracy and

robustness for the identified damages.
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1. Introduction

Academic research regarding vibration-based damage identification has been

rapidly expanded over the past decades[1, 2, 3, 4]. The methods, using dynamic

response data in the damage identification process, could be classified into two

groups: methods based on signals and methods based on models [5]. Signal-5

based methods received much attention in recent years and have been success-

fully applied to detect and locate structural damages[6, 7]. They are typically

non-parametric methods and able to avoid modeling errors and high computa-

tional costs during numerical simulations. However, these methods are hard to

assess the damage severity, sensitive to the measurement noise and mostly lim-10

ited up to small-sized structures[5]. In contrast, the advantage of the methods

based on models is obvious: able to identify the damage location and severity

simultaneously and capable to take into account all of the available structural

information.

Classically, the model-based methods treat damage identification as a con-15

strained nonlinear optimization problem with the structural model parameters

such as mass, stiffness and damping forming the basic variables. The objective

function of the nonlinear problem is usually set up by measuring the discrepan-

cies between the numerical model and the dynamic test results. The selection of

the objective function is a crucial issue. It not only affects the interpretation of20

the best correlation, but also influences the behavior of the utilized optimization

algorithm[8]. Weighted least squares of the errors between the measured data

and the derived data is generally chosen as the objective function[9]. To solve

this optimization problem, the genetic algorithms (GA) and the sensitivity-

based approaches are commonly used[10, 11, 12]. Other opimization methods25

include the minimization of rank perturbation theory[13] and the ’residual force’

method[14].
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Recently, usage of the error in constitutive relation has caught the attention

of researchers. This idea was first proposed for model updating analysis and

then extended to structural damage identification problems in linear statics[15],30

transient dynamics[16], elastoplastics[17] and so on. In this approach, the ob-

jective function is defined as the constitutive relation error (CRE), that is, an

energy inner product of the residual of the constitutive equation connecting the

admissible stresses and the kinematically admissible displacements. It is re-

markable that the CRE objective function is separately convex, which guaran-35

tees the appropriate application of the efficient alternating minimization (AM)

approach[18, 19], to get the solution of this nonlinear optimization problem. To

this end, the sensitivity analysis is no longer needed.

For large scale civil structures, it is often required to identify the structural

parameters based on the incomplete structural vibration response measurement40

data. This is essentially an ill-posed inverse problem which is caused by the pos-

sibly insufficient amount of the measurement data. Attempting to circumvent

this drawback, regularization techniques such as the Tikhonov regularization

and the sparse regularization are always introduced. The idea that all the

damages or changes of parameters are as small as possible is implicated in the45

Tikhonov regularization[20]. Such an idea is reasonable for model updating

however, it may not be appropriate for damage identification since large dam-

ages may occur. On the other hand, damages always occur at a few locations

where maximum-stress/plasticity appears, impact loads work or crack propa-

gates for practical structures. This would be appropriately implicated in the50

sparse regularization[21, 22], which weakly enforces the sparsity constraint for

the damage locations.

In this paper, a new structural damage identification is proposed for the

incomplete measured frequency response data using the minimum constitutive

relation error (min-CRE) approach and the sparse regularization. The first ob-55

jective of this paper is to clarify the mathematical advantages of the decoupled

CRE objective function with respect to the damage parameters. In fact, the

sparse regularization has already been incorporated into the sensitivity-based
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approaches[23]. However, it is noteworthy that a linear least-squares function

along with the prescribed sparse regularization is a non-linear and non-quadratic60

function and its minimization shall be obtained through iterative algorithms,

which is costly compared to the case with the Tikhonov regularization. In

general, the sparse regularization problem requires significantly greater compu-

tational effort and no closed-form solution exists. There are several families of

computational methods to get sparse solutions: greedy pursuit, convex relax-65

ation, non-convex optimization, Bayesian framework and brute force[22]. In this

research, however, the inherent decoupling of the CRE function with respect to

the damage parameters makes every parameter-update-step solved as a series

of single-variable optimization problem and hence results in a closed-form so-

lution for the sparse regularization problem. This introduces little additionally70

computational effort caused by the sparse regularization.

The second objective of this paper is to present a novel and simple thresh-

old setting method to properly determine the sparse regularization parameters.

There are several ways to obtain the general optimal regularization parame-

ters for inverse problems in mathematics: discrepancy principle (DP)[24], or-75

dinary and generalized cross validations (GCV)[25], L-curve criterion[26] and

so on. However, the selection criterion for the sparse regularization is very

limited because the problem generally has no closed-form solution. An appro-

priate regularization parameter is typically selected by experience[27, 28]. The

reference[29] proposed two possible strategies of selecting the sparse regular-80

ization parameter: the first selection method utilizes the residual and solution

norms to determine the appropriate range of the regularization parameter while

the other is developed based on the DP. In both strategies, the linear least-

squares problems under several trial sparse regularization parameters should be

solved and this obviously leads to prohibitively high computation cost. In this85

paper, the determination of the regularization parameter would be straightfor-

ward and require no repeated computation by the proposed threshold setting

method.

In this research, the frequency response function (FRF) and natural frequen-
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cies data, directly extracted from the dynamic test, are used as the measured90

data. Vibration-based damage identification using FRF measurements has been

studied by a number of references[30, 31] and it has been proved that FRF data

are more reliable and practical to provide abundant information at measured

degrees of freedom and at a great number of desired frequencies[32] without

being contaminated by any modal extraction errors and loss of information.95

Particular attention should be paid to properly select the frequency ranges of

the FRF data. The remainder of this paper is organized as follows. The basic

inverse identification problem by the min-CRE principle is introduced in Sec-

tion 2. In Section 3, the sparse regularization is applied to enhance the CRE

objective function and then, an AM method is applied to solve this nonlinear100

optimization problem. Numerical tests are performed in Section 4 and final

conclusions are drawn in Section 5.

2. Problem statement

2.1. The baseline model

Consider an elastic structure occupying the open domain Ω and bounded105

by the boundary ∂Ω. The vibration of this linear elastic problem in frequency

domain is divided into three sets of differential equations for the displacement

field u and the stress field σ.

• Kinematic constraints

u ∈ U :=

 ε = Su in Ω

u = up over ∂Ωu
(1)

where S is a suitable linear differential operator and up is the prescribed

value of the displacement filed u on the Dirichlet boundary ∂Ωu. ε rep-110

resents the deformation tensor.

