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Abstract. We compactify the classical moduli variety of com-
pact Riemann surfaces by attaching moduli of (metrized) graphs
as boundary. The compactifications do not admit the structure of
varieties and patch together to form a big connected moduli space
in which ⊔gMg is open dense.

The metrized graphs, which are often studied as “tropical
curves”, are obtained as Gromov-Hausdorff collapse by fixing di-
ameters of the hyperbolic metrics of the Riemann surfaces. This
phenomenon can be also seen as an archemidean analogue of the
tropicalization of Berkovich analytification of Mg [ACP].
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1. Introduction

Let us recall that the moduli space of smooth projective curves ad-
mits a “canonical” modular compactification constructed in Deligne-

Mumford [DM] first as an algebraic stack Mg
DM

. 1 Later on, the
moduli stack was proved to have a coarse projective variety which is
normal and of dimension 3g − 3 [KM, Especially, III], [Gie], [Mum2].

The boundary of the compactification still parametrizes geometric
objects which are certain nodal curves called “stable curves” charac-
terized by the GIT stability ([Gie], [Mum2]) or by the K-stability ([Od2,
4.1], also cf. [Mum2], [Od1], [LW, §7]). Hence the GIT construction
([Mum1]) applies ([Gie], [Mum2]) while it also fits to more general
moduli existence conjecture for K-(semi)stable polarized varieties (“K-
moduli” cf., [Od4]).

In this paper, we introduce a pair of new compactifications of Mg

which are no longer varieties but compact Hausdorff toplogical spaces.

In the first compactification which we denote as Mg
GH

, the boundaries
parametrize the Gromov-Hausdorff limits of compact Riemann surfaces
with rescaled Poincaré (i.e., Kähler-Einstein) metrics with diameter 1,
which we identify as certain graphs (Theorem 2.4). Hence we would like

to call the compactification Mg
GH

Gromov-Hausdorff compactification.
In the second compactifications of Mg, we further encode some non-

negative integer weights on the vertices of the limit graphs. We call the
metrized graphs with such weights, weighted metrized graphs. The class
of our limits graph is very close to what has been studied as “(stable)
tropical curves” in the literatures (e.g., [BMV, Cap, MZ, CHMR]).
Our point is that we can construct a refined compactification of Mg

than Mg
GH

by encoding the weights. The obtained compactifications
will be called “tropical geometric compactifications”. We chose the
term because the boundaries coincides with the moduli spaces of such
tropical curves, which are also studied in the literatures (e.g., [BMV,
Cap, MZ, CHMR] again), while we also avoided the term “tropical
compactification” already used by J. Tevelev whose context is very
different, namely, the problem of compactifying subvarieties of a torus
in a toric variety (cf., [Tev]).

Let us explain the backgrounds by discussing a broader picture for
moduli spaces of more general varieties. There are two major back-
grounds for this work, which we recall now:

1Here we put the superscript “DM”, often omitted in the literaturs, to clearly
distinguish from the compactifications we introduce in this paper.
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(i) The current extensive approach to the Strominger-Yau-
Zaslow mirror symmetry conjecture ([SYZ]). Indeed, con-
jectures of Gross-Wilson [GW, §6], Todorov, Kontsevich-
Soibelman ([KS]) (cf., e.g., the survey on the Gross-Siebert
program[Gross]) speculates certain families of Calabi-Yau vari-
eties with its Ricci-flat Kähler metrics collapse to integral affine
manifolds with singularities in the Gromov-Hausdorff sense,
which are recently often regarded as some tropical version of
Calabi-Yau varieties.

(ii) The algebraicity of non-collapsed Gromov-Hausdorff limits of
Kähler- Einstein manifolds ([DS]), its applications to moduli
of Fano varieties ([Spo, OSS, Od4]), later followed by ([SSY,
LWX, Od5]).

There is a similarity between the above two i.e. (i) and (ii) as
the first i.e. (i) is in particular showing that the collapsed Gromov-
Hausdorff limits of Kähler-Einstein manifolds are “tropical algebraic”
objects while the second (ii) is showing that the non-collapsed limits
of Kähler-Einstein (Fano) manifolds are algebro-geometric objects i.e.,
varieties.

For moduli spaces of Fano manifolds, which we discussed in (cf., [DS,
OSS, Od4], [SSY, LWX, Od5]), the two kinds of the compactifications

(α) the Gromov-Hausdorff metric compactification of the moduli
space of Kähler-Einstein manifolds with the rescaled Kähler-

Einstein metrics with fixed diameters (our Mg
GH

and Mg
T
to

be introduced in this paper are on this side) which is closer to
the spirit of (i) and

(β) algebro-geometric compactified moduli of K-stable varieties,

e.g. Mg
DM

as in (ii)

essentially coincide because of the non-collapsing of the metrics. How-
ever they “look” completely different in the non-Fano case due to col-
lapse of the Kähler-Einstein metrics as we show in the present series of
papers. Indeed, the author believes that the Gromov-Hausdorff com-
pactification while fixing the volume (rather than the diameter), if it
exists in an appropriate sense, should be closer in spirit to (β). Nev-
ertheless, as we observe in the case of Mg in this paper, we believe
that the two series of compactifications (α) and (β) must be deeply
connected in general.

In the present paper, first we start with the classification of all the
possible Gromov-Hausdorff limits of the compact Riemann surfaces
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with Kähler-Einstein metrics of diameters 1. Then using the classi-
fication, we construct the compactifications and proceed to analyze
their structures.

Our connection between classical algebro-geometric compactifica-
tions and tropical moduli spaces can be seen as an archimedean ana-
logue of the tropicalization (skeleton) of non-archimedean analytifica-
tion of the moduli varieties which is recently studied in [ACP]. We
discuss this analogy towards the end of the subsection 2.2.

Another interesting point of our compactificationsMg
GH

, is that they
naturally patch together to form a big (infinite dimensional) conneted
moduli space in which Mg are open subsets for all g. We will call it

infinite join and denotes it as M∞
GH

.
It would be interesting to pursue this line of research for moduli

varieties of other polarized varieties. For instance, the author conjec-
tures that the moduli schemes of smooth canonical models, again with
the rescaled Kähler-Einstein metrics of diameters 1, are also precom-
pact for Gromov-Hausdorff distance and the corresponding collapses
will be dual intersection complexes of KSBA semi-log-canonical mod-
els in certain generalized sense. Such speculation is inspired by the
recent Kollár-Shepherd-Barron-Alexeev (KSBA) compactification (cf.,
e.g., the survey [Kol]) and the observation that it is a moduli scheme
of K-stable varieties ([Od1, Od3], also [BG]).

Throughout this article, we work over the complex number field C
unless otherwise stated.

Notes added, part 1. Two years after our original preprint of this
paper, Boucksom-Jonsson [BJ, §2] generalized the Morgan-Shalen com-
pactification [MS] which can be also further generalized to orbifolds in
[Od6, Appendix]. It may be convenient to mention here that the com-
pactification applied to Mg are different from our compactification.
More precisely, although it can be set-theoritically identified with our

Mg
wT

but has different topology. See [Od6, Theorem 3.7] for the de-
tails.

Also, after that, we had other further developments with Yoshiki
Oshima for the case of Ag and moduli of K-trivial varieties case (cf.,
[OO]). In loc.cit, we put a focus on the moduli of K3 surfaces, after
the works of [GW], [KS], [GTZ16].

Acknowledgments. The first version of this paper appeared in June,
2014 (arXiv:1406.7772) and this is a revised exposition of the former
half, i.e. the Mg case, of the original preprint. The companion paper
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[Od6] is a revision of the latter half, i.e. the Ag part of arXiv:1406.7772,
together which included later developments.

The author would like to thank Radu Laza, Valentino Tosatti,
Shouhei Honda, Daisuke Kishimoto, Takeo Nishinou, Takao Yamaguchi
for helpful discussions and Simon Donaldson, Kei Irie, Hiroshi Iritani,
Nariya Kawazumi, Richard Thomas for their helpful comments and
interests which encouraged me. The author also would like to thank
Lionel Lang for teaching him his paper [LL] (see Remark 3.5) on June
of 2015, and thank also the anonymous referee and Yoshiki Oshima
who helped the author to improve the presentation recently.

