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Cyst and root-knot nematodes are major risk factors of

agroecosystem management, often causing devastating

impacts on crop production. The use of microbes that

parasitize or prey on nematodes has been considered as a

promising approach for suppressing phytopathogenic

nematode populations. However, effects and persistence of

those biological control agents often vary substantially

depending on regions, soil characteristics and agricultural

practices: more insights into microbial community processes

are required to develop reproducible control of nematode

populations. By performing high-throughput sequencing

profiling of bacteria and fungi, we examined how root and

soil microbiomes differ between benign and nematode-

infected plant individuals in a soybean field in Japan. Results

indicated that various taxonomic groups of bacteria and

fungi occurred preferentially on the soybean individuals

infected by root-knot nematodes or those uninfected by

nematodes. Based on a network analysis of potential

microbe–microbe associations, we further found that several

fungal taxa potentially preying on nematodes (Dactylellina
(Orbiliales), Rhizophydium (Rhizophydiales), Clonostachys
(Hypocreales), Pochonia (Hypocreales) and Purpureocillium
(Hypocreales)) co-occurred in the soybean rhizosphere at

a small spatial scale. This study suggests how ‘consortia’

of anti-nematode microbes can derive from indigenous

(resident) microbiomes, providing basic information for

managing anti-nematode microbial communities in

agroecosystems.
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1. Introduction

Plant pathogenic nematodes, such as cyst and root-knot nematodes, are major threats to crop production

worldwide [1,2]. Soybean fields, in particular, are often damaged by such phytopathogenic nematodes,

resulting in substantial yield loss [3,4]. A number of chemical nematicides and biological control agents

(e.g. nematophagous fungi in the genera Purpureocillium and Clonostachys) have been used to suppress

nematode populations in farmlands [5,6]. However, once cyst and root-knot nematodes appear in a

farmland, they often persist in the soil for a long time [7], causing high financial costs in agricultural

management. Finding ways to suppress pathogenic nematode populations in agroecosystems is a key

to reducing risk and management costs in production of soybean and other crop plants.

To reduce damage by cyst and root-knot nematodes, a number of studies have evaluated effects of

crop varieties/species, crop rotations, fertilizer inputs and tillage intensity on nematode density in

farmland soil [1,8–10]. However, the results of those studies varied considerably depending on

regions, soil characteristics and complicated interactions among multiple factors (e.g. interactions

between organic matter inputs and tillage frequency) [11]. Thus, it remains an important challenge to

understand the mechanisms by which phytopathogenic nematode populations are suppressed in some

farmland soils but not in others [12]. New lines of information are required for building general

schemes for making agroecosystems robust against the emergence of pest nematodes.

Based on the technological advances in high-throughput DNA sequencing, more and more studies

have examined structures of microbial communities (microbiomes) in order to evaluate biotic

environmental conditions in the endosphere and rhizosphere of plants [13–16]. Recent studies have

uncovered microbiome compositions of ‘disease-suppressive soils’, in which pests and pathogens

damaging crop plants have been suppressed for long periods of time [17–19]. Some studies have

further discussed how some microbes within such disease-suppressive microbiomes contribute to the

health and growth of crop plant species [17,20,21]. In one of the studies, soil microbiome

compositions were compared among soybean fields that differed in the density of cyst nematodes

[12]. The study then revealed that bacteria and fungi potentially having negative impacts on

nematode populations (e.g. Purpureocillium and Pochonia) were more abundant in the long term than

in short-term monoculture fields of soybeans [12]. Such among-farmland comparisons have provided

invaluable insights into ecosystem functions of indigenous (native) microbiomes. Nonetheless, the

potential relationship between cropping system management and community processes of anti-

nematode microbes remains obscured because the farmlands compared in those studies could vary in

climatic and edaphic factors. Moreover, because incidence of cyst and root-knot nematodes generally

varies at small spatial scales [22], there can be spatial heterogeneity in abundance and community

compositions of anti-nematode bacteria and fungi within a farmland. Studies focusing on fine-scale

assembly of anti-nematode microbes are required for developing agroecosystem management

protocols for controlling phytopathogenic nematodes.

We conducted an Illumina sequencing analysis of bacteria and fungi in a soybean (Glycine max) field

and then examined how root and rhizosphere microbiome structures varied among host plant

individuals that differed in damage by root-knot nematodes (Meloidogyne sp.). Based on the data of

microbiomes at a small spatial scale, we statistically explored microbial species/taxa that occurred

preferentially in the roots or rhizosphere soil of nematode-infected soybean individuals. We further

investigated the structure of networks depicting co-abundance patterns of microbial species/taxa

within the soybean field, thereby examining whether multiple anti-nematode bacteria and fungi form

consortia (assemblages) on/around the plant individuals infected by root-knot nematodes. Our results

suggest that various taxonomic groups of anti-nematode bacteria and fungi are present within

indigenous microbiomes. This study also suggests that microbiome assembly at fine spatial scales is a

key to managing populations and communities of such functional microbes.
2. Methods
2.1. Sampling
Fieldwork was conducted at the soybean field on the Hokubu Campus of Kyoto University, Japan