• Equilibrium equations

σ ∈ = :=

 Lσ + b = τ in Ω

σ · n = t over ∂Ωf
(2)
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where L is the divergence operator on stress filed σ and n the external

unit vector normal to the Neumann boundary ∂Ωf . Over ∂Ωf , the traction

field t is prescribed. In addition, b denotes the body force while τ the

inertial force.115

• Constitutive relations σ = D : ε—Hooke’s law,

τ = −ω2ρu—Newton’s law.
(3)

where D ∈ C is an elastic modulus tensor with appropriate material properties

and ρ is the density which is assumed to be constant in this research. It should

be noted that only the case of forced vibrations problems are considered and

the equations are written in the frequency domain with ω being the angular

frequency herein.120

2.2. CRE function for a given frequency

To define the constitutive relation error (CRE), consider an admissible pair

(u,σ) which satisfies the kinematic constrains (equation (1)) and the equilib-

rium equations (equation (2)) respectively. It is easily known that, if the con-

stitutive relations (equation (3)) are additionally satisfied with an admissible125

elastic modulus tensor D, the above admissible solution trio (u,σ,D) would be

the exact solution (uex,σex,Dex) of this dynamic linear elastic problem.

As a result, to measure the distance from the admissible solution to the exact

solution in the energy product, the CRE for a given frequency is expressed as

eCRE(u,σ,D) =
1

2

∫
Ω

{
r1Tr

[
(σ − D : ε(u)) : D−1 : (σ − D : ε(u))

]
+

r2(ρω2)−1
[
(τ (σ) + ρω2u) : (τ (σ) + ρω2u)

]}
dΩ

(4)

where r1, r2 are the corresponding weight coefficients (r1 + r2 = 1). The values

of these coefficients depend on the relative reliability between the constitutive

relations based on the Hooke’s law and based on the Newton’s law and are fixed130

to be r1 = r2 = 0.5 in this work.
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Further considering the kinematic constrains and the equilibrium equations,

the CRE in equation (4) could be rewritten as

eCRE(u,σ,D) =
1

2

∫
Ω

{
r1Tr

[
(σ − D : Su) : D−1 : (σ − D : Su)

]
+

r2(ρω2)−1
[
(Lσ + b+ ρω2u) : (Lσ + b+ ρω2u)

]}
dΩ

(5)

For the structure which is of interest in a frequency range [ωmin, ωmax], the

frequency weighting factor z(ω) is introduced∫ ωmax

ωmin

z(ω) = 1, z(ω) > 0 (6)

Then the total CRE in the given frequency range is established as

F (u,σ,D) :=

∫ ωmax

ωmin

eCRE(u,σ,D)z(ω)dω (7)

Based on the equations above, the damage identification problem is formu-

lated as

arg minF (u,σ,D)

subject to u ∈ U ,σ ∈ =,D ∈ C,u = ûk, k ∈ ℘
(8)

where {ûk, k ∈ ℘} is the incomplete frequency response data measured by finite

sensors on the set of points {k ∈ ℘}. Equation (8) is known as the min-CRE

principle for inverse identification problems [33, 34] and F (u,σ,D) is known

as the CRE objective function. For each frequency ωi, z(ωi) is taken equally135

herein. The CRE function is chosen as the objective function in this research

due to the following crucial features,

• Separate convexity: the separately convex property of the proposed objec-

tive function is of critical importance for the application of the alternating

minimization(AM) method because only then, each alternating step be-140

come well-posed[35]. (Refer to section 3.1)

• Decoupling with respect to the damage parameters: under the constant

stiffness assumption in every element, the CRE objective function is decou-

pled with respect to the damage parameters, or specifically, minimization
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of the CRE objective function over the damage parameters gives rise to a145

series of single-variable minimization problems. With the decoupled ob-

jective function, the sparse regularization, which is to be introduced later,

will be easily tackled by the closed-form solution with little additional

computational efforts. (Refer to section 3.3)

2.3. Discrete formulation of the CRE function150

In the following, the inverse identification problem is solved in a finite ele-

ment environment which requires to discretize the CRE objective function at

first. A typical finite element, e, is defined by local nodes i, j, k, ... and for each

frequency, the displacement u and stress σ and the trial counterparts δu and

δσ within the element e is approximated as u ≈N1ũ
e, δu ≈N1δũ

e

σ ≈N2q̃
e = N2q̃

e
0 +N2q̃

e
p, δσ ≈N2δq̃

e = N2δq̃
e
0

(9)

where N1 and N2 are called shape functions (or interpolation functions) corre-

sponding to nodal displacement vector ũe and nodal force vector q̃e separately.

The nodal force q̃e, obtained from a mathematical integration of stress σ, is dy-

namically equivalent to the addition of the boundary forces q̃ep and the remaining

homogeneous forces q̃e0. As is noteworthy, the inhomogeneous part Np
2 q̃

e
p van-155

ish in the virtual stress δσ. Additionally, the nodal force q̃e should contain the

same number of components as the corresponding nodal displacement ũe and

be ordered in the appropriate corresponding directions. For three-dimensional

beam elements, details on the expressions for the nodal displacement vector ũe

and the nodal force vector q̃e and the derivation for the shape functions N1 and160

N2 are given in Appendix.

Using equations (1) and (2), one could also obtain the following expression.

 ε = Su ≈ SN1ũ
e = B1ũ

e

Lσ ≈ LN2q̃
e = B2q̃

e
(10)

With these preparations and further considering the CRE in equation (5), one
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can have the discrete form of the CRE as follows.

eCRE(ũ, q̃,D) =
1

2

∫
Ω

{
r1(N2q̃ −DB1ũ)TD−1(N2q̃ −DB1ũ)+

r2 (ρω2)−1(B2q̃ + b+ ρω2N1ũ)T (B2q̃ + b+ ρω2N1ũ)
}
dΩ

(11)

As for damage identification, the damage parameters θ̃ = [θ0 := 1; θ1; ...; θN ], 0 ≤

θe ≤ 1, e = 1, 2, ..., N with θe = 1 meaning no damage of the eth element are

assumed to be linearly implicated in the elastic matrix D, or in other words,

the elastic matrix D is an affine function of the damage parameters θ, i.e.,

D = D(θ̃) := θeDe for element e where De is termed the elemental elas-

tic matrix of the intact structure. Obviously, for an intact structure, there is

θ̃ = θ̃0 := [1; 1; ...; 1]. As a result, equation(11) can be equally described as

eCRE(ũ, q̃, θ̃) =
1

2

N∑
e=1

∫
Ωe

{
r1(N2q̃

e − θeDeB1ũ
e)T (θeDe)

−1

(N2q̃
e − θeDeB1ũ

e) + r2(ρω2)−1(B2q̃
e + b+ ρω2N1ũ

e)T

(B2q̃
e + b+ ρω2N1ũ

e)
}
dΩ

(12)

With these notification, it is obvious that the CRE objective function (12) is

decoupled with respect to the damage parameters θ̃, i.e., in every single equation

of the equation (12), only one of the parameters θ̃ arises. Such a decoupling

will act as a particular role in later analysis when the sparse regularization is165

considered.