This paper and its companion paper [Od6] are dedicated to fifteen
years memory of Kentaro Nagao. Looking back, I can never stop deeply
thanking Nagao-san for all the inspirations from the beginning and the
warm friendliness. I hope he would be delighted again.

2. Gromov-Hausdorff compactification of Mg

2.1. Precompactness. For each compact Riemann surface of genus
g(≥ 2), we put rescale of the Kähler-Einstein metric with the diameter
1. 2 Recall that the Kähler-Einstein metric is nothing but the famous
Poincaré metric in this case. The first point we should clarify is the
precompactness of Mg with the associated Gromov-Hausdorff distance
(for its definition we refer to e.g. [BBI, Chapter 7]) on it. We denote the
Gromov-Hausdorff distance as dGH. Recall that the precompactness of
a subset of the space of all compact metric spaces means its closure
with respect to the Gromov-Hausdorff topology is compact. During
the process of degenerations i.e., going to boundary of Mg, the curva-
ture tends to −∞, so we can not apply the Gromov’s precompactness
theorem [Grom] in our situation. Instead we can apply the following
theorem of Shioya [Shi] and the Gauss-Bonnet theorem to prove it.

Theorem 2.1 ([Shi, Theorem 1.1]). For two fixed positive real numbers
D > 0 and c > 0, consider the set S(D, c) of closed 2-dimensional
Riemannian manifolds (R, d) with

(i) the diameter diam(d) < D
(ii) and the total absolute curvature

∫
R
|K(R,d)|vol(R) < c where

K(R,d) and vol(R) denotes the Gaussian curvature and the vol-
ume form with respect to the metric d.

Then the set S(D, c) is precompact with respect to the associated
Gromov-Hausdorff distance.

2Readers will find later that this specific constant 1 does not have any specific
meaning as we only meant to fix it, so we can rather set it to be any fixed positive
constant.
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By applying the above theorem, we get the following desired pre-
compactness.

Corollary 2.2. (Mg, dGH) is precompact.

First proof. It directly follows from the Shioya’s theorem above (2.1)
since our total absolute curvature is constant due to the Gauss-Bonnet
theorem. □

We include another proof of Corollary 2.2 in the next section, in
which we also classify all the Gromov-Hausdorff limits.

2.2. Gromov-Hausdorff collapse of Riemann surfaces. Before
stating a theorem, we precisely fix some graph theoretic terminology
we use in this paper.

Definition 2.3. In the present paper, a metrized (finite) graph means
a finite connected non-directed graph with finite positive lengths at-
tached to all edges. It is not necessarily simple, i.e., loops and several
edges with the same ends are allowed. A contraction of a finite graph is
a graph which can be obtained from the original graph by contracting
some of its edges.

The main result of this section is the following theorem, which implies
the precompactness of Mg and also classify all the possible Gromov-
Hausdorff limits of compact hyperbolic surfaces while fixing their di-
ameters.

Theorem 2.4. Let {Ri}i∈Z>0 be an arbitrary sequence of compact Rie-

mann surfaces of fixed genus g ≥ 2. Suppose {(Ri,
dKE

diam(Ri)
)}i converges

in the Gromov-Hausdorff sense. Here dKE denotes the Poincaré metric
3 on each Ri and its diameter is diam(Ri).

Then the limit is the metric space associated to either

(i) a metrized graph of diameter 1 or
(ii) a compact Riemann surface of genus g.

Assume furthermore that the sequence Ri converges to [R∞] ∈M
DM

g

(which can be always be achieved by passing to a subsequence sinceM
DM

g

is compact). Then if [R∞] ∈Mg we are in case (ii) and Ri converges in
the Gromov-Hausdorff sense to the metric space underlying R∞; if, on
the other hand, [R∞] ̸∈Mg then we are in case (i) and the Ri converges
to the metric space underlying a metrized graph whose underlying graph
is a contraction of the dual graph of R∞.

3i.e., the hyperbolic metric which is also a Kähler-Einstein metric, hence the
notation
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Conversely, any metrized graph with diameter 1 whose underlying
graph is a contraction of some (possibly 0) edges of the dual graph of a
stable curve of genus g, can occur in this way (i).

Proof. We fix a reference compact Riemann surface S and regard the
Teichmuller space Tg as the set of marked compact Riemann surfaces
[ϕ : S ≃−→ R] where we only care of the isotopy type of ϕ.

First we briefly recall the basic of the pair-of-pants decomposition of
S, which we abbreviate as pants decomposition from now on for short,
and later we will explain how to apply it.

S =
∪

0≤a≤g−2

Pa

with the associated simple closed boundary geodesics s1, · · · , s3g−3.
Then in turn it naturally induces the corresponding pants decomposi-
tions of R

R =
∪

0≤a≤g−2

Pa(R)

for all elements [ϕ : S ≃−→ R] of Tg since we can take simple closed
boundary geodesics in the corresponding homology classes. The asso-
ciated simple closed boundary geodesics {sj(R)}j of R gives the (real
analytic) Fenchel-Nielsen coordinates on it

(l1, · · · , l3g−3; θ1, · · · , θ3g−3) : Tg ∼= R3g−3
>0 × (R/2πZ)3g−3,

where lj is the length of sj and θj is corresponding twist parameters
(cf., [IT]). Then the following well-known theorem is due to L. Bers.

Fact 2.5 ([Bers, Theorem 2 for the type (g, 0) case]). Fix a positive
integer g ≥ 2. Then there is a uniform constant Cg such that for
an arbitrary compact hyperbolic Riemann surface R, there is a pant
decomposition whose corresponding lengths lj of any dividing simple
closed geodesic satisfy lj < Cg.

We now argue as follows. Suppose we are given a sequence {Ri}i∈Z>0

of compact Riemann surfaces of the fixed genus g ≥ 2, as in the state-
ment of Theorem 2.4. We replace it by its certain subsequence, after
several steps as follows. Firstly, due to the compactness of the Deligne-

Mumford compactificationMg
DM

, we can replace the sequence {Ri} by
subsequence, if necessary, to ensure the existence of a limit of [Ri] in-

side Mg
DM

. By applying the Bers’ theorem 2.5, for each i, we have a
pants decomposition satisfying the assertion of Theorem 2.5, i.e., all
the lengths of the corresponding simple closed geodesics are less than
a uniform constant Cg. For each Ri, we fix such a pants decomposition
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from now on. On the other hand, note that for each pants decomposi-
tion there is a corresponding graph whose vertices are (pair of) pants
while edges are common geodesics is 3-regular with 2g−2 vertices. We
call this graph the combinatorial type of the pant decomposition. See
for instance [Ham, around Definition 1.5] for the details. The num-
ber of edges of such a graph is 3g − 3 so obviously there is only a
finite possibilities for such graphs. Hence, there is only a finite pos-
sibilities of combinatorial type of pants decomposition. Therefore, by
passing to an appropriate subsequence of {Ri} again, if necessary, we
can and do assume the combinatorial type of the pants decompositions
we took, which satisfies the condition lj < Cg of Fact 2.5, stays fixed.
By the upper bound of lj, by further passing to an appropriate sub-
sequence of {Ri} again, if necessary, we can and do assume moreover
that limi→∞ lj(Ri) = Lj for some constants Lj ∈ [0, Cg] ⊂ [0,∞) for
each j.

The simple geodesics sj(Ri) of Ri with Lj = 0 are representing the
vanishing cycles, i.e., all the cycles that shrink to nodal singularities
of the corresponding limit in the Deligne-Mumford compactification

Mg
DM

. We make the following claim, although the author believes this
has been known to or expected by the experts.

Claim 2.6. There is an index j with Lj = 0, if and only if the diame-
ter of the non-rescaled hyperbolic metrics (i.e., with constant Gaussian
curvature −1) tends to +∞. This is also equivalent to that the limit of
the sequence [Ri] does not belong to Mg.