(35.0338N, 135.7848E). In the field, the soybean strain ‘Sachiyutaka’ was sown at 15 cm intervals in

two lines (electronic supplementary material, figure S1) on 4 July 2016 (basal fertilizer, N : P2O5:

K2O ¼ 3 : 10 : 10 g m22). In the lines, 69 and 62 individuals (‘set 1’ and ‘set 2’, respectively),
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Figure 1. Study site and soybeans. (a) Soybean field in which sampling was conducted. (b) Soybean states. Soybean individuals
were classified into three categories: those heavily attacked by root-knot nematodes (‘no leaf ’; left), those exhibited normal growth
(‘green’; right) and those showing intermediate characters (‘yellow’; middle). (c) Relationship between soybean states and biomass.
Dry mass significantly differed among ‘no leaf ’, ‘yellow’ and ‘green’ soybean individuals (ANOVA; F2 ¼ 20.5, p , 00001). (d ) Spatial
distribution of ‘no leaf ’, ‘yellow’ and ‘green’ soybean individuals. Sampling sets 1 and 2 are shown separately.
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respectively, were sampled at every other position (i.e. 30 cm intervals; figure 1) on 7 October 2016. The

sampled soybean individuals were classified into three categories: normal individuals with green leaves

(green), individuals with yellow leaves (yellow) and those with no leaves (no leaf) (figure 1a–c). Among

them, ‘green’ individuals exhibited normal growth, while ‘no leaf’ individuals were heavily infected by

root-knot nematodes: ‘yellow’ individuals showed intermediate characters. In total, 97 ‘green’, 19 ‘yellow’

and 15 ‘no leaf’ individuals were sampled (figure 1d ).

For each individual, two segments of 5-cm terminal roots and rhizosphere soil were collected from

around 10 cm below the soil surface. The root and soil samples were transferred into a cool box in the

field and then stored at 2808C until DNA extraction in the laboratory. The above-ground bodies of

the individuals were placed in drying ovens at 808C for 72 h to measure dry mass. The dry mass data

indicated that ‘green’, ‘yellow’ and ‘no leaf’ soybean individuals differed significantly in their biomass

(figure 1c).
2.2. DNA extraction, PCR and sequencing
The root segments of each individual were transferred to a 15 ml tube and washed in 70% ethanol by

vortexing for 10 s. The samples were then transferred to a new 15 ml tube and then washed again in

70% ethanol by sonication (42 Hz) for 5 min. After an additional sonication wash in a new tube, one

of the two root segments was dried and placed in a 1.2 ml tube for each soybean individual. DNA

extraction was then performed with a cetyltrimethylammonium bromide method [23] after

pulverizing the roots with 4 mm zirconium balls at 25 Hz for 3 min using a TissueLyser II (Qiagen).

For DNA extraction from the rhizosphere soil, the ISOIL for Beads Beating kit (Nippon Gene) was

used as instructed by the manufacturer. For each sample, 0.5 g of soil was placed into a 2 ml

microtube of the ISOIL kit. To increase the yield of DNA, 10 mg of skim milk powder (Wako,

198–10605) was added to each sample [24].

For each of the root and soil samples, the 16S rRNA V4 region of the prokaryotes and the internal

transcribed spacer 1 (ITS1) region of fungi were amplified. The PCR of the 16S rRNA region was

performed with the forward primer 515f [25] fused with 3–6-mer Ns for improved Illumina

sequencing quality [26] and the forward Illumina sequencing primer (50- TCG TCG GCA GCG TCA

GAT GTG TAT AAG AGA CAG- (3–6-mer Ns) – (515f) -30) and the reverse primer 806rB [27] fused

with 3–6-mer Ns and the reverse sequencing primer (50- GTC TCG TGG GCT CGG AGA TGT GTA
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TAA GAG ACA G (3–6-mer Ns) - (806rB) -30) (0.2 mM each). To prevent the amplification of

mitochondrial and chloroplast 16S rRNA sequences, specific peptide nucleic acids (mPNA and pPNA;

[26]) (0.25 mM each) were added to the reaction mix of KOD FX Neo (Toyobo). The temperature

profile of the PCR was 948C for 2 min, followed by 35 cycles at 988C for 10 s, 788C for 10 s, 508C for

30 s, 688C for 50 s and a final extension at 688C for 5 min. To prevent generation of chimaeric

sequences, the ramp rate through the thermal cycles was set to 18C s21 [28]. Illumina sequencing

adaptors were then added to respective samples in the supplemental PCR using the forward fusion

primers consisting of the P5 Illumina adaptor, 8-mer indexes for sample identification [29] and a

partial sequence of the sequencing primer (50- AAT GAT ACG GCG ACC ACC GAG ATC TAC AC -