2.4. Sparse regularization

In practice, the amount of the measured data is always limited and this

may make the damage identification problem ill-posed and very sensitive to the

measurement noise. To circumvent the ill-posedness and improve the robust-

ness, the sparse regularization technique is reasonably introduced. The main

prerequisite is that the change of damage parameters θ̃ − θ̃0 must be sparse

and no other information regarding the damage is required. By incorporating

the sparse regularization into the objective function, the damage identification
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problem is reformulated as

eCRE(ũ, q̃, θ̃) =
1

2

∫
Ω

{
r1(N2q̃ −D(θ̃)B1ũ)TD(θ̃)−1(N2q̃ −D(θ̃)B1ũ)+

r2 (ρω2)−1(B2q̃ + b+ ρω2N1ũ)T (B2q̃ + b+ ρω2N1ũ)
}
dΩ

λ ‖∆
(
θ̃ − θ̃0

)
‖11

(13)

where ∆ = diag ([∆1, ...,∆N ]) is the diagonal matrix of elemental length/area/

volume for beam/plate/solid element respectively. The `1-norm ‖x‖1 =

N∑
e=1

|xe|

defines the sparse regularization term and λ > 0 is the corresponding regu-170

larization parameter which controls the trade-off between the sparsity and the

residual norm. It has been proved that minimization of `1-norm could satisfy

the desired sparsity requirement[36]. Moreover, ‖x‖1 is still convex and the lin-

ear programming techniques[36] can be easily called to solve the optimization

problem in the conventional linear least squares setting. In the next section,175

the AM method is called to get the solution of the sparse-regularized CRE

objective function (13). To get a better perspective of the sparsity-promoting

nature of `1-norm regularization, consider a simple structural system (see Fig-

ure 1) with displacement degree of freedoms x and the potential energy of the

system is designated as f(x). If all masses are placed on a frictional surface180

with the same threshold value of the static friction force λ (see Figure 1(b)),

the potential energy would be changed into fλ(x) = f(x) + λ‖x‖11, which is

equivalent to the `1–norm regularization. As is noteworthy, if the prescribed

friction λ is greater than the maximum of the forces exerted on all masses, no

movement x = 0 would occur, while if the prescribed friction λ is less than the185

k(� m) greatest ones of the forces exerted on all masses but larger than others,

k masses corresponding to k greatest forces would admit some movement and

others keep unmoved; this leads to the sparse solution of x. To conclude, with a

proper choice of λ, the sparsity of the solution x can be reached by the `1–norm

regularization and therefore, the `1-norm term λ‖x‖11 can indeed serve for the190

sparse regularization.
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(a) No regularization 

k1 k2 kn

……

(b) Sparse regularization 

k1 k2 kn

Static friction threshold
λλ λ

Figure 1 Physical interpretation of sparse regularizations

3. Alternating minimization method for damage identification

3.1. The AM method

In this section, the AM method is proposed to practically solve this nonlin-

ear optimization problem (13). It is shown that the AM method could lower the195

computational costs associated to the minimization of the CRE objective func-

tion than the traditional direct way[19]. Actually, the AM method has been

a suitable approach for minimum solution of the separately convex objective

function and in principle, it tries to get the solution iteratively by alternating

minimization of the objective function over every separated variable in each200

iteration. Specifically, given the initial damage parameters θ̃0 as those of the

intact structure, the solution is obtained successively for n = 1, 2, ... as follows

• step 1 (UMF step): Update the mechanical field (ũ, q̃) with the given

damage parameters θ̃n for each given frequency

(ũn+1, q̃n+1) = arg min
u∈U,σ∈=,u=ûk,k∈℘

F (ũ, q̃, θ̃n) (14)

• step 2 (UDP step): Update the damage parameters θ̃ by the mechanical

fields (ũn+1, q̃n+1) obtained in step 1.

θ̃n+1 = arg min
θ̃
F (ũn+1, q̃n+1, θ̃) (15)

3.2. The UMF Step

The mechanical field (ũ, q̃) is recovered from the measured data and the

given damage parameters θ̃ (given elastic matrix D) individually for each given
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frequency. The sparse regularization term is not involved in this step. Specifi-

cally, the minimization over q̃ yields the equation:∫
Ω

{
r1

(
NT

2 D
−1N2q̃ −NT

2 B1ũ
)

+

r2

(
(ρω2)−1BT

2 B2q̃ +BT
2 N1ũ+ (ρω2)−1BT

2 b
)}

= 0

(16)

and the minimization over ũ yields∫
Ω

{
r1

(
BT

1 DB1ũ−BT
1 N2q̃

)
+ r2

(
ρω2NT

1 N1ũ+NT
1 B2q̃ +NT

1 b
)}

= 0

(17)

From equations (16) and (17), the mechanical field (ũ, q̃) can be updated si-

multaneously. Moreover, equation (17) could be simplified as (
r1C0 + r2

ω2H0

)
A0

AT
0

(
r1K0 + r2ω

2M0

)
 q̃

ũ

 =

 d1

d2

 (18)

where

C =

∫
Ω

NT
2 D

−1N2dΩ,

H =

∫
Ω

1

ρ
BT

2 B2dΩ,

M =

∫
Ω

ρNT
1 N1dΩ,

K =

∫
Ω

BT
1 DB1dΩ,

A =

∫
Ω

(
−r1N

T
2 B1 + r2B

T
2 N1

)
dΩ,

d1 =

∫
Ω

{
−r2(ρω2)−1BT

2 b−
(
r1N

T
2 D

−1N2 + r2(ρω2)−1BT
2 B2

)
q̃p
}
dΩ,

d2 =

∫
Ω

{
−r2N

T
1 b−

(
−r1B

T
1 N2 + r2N

T
1 B2

)
q̃p
}
dΩ.

(19)

In equation (19), A0, C0, K0, M0 and H0 are the reduced forms of A, C, K,

M and H after applying the homogeneous boundary conditions.205

To enforce the incomplete measured data, the displacements vector ũ will

now be partitioned symbolically into unmeasured displacement ũU and mea-

sured displacement ûM . For the sake of convenience, in the following equations
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superscript U and M represent the corresponding unmeasured and measured

DOFs of the array respectively. As a result, equation (18) can be rewritten as

L(θ̃)
(
q̃, ũU

)T
= S(θ̃) (20)

where

L(θ̃) =

 r1C0 + r2
ω2H0 A0

AT
0
U · (

r1K0 + r2ω
2M0

)UU
 ,

S(θ̃) = (d1,
(
d

′U
2

)
n
)T ,

d
′U
2 = dU2 −

(
r1K0 + r2ω

2M0

)UM
ûM

(21)

3.3. The UDP Step

Due to the decoupling of the CRE objective function (7) as mentioned in

Section2.4, the UDP step is tackled by solving a series of single-variable opti-

mization problems, that is, minimization of equation (13) with respect to θe for

each element e (e = 1, 2, ..., N) takes the form∫
Ωe

r1

2

{
(N2q̃

e)T
(De)

−1

(θe)
2 (N2q̃

e)− (B1ũ
e)TDe(B1ũ

e)

}
dx

− λ∆e{sign(θe − 1)}dx = 0.