Otherwise, passing to a subsequence, the Gromov-Hausdorff limit R∞
of {Ri}i exists as a compact Riemann surface of the same genus g.

proof of Claim 2.6. If all the Lj are non-zero, then the compactness of

{(l1, · · · , l3g−3; θ1, · · · , θ3g−3) | Li−ϵ ≤ li ≤ Cg for 1 ≤ ∀i ≤ 3g−3} ⊂ Tg

for small enough positive real number ϵ straightforwardly implies that
the corresponding points [Ri] ∈ Tg converge inside Tg.

Now, we denote the space of all compact metric spaces with the
Gromov-Hausdorff topology as CMet. Here, we recall the following
standard fact well-known to experts.

Fact 2.7 (Gromov-Hausdorff continuity on Mg). If we consider the
map Φ: Mg → CMet, sending [R] to the underlying topological surface
with the Poincaré metric. Also define Φ1 : Mg → CMet by sending [R]
to the underlying topological surface with the rescaled Poincaré metric
with the diameter 1. Then these Φ and Φ1 are both continuous with
respect to the complex analytic topology on Mg.
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This is fairly standard but we write the arguments for convenience.
Obviously, the continuity of Φ1 follows from that of Φ because the
diameters of the hyperbolic metrics vary continuously due to the con-
tinuity of Φ. In turn, the continuity of Φ follows, for instance, from the
interpretation of the family as a family of the quotients of the upper
half plane by continuously deforming Fuchsian subgroup of PSL(2,R).
(The isomorphic class of the Fuchsian group is not changed, as it is
the isomorphic class of the fundamental group of genus g compact Rie-
mann surface.) Or it also follows from the implicit function theorem
applied to the constancy of the Gaussian curvature. Hence, in particu-
lar, the diameters of the (non-rescaled, original) Poincaré metrics of Ri

are bounded and the Gromov-Hausdorff limit of Ri with the rescaled
Poincaré metric is still a compact Riemann surface of genus g.

On the other hand, if Lj = 0 for at least one index j, then the famous
collar theorem [Ke] applies and directly shows that for each i there is
a cylinder (called “collar”) inside Ri, including the closed geodesic lj,
whose diameter tends to +∞. We end the proof of the Claim 2.6. □

From now on, we assume these equivalent conditions are satisfied
i.e., [R∞] /∈ Mg. Otherwise, the subsequence converges to a compact
Riemann surface (i.e., “does not degenerate”), which corresponds to
the case (ii) of Theorem 2.4. This is again because of the continuity
of the surfaces with the rescaled Poincaré metrics parametrized by Mg

with respect to the Gromov-Hausdorff topology.
Let us denote the diameter of the Poincaré (hyperbolic) metric dKE

of Ri as di. Then recall that what we are analysing is the metric
behaviour of (Ri,

dKE

di
) and we wish to determine its Gromov-Hausdorff

limit. For that, we analyze the behaviour of the pant (Pa(Ri),
dKE

di
) in

this proof. We denote the three boundary geodesics of the pants as
sb(Pa)(b = 1, 2, 3), or sb(Ri;Pa)(b = 1, 2, 3) for precision, which may
partially be identified in the Riemann surface Ri i.e., e.g. s1(Ri;Pa) =
s2(Ri;Pa) can be possible. From now on, whenever the context is
clear, we sometimes omit Ri and simply denote the pants of Ri as Pa,
not Pa(Ri) and its boundary geodesics sb(Pa)(b = 1, 2, 3) rather than
sb(Ri;Pa)(b = 1, 2, 3).

Let us recall a standard fact in the Teichmuller theorey (cf., [IT,
Chapter 3, §1.5, §2]) which claims that the pant Pa(Ri) can be cut and
separated into two isometric hyperbolic hexagons Qa(Ri) and Q′

a(Ri)
canonically by geodesics which connect different boundary geodesics of
the pant Pa(Ri). Let us also recall from [IT, Chapter 3, §1.5, §2] that
the interior part of the hyperbolic hexagons Qa(Ri), with its hyperbolic
metric, can be regarded as an open subset of a unit disc with the
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hyperbolic metric dKE, in a unique way up to the isometry group of the
disk i.e., PGL(2,R). We denote the center of the unit disc as p.

Let us call the 3 boundaries of the hexagon which were originally
part of the boundaries of the pant Pa as boundary geodesics. In
any case, the important invariants are the lengths of the 3 bound-
ary geodesics which are half of the lengths of the boundary geodesics
sb(Ri;Pa)(b = 1, 2, 3) of the original pant Pa. Indeed, it is a well-
known fact that biholomorphic type of Qa (so also for Pa) is deter-
mined by the lengths of the three boundary geodesics (cf., e.g., [IT]).
We now study the Gromov-Hausdorff limit of the hyperbolic hexagon
Qa while fixing diameters. Then, recall from the Claim 2.6, it follows
that dKE(p, sb(Ri;Pa)) → +∞ for i→ ∞ if and only if the correspond-
ing boundary geodesic sb(Ri;Pa) shrinks i.e., length(sb(Ri;Pa)) → 0
for i→ ∞.

To each Pa, we associate a tree Γa, just as a combinatorial graph,
with

• the vertex set V (Γa) := {va} ⊔ {wb | sb(Ri;Pa) shrinks} and
• the edge set E(Γa) := {vawb | sb(Ri;Pa) shrinks}.

Denote the diameter of the hyperbolic hexagon Qa(Ri) with respect
to Poincaré metric as di(a). (Recall that the diameter of whole Ri is
di. ) We analyze the asymptotic behaviour of (Ri,

dKE

di
) by further

“decomposing” into that of Qa(Ri) as above.
First we fix a constant 0 < ϵ≪ 1 so that the sequence of the half pant

{Qa(Ri)}i satisfies that the disk D(p, (1− ϵ)) with center p and radius
(1− ϵ) contains all non-shrinking boundary geodesics of Qa(Ri). Then
thinking of the distance between each point in (Qa(Ri) ∩D(p, (1− ϵ))
and p, we straightforwardly obtain that the diameter of {(Qa(Ri) ∩
D(p, (1 − ϵ)), dKE)}i is bounded above by Cϵ. On the other hand, the
diameters of the collar neighborhoods of shrinking boundary geodesics
tends to +∞ by the collar theorem [Ke]. Hence, we have that

Claim 2.8 (Diverging hyperbolic hexagon). di(a) → ∞ for i → ∞ if
and only if there is an index b with length(sb(Ri;Pa)) → 0 for i→ ∞.

Claim 2.9 (Limit of hyperbolic hexagon, I). If we consider the se-
quence (Qa(Ri),

dKE

di(a)
) for i = 1, 2, · · · , it has the Gromov-Hausdorff

limit as a metrized tree Γa in the case when length(sb(Ri;Pa)) → 0 for
some b when i → ∞. Otherwise its Gromov-Hausdorff limit is still
some hyperbolic hexagon.

The last sentence of Claim 2.9 holds because, for any b,
length(sb(Ri;Pa)) converges to a positive real number from our as-
sumption when i → +∞ and di(a) are bounded above, converging to
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a positive real number as well. Thus, the Gromov-Hausdorff limit of
(Qa(Ri), dKE) can be taken simply as the Hausdorff limit inside the
unit disk which implies the desired claim.

Next, we compare the diameters of each hyperbolic hexagon Qa(Ri)
and the whole Riemann surface Ri.

Claim 2.10 (Diameters comparison). (i) For any i there is at
least one Qa(Ri) (or equivalently, its index a) such that

(1) di ≤ 12(g − 1)di(a).

(ii) Suppose that an index a satisfies that di(a) → ∞ when i→ ∞.
Then, for any a and large enough i, we have

(2)
di(a)

2
≤ di.

Proof of Claim 2.10. The second assertion (ii) easily follows from the
definition. Indeed, it can be proven as follows. First we can assume
di(a) is the length of a geodesic γ : [0, 1] → Ri connecting two points
γ(0), γ(1) in the union of the boundary geodesics. Then its midpoint
γ(1

2
) and one of the endpoints, say γ(1), of the geodesic has the same

distance in whole Ri i.e., after gluing the boundary geodesics. Hence
(ii) follows.