(8-mer index) - TCG TCG GCA GCG TC -30) and the reverse fusion primers consisting of the P7

adaptor, 8-mer indexes and a partial sequence of the sequencing primer (50- CAA GCA GAA GAC

GGC ATA CGA GAT - (8-mer index) - GTC TCG TGG GCT CGG -30). KOD FX Neo was used with a

temperature profile of 948C for 2 min, followed by eight cycles at 988C for 10 s, 558C for 30 s, 688C for

50 s (ramp rate ¼ 18C s21) and a final extension at 688C for 5 min. The PCR amplicons of the 131

soybean individuals were then pooled after a purification/equalization process with the AMPureXP

Kit (Beckman Coulter). Primer dimers, which were shorter than 200 bp, were removed from the

pooled library by supplemental purification with AMPureXP: the ratio of AMPureXP reagent to the

pooled library was set to 0.6 (v/v) in this process.

The PCR of fungal ITS1 region was performed with the forward primer ITS1F_KYO1 [30] fused with

3–6-mer Ns for improved Illumina sequencing quality [26] and the forward Illumina sequencing primer

(50- TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG- (3–6-mer Ns) – (ITS1F_KYO1) -30) and

the reverse primer ITS2_KYO2 [30] fused with 3–6-mer Ns and the reverse sequencing primer (50- GTC

TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA G (3–6-mer Ns) - (ITS2_KYO2) -30). The buffer and

polymerase system of KOD FX Neo was used with a temperature profile of 948C for 2 min, followed by

35 cycles at 988C for 10 s, 508C for 30 s, 688C for 50 s, and a final extension at 688C for 5 min. Illumina

sequencing adaptors and 8-mer index sequences were then added in the second PCR as described

above. The amplicons were purified and pooled as described above.

The sequencing libraries of the prokaryote 16S and fungal ITS regions were processed in an Illumina

MiSeq sequencer (run center: KYOTO-HE; 15% PhiX spike-in). Because the quality of forward sequences

is generally higher than that of reverse sequences in Illumina sequencing, we optimized the MiSeq run

setting in order to use only forward sequences. Specifically, the run length was set at 271 forward (R1)

and 31 reverse (R4) cycles in order to enhance forward sequencing data: the reverse sequences were used

only for discriminating between 16S and ITS1 sequences based on the sequences of primer positions.

2.3. Bioinformatics
The raw sequencing data were converted into FASTQ files using the program bcl2fastq 1.8.4 distributed

by Illumina. The output FASTQ files were demultiplexed with the program Claident v0.2.2017.05.22

[31,32], by which sequencing reads whose 8-mer index positions included nucleotides with low (less

than 30) quality scores were removed. The sequencing data were deposited to DNA Data Bank of

Japan (DDBJ) (DRA006845). Only forward sequences were used in the following analyses after

removing low-quality 30-ends using Claident. Noisy reads [31] were subsequently discarded and then

denoised dataset consisting of 2 041 573 16S and 1 325 199 ITS1 reads were obtained.

For each dataset of 16S and ITS1 regions, filtered reads were clustered with a cut-off sequencing

similarity of 97% using the program VSEARCH [33] as implemented in Claident. The operational

taxonomic units (OTUs) representing less than 10 sequencing reads were subsequently discarded. The

molecular identification of the remaining OTUs was performed based on the combination of the

query-centric auto-k-nearest neighbour (QCauto) method [32] and the lowest common ancestor (LCA)

algorithm [34] as implemented in Claident. Note that taxonomic identification results based on the

combination of the QCauto search and the LCA taxonomic assignment are comparable to, or

sometimes more accurate than, those with the alternative approaches [32,35,36]. In total, 5351

prokatyote (bacterial or archaeal) OTUs and 1039 fungal OTUs were obtained for the 16S and ITS1

regions, respectively (electronic supplementary material, data S1). The UNIX codes used in the above

bioinformatic pipeline are available as electronic supplementary material, data S2.

For each combination of target region (16S or ITS1) and sample type (root or soil), we obtained

a sample � OTU matrix, in which a cell entry depicted the number of sequencing reads of an OTU

in a sample (electronic supplementary material, data S3). The cell entries whose read counts

represented less than 0.1% of the total read count of each sample were removed to minimize effects of
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PCR/sequencing errors [37]. The filtered matrix was then rarefied to 1000 reads per sample using the

‘rrarefy’ function of the vegan 2.4–1 package [38] of R 3.4.3 [39]. Samples with less than 1000 reads

were discarded in this process: the numbers of samples in the rarefied sample � OTU matrices were

119, 128, 117 and 128 for root prokaryote, root fungal, soil prokaryote and soil fungal matrices,

respectively (electronic supplementary material, data S4).