(22)

Finally, one has

θe =



√
be

ae + λ∆e
, if λ < Λe√

be
ae − λ∆e

, if λ < −Λe

1 , if λ ≥ |Λe|

, e = 1, 2, ..., N (23)

where

Λe =
1

∆e

∫
Ωe

r1

2

{
(N2q̃

e)T (De)
−1

(N2q̃
e)− (B1ũ

e)TDe(B1ũ
e)
}
dΩ

=
1

∆e
(be − ae)

(24)

and

ae =

∫
Ωe

r1

2
(B1ũ

e)TDe(B1ũ
e)dΩ, be =

∫
Ωe

r1

2
(N2q̃

e)T (De)
−1

(N2q̃
e)dΩ

(25)
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Datailed explanations of Λe are discussed in the next section. Based on equation

(23) , the value of θe is found to be prone to be unchanged from the initial value

1 when |Λe| ≤ λ while θe begin to deviate from 1 to θ̂e when |Λe| ≥ λ. That is to

say, the regularization parameter λ determines whether damage occurs: as long210

as λ < |Λe|, the eth element would admit stiffness change or damage; otherwise

if λ ≥ |Λe|, the damage would be found to not occur in the eth element.

Moreover, from equations (22) and (23), the sparse regularization term would

introduce little computational complexity and the minimization over each dam-

age parameter along with the sparse regularization term is solved immediately215

by the closed-form solution in equation (23). This advantage is benefit from the

decoupling of the CRE objective function with respect to the damage parame-

ters.

3.4. Regularization Parameter Estimation

As shown in many references[37, 38], the regularization parameter λ plays220

an important role in the quality of the damage identification results, especially

in cases where high levels of noise are present in the data. In this section, a

novel and simple strategy, named ’threshold setting method’, for estimating the

optimal regularization parameter λest, is devised.

For each iterative step, Λ = {|Λe| , e = 1, 2, ..., N} could be obtained for225

each element by equation (24). In fact, λ is used to distinguish the damaged el-

ements from the undamaged elements and |Λe| reflects the difference between the

stiffness parameter obtained directly from the CRE objective function without

sparsity (θ̂e) and the undamaged stiffness parameter (θe = 1) for each element.

It is easily known that if this difference is large enough (|Λe| > λ), damage is230

reasonably assumed to occur. In other words, elements with higher values of

|Λe| are likely to be damaged with stronger possibility while lower values indi-

cate undamage and perturbation errors. Thus, setting one of the values in Λ as

threshold could separate the damaged and undamaged elements.

As a result, a simple procedure called ’the threshold setting method’ to esti-235

mate the optimal regularization parameter λest = TSM(Λ, lmax, α) is proposed
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for each iterative step as follows:

1. Get Λ = {|Λe| , e = 1, 2, ..., N} from equation (24) and sort the absolute

values in the descending order, leading to {Λ̂1 ≥ Λ̂2 ≥ ...};

2. Fix the maximum threshold setting rank lmax and the discriminating ratio240

α;

3. Obtain the optimal regularization parameter λest: for each l = 1, ..., lmax−

1,

λest =

 Λ̂l+1, if Λ̂l ≥ α · Λ̂l+1

Λ̂lmax , else
(26)

The maximum threshold setting rank lmax limits the maximum number of possi-

ble damages and principally one tends to choose a relatively small value of lmax

to guarantee the sparsity of the identification results. On the other hand, it is245

conceivable that the general undamaged elements have relatively small values

of |Λe| corresponding to the noise level and would be quite away from |Λe| of

the damaged elements. As a result, the discrimination ratio α measures the

distance between the minimum error caused by possible damages and the maxi-

mum error purely invoked by the measurement noise level. If Λ̂l is much greater250

than Λ̂l+1 (Λ̂l ≥ α · Λ̂l+1), element l is identified as damaged. The maximum

threshold setting rank lmax gives possible maximum number (initial guess) of

damages while the discrimination ratio α narrow it down. More discussions on

the choice of (lmax, α) could be found in Section 4.1.

3.5. Summary of the AM method255

By combining the UMF step in Section 3.2 and the UDP step in Section

3.3, using the proposed threshold setting method so as to estimate the optimal

regularization parameter λ in Section 3.4, the damage identification algorithm

by min-CRE and sparse regularization can be established as shown in Table 1.

It should be noted that different analysis models could be applied in the UMF260

step and the UDP step. In the UMF step, more elements are recommended so
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as to avoid the discretization error for the mechanical field analysis, while less

elements could be used in the UDP step to mitigate the ill-posed problem if ac-

quiring less damage parameters. Nevertheless, as the sparse regularization could

indeed circumvent the possible ill-posedness caused by more damage parame-265

ters, refined elements for the UDP step is also possible in the proposed damage

identification approach, which would be illustrated in the following numerical

examples.

4. Numerical simulation

In the following, three numerical simulations are used to test the proposed270

sparse-regularized min-CRE approach using FRF data. Damage identification

results obtained by three identification approaches are compared in Section 4.1

and Section 4.2, namely the min-CRE approach with sparse regularization (C1),

the sensitivity approach with Tikhonov regularization (S2) and the sensitivity

approach with sparse regularization (S1). The advantage of being efficient for275

the proposed min-CRE approach is strongly substantiated. The example in

Section 4.1 further considers some modeling errors in the mass matrix so as to

testify the robustness of the identification results. Section 4.3 shows that the

sparse regularization can significantly improve the accuracy of the identification

results for a more general three-dimensional structure. For application of the280

iteration algorithm, the convergence tolerance is practically set to TOL= 1 ×

10−6.

4.1. A simply supported beam structure

In this example, a simply supported beam is utilized to compare the ac-

curacy and efficiency between the proposed min-CRE approach and sensitivity

approaches with different regularization techniques. The total length of the

beam is 1m and the mass-per-length and bending stiffness are estimated as

1kg/m and 1N ·m2, respectively. As with finite element modelling, the beam is

uniformaly divided into 16 Eular-Bernoulli beam elements with 17 nodes each

16



Table 1 Summery of the proposed AM method

Initial algorithm setting

◦ set inital damage parameters θ̃(0) = θ̃0 as those of the intact

structure

◦ set values of the maximum threshold setting rank lmax and

the discriminating ratio α for the threshold setting method

◦ define the convergence tolerance TOL and the maximum

number of iterations Zmax

◦ load the measured FRF data

Alternating minimization approach (for j = 1 : Zmax)

◦ Refer to the UMF step in Section 3.2 to obtain the updating

mechanical field (q̃, ũU )T(j) = L(θ̃(j−1))
−1S(θ̃(j−1))