Our first assertion (i) is proved as follows. Take a shortest geodesic
δ : [0, 1] → Ri connecting two points in Ri with length(δ) = diam(Ri).
An elementary observation shows that the maximum number of the
connected components of Im(δ) ∩Qa(Ri) is at most 3 so that we have

length(Im(δ) ∩Qa(Ri)) ≤ 3di(a)(3)

length(Im(δ) ∩Q′
a(Ri)) ≤ 3di(a).(4)

Indeed, if we write

Ia := {t ∈ [0, 1] | δ(t) ∈ Qa} = [α1, α2] ⊔ · · · ⊔ [α2m−1, α2m],

with 0 ≤ α1 ≤ α2 ≤ · · ·α2m, then note that δ(α2) and δ(α2m−1)
are connected by a geodesic of length at most di(a), by the def-
inition of di(a). Since δ is taken to be a shortest geodesic,∑

1≤k<m length(δ([α2k−1, α2k])) ≤ di(a) which gives our desired esti-
mate (3), and also (4) similarly. Hence, by summing up, we obtain
di ≤ 6

∑
a di(a). Since #{a} = 2(g− 1), we obtain the desired inequal-

ity (2). □
From the Claims 2.8 and 2.10 (i),(ii) we have that di → ∞ if and

only if there is some Pa with di(a) → ∞. Also it follows from the Claim
2.10, if Pa satisfies that for some b length(sb(Ri;Pa)) → 0 for i → ∞,
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by further passing to a subsequence we can assume that Ri satisfies
that

di(a)

2
≤ di ≤ 12(g − 1)di(a),

for a fixed a, say a = 1. On the other hand,

di(a)

2
≤ di

holds for any a. Hence, combining Claim 2.9 and Claim 2.10, we have
that

Claim 2.11 (Limit of hyperbolic hexagon, II). Under our assumption
that [R∞] /∈ Mg, if we consider the sequence (Qa(Ri),

dKE

di
) for i → ∞,

it converges in the Gromov-Hausdorff sense to either a metrized tree Γ
or a point.

The convergence to the point occurs exactly when
di

di(a)
→ +∞ for

i→ +∞. From the above claim 2.11, it follows that the global Gromov-
Hausdorff limit of (Ri,

dKE

di
) is a metrized graph which is obtained by

gluing all Γa at wb’s whose corresponding boundary geodesics sj are
the same in the whole Riemann surface Ri. The resulting graph is
either the dual graph of the corresponding stable curve R∞ or a graph
obtained from the dual graph after contracting several edges to points.
(We simply call such procedure a contraction of a graph in this paper.)

Now let us move on to the proof of the converse direction (the last
paragraph of the statements of Theorem 2.4). That is, starting from
an arbitrary finite metrized graph Γ of diameter 1 which satisfies the
assumption of the last paragraph of Theorem 2.4, we wish to prove
there is a sequence of compact Riemann surfaces Ri(i = 1, 2, · · · ) of
genus g such that Γ is the Gromov-Hausdorff limit of (Ri,

dKE

di
) i.e., the

rescaled Poincaré metrics of diameter 1.
We fix an arbitrary stable curve R whose dual graph contracts to

the underlying graph of Γ. Such R exists due to our assumption on
Γ. Then take a smooth point in each of the irreducible components
of R and denote them by pi. Here the index i corresponds to each
irreducible component. We take a semi-universal deformation of R
as {Rt⃗}t⃗∈U with an open neighborhood U ′ ⊂ C3g−3 of 0⃗, satisfying
R0⃗ = R and take pi,⃗t of Rt⃗ with pi,⃗0 = pi which is continuous with

respect to t⃗. From here, we use a smaller open neighborhood of 0⃗
denoted by U ⊂ U ′ with Ū ⊂ U ′. Note that there is a discriminant
locus D ⊂ U such that t⃗ /∈ D if and only if Rt⃗ is smooth. We fix
a uniform pants decomposition of Rt⃗ so that the nodes xk of R are
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shrunk dividing geodesics sk of the decomposition. For each node xk
of R connecting the irreducible components including pi and pj, there
is a corresponding shortest geodesic γk,⃗t connecting pi,⃗t and pj,⃗t if Rt⃗ is
smooth which intersects with sk.

Recall that there is a standard submersive holomorphic map ϕ =
{ϕk}k : U →

∏
k Kur(xk), where Kur(xk) stands for the Kuranishi space

underlying a semi-universal deformation of the node singularity xk, and
ϕk is induced by restricting the deformation of R to a neighborhood
of each node xk. In this case, Kur(xk) can be regarded as an open
neighborhood of 0 in C and the discriminant locus D is the divisor
∪kϕ

−1
k (0). For the proof of the fact that ϕ is submersive, i.e., its differ-

ential dϕ is surjective, see [DM, Proposition 1.5]. Since the distance of
pi, pj for i ̸= j in R with respect to the hyperbolic metric is +∞ (i.e.,

not defined as a real number), for a sequence {t⃗m}m=1,2,··· ⊂ U \D,

length(γk,⃗tm ;Rt⃗m
) → +∞

for m→ ∞ if and only if ϕk (⃗tm) → 0⃗.
On the side of Γ, for each node xk of R, also an edge γk of Γ corre-

sponds, which may be possibly contracted to a point. If it is contracted,
we regard it as an edge of length 0.

From the above discussions with the surjectivity of ϕ, for large
enough positive integers m≫ 1, there is t⃗m ∈ U \D

length(γk,t⃗m ;Rt⃗m
) = m · length(γk; Γ) if γk is not contracted in Γ(5)

length(γk,t⃗m ;Rt⃗m
) =

√
m if γk is contracted in Γ.(6)

Then, the above taken sequence of smooth compact Riemann surfaces
{Rt⃗m

}m with the rescaled Poincaré metric converges to a metrized
graph and from (5) and (6), the limit metrized graph coincides with Γ.
We complete the proof of the last paragraph of Theorem 2.4. □
Remark 2.12. A while after the first version of this paper, we essentially
gave another (logically independent) more moduli-theoritic proof of
Theorem 2.4 in the sequel [Od6] by using [Wol]. Precisely speaking,
Theorem 2.4 follows from [Od6, §3.2.1, Theorem 3.7 and its proof]
which depends on [Wol].

Remark 2.13. In the simpler case of g = 1, i.e., elliptic curves case,
we also have a similar phenomenon as discussed in the introduction
of [GW]. It can be regarded as the easiest prototypical example of
the sequel paper [Od6] on the moduli spaces of principally polarized
abelian varieties and also well-known to the experts of the Strominger-
Yau-Zaslow mirror symmetry conjetures. Thus we give only brief de-
scription as an introduction to our sequels [Od6], [OO].
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Suppose there is a sequence of elliptic curve {C/(Z + Zτi)}i where
τi belongs to the standard fundamental domain W of the upper half
plane H modulo the modular group SL(2,Z), that is

W := {τ ∈ H | |Re(τ)| ≤ 1, |τ | ≥ 1}.

If Im(τi) does not diverge, then after passing to a subsequence, they
converge in the Gromov-Hausdorff sense to an elliptic curve. If
Im(τi) diverges, then the Gromov-Hausdorff limit of a subsequence of{(

Ri,
dKE

diam(dKE)

)}
i=1,2,···

is S1( 1
2π
), the circle of radius 1

2π
. On the

other hand, for a family of elliptic curves over the punctured disk, the
compactified Néron model after suitable base change is well-known to
be n-gon with some n ∈ Z>0. Thus their dual graphs are topologically
S1, which is homeomorphic to the Gromov-Hausdorff limit discussed
above.

Remark 2.14. For the case of curves with punctures (marked points),
i.e., elements of Mg,n with n ≥ 1, as the natural hyperbolic metric has
hyperbolic cusp singularities of infinite diameters around the punc-
tures, we have not been able to make a suitable formulation to study
Gromov-Hausdorff collapses.