2.4. Prokaryote and fungal community structure
Relationship between the number of sequencing reads and that of detected OTUs was examined for each

dataset (root prokaryote, root fungal, soil prokaryote or soil fungal dataset) with the ‘rarecurve’ function

of the R vegan package. Likewise, relationship between the number of samples and that of OTUs was

examined with the vegan ‘specaccum’ function. For each dataset, difference in OTU compositions

among ‘green’, ‘yellow’ and ‘no leaf’ soybean individuals was examined by the permutational

analysis of variance (PERMANOVA; [40]) with the vegan ‘adonis’ function (10 000 permutations). To

control effects of sampling positions (lines) on the community structure, the information of sampling

sets (set 1 or set 2) was included as an explanatory variable in the PERMANOVA. The variation in

OTU compositions was visualized with non-metric multidimensional scaling (NMDS) using the vegan

‘metaMDS’ function. To examine the potential relationship between root/soil microbial community

structure and plant biomass, an additional PERMANOVA was performed for each dataset. The

information of sampling sets was included in the models. To explore signs of spatial autocorrelation

in the community data, a Mantel’s correlogram analysis was performed with the vegan

‘mantel.correlog’ function. The ‘Bray–Curtis’ metric of b-diversity was used in the PERMANOVA,

NMDS and Mantel’s correlogram analyses.

2.5. Screening of host-state-specific OTUs
To explore prokaryote/fungal OTUs that preferentially occurred on/around ‘green’, ‘yellow’ or ‘no leaf’

soybean individuals, a randomization test was performed by shuffling the plant state labels in each of the

root prokaryote, root fungal, soil prokaryote and soil fungal data matrices (100 000 permutations). We then

evaluated preference of a prokaryote/fungal OTU (i) for a plant state ( j) (green’, ‘yellow’ or ‘no leaf) as follows:

Preferenceði, jÞ ¼ ½Nobservedði, jÞ–MeanðNrandomizedði, jÞÞ�
s:d:ðNrandomizedði, jÞÞ ,

where Nobserved (i, j) denoted the mean numberof the sequencing reads of OTU i among state j soybean samples

in the original data, and the Mean (Nrandomized (i, j)) and s.d. (Nrandomized (i, j)) were the mean and standard

deviation of the number of sequencing reads for the focal OTU–plant state combination across randomized

matrices. Regarding this standardized preference index, values larger than three generally represent strong

preferences (false discovery rate (FDR) , 0.05; see results of a previous study [35]): hence, we listed OTUs

whose preference values exceeded three.

2.6. Microbe – microbe networks
To examine how prokaryote and fungal OTUs co-occurred in root or soil samples, a co-abundance

network analysis was performed based on the sparse inverse covariance estimation for ecological

association inference (Spiec-Easi) method [41]. In each of the root and soil sample analyses, the input

data matrix was prepared by merging the sample � OTU matrices of prokaryotes and fungi. As

inferences of co-abundance patterns were unavailable for rare OTUs, only the OTUs detected from 30

or more samples were retained in the input matrices. For each of the root and soil data matrices, a co-

abundance analysis was performed with the ‘spiec.easi’ function of the R ‘SpiecEasi’ package [41]. The

networks depicting the co-abundance patterns were drawn using the R ‘igraph’ package [42].
3. Results
3.1. Prokaryotes and fungal community structure
On average, 107.9 (s.d. ¼ 18.0), 25.4 (s.d. ¼ 8.9), 172.5 (s.d. ¼ 17.3) and 78.3 (s.d. ¼ 10.5) OTUs per sample

were observed, respectively, from the root prokaryote, root fungal, soil prokaryote and soil fungal dataset
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after filtering and rarefaction steps (electronic supplementary material, figure S2). The total number of

OTUs observed was 1387, 346, 1191 and 769 for the root prokaryote, root fungal, soil prokaryote and

soil fungal datasets, respectively (electronic supplementary material, figure S3).

In the soybean field, the prokaryote community on roots was dominated by the bacterial classes

Proteobacteria, Actinobacteria, Chloroflexi and Bacteroidetes, while that of rhizosphere soil consisted

mainly of Proteobacteria, Actinobacteria and Acidobacteria, and the archaeal lineage Thaumarchaeota

(figure 2a). The fungal community of roots was dominated by the fungal orders Hypocreales,

Sordariales, Plesporales, while that of soil consisted mainly of Hypocreales, Agaricales, Eurotiales,

Mortierellales and Filobasidiales (figure 2b). Regarding the order-level compositions of fungi in the

rhizosphere soil, the proportion of Orbiliales reads was much higher in ‘yellow’ (3.62%) and ‘no leaf’

(4.82%) soybean individuals than in ‘green’ ones (0.89%) (figure 2). The genus level compositions of

the samples are shown in electronic supplementary material, figure S4.