◦ Choose the optimal regularization parameter λest according

to the treshold setting method in Section 3.4 from

– for e = 1 : N

– ae =
∫

Ωe

r1
2 (B1ũ

e
(j))

TDe(B1ũ
e
(j))dΩ,

– be =
∫

Ωe

r1
2 (N2q̃

e
(j))

T (De)
−1

(N2q̃
e
(j))dΩ

– Λe = 1
∆e (be − ae), end for

– λest = TSM(Λ, lmax, α)

◦ Refer to the UDP step in Section 3.3 to obtain the updating

damage parameter θe(j) for each element:

– if λest < Λe then θe(j) =
√

be
ae+λest∆e ,

– else if λest < −Λe then θe(j) =
√

be
ae−λest∆e ,

– else θe(j) = θe0 = 1

◦ Convergence criterion

– if ‖ θ̃(j) − θ̃(j−1) ‖ / ‖ θ̃(0) ‖≤ TOL break.
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17

Node numbers: 1,2,…,17

Element numbers:  1 , 2 ,…, 16

Measurement Point

Measurement Direction

11 2 9 16

F(ω)

1 2

X
Y

5 7 9 11

Figure 2 Model of simply supported beam structure

with two degrees of freedom (see Figure 2 for more details). The damage

scenario admits the damage in element 9 with 20% stiffness reduction. The

measurement points are chosen to be node 5, 7, 9 and 11 (Y direction only).

The selected frequency range is simply chosen to be [1, 80]Hz with 1Hz intervals.

For a more complicated model, an appropriate choice of the selected frequency

range could improve the identification results greatly. Detailed selecting rules

are discussed in Section 4.2. The measured FRF data at kth selected excitation

frequency is obtained from simulation with addition of the measurement noise

as follows,

noisek(s) = randn · a · dk(s), k = 1, 2, . . .m (27)

where randn is the normal distribution with zero mean and unit deviation,

a is the applied noise level and dk(s) is the measurement FRF data at certain285

position s. Noise level of 10% (Signal-to-Noise-Ratio, SNR=10dB) is considered

in this example. For excitation, an unit harmonic load as shown in Figure 2 is

enforced at node 5.

4.1.1. On choice of (lmax, α) in the threshold setting method

To have an impression on how the maximum threshold setting rank lmax and290

the discriminating ratio α work in the threshold setting method, different choices

of (lmax, α) for damage identification in different noise levels are studied herein

and detailed results are displayed in Figure 3. On one hand, the identification

process tends to be reasonably robust for a broad selection of (lmax, α) with

appropriate ranges of α ∈ [2, 50] and lmax ∈ [2, 10] for the case with low level295
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Figure 3 Damage identification results under different choice of (lmax, α)

of noise (Figure 3(a), (b)). On the other hand, the choice of (lmax, α) should

be paid more attention for the case with high level of noise (Figure 3(c), (d)).

Damage locations are badly identified for α = 2 and α ≥ 20. This means

that the discriminating ratio α should not be too small or too large. In terms

of the maximum threshold setting rank lmax, lmax ≥ 8 leads to the failure of300

damage identification, indicating that lmax shall not be too large. As a result,

in the following of this example, the threshold parameters are reasonably fixed

at lmax = 5, α = 4.

4.1.2. Comparison to the results by sensitivity-based algorithms

In this section, the following sensitivity-based algorithm, representing prob-305

ably the most widely used techniques on the use of FRF data is considered.

Normally, the damage identification process based on the sensitivity ap-

proach is formulated as minimization of the following objective function-weighted
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least squares of the error in measured quantities,

arg min ‖ R̂−R(θ) ‖2W (28)

where R̂ and R(θ) denotes the measured and analytically predicted outputs

respectively. W is the positive definite weight matrix. Linearization of the

above non-linear problem (28) at given θ̄ for iterative method is as follows

R̂−R(θ) = ∆R(θ̄)− S(θ̄)∆θ (29)

where ∆θ := θ − θ̄ is the update of θ, ∆R(θ̄) := R̂ − R(θ̄) is the residual

and S(θ̄) is the response sensitivity matrix. For the method using frequency

response function, the mathematical formulation of R(θ) and the eth column

of sensitivity matrix S are often expressed as[39]:

R(θ) =
[
−ω2M(θ) +K(θ)

]
ûM (30)

Se =
∂R(θ)

∂θe

∣∣∣∣
θ=θ̄

=

[
−ω2 ∂M

∂θe
+
∂K

∂θe

]
θ=θ̄

ûM (31)

where ûM represents the measured frequency-domain displacement response.

Static condensation is needed so as to condense the above equation to the mea-

sured degrees of freedom and the weighting matrix H(ω, θ̄), the frequency re-

sponse function matrix should also be considered so as to reduce the bias on the310

estimated parameters. To circumvent the ill-posed problem, regularization is

required. Objective function, solution method for each iteration and regulariza-

tion parameter estimation method for different regularization types are briefly

summarized in Table 2.

The final identification results are presented in Figure 4. As is seen, all315

of these three approaches can well identify the damage location and extent

in the beam through of 10% noise level, except that false positions, although

with minor degree, are also observed by the sensitivity approach with Tikhonov

regularization (S2). Many researches have shown that Tikhonov regularization

tends to produce over-smooth solutions because the quadratic regularizer cannot320

recover the sparse features of the solution.

20



As regards the corresponding convergence property in Table 3, it is shown

that the computational effort necessary to solve C1(0.51s) is much less than the

sensitivity approaches(4.89s-899.47s), although it takes more steps for C1 to get

convergent. This advantage attributes to the inherent decoupling nature of the325

CRE function with respect to the damage parameters, making every parameter-

update-step solved as a series of single-variable optimization problems. It should

be noted that due to the lack of closed-form solution for regularization param-

eter estimation, the computational time for S1 is huge(899.47s). For S1 with

unknown λ, an appropriate range of λ(2.9− 5.4) is picked up by achieving bal-330

ance between the residual norm and solution norm[29] as shown in Figure 5(b).

With the properly chosen or experienced-based λ, the computational cost of S1

could be reduced significantly(4.89s).