Professor Y-G.Oh kindly pointed out to me that a different but simi-
lar kind of “graph-like thin” metrics also appear as “(general) minimal
area metric” studied by Zwiebach and Wolf-Zwiebach (cf., e.g., [Z],
[WZ]) for constructing closed string field theory. The metrics are ex-
pected to be isometric to flat semi-infinite cylinders around the punc-
tures. The graph structure is regarded as a version of Feynman dia-
grams there.

Remark 2.15. Our Theorem 2.4 suggests that the conjectures of Gross-
Wilson [GW, §6], Kontsevich-Soibelman [KS] and Gross-Siebert (cf.,
[Gross]) on the correspondence of Gromov-Hausdorff limit and dual
complex of degenerating Calabi-Yau manifolds may well have an ana-
logue in negative Ricci curvature Kähler-Einstein case, i.e., those pro-
jective manifolds with ample canonical classes.

Let us trace again the proof of our Theorem 2.4 to see some analogy
with the tropicalization of the Berkovich analytification [ACP]. The
one page arguments below does not contain any substantially concrete
results and rather we mean to give a re-interpretation of our Theorem
2.4 and compare with [ACP]. In our theorem 2.4, starting with an
arbitrary sequence of compact hyperbolic surfaces, we took a nice sub-
sequence which converges to a stable curve in the Deligne-Mumford
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compactification and also converging in the Gromov-Hausdorff sense
(while fixing the diameter). Let us call such sequence of compact hy-
perbolic surfaces of genus g(≥ 2) “strongly convergent sequence”. We
denote the set of such strongly convergent sequences of compact hy-
perbolic Riemann surfaces as 4 SMg.

Definition 2.16. For the positive integer g ≥ 2, let Sg be the set of the
underlying metric spaces of the metrized graphs which appear as the
Gromov-Hausdorff limits of sequences of compact Riemann surfaces of
genus g(≥ 2), and associate Gromov-Hausdorff distance structure on
it.

Note that Sg is also compact by Theorem 2.4 and the simple fact that
Sg is closed under the Gromov-Hausdorff convergence.

Then what we have constructed in the proof of Theorem 2.4 is the
following two kinds of limiting maps

(7) r : SMg →Mg
DM

which maps {Ri} to the limit (Deligne-Mumford) stable curve and

(8) t : SMg → Sg

which maps {Ri} to the Gromov-Hausdorff limit. Furthermore, we
proved that r and t are compatible in the sense that the underlying
graph of t({Ri}) is a contraction of the dual graph of the limit stable
curve r({Ri}).

On the other hand, in the recent paper [ACP] by Abramovich-
Caporaso-Payne, the following is proved.

Fix an algebraically closed base field k with trivial valu-
ation. If we consider the Berkovich analytification Mg

an

[Berk1] of the Deligne-Mumford compactification Mg,
then the deformation retraction to the Berkovich skeleton
[Berk2] is the “tropicalization” map towards the moduli
of tropical curves of genus g.

Note that the Berkovich analytification parametrises stable curves over
valuation fields which contains k (with trivial valuation) and it can be
regarded as (a subspace of) this as an “algebro-geometric” analogue of
the set of strongly convergent sequence of compact Riemann surfaces
SMg. From this viewpoint, their tropicalization (deformation retract)
is an analogue of our map t. The analogue of r in the Berkovich

geometric setting [ACP] is the reduction map Mg
an →Mg

DM
.

4Here, S stands for a sequence.
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2.3. The construction of Mg
GH

. We define our Gromov-Hausdorff
compactification of the moduli space of curves, first set-theoretically as

Mg
GH

:=Mg ⊔ Sg.

Recall that we have defined Sg in Definition 2.16 as the moduli space of
the underlying metric spaces of the metrized graphs which appear as the
Gromov-Hausdorff limits of sequences of compact Riemann surfaces of
genus g(≥ 2). Then we put a topology on it, whose open basis consists
of the following two kinds of subsets:

(i) open subsets ofMg (with respect to the complex analytic topol-
ogy) and

(ii) the metrics balls with centers are in Sg.

What we mean by the metric ball, with its center [G] ∈ Sg ⊂ Mg
GH

(G is a metrized graph) and radius r ∈ R>0, is simply defined as

B([G], r) := {[C] ∈Mg
GH | dGH([C], [G]) < r}.

The obtained topological space Mg
GH

is compact due to our Theorem
2.4. It also satisfies the Hausdorff separation axiom simply because the
Gromov-Hausdorff limit as compact metric space is unique as general
theory (cf., [BBI]).

The readers may wonder why we do not simply use the notion of the
metric completion above. However, note that the complex conjugate
ι ∈ Aut(C/R) reverses the natural orientation of the corresponding
Riemann surface, which does not change it metric space strucuture.

A subtle technical point here is that Mg
GH

is not exactly the metric
completion with respect to the Gromov-Hausdorff topology, of the set
of compact Riemann surfaces of genus g by regarding the Riemann sur-
faces just as metric spaces. That is because it would discard the com-
plex structures and ignore the effect of ι above (cf., e.g., [Spo],[OSS]).

Recall that Sg is defined as the moduli spaces of the underlying
metric spaces of our limit metrized graphs as in Theorem 2.4. For each
finite (metrized) graph Γ, let us denote the number of 1- valent vertices
by v1(Γ) and denote the first betti number of Γ by b1(Γ). Then, more
specifically and concretely, Sg can be described as follows.

Proposition 2.17. The metric spaces parametrized by Sg can be char-
acterized by a purely topological condition that the underlying topologi-
cal spaces of the metrized graphs satisfy v1(Γ) + b1(Γ) ≤ g.

Note there is a subtle distinction between the metrized graph and the
underlying metric space, which is simply a 1-dimensional CW complex
with a metric. The reason is that the underlying metric space does
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not see the 2-valent vertices. It is also not enough to consider metrized
graphs without 2-valent vertices since a circle can not be obtained in
that way.

proof of Proposition 2.17. From Theorem 2.4, we only need to specify
the class of dual graphs of stable curves with genus g.

A stable curve C of genus g whose irreducible decomposition is ∪iCi

with dual graph Γ satisfies

(9) g =
∑
i

g(Cν
i ) + b1(Γ),

where ν denotes the normalization and b1 denotes the first Betti num-
ber. From the stability condition, for each component Ci which corre-
sponds to a 1-valent vertex of Γ, g(Cν

i ) ≥ 1. This is essentially the only
numerical stability condition. Thus we have g =

∑
i g(C

ν
i ) + b1(Γ) ≥

v1(Γ) + b1(Γ). Tracing back the above discussion, it is also easy to see
that it is a sufficient condition as well. □
Remark 2.18. One remark, which the author hopes to be useful,
is that in the above characterisation of metrized graphs which are
parametrised in Sg, rather than putting the “diameter 1” condition,
it may be easier to impose that “the sum of lengths of edges is 1”
when we try to concretely describe the structure of our compactifica-
tions. Note that these two moduli spaces are naturally homeomorphic,
simply by rescaling the metrics on our metrized graphs.

3. Related moduli spaces and comparison

In this section, we further study Mg
GH

somewhat indirectly by com-
paring with other moduli spaces in literatures, and also construct some

variants ofMg
GH

on the way, including what we call tropical geometric

compactifications and denote by Mg
T
.

3.1. Comparison with tropical moduli spaces. Recently
Brannetti-Melo-Viviani [BMV] constructed moduli space M tr

g of the
weighted metrized graphs, i.e., (Γ, w : V (Γ) → Z≥0) of where Γ is a
metrized graph such that

• 1-valent vertex v must have w(v) ≥ 2,
• 2-valent vertex v must have w(v) ≥ 1,
• b1(Γ) +

∑
v∈V (Γ)w(v) = g,

with a natural topology (as well as some finer “stacky fan” structure) on
it. Caporaso [Cap] introduced its log versions M trop

g,n . See [BMV, Cap]
for the details. The moduli space M tr

g is similar to our boundary Sg
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but there is an essential difference which is the presence of the weight
function w above that morally encodes genus of each component of the
limit Deligne-Mumford stable curves.

Similarly to what is done in [CV], [BMV], [Cap], the combinatorial
type of the underlying graph of a metrized graph gives a stratification
on Sg such that each strata is a finite quotient of a simplex. A basic
property of our moduli space Sg is the following.