In each dataset (i.e. root prokaryote, root fungal, soil prokaryote or soil fungal data), microbial

community structure varied among ‘green’, ‘yellow’ or ‘no leaf’ soybean individuals, although the

effects of sampling sets on the community structure were much stronger (figure 3). Even within each

sampling set, spatial autocorrelations of bacterial/fungal community structure were observed

(electronic supplementary material, figure S5). Significant relationships between microbial community

structure and soybean biomass were observed in the soil prokaryote and soil fungal datasets but not

in the root prokaryote and root fungal datasets (table 1).
3.2. Screening of host-state-specific OTUs
In the root microbiome, only an unidentified fungal OTU showed a strong preference for ‘green’ soybean

individuals, while 18 bacterial and four fungal OTUs occurred preferentially on ‘no leaf’ host individuals

(table 2; electronic supplementary material, figure S6). The list of the bacteria showing preferences for ‘no

leaf’ soybean individuals included OTUs whose 16S rRNA sequences were allied to those of Dyella,

Herbaspirillum, Labrys, Phenylobacterium, Gemmata, Chitinophaga, Pedobacter, Niastella and Streptomyces
(table 2). The four fungal OTUs showing preferences for ‘no leaf’ hosts were unidentified

basidiomycetes (table 2).

In the rhizosphere soil microbiome, seven prokaryote OTUs, including those belonging to Chloroflexi

(e.g. Sphaerobacteraceae sp.) and Proteobacteria (Kofleriaceae sp.), occurred preferentially on ‘green’ host

individuals (table 3). Likewise, five fungal OTUs, including those allied to basidiomycete yeasts in the

genera Solicoccozyma and Saitozyma, showed preferences for ‘green’ soybean individuals (table 3).

Results also revealed that 26 bacterial and 11 fungal OTUs had biased distributions in the rhizosphere

of ‘no leaf’ soybean individuals (table 3). The list of microbes showing preferences for ‘no leaf’ hosts

included OTUs allied to bacteria in the genera Pesudomonas, Nevskia, Cellvibrio, Massilia, Duganella,

Novosphingobium, Mucilaginibacter and Flavobacterium and OTUs allied to fungi in the genera Burgoa,

Clonostachys, Plectosphaerella, Xylaria, Dactylellina, Talaromyces, Cladosporium, Alternaria and Peniophora
(table 3). The list of microbes that preferentially occurred on ‘no leaf’ hosts involved OTUs with high

sequence similarity to the nematophagous fungi, Clonostachys rosea (Hypocreales) and Dactylellina sp.
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Table 1. Relationship between prokaryote/fungal community structure and the biomass of soybean individuals. For each dataset
(i.e. root prokaryote, root fungal, soil prokaryote or soil fungal data), a PEMANOVA model of community structure was
constructed. The information of the sampling set (set 1 or set 2) and the dry mass of host soybean individuals were included as
explanatory variables.

variable d.f. Fmodel p

root prokaryotes

sampling set 1 10.4 ,0.0001

dry mass 1 1.3 0.1139

root fungi

sampling set 1 14.0 ,0.0001

dry mass 1 0.6 0.8267

soil prokaryotes

sampling set 1 15.4 ,0.0001

dry mass 1 3.1 0.002

soil fungi

sampling set 1 36.7 ,0.0001

dry mass 1 2.2 0.0145

royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:181693
7

(Orbiliales) (table 3). The reads of the Clonostachys (F_0257) and Dactylellina (F_0163) OTUs, respectively,

represented 9.5% and 3.5% of the sequencing reads of ‘no leaf’ samples (electronic supplementary

material, data S5). The indices of preferences for ‘yellow’ soybean individuals are shown in electronic

supplementary material, data S5.
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Figure 4. Microbe – microbe co-abundance networks. (a) Positive co-abundance network of the root microbiome data. Pairs of OTUs
linked by a blue line frequently co-occurred in the same soybean samples. (b) Negative co-abundance network of the root
microbiome data. Pairs of OTUs linked by a red line rarely co-occurred in the same soybean samples. (c) Positive co-abundance
network of the soil microbiome data. (d ) Negative co-abundance network of the soil microbiome data.
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3.3. Microbe – microbe networks
The structures of microbe–microbe networks (figure 4) were more complicated in the soil microbiome data

(figure 4c,d) than in the root microbiome data (figure 4a,b). Within the network representing co-abundance

of microbes across root samples, the Clonostachys OTU (F_0257) had a significant link with a Streptomyces
OTU, while Dactylellina was absent from the root microbiome network data (figure 4a). Within the positive

co-abundance network of the rhizosphere soil microbiome (figure 4c), the Clonostachys (F_0257) and

Dactylellina (F_0163) nematophagous fungal OTUs were connected with each other (table 4). In

addition, the Clonostachys OTU was linked with two bacterial OTUs (Ralstonia and Rhizobiales) and

fungal OTUs in the genera Calonectria and Purpureocillium (table 4). Likewise, the Dactylellina OTU was

connected also with two Alphaproteobacterial OTUs and a bacterial OTU allied to Nitrospira japonica as

well as fungal OTUs in the genera Rhizophydium, Pochonia and Purpureocillium (table 4).
4. Discussion
Based on Illumina sequencing, we compared root-associated/rhizosphere microbial communities

between soybean individuals infected by root-knot nematodes and those showing no symptoms. The



Ta
bl

e
4.