4.1.3. Considering modeling errors

With respect to the modeling errors, simple mass modeling errors are added335

to the simulated beam structure. To do so, the exact mass density of ele-

ment 2, 3 and 12, which are involved into the generation of the measured FRF

data through simulation, are changed to 1.05kg/m, 1.05kg/m and 0.95kg/m

respectively, while the mass density for damage identification are still set to

be 1kg/m as before. Noise level of 10% is also added into the measured FRF340

data. The identification results obtained by the three approaches are shown in

Figure 6. As could be seen, the present approach (C1) could still identify the

damage location clearly, although with a less satisfatory damage extent assess-

ment. However, this bias can be further revised if needed by simply fixing the

damage location and optimizing the extent to match the observed changes. For345

the sensitivity-based approaches (S2&S1), the modelling errors may deteriorate

the damage identification if no additional improvement, such as optimizing the

weight matrix through the model error covariance[40], is enforced.
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Table 2 Sensitivity-based identification approaches with different regularizations

Approach
Objective function Solution method Parameter estimation

for each iteration for each iteration method

S2[39]
‖ ∆R(θ̄)− S(θ̄)∆θ ‖2W + closed-form solution

L-curve method
λ ‖ ∆θ ‖22 ∆θ =

[
S(θ̄)TWS(θ̄) + λI

]−1
S(θ̄)TW∆R(θ̄)

S1[22]
‖ ∆R(θ̄)− S(θ̄)∆θ ‖2W + Primal-dual interior point method Using residual and

λ ‖ ∆θ ‖1 Newton’s method (again iterative) proceeds solution norms[29]
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Figure 4 Stiffness reduction for each element using different approaches

Table 3 Convergence property for different identification approaches

Approach Numbers of iterations Total computation time (s)

C1 24 0.51

S2 6 5.41

S1 - 899.47

S1(with known λ) 9 4.89
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4.2. A plane frame structure

A plane frame structure as shown in Figure 7 is studied in the second ex-

ample (see reference[9] for detailed explanation on the target structure). The

height and width of the frame are H = 1.2m and L = 0.6m, respectively, and the

rectangular cross-sectional dimensions are b = 0.01m and h = 0.02m with the

inertial moment for planar bending I = 6.67×10−9m4 and area A = 2×10−4m2.

For the undamaged frame, the mass density of the material is ρ = 2.7×103kg/m
3

and the Young’s modulus is E = 6.9 × 1010N/m
2
. The plane frame analysis

model consists of 88 Euler-Bernoulli beam elements with 89 nodes, each with

three degrees of freedom. This finer numerical model is used to obtain the me-

chanical field for the UMF step so that the discretization error caused by finite

element model could be ignored. For the UMP step, the structure is divided in

11 sets of elements (see Figure 7(b)) and the identification procedure updates

the 11 element parameters independently. A single harmonic load is applied in

the x-direction of node 2. The FRF data are obtained by the discrete Fourier

transform(DFT) of the corresponding numerical simulated accelerations (see

Figure 9 for the FRF data of node 2). Twelve damage scenarios, including

single and multiple, small and large damage, unpolluted and polluted measure-

ments are taken into account, as listed in Table 4, where Nil stands for no

noise. The measurement locations and the corresponding directions are also

illustrated in Table 4 and Figure 8. Herein, the stiffness parameters {θe,

e = 1, 2, . . . , N}, standing for the Young’s modulus of each element set, is iden-

tified and the identified results in the percentage error forms are presented as

Relative error(%) =
θide − θe
θe

× 100% (32)

where θide and θe are identified and true values of the stiffness parameter for350

each element set, respectively. Noise level of 10% (SNR=10dB) is added to the

measurements primarily.

Several practical rules for selecting excitation frequencies are

• Excitation frequencies should not be selected at resonance frequencies to
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prevent resonance phenomena and high sensitivity to noise.355

• Dynamic response of the target structure is more sensitive to damages

for frequency points close to resonances than points far from resonances.

Therefore, excitation frequency points near resonance frequencies are rec-

ommended for measurement[32].

• Although the response of the target structure in higher frequency ranges,360

which excites higher mode shapes, is more sensitive to damages, numerical

analysis results are shown with less accuracy than those in lower frequency

ranges[41].

• Using more frequency ranges corresponding to different resonance frequen-

cies could improve the identification accuracy while using more frequency365

points near one resonance frequency seems to have no significantly effect

on the results for lower noise level cases.

• For higher levels of noise, presence of more frequency points near certain

resonance frequency can result in a robust identification.

Based on these rules, the selected frequency ranges are given in Table 5 and the370

sampling frequency stepping size in each frequency range is 4Hz. Consequently,

identification results of each scenario are obtained using 50 frequency points.

As is observed in Table 6 with the relative error defined in equation (32),

for the single damage scenarios 1-6, the proposed approach could provide sat-

isfied identification results: the maximum relative error does not exceed 0.02%375

in the case of no noise and 1% in the case of 10% noise. Only the horizontal

acceleration response at nodes 2 and 9 is measured herein. For the multiple

damages scenarios 7-12, the horizontal frequency response at node 4 and the

vertical acceleration response at node 7 are additionally measured. The identi-

fication by the min-CRE approach can well identify the damage locations as well380

as extents with a maximum relative error 0.01% in the case of no noise and 3.7%

in the case of 10% noise. Compared with the results in the reference[9], which
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used an enhanced response sensitivity approach with the Tikhonov regulariza-

tion under the same measurement degrees of freedom, identification results of

the min-CRE approach with the sparse regularization demonstrated the superi-385

ority for all of the 12 scenarios. Most of this superior identification accuracy is

attributed to the enforced sparse regularization: the sparse regularization yields

sparse damages that are more compatible with pratical damage patterns, while

the Tikhonov-regularized damage identification does not result in sparse solu-

tions, which typically have non-zero relative errors associated with all damage390

parameters[42]. All coincide with the existed observations where replacement

of the Tikhonov regularization by the sparse regularization can indeed improve

the identification accuracy and robustness for damage identification.

To get a better picture on the effectiveness of the sparse regularization, de-

tailed identification results for scenario 5 are shown in Figure 10 . It is shown395

that stiffness reduction is obtained based on θ̂e in equation (??), where no spar-

sity term is introduced. Obviously, when there is no measurement noise, using

or not using sparse regularization would lead to the same good identification

results. However, it is almost impossible to get to the reasonable identification

results for the case without sparse regularization when measurement noise is400

enforced. It is clear that the sparse regularization greatly improves the identifi-

ability and robustness of the CRE-approach. Furthermore, to visualize how the

sparse-regularized min-CRE approach proceeds, the iterative procedure for the

scenario 5 is shown in Figure 11. On the other hand, Figure 12 compares

the evolution of the constitutive relation error(CRE) for each of the iterative405

step with different levels of noise (0%, 5%, 10% and 20%) for damage scenario

5. As is observed, the error decreases with the number of iterations increases,

verifying the convergence of the present method.
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Figure 9 FRF of the plane frame structure in the x-direction of node 2
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Figure 11 Damage identification procedure for scenario 5 of the plane frame structure
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Table 4 Damage scenarios for plane frame structure