Proposition 3.1. The function Sg ∋ [Γ] 7→ v1(Γ) + b1(Γ) is a lower
semicontinuous function on Sg with respect to the Gromov-Hausdorff
topology which has been previously considered.

Proof. The assersion follows easily from Theorem 2.4 combined with
the precompactness (Corollary 2.2) but let us give a more straightfor-
ward combinatorial proof.

It is enough to see that if we contract one edge e, the function v1+b1
does not increase. If the edge e is a loop, then the process decreases b1
by 1 and v1 increases at most 1. If the edge e is not a loop, then the
contraction does not change the homotopy type of the graph so that it
keeps b1 unchanged, and v1 does not increase (it may decrease by 1 or
2).

□
Note that through the modular interpretations, there is a sequence

of canonical closed embeddings

(10) Sg ↪→ Sg+1 ↪→ · · · ,
while other compactifications of moduli of curves and the moduli of
weighted tropical curves by [BMV], [Cap], [CHMR] do not have this
chain of canonical inclusions.

Inside the moduli spaceM tr
g of (weighted) tropical curves in the sense

of [BMV], let us consider the closed locus Swt
g which parametrizes those

with the diameter 1 (“wt” of Swt
g stands for weights. )

Proposition 3.2. We have natural morphisms as follows.

(11) ∂M tr
g :=M tr

g \{a point with weight g} ∼= Swt
g ×R>0 ↠ Swt

g ↠ Sg.

Sg has a finite stratification which satisfies that each strata is a finite
group quotient of an open simplex and Sg is “purely” (3g − 4) dimen-
sional for each g(≥ 2) in the sense that, if we denote the union of
(3g − 4)-dimensional strata as Soo

g ⊂ Sg, then it is an open dense sub-
set. In addition, the last morphism of (11) is a proper map such that
each fiber over Soo

g is finite.
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Proof. A tropical curve in the sense of [BMV] has finite non-zero diam-
eter unless it is a point, so that we get the first isomorphism. Secondly,
starting from a tropical curve which is not topologically a point, just
by forgetting the weights and the 2-valent vertices, we get the under-
lying metric space of a metrized graph. It defines the last morphism
Swt
g ↠ Sg, which we denote as r. It follows straightforward from the

topology on Swt
g in [BMV] that this morphism is continuous and this is

surjective by Proposition 2.17. From the compactness of Swt
g and Sg,

it follows automatically that the morphism is proper. Note that for
any point p in Swt

g which has 2-valent vertices, r−1(r(p)) is non-finite.
It is because that for each metric space X corresponding to a point in
Sg, if it is underlying metric space of certain weighted tropical curve
(weighted metrized graph) Γ parametrized in Swt

g , once we know the
locations of vertices in X, there are only finite choices of Γ which cor-
responds to the decomposition of g − b1(X) into non-negative integer
weights attached to the vertices.

It is easy to see that Sg has a natural finite stratification by the
homeomorphic class of the underlying graphs. Each strata can be seen
as the moduli of metrized graphs with the same underlying graph,
with the sum of the length of edges are 1 by rescaling the metrics.
Hence it is homeomorphic to the quotient of an open simplex with
respect to a linear action of a finite group, which is the automorphism
group of each graph. Next we proceed to the proof of the fact that
Sg is purely 3g− 4-dimensional as in the statement of Proposition 3.2.
Indeed, for any given (underlying metric space of) a metrized graph Γ
of the diameter 1 which satisfies v1(Γ) + b1(Γ) < g, by attaching small
circles or short edges and rescaling, the corresponding point [Γ] ∈ Sg

can be easily perturbed to a point inside the strata with v1 + b1 = g.
The strata can be easily checked to have dimension 3g − 4, as 3g − 3
is the number of edges inside Γ following elementary graph theory.
This fact is also well known in the algebro-geometric field of study
of the so-called Mumford curves. Thus, the union Soo

g of (3g − 4)-
dimensional cells form open dense subset. For each p = [Γ] ∈ Soo

g , the

r-fiber r−1(r(p)) = {p} since for a point [Γ′] in the fiber, the vertices
of the graph Γ′ are nothing but the non-smooth points of r(Γ′) = r(Γ)
as an underlying topological space and furthermore Γ′ does not have
any positive weights on the vertices because of the formula (9). We
complete the proof of Proposition 3.2. □

3.2. Construction of Mg
T
. It is possible to modify our construction

ofMg
GH

to make more compatibility with the above “weighted tropical
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moduli spaces” of [BMV], [Cap], [CHMR]. That is, for a collapsing
sequence of genus g compact Riemann surfaces as in Theorem 2.4, we
can encode the information of the genera of the irreducible components
of the limiting stable curves on the limiting graph. More precisely
speaking, first we consider the set

Mg
T
:=Mg ⊔ Swt

g ,

on which we put a topology as follows. A subset C of Mg
T
is closed if

and only if

• C ∩ Swt
g is closed in Swt

g and
• any Gromov-Hausdorff collapsed graphs of compact Riemann
surfaces which are in C ∩ Mg, attached with the genera of
components of the normalization of the limit stable curve in
[DM] sense, which we suppose to exist, is actually in C ∩ Swt

g .

The compactness, the Hausdorff property of Mg
T
, and the fact that

Mg is open and dense inside Mg
T
all follow straightforwardly from our

Theorem 2.4 and its proof. We would like to call this compactification

Mg
T
of Mg as the tropical geometric compactification of Mg.

From the construction we have a natural continuous surjective map

Mg
T ↠Mg

GH
,

which restricts to the identity map on the open subset Mg.

3.3. Finite join M≤g
GH

and infinite join M∞
GH

. An interesting
phenomenon is that, as the following definitions show, our Gromov-

Hausdorff compactification Mg
GH

naturally patches together for differ-
ent g thanks to the sequence of the canonical inclusions (10) of Sg.

Definition 3.3. The finite joins of our Gromov-Hausdorff compactifi-
cations are defined inductively as topological spaces

M≤0
GH

:=M0
GH

= { Riemann sphere CP1} (singleton),

M≤1
GH

:=M1
GH

:=M1 ⊔ {S1
( 1

2π

)
}(= A1

T
in the next section )

(one point compactification)

and for g ≥ 2 as

M≤g
GH

:= (M≤(g−1)
GH ∪Mg

GH
)/ ∼,
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where the equivalence relation ∼ is simply the identification of the

closed subset Sg−1 ⊂ Sg and another closed subset Sg−1 ⊂ M≤(g−1)
GH

.
From the definition, we have natural inclusion relations

· · ·M≤(g−1)
GH ⊂M≤g

GH · · · .
Then we set

M∞
GH

:= lim−→
g

M≤g
GH

= ∪gM≤g
GH
,

and call it infinite join of our Gromov-Hausdorff compactifications.

The boundary of M∞
GH

by which we mean the natural subset

∪g(∂Mg
GH

= Sg), should be regarded as a tropical version of the space5

“M∞” introduced and studied recently by Ji-Jost [JJ].

Also note that M∞
GH

is connected and all our Gromov-Hausdorff

compactification Mg
GH

is inside this infinite join.

3.4. Comparison with the Outer spaces. There is a classical the-
ory of the outer space Xn by Culler-Vogtman [CV], which is an analogue
of the Teichmuller space for metrized graphs. There, the analogous
discrete group to the mapping class group is the outer automorphism
group Out(Fn) of the free group Fn with rank n. From now on, we use
g instead of their n to unify our notation.

Recall that the quotient Xg/Out(Fg) parametrizes graphs Γ with
b1(Γ) = g with v1(Γ) = 0.

We introduce another moduli space of graphs as a subset of Sg (with
the induced topology) as

So
g := {Γ ∈ Sg | v1(Γ) + b1(Γ) = g} ⊂ Sg.

It is simply the complement of Sg−1 ⊂ Sg by the definition. The
following proposition essentially goes back to [CMV].

Proposition 3.4. There is a canonical cellular open embedding
Xg/Out(Fg) ↪→ So

g(⊂ Sg). The image of Xg/Out(Fg) is open dense
in Sg (thus so is So

g).