Pr
ok

ar
yo

te
/fu

ng
al

OT
Us

lin
ke

d
to

ne
m

at
op

ha
go

us
fu

ng
ii

n
th

e
m

icr
ob

e–
m

icr
ob

e
ne

tw
or

ks
.F

or
ea

ch
of

th
e

m
icr

ob
e–

m
icr

ob
e

co
-a

bu
nd

an
ce

ne
tw

or
ks

(fi
gu

re
4a

,c)
,t

he
pr

ok
ar

yo
te

/fu
ng

al
OT

Us
th

at
sh

ow
ed

po
sit

ive
co

-a
bu

nd
an

ce
pa

tte
rn

s
w

ith
Clo

no
sta

ch
ys

(F
_0

25
7)

an
d

Da
cty

lel
lin

a
(F

_0
16

3)
ne

m
at

op
ha

go
us

fu
ng

al
OT

Us
ar

e
lis

te
d.

Th
e

ta
xo

no
m

ic
as

sig
nm

en
t

re
su

lts
ba

se
d

on
th

e
QC

au
to

–
LC

A
pi

pe
lin

e
ar

e
sh

ow
n

w
ith

th
e

to
p-

hi
tr

es
ul

ts
of

NC
BI

BL
AS

T
se

ar
ch

es
.T

he
OT

U
co

de
sta

rti
ng

w
ith

P
(P

_x
xx

x)
an

d
F

(F
_x

xx
x)

ar
e

pr
ok

ar
yo

te
s

an
d

fu
ng

i,
re

sp
ec

tiv
ely

.

OT
U

ph
ylu

m
cla

ss
or

de
r

fa
m

ily
ge

nu
s

NC
BI

to
p

hi
t

ac
ce

ss
ion

Co
ve

r(
%

)
Id

en
tit

y
(%

)

ro
ot

:O
TU

s
lin

ke
d

to
Clo

no
sta

ch
ys

ro
se

a
(F

_0
25

7)

P_
05

10
Ac

tin
ob

ac
te

ria
Ac

tin
ob

ac
te

ria
St

re
pt

om
yc

et
ale

s
St

re
pt

om
yc

et
ac

ea
e

—
St

re
pt

om
yc

es
ni

gr
og

ris
eo

lu
s

M
G9

84
07

6.
1

10
0

98

so
il:

OT
Us

lin
ke

d
to

Clo
no

sta
ch

ys
ro

se
a

(F
_0

25
7)

P_
26

89
Pr

ot
eo

ba
cte

ria
Be

ta
pr

ot
eo

ba
cte

ria
Bu

rk
ho

ld
er

ial
es

Bu
rk

ho
ld

er
iac

ea
e

Ra
lst

on
ia

Ra
lst

on
ia

pic
ke

tti
i

M
F1

79
86

8.
1

10
0

10
0

P_
22

43
Pr

ot
eo

ba
cte

ria
Al

ph
ap

ro
te

ob
ac

te
ria

Rh
izo

bi
ale

s
—

—
Pe

do
m

icr
ob

iu
m

am
er

ica
nu

m
NR

_1
04

90
8.

1
10

0
90

F_
01

63
As

co
m

yc
ot

a
Or

bi
lio

m
yc

et
es

Or
bi

lia
les

Or
bi

lia
ce

ae
Da

cty
lel

lin
a

Da
cty

lel
lin

a
aff

.e
llip

so
sp

or
a

KT
21

52
04

.1
10

0
99

F_
02

78
As

co
m

yc
ot

a
So

rd
ar

iom
yc

et
es

Hy
po

cre
ale

s
Ne

ctr
iac

ea
e

Ca
lon

ec
tri

a
Ca

lon
ec

tri
a

zu
lu

en
sis

NR
_1

37
72

8.
1

97
10

0

F_
03

10
As

co
m

yc
ot

a
So

rd
ar

iom
yc

et
es

Hy
po

cre
ale

s
Op

hi
oc

or
dy

cip
ita

ce
ae

—
Pu

rp
ur

eo
cil

liu
m

lila
cin

um
KP

69
15

02
.1

10
0

10
0

so
il:

OT
Us

lin
ke

d
to

Da
cty

lel
lin

a
sp

.(
F_

01
63

)

P_
24

43
Pr

ot
eo

ba
cte

ria
Al

ph
ap

ro
te

ob
ac

te
ria

Rh
od

os
pi

ril
lal

es
—

—
Az

os
pir

illu
m

br
as

ile
ns

e
KY

01
02

84
.1

10
0

92

P_
25

89
Pr

ot
eo

ba
cte

ria
Al

ph
ap

ro
te

ob
ac

te
ria

—
—

—
Els

te
ra

lit
or

ali
s

KR
85

64
97

.1
10

0
92

P_
37

74
—

—
—

—
—

Ni
tro

sp
ira

jap
on

ica
LT

82
86

48
.1

10
0

10
0

F_
08

12
Ch

yt
rid

iom
yc

ot
a

Ch
yt

rid
iom

yc
et

es
Rh

izo
ph

yd
ial

es
Rh

izo
ph

yd
iac

ea
e

Rh
izo

ph
yd

iu
m

Rh
izo

ph
yd

iu
m

sp
.