Damage scenario Damage location Reduction in

scenario (element set no.) elastic modulus (%) Noise (%) Measurement

1 3 10 Nil ü2, ü9

2 3 20 Nil ü2, ü9

3 3 40 Nil ü2, ü9

4 3 10 10 ü2, ü9

5 3 20 10 ü2, ü9

6 3 40 10 ü2, ü9

7 4,5 10,5 Nil ü2,ü4,ü9,v̈7

8 4,5 20,25 Nil ü2,ü4,ü9,v̈7

9 4,5 50,50 Nil ü2,ü4,ü9,v̈7

10 4,5 10,5 10 ü2,ü4,ü9,v̈7

11 4,5 20,25 10 ü2,ü4,ü9,v̈7

12 4,5 50,50 10 ü2,ü4,ü9,v̈7

Table 5 Frequency ranges for scenarios 1-12 of plane frame structure (Hz)

Scenario 1&4 2&5 3&6 7&10 8&11 9&12

Frequency ranges 50-82 50-82 46-82 46-74 50-82 50-82

(4Hz intervals) 143-147 143-147 139-143 139-143 139-143 127-135

157-161 153-157 157-161 157-161 157-161 149-161

169-185 165-185 169-181 169-185 169-185 165-177

199-215 195-219 195-211 199-219 195-215 187-203

230-262 226-258 226-258 230-262 226-258 215-251

316-352 316-352 308-336 316-352 316-348 300-316

382-410 378-394 386-422 382-410 382-410 378-402
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4.3. A three-dimensional frame structure

The performance of the presented approach is also illustrated by using a410

three-dimensional structure. It is a 2-story, 1-bay by 1-bay frame structure

as shown schematically in Figure 13. Parameters of this frame are: height

H = 4m, length L = 4m, width B = 3m, rectangular cross-section h × b =

0.01m×0.01m, intact Young’s modulus E = 2.1×1011pa, Poisson’s ratio ν = 0.3

and mass density ρ = 7860kg/m
3
. Shear modulus G for this structure is taken as415

E/(2(1 + ν)) herein. Simulated dynamic FRF data are used in this study. Two

synthetic harmonic load is applied at node 7 and node 9. Node 5(x,y direction)

and node 7(x,y direction) are selected as two measurement points. These input

data are contaminated by normal distribution noise with the noise level 10%

(SNR=10dB) according to equation (27). The selected frequency range in this420

example is [0.4, 4.5]Hz with 0.05Hz intervals. Some of the excitation frequencies

are ignored based on the selection rules as stated in Section 4.2. To clearly

understand the spatial motion over the entire model, displacement fields for

different frequencies are depicted in Figure 14.

Damages are enforced by reducing the Young’s modulus E to 70% in element425

1 (θ1 = 0.7) and 80% in element 16 (θ16 = 0.8). As shown in Figure 15(a),

good identification performance is achieved when noise level is up to 10%. The

optimal regularization parameters are λest = 1.45422 × 10−13 for the no noise

case and λest = 3.72452 × 10−13 for the 10% noise case. Again, identifica-

tion results with and without sparsity are additionally compared in Figure 15.430

From the results of the identified stiffness reduction under the measurement

noise and without the sparse regularization (Figure 15(b)), damage locations

and extents became almost unidentifiable, while the sparse regularization sub-

stantially improves the accuracy and robustness of the identification procedure

(Figure 15(a)). The proposed damage identification approach with sparsity is435

shown to be well applicable to the identification in 3D frames.

To show the convergence of the proposed spare-regularized min-CRE ap-

proach, filled contour plot of the damage parameters θ̃ was drawn in Figure 16.

As it is seen, damages are identified after 35 steps, verifying the convergence
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Figure 13 Schematic diagram showing the numerical structure and the directions of system

output measurements and input excitations

of the present method. Algorithm without sparsity would encounter divergence440

or convergence difficulty with the same amount of input measurement data.

This phenomenon is attributable to the fact that sparse regularization provides

a flexible and parsimonious reconstructing process for high-dimensional model

parameters from limited incomplete input data.

(a) f=0.50Hz (b) f=0.65Hz (c) f=1.20Hz (d) f=2.25Hz

Figure 14 Displacement fields for different frequency
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5. Conclusions445

This research is focused on the damage identification approach with incom-

pleted frequency response data using the minimum constitutive relation error

(min-CRE) principle and the sparse regularization. The identification process

is a nonlinear optimization problem and the corresponding objective function is

set to measure the residual of the constitutive equations connecting the admis-450

sible stress field and the admissible displacement field. Numerical examples are

conducted to verify the present approach and the results show that:

1. The present damage identification approach performs well in both dam-

age localization and extent assessment for 2D/3D frame structures with

incomplete frequency response data.455

2. The AM method could effectively tackle the nonlinear optimization prob-

lem.

3. The sparse regularization obviously improves the accuracy and robustness

of the damage identification results.

4. The sparse regularization along with the CRE objective function is shown460

to be more accurate than the Tikhonov regularization along with the sen-

sitivity identification approach.

5. The proposed threshold setting method could be used to determine the

sparse regularization parameter automatically and efficiently.

6. The proposed approach is found to be much more efficient and less sen-465

sitive to the mass modeling errors than the sensitivity-based approaches

(with the Tikhonov regularization or with the sparse regularization).

APPENDIX

A.1. The displacement finite element

The auxiliary local nodal displacements (uix, u
i
y, u

i
z, θ

i
x, θ

i
y, θ

i
z) (3 translations

and 3 rotation) at an arbitrary node i are naturally selected to obtain the
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admissible displacement solution first. Thus, for an arbitrary element e with two

nodes i, j, the discretized displacement field (wex, w
e
y, w

e
z, θ

e
x) as shown in Figure

A.1 constructed by linear Lagrange interpolation for (wex, θ
e
x) and cubic Hermit

interpolation for (wey, w
e
z) based on the corresponding local nodal displacements

(uix, u
i
y, u

i
z, θ

i
x, θ

i
y, θ

i
z) and (ujx, u

j
y, u

j
z, θ

j
x, θ

j
y, θ

j
z), is expressed as

wex

wey

wez

θex

 = Φe
uũ

e
L, ũ

e
L :=

[
uix, u

i
y, u

i
z, θ

i
x, θ

i
y, θ

i
z, u

j
x, u

j
y, u

j
z, θ

j
x, θ

j
y, θ

j
z

]T

Φe
u :=


N1 0 0 0 0 0 N2 0 0 0 0 0

0 H1 0 0 0 H2 0 H3 0 0 0 H4

0 0 H1 0 −H2 0 0 0 H3 0 −H4 0

0 0 0 N1 0 0 0 0 0 N2 0 0


(A-1)

where the polynomial interpolation functions N1, N2, H1, H2, H3, H4 are of the

following forms,

N1(ξ) =
1− ξ

2
, N2(ξ) =

1 + ξ

2
H1(ξ) =

1

2
(ξ + 2)(ξ − 1)2, H2(ξ) =

1

4
(ξ + 1)(ξ − 1)2h

e

2
,

H3(ξ) =
1

2
(2− ξ)(ξ + 1)2, H2(ξ) =

1

4
(ξ − 1)(ξ + 1)2h

e

2
,

ξ =
2(s− se1)

he
− 1

(A-2)

In order to perform the further assembling computation, the local nodal dis-

placements ũeL need to be expressed in a common coordinate system or the

global coordinate system. To this end, the relationship between local nodal

displacements ũeL and global nodal displacements ũe in element e is explored,

pertaining to

ũeL = T eu ũ
e, (A-3)
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where T eu is the transformation matrix of the following form

T eu =


t 0 0 0

0 t 0 0

0 0 t 0

0 0 0 t

 (A-4)

t =


cos(x, x̄) cos(x, ȳ) cos(x, z̄)

cos(y, x̄) cos(y, ȳ) cos(y, z̄)

cos(z, x̄) cos(z, ȳ) cos(z, z̄)

 (A-5)

t is the Direction Cosine Matrix (DCM) between local coordinate system (Oxyz)470

and global coordinate system (Ox̄ȳz̄).