Proof. First of all, it follows from the lower semicontinuity of the first
Betti number of metrized graphs b1(Γ) that Xg/Out(Fg) is an open
subset of So

g . For each Γ ∈ So
g with v1(Γ) + b1(Γ) = g and 0 < ϵ ≪ 1,

we define graph(s) ϕϵ(Γ) as follows. For each leave vw where v is
a 1-valent vertix, we put a small loop of length ϵl(vw). Doing the
same for all edges and rescale the metric on whole graph to make
its diameter 1, we get a metrized graph which we denote as ϕϵ(Γ).

5They call it “universal moduli spaces”
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This construction naturally defines a perturbation of elements of So
g to

those of Xg/Out(Fg). The fact that all of these are unions of relative
interiors of the cells with respect to that CW complex structure follow
straightforward from the definitions.

We also need to prove So
g is dense inside Sg. We provide an ele-

mentary proof for convenience. Let us analyze the neighborhood of
Γ ∈ Sg−1 ⊂ Sg. Starting from any such Γ with a point p ∈ Γ, we can
similarly consider Γ’s deformation ψt(Γ) ∈ Xg/Out(Fg) for t > 0, for
example, as follows. Set v1(Γ) + b1(Γ) = g − d. Taking a point p, we
define ψt(Γ) as a union of Γ and a bouquet i.e., the union of d length t
loops which passes through p. Thus in particular Xg/Out(Fg) is open
and dense in Sg and hence so is So

g as well. □
Notes added, part 2. We end this section with the following notes
added, about the relation with [LL] which was kindly taught by its
author L.Lang in June of 2015. I appreciate him for informing it.

Remark 3.5. L. Lang defined “tropical convergence” of compact Rie-
mann surfaces to metrized graphs as the convergence of the ratios of
the lengths of shrinking geodesics, which represent vanishing cycles, in
his [LL, Definition 1.1]. As also written in [LL, v2, §1.3], that notion
of convergence is not equivalent to ours, i.e. Gromov-Hausdorff con-
vergence of hyperbolic metrics. See more details on the original paper
[LL]. The author also gives more detailed arguments in [Od6, §3].

4. Investigating topology

We would like to make the first step of investigation of the topology
of our compactifications and their boundaries.

First, we recall the fact that the moduli space of smooth projective
curves has vanishing higher homology groups, proved by J. Harer [Har].
His proof shows the existence of a deformation retract via the cell com-
plex structure of the Teichmuller space (the so called “arc complex”).

Theorem 4.1 ([Har, Theorem 4.1]). For g ≥ 2 and i > 4g − 5, we
have

Hi(Mg;Q) = 0 and H i(Mg;Q) = 0.

So combined with the Poincaré-Lefschetz duality for orbifold, we get
that for i ≤ 2g − 2

H i
c(Mg;Q) = 0 and HBM

i (Mg;Q) = 0,

where H i
c denotes the cohomology group with compact supports and

HBM
i denotes the Borel-Moore homology group.

The above theorem 4.1 has the following consequence.
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Corollary 4.2. For i < 2g − 2, we have

H i(Mg
T
;Q) = H i(Sg;Q),

Hi(Mg
T
;Q) = Hi(Sg;Q).

Proof. It follows simply from the exact sequences of compactly sup-
ported cohomology groups or the Borel-Moore homology groups. □

Thus the study of homology and cohomology of our Gromov-
Hausdorff compactification is reduced to that of the boundary for a
specific range of degrees. Motivated by it, let us study the topology 6

of our boundary Sg. First, we sketch the following cases of small g.

Example 4.3. S1 is just a point which stands for the circle of length
1. S2 is a two 2-simplices (triangles) patched together along one of
their edges for each. In one side of the 2-simplex, the inner points
parametrize a union of two circles and a segment connecting them.
The other side of the 2-simplex, the inner points parametrize a union
of circle with a segment connecting two points in the circle. We refer to
the picture below, where the parametrized metrized graphs are pictured
around each stratum.

Figure 1. The boundary S2 of M2
T

Note that obviously S1 and S2 are both contractable.

Since the open dense locus So
g of Sg is a rational classifying space of

Out(Fg) as known to [CV], it has in general highly nontrivial topology.
Indeed its cohomology is those of Out(Fg) (cf., e.g., [EVHS] for non-
vanishing cohomology for g = 5 case), we expect interesting topological
structure on Sg for large g.

6A while after the appearance of the first version of this paper as arXiv:1406.7772,
Chan-Galatius-Payne [CGP] appears which systematically studies the topology of
the moduli of weighted metrized graphs with n(> 0)-marked points i.e. the “log
version” of SwT

g .
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We define

S∞ := lim−→Sg = ∪gSg,

the injective limit with respect to the canonical embeddings Sg−1 ↪→
Sg ↪→ Sg+1 · · · (cf., (10)). After a kind suggestion of the referee, the
author learnt that our S∞ can be informally (but not logically) seen as
a tropical analogue of the infinite union of the classical moduli spaces
studied in [Cod, JJ].

While we expect that each Sg has highly nontrivial topologies in
general, we observe the following.

Theorem 4.4. The topological space S∞ is contractible. In particular,
for any k ≥ 0, lim−→

g

Hk(Sg;Q) = 0.

Proof. Consider the cone of Sg, i.e., CSg := (Sg × [0, 1])/(Sg ×{1}). It
is enough to construct a series of continuous maps {ϕg : CSg → S∞}g≥2

which satisfies

(i) ϕg maps (Sg × {1}) to a point as ϕg(Sg × {1}) =
{the unit interval [0, 1] (as a metrized graph)},

(ii) ϕg|Sg×{0} = id|Sg ,
(iii) and ϕg+1|CSg = ϕg.

Indeed, from the third condition, they glue together to form a contin-
uous map

ϕ∞ : CS∞ → S∞

and this gives a deformation retract of S∞ into a point of S∞ which
corresponds to the unit interval [0, 1] again as a metrized graph.

We construct the map ϕg by the following three steps.

Step 1 (Adding vertices). First we construct ϕg|Sg×[0, 1
3
]. For any

(Γ, t) ∈ Sg × [0, 1
3
], suppose the set of vertices of Γ is V (Γ) =

{p1, · · · , pm} and the set of edges is E(Γ) = {e1, · · · , en}. We define a
new metrized graph ψg(Γ, t) for t ∈ (0, 1

3
] by setting the vertices set as

{p1, · · · , pm}⊔{p′1, · · · , p′m} and define the set of edges and their lengths
as follows. The set of edges of ψg(Γ, t) is E(Γ) ⊔ {pip′i | 1 ≤ i ≤ m}.
We call an edge in E(Γ) ⊂ E(ψg(Γ, t)) as old edge in this proof, while

the edges of the form pip′i will be called new edges. We put their length

l(pip′i) = t while we keep the length of old edges as the same as Γ. Then
we rescale the length of all edges of ψg(Γ, t)(0 < t ≤ 1

3
) to make the

diameter 1 and denote the obtained metrized graph as ϕg(Γ, t). Note
that the image of ϕg|Sg×[0, 1

3
] is a priori not inside Sg. Indeed, while
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the metrized graphs parametrized in Sg are characterized by v1+ b1 by
Proposition 2.17, we have that

v1(ϕg(Γ, t)) = #V (Γ),

which is bigger than v1(Γ) if and only if Γ is not homeomorphic to the
closed interval. This ϕg|Sg×[0, 1

3
] is continuous from the construction.

Step 2 (Contraction of old edges). Our next step is the construction
of ϕg|Sg×[ 1

3
, 2
3
]. Roughly speaking, in this step of t increasing from 1

3
to

2
3
, we gradually contract the old edges i.e., those which belong to E(Γ).