AY
34

91
24

.1
99

10
0

F_
02

78
As

co
m

yc
ot

a
So

rd
ar

iom
yc

et
es

Hy
po

cre
ale

s
Ne

ctr
iac

ea
e

Ca
lon

ec
tri

a
Ca

lon
ec

tri
a

zu
lu

en
sis

NR
_1

37
72

8.
1

97
10

0

F_
02

65
As

co
m

yc
ot

a
So

rd
ar

iom
yc

et
es

Hy
po

cre
ale

s
Cla

vic
ip

ita
ce

ae
Po

ch
on

ia
Po

ch
on

ia
ch

lam
yd

os
po

ria
KY

97
75

43
.1

10
0

10
0

F_
02

57
As

co
m

yc
ot

a
So

rd
ar

iom
yc

et
es

Hy
po

cre
ale

s
Bi

on
ec

tri
ac

ea
e

Clo
no

sta
ch

ys
Clo

no
sta

ch
ys

ro
se

a
KY

32
05

99
.1

10
0

10
0

F_
03

10
As

co
m

yc
ot

a
So

rd
ar

iom
yc

et
es

Hy
po

cre
ale

s
Op

hi
oc

or
dy

cip
ita

ce
ae

—
Pu

rp
ur

eo
cil

liu
m

lila
cin

um
KP

69
15

02
.1

10
0

10
0

royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:181693
15



royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:181693
16
results indicated that, in both soybean roots and rhizosphere soil, prokaryote and fungal community

structures significantly varied depending on host plant states (figures 2 and 3). We further performed

statistical analyses for screening prokaryote and fungal OTUs preferentially associated with infected

and benign soybean host individuals (tables 2 and 3; figure 4). The results are based on purely

descriptive data and hence they, in principle, are not direct evidences of interactions among plants,

nematodes and microbiomes: i.e. causal relationship among those agents remains unknown. As this

study provided only ‘snap-shot’ information of microbiome structure at the end of a growing season,

we need to conduct further studies uncovering temporal microbiome dynamics throughout the

growing season of soybeans. Nonetheless, as detailed below, the statistical analyses suggest assembly

of diverse anti-nematode bacteria and fungi from indigenous microbial communities in the soybean

field, providing a basis for exploring ways to reduce damage by root-knot nematodes with those

indigenous functional microbes.

Within the root microbiome analysed, various taxonomic groups of bacteria preferentially occurred

on ‘no leaf’ soybean samples (table 2). Among them, the genus Streptomyces is known to involve some

species that suppress nematode populations, potentially used as biological control agents for root-knot

nematodes [43–46]. By contrast, Herbaspirillum, Rickettsia, Chitinophaga and Pedobacter have been

reported as symbionts of nematodes, potentially playing beneficial roles for host nematodes [47–49].

Results of these statistical analyses should be interpreted with caution, as they are likely to highlight

not only prospective microbes potentially parasitizing on pests/pathogens, but also microbes that can

form mutualistic interactions with disease agents.

Within the soybean rhizosphere soil microbiome, diverse taxonomic groups of not only bacteria, but

also fungi preferentially occurred around ‘no leaf’ soybean individuals (table 3). Among them,

Pseudomonas has been known to suppress root-knot nematode populations [50,51] potentially by

producing hydrogen cyanide [52] or extracellular protease [53], but interactions with root-knot

nematodes have not yet been examined for other bacteria preferentially found in the rhizosphere of

‘no leaf’ soybean individuals. Meanwhile, the list of the fungal OTUs frequently observed in the

rhizosphere of ‘no leaf’ soybeans included some fungi whose ability to suppress nematode

populations had been well documented (table 3). Clonostachys rosea, for example, has been known as a

prospective biological control agent of plant- and animal-pathogenic nematodes [54,55]. An

observational study based on green fluorescent protein imaging has indicated that the conidia of the

fungus adhere to nematode cuticle and their germ tubes penetrate nematode bodies, eventually killing

the invertebrate hosts [56]. The fungus is also known to produce a subtilisin-like extracellular

protease, which plays an important role during the penetration of nematode cuticles [57]. Our analysis

also highlighted a nematophagous fungus in the genus Dactylellina (teleomorph ¼ Orbilia), which

could capture juveniles of nematodes with hyphal traps [58]. Species in the genus and many other

fungi in the order Orbiliales produce characteristic trap structures with their hyphae to prey on

nematodes [59–61], often nominated as prospective biological control agents [62–64].