For brevity, the displacement finite element approximation is designated as
wex

wey

wez

θex

 = N e
1 ũ

e, N e
1 := Φe

uT
e
u (A-6)

A.2. The force finite element

In the force finite dimensional space, the discretized stress field (Ne
x ,M

e
z ,

Me
y ,M

e
x) (see Figure A.2) for an arbitary element e should be constructed at

first. Practically, this can be reached by setting

(Ne
x ,M

e
z ,M

e
y ,M

e
x) = (N0e

x ,M
0e
z ,M

0e
y ,M

0e
x ) + (Npe

x ,Mpe
z ,Mpe

y ,Mpe
x ) (A-7)

where (Npe
x ,Mpe

z ,Mpe
y ,Mpe

x ) is the inhomogeneous part caused by the concen-

trated loads on Neumann boundary ∂Ωf and (N0e
x ,M

0e
z ,M

0e
y ,M

0e
x ) is the ho-

mogeneous part approximated by the following force element.475

Auxiliary local nodal forces (N i
x, V

i
y , V

i
z ,M

i
x,M

i
y,M

i
z) at an arbitrary node i

are used to construct the homogeneous discretized stress field (N0
x ,M

0
z ,M

0
y ,M

0
x)
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initially; that is, for element e, (N0e
x ,M

0e
z ,M

0e
y ,M

0e
x ) are given by

(
N0e
x ,M

0e
z ,M

0e
y ,M

0e
x

)T
= Φe

qq̃
e
0L,

q̃e0L := [N i
x, V

i
y , V

i
z ,M

i
x,M

i
y,M

i
z, N

j
x, V

j
y , V

j
z ,M

j
x,M

j
y ,M

j
z ]T

Φe
q :=


N1 0 0 0 0 0 N2 0 0 0 0 0

0 −H2 0 0 0 H1 0 −H4 0 0 0 H3

0 0 H2 0 H1 0 0 0 H4 0 H3 0

0 0 0 N1 0 0 0 0 0 N2 0 0


(A-8)

where Φe
q is the shape function matrix. Having gained (N0e

x ,M
0e
z ,M

0e
y ,M

0e
x )

in equation (A-8) via the auxiliary local nodal forces, the next is to shift into

the usage of global nodal forces. To this end, the transformation matrix for the

force finite element pertains to be

T eq = HT eu (A-9)

where

H =

 −I6×6 0

0 I6×6

 (A-10)

Hence, the relationship between local element nodal forces q̃e0L and global ele-

ment nodal forces q̃e0 in terms of element e is given by

q̃e0L = T eq q̃
e
0 (A-11)

Next, the formulation of nodal equilibriums is utilized to find independent

global nodal force (DOFs) q̂e0. Element nodal forces q̃ei0 = [F eix , F
ei
y , F

ei
z ,M

ei
x ,

Mei
y ,M

ei
z ]T of all r beams as well as reaction forces Ri

G = [Rix, R
i
y, R

i
z, RM

i
x,

RM i
y, RM

i
z]
T adjacent to the objective node i in the directions of all the degrees

of freedom are algebraically summed up as shown in Figure A.3. This is carried

out for all nodes. The equilibrium equation for each node i is accordingly given

by
r∑
e=1

q̃ei0 +Ri
G = 0 (A-12)
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Based on this equilibrium equation, dependent nodal forces q̃ri0 could be

represented by independent global nodal forces q̂ei0 := (q̃ei0 , e = 1, 2, · · · , r −

1,Ri
G) for the node i in the sequel

nq̂ei0 = −
r−1∑
e=1

q̃ei0 −Ri
G = q̃ri0 (A-13)

where n stands for the linear combination of {q̃ei0 , e = 1, 2, · · · , r − 1} and Ri
G.

It should be noticed that homogeneous Neumann boundary conditions should

be enforced on reaction forces Ri
G, setting corresponding forces to be zero for

different types of supports. Thus, one can obtain for an element e with an

ending node i that

[F eix , F
ei
y , F

ei
z ,M

ei
x ,M

ei
y ,M

ei
z ]T = Lei q̂

ei
0 (A-14)

where

Lei (3e− 2 : 3e, 3e− 2 : 3e) = I3×3 for e = 1, 2, · · · , r − 1

Lei = n for e = r
(A-15)

Integrating Equations (A-8),(A-11) and (A-14), the force finite element ap-

proximation of (N̂e
h, M̂

e
h) is established as

N0e
x

M0e
z

M0e
y

M0e
x

 = Ψe
qq̂
e
0 = N e

2 q̃
e
0

Ψe
q := N e

2

 Lei 0

0 Lei

 = Φe
qT

e
q

 Lei 0

0 Lei


q̃e0 =

 Lei 0

0 Lei

 q̂e0 =

 Lei 0

0 Lei

 q̂i0

q̂j0



(A-16)

Turning to the particular part (Npe
x ,Mpe

z ,Mpe
y ,Mpe

x ), the external concen-

trated loads are directly involved. Assume that the concentrated loads q̃ep :=

[Fpx, Fpy, Fpz,Mpx,Mpy,Mpz]
T are enforced on the left-hand side k = 1 (or

right-hand side k = 2) of the element e. Under this circumstance, (Npe
x ,Mpe

z ,
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Figure A. .1 Basics of a displacement finite element e

Mpe
y ,Mpe

x ) could be obtained by the interpolation matrix defined in equation

(A-1) and transformation matrix defined in equation (A-9) as follows
Npe
x

Mpe
z

Mpe
y

Mpe
x

 = N e
2 q̃

e
p (A-17)

where q̃p collects all concentrated loads (Fpx, Fpy, Fpz,Mpx,Mpy,Mpz).

Finally, substituting Equation (A-16) and (A-17) into Equation (A-7) and

simplifying, one can get 
Ne
x

Me
z

Me
y

Me
x

 = N e
2 q̃

e
0 +N e

2 q̃
e
p (A-18)
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