We make this rigorous as follows.
First, as in Step 1, we construct ψg(Γ, t) for t ∈ [1

3
, 2
3
] by setting its

vertices set and edges set as

V (ψg(Γ, t)) := V (ϕg(Γ,
1

3
))

= {v1, · · · , vm} ⊔ {w1, · · · , wm} for t ∈
[1
3
,
2

3

)
,

V (ψg(Γ, t)) := {v} ⊔ {w1, · · · , wm} for t =
2

3
,

E(ψg(Γ, t)) := E(ϕg(Γ,
1

3
))

= E(Γ) ⊔ {viwi | 1 ≤ i ≤ n} for t ∈
[1
3
,
2

3

)
,

E(ψg(Γ, t)) := {vwi | 1 ≤ i ≤ n} for t =
2

3
.

Then we put the metrics on the edges of ϕg(Γ, t) as follows.
7

length(viwi;ϕg(Γ, t)) :=
1

3
,

length(vivj;ϕg(Γ, t)) := (2− 3t)length(vivj; Γ).

The above construction of ψg(Γ, t) realizes shrink of old edges in
ϕg(Γ,

1
3
). Then finally we define the metrized graph ϕg(Γ, t) as rescale

of ψg(Γ, t) with the diameter 1.
From the constrution, the continuity of ψg|Sg×[ 1

3
, 2
3
] and ϕg|Sg×[ 1

3
, 2
3
] are

obvious. The limit graph ϕg|t= 2
3
is a metrized tree whose edges all share

a common vertex so that its shape looks like “∗”. Precisely speaking,
it is a metrized graph graphs whose

• vertices set is {v} ⊔ {wi | 1 ≤ i ≤ m} and
• edges set is {vwi | 1 ≤ i ≤ m}.

7The notation of the following is that the length of edge l in a graph G is denoted
as length(l, G).
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Let us call this type of tree “∗-type” with n(= #E(Γ)) leaves.

Step 3 (Deforming to the unit interval). The final step is the construc-
tion of ϕg|Sg×[ 2

3
,1]. The moduli space of ∗-type trees Γ (as we defined

and discussed above in Step 2) with n leaves of diameter 1, with the
Gromov-Hausdorff topology, is homeomorphic to the moduli space of
those whose sum of lengths of edges is 1, simply by rescaling. And the
latter is the simplex

∆n := {(x1, · · · , xn) | 0 ≤ x1 ≤ x2 ≤ · · ·xn ≤ 1,
n∑

i=1

xi = 1}.

The contractability of the simplex above ensures, or we can directly
see that there is a deformation retract of each Γ ∈ ∆n to the interval
[0, 1]. This gives ϕg|Sg×[ 2

3
,1].

The desired properties (i), (ii), (iii) are all straightforward from the
construction. We complete the proof of Theorem 4.4. To help un-
derstanding for the readers, we summarize our 3 Steps below as an
example picture.

Figure 2. Picture proof of Theorem 4.4

□
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[Ham] U. Hamenstädt, Teichmuller theory, IAS/Park city Mathematics series vol.
20 (2011). B. Farb, R. Hain, E. Looijenga ed.

[Har] J. Harer, The virtual cohomological dimension of the mapping class group
of an oriented surface, Invent. Math. vol. 84, pp.157-176 (1986).

[IT] Y. Imayoshi, M. Taniguchi, An introduction to Teichmüller spaces, Springer-
Verlag (1992)

[JJ] L. Ji, J. Jost, Universal moduli spaces of Riemann surfaces, Jour. of Geom.
Physics vol. 114, (2017), pp. 124-137.

[Ke] L. Keen, Collars on Riemann surfaces, Discontinuous Groups and Riemann
Surfaces, Princeton University Press, pp. 263-268 (1974).

[Kol] J. Kollár, Moduli of varieties of general type, in Handbook of Moduli, vol.
II. Advanced Lectures in Mathematics, vol. 25 (International Press, Boston,
2013), pp. 131-167.

[KM] F. Knudsen, The projectivity of the moduli space of stable curves. III. The
line bundles onMg,n, and a proof of the projectivity ofMg,n in characteristic
0. Math. Scand. 52 (1983), no. 2, 200-212.

[KS] M. Kontsevich, Y. Soibelman, Affine structures and non-archimedian ge-
ometry, The Unity of Mathematics Progress in Mathematics vol. 244, pp
321-385 (2006).

[LL] L. Lang, Harmonic tropical curves, arXiv:1501.07121v2.
[LW] J. Li, X. Wang, Hilbert-Mumford criterion for nodal curves, Compositio

Math (2015).
[LWX] C. Li, X. Wang, C. Xu, Degeneration of Fano Kähler-Einstein varieties,

arXiv:1411.0761v2.
[MS] J. Morgan, P. B. Shalen, Valuations, trees, and degenerations of hyperbolic

structures, Ann. of Math. (1984).
[MV] B. Mirzaii, W. Van der Kallen, Homology stability for symplectic groups,

arXiv:0110163 (2001).
[MZ] G. Mikhalkin, I. Zharkov, Tropical curves, their Jacobians and Theta func-

tions, Contemporary Mathematics vol. 465, Proceedings of the Interna-
tional Conference on Curves and Abelian Varieties in honor of Roy Smith’s
65th birthday, pp. 203-231 (2007).

[Mum1] D. Mumford, Geometric Invariant Theory, Ergebnisse Math, Springer-
Verlag (1965).

[Mum2] D. Mumford, Stability of projective varieties, Enseignement Math. (2) 23
(1977), no. 1-2, 39-110.

[Od1] Y. Odaka, The GIT stability of polarized varieties via Discrepancy, Ann. of
Math (2013).

[Od2] Y. Odaka, A generalization of Ross-Thomas slope theory, Osaka J. Math.
(2013)

[Od3] Y. Odaka, The Calabi conjecture and K-stability, I. M. R. N. vol. 2012, No.
10, pp. 2272-2288 (2012).

[Od4] Y. Odaka, On the moduli of Kähler-Einstein Fano manifolds, Proceeding of
Kinosaki algebraic geometry symposium 2013. (arXiv:1211.4833 v4)

[Od5] Y. Odaka, Compact moduli spaces of Kähler-Einstein Fano manifolds, Publ.
R. I. M. S (2015).



TROPICAL GEOMETRIC MODULI COMPACTIFICATION 29

[Od6] Y. Odaka, Tropical geometric compactification of moduli, II - Ag case and
algebraic limits -, I.M.R.N. 2018 (It includes a developed version of the latter
half of arXiv:1406.7772v1. )

[OO] Y. Odaka, Y. Oshima, Collapsing K3 surfaces and Moduli compactification,
arXiv:1805.01724.

[OSS] Y. Odaka, C. Spotti, S. Sun, Compact moduli of Del Pezzo surfaces and
Kähler-Einstein metrics, J. Diff. Geom. Volume 102, Number 1 (2016), 127-
172. arXiv:1210.0858.

[Shi] T. Shioya, The limit spaces of two dimensional manifolds with uniformly
bounded integral curvature, Trans. A.M.S. vol. 351, No.5, pp.1765-1801
(1999)

[Spo] C. Spotti, Degenerations of Kähler-Einstein Fano manifolds, Imperial Col-
lege Ph. D Thesis (2012).

[SSY] C. Spotti, S. Sun, C. Yao, Existence and deformations of Kahler-Einstein
metrics on smoothable Q-Fano varieties, Duke Math. J. 165, no. 16 (2016).

[SYZ] A. Strominger, S. T. Yau, E. Zaslow, Mirror symmetry is T-duality, Nuclear
Physics B vol. 479 pp.243-259 (1996).

[Tev] J. Tevelev, Compactifications of subvarieties of tori, Amer. J. of Math. vol.
129, pp. 1087-1104 (2007).

[Wol] S. Wolpert, The hyperbolic metric and the geometry of the universal curve,
J. Diff. Geom. vol. 31 no. 2, pp. 417-472 (1990).

[WZ] M. Wolf, B. Zweibach, The plumbing of minimal area surfaces, Journal of
Geom. and Physics 15 (1994), 23-56.

[Z] B. Zwiebach, How covariant closed string theory solves a minimal area prob-
lem, Commun. Math. Phys. (1991).

Contact: yodaka[at]math.kyoto-u.ac.jp
Department of Mathematics, Kyoto University, Kyoto 606-8285. JAPAN