An additional analysis focusing on Clonostachys and Dactylellina highlighted bacteria and fungi that

frequently co-occurred with the nematophagous fungi (figure 4). In the root microbiome, Clonostachys
and a Streptomyces OTU showed positively correlated distributions across soybean samples (table 4). In

the rhizosphere microbiome, Clonostachys and Dactylellina showed significant co-abundance patterns

(table 4). Moreover, in the soil, the two nematophagous fungi co-occurred frequently with other

taxonomic groups of nematophagous fungi such as Purpureocillium, Pochonia and Rhizophydium (table 4

and figure 5). Among them, fungi in the genus Purpureocillium (Hypocreales: Ophiocordycipitaceae)

have been known to suppress plant parasitic nematodes, insect pests and oomycete phytopathogens

[65–68]. Another Hypocreales genus, Pochonia (previously placed in the genus Verticillium;

teleomorph¼Metacordyceps; Clavicipitaceae) has been known as nematophagous as well and they can

kill eggs and females of root-knot (Meloidogyne spp.) and cyst (Globodera spp.) nematodes [69–72].

Species in the chytrid genus Rhizophydium include species that use nematodes as parasites or

saprophytes [73,74]. They are known to explore host nematodes in the form of zoospores [73]. All these

results suggest that indigenous anti-nematode or nematophagous microbes can form consortia in soil

ecosystems of soybean fields. It is important to note that the members of the consortia do not

necessarily interact with each other directly: i.e. they may merely share habitat preferences [36,37,75].

However, the inferred structure of microbe–microbe networks helps us understand overall

consequences of ecological processes in microbiomes [15].

Along with the consortia of anti-nematode microbes, an OTU in the genus Calonectria, which causes

leaf blight, wilt and root rot of various plant species [76,77], was frequently observed (table 4). The

phytopathogenic fungus might have attacked soybean individuals weakened by root-knot nematodes.
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Alternatively, Calonectria may have infected host soybeans earlier than root-knot nematodes, followed by

the emergence of nematodes and their exploiters (i.e. anti-nematode microbes). Given that fungi can

interact with each other both antagonistically and mutualistically in the soil [78,79], direct interactions

between Calonectria and nematophagous fungi in the genera Clonostachys, Dactylellina, Purpureocillium,

Pochonia and Rhizophydium are of particular interest. Studies examining potential interactions

involving soybeans, root-knot nematodes, anti-nematode bacteria/fungi and Calonectria will help us

understand ecological processes that structure consortia of nematophagous fungi.

Although this study did not evaluate potential effects of background environmental conditions (e.g.

soil pH and inorganic nitrogen concentration) on microbiome structure, management of edaphic

conditions are expected to have great impacts on dynamics of anti-nematode microbiomes. A number

of studies have explored ways to suppress nematode populations by optimizing cropping systems [1].

Crop rotation, in which planting of a crop variety and that of nematode-resistant varieties/species are

rotated, has been recognized as an effective technique for regulating root-knot and cyst nematode

populations [8,80,81]. By contrast, long-term continual cropping in soybean monoculture fields can

increase anti-nematode bacteria and fungi (e.g. Pseudomonas, Purpureocillium and Pochonia), potentially

resulting in lowered densities of cyst nematodes [12]. Tillage regimes [9–11] and introduction of

organic matter (e.g. alfalfa leaves or crop residue) [82–84] have great impacts on nematode densities

in farmlands, but their effects vary considerably among studies [1]. In addition, because nematode-

infected plant individuals can show highly aggregated distributions at a small spatial scale within a

farmland (figure 1d ), tillage can promote the spread of plant damaging nematodes [22]. Frequent

tillage may have negative impacts on populations of nematophagous fungi as a consequence of

hyphal fragmentation (cf. [85]), but such destructive effects on fungal communities have not yet been

tested intensively. Given that microbiome structures were not taken into account in most previous

studies evaluating effects of cropping systems on nematode suppression (but see [12,21]), more

insights into the relationship between agroecosystem management and indigenous (native) microbiome

dynamics are required for building reproducible ways to develop disease-suppressive soil.

We herein found that consortia of anti-nematode bacteria and fungi could develop at a small spatial

scale within a field of soybeans infected by root-knot nematodes. Given the diversity of those anti-

nematode microbes observed in this study, multiple biological control agents are potentially available

in situ without introducing exogenous ones depending on base compositions and conditions of

indigenous microbiomes. In this respect, design of cropping systems (e.g. crop rotations, tillage

frequencies, and inputs of fertilizer or organic matter) is of particular importance in activating and

maximizing ecosystem functions that stem from resident microbial diversity [15]. Because those

indigenous microbes, in general, have adapted to local biotic and abiotic environments, their

populations are expected to persist more stably than exogenous microbes artificially introduced to a

target agroecosystem (see [19] for reviews of the success/failure of microbial introduction).

Elucidating the relationship between cropping systems and microbiome processes is the key to

designing disease-suppressive agroecosystems.
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