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Abstract—Three-dimensional (3D) shape reconstruction is par-
ticularly important for computer assisted medical systems, es-
pecially in the case of lung surgeries, where large deaeration
deformation occurs. Recently, 3D reconstruction methods based
on machine learning techniques have achieved considerable
success in computer vision. However, it is difficult to apply
these approaches to the medical field, because the collection
of a massive amount of clinic data for training is impractical.
To solve this problem, this paper proposes a novel 3D shape
reconstruction method that adopts both data augmentation
techniques and convolutional neural networks. In the proposed
method, a deformable statistical model of the 3D lungs is designed
to augment various training data. As the experimental results
demonstrate, even with a small database, the proposed method
can realize 3D shape reconstruction for lungs during a deaeration
deformation process from only one captured 2D image. Moreover,
the proposed data augmentation technique can also be used in
other fields where the training data are insufficient.

Index Terms—CNN, deaeration deformation, machine learn-
ing, data augmentation, 3D shape reconstruction

I. INTRODUCTION

In recent years, three-dimensional (3D) shape reconstruction
has become widely used in computer-based surgical navigation
because 3D models can provide an integral knowledge of the
human inner body. Many approaches have been used to obtain
the 3D information of internal organs in various situations.
The most correct and simple method is to measure the 3D
shapes by computed tomography (CT), magnetic resonance
imaging (MRI), or other 3D imaging technologies. However,
intraoperative imaging places an additional burden on both
surgeons and patients. To solve this problem, some researchers
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computed the 3D information of intraoperative organs using
preoperative CT volume data or a pre-known 3D model [1]–
[5]. For example, Koo et al. realized the registration of a
preoperative 3D model with an intraoperative laparoscopy
image by adopting contour and shading features [4]. Similarly,
Collins et al. deformed a pre-computed 3D model for fitting
to 2D intraoperative laparoscopy videos [5]. These algorithms
achieve reliable performance, and have already been applied
to surgical navigation. Nevertheless, they are effective only
when the deformation of the organ is small. In the case of
thoracic surgeries for lung cancers, where deaeration defor-
mation always occurs, these approaches, which are based on
preoperative 3D models, lose accuracy.

To solve the problem caused by large deformation, stereo-
scopic or multiple intraoperative images have been used to
implement 3D reconstruction [6]–[8]. Three-dimensional re-
construction based on multiple images depends on the dis-
parities among these different images. This kind of recon-
struction only considers intraoperative information. Thus, it
is less sensitive to large deformation [7], [8]. Nonetheless,
using only the visual information causes the performance to
be easily influenced by image blur, poor illumination, and
occlusion. Moreover, the reconstructed 3D shape is always
partial because it is difficult to capture 2D images of the whole
organ during a surgery.

In contrast to preoperative-model-based and multi-image-
based approaches, machine-learning-based methods can re-
construct an integral 3D shape from a single image, as long
as the amount of training data is sufficient [9]–[11]. These
methods train artificial networks such as convolutional neural
networks (CNN) using a large range of data. They are robust
to large deformations, poor illumination, occlusion, and image
blur. However, when these techniques are applied to 3D
reconstruction in the medical field, a crucial problem is that
the collection of various 2D-3D pair data is not realistic. To



solve this problem, we propose a CNN-based algorithm that
can reconstruct the 3D shape of lungs from a single 2D image.
To guarantee the training of the CNN on a small database,
a data augmentation technique is also proposed to create
various training data. The contribution of this research is (i) it
provides a promising solution for single-image-based 3D lung
reconstruction; and (ii) it proposes a novel data augmentation
technique to address the problem of data insufficiency for
machine-learning-based algorithms in the medical field.

II. PROPOSED ALGORITHM

In this section, we first explain the model-based data aug-
mentation method; and then we describe the CNN designed
for 3D lung shape reconstruction.

A. Statistical 3D model

In the last two decades, statistical shape models (SSD) have
been widely used for 3D medical image segmentation [12],
[13]. By matching a labelled statistical shape model with a
new 3D image, the area of interest of the new image can be
segmented automatically [12]. A statistical model is always
computed from a group of sample data. We suppose there is
a set of samples {M1,M2, ...,Mn}, where all Mi are aligned
3D point clouds obtained from CT volume data. Then, the
principal component analysis (PCA) method is used to reduce
the number of dimensions of variation among these samples.
Finally, the statistical model can be represented by [12]

M = M +
∑C

k=1
Pkbk (1)

where M is the mean of the samples, C is the number of
dimensions, P is the eigenvectors of the covariance matrix,
and b is the vector of weight parameters. Each sample can be
represented by (1) using its own parameter vector b [12].

In this study, we assume that the training database only
contains eight samples. As is well-known, the shape and size
of lungs vary significantly case by case. Thereby, a statistical
shape model of the eight cases may be biased because the vari-
ation of the training data is too small. However, the deaeration
processing of different cases may share some common pattern.
Therefore, we propose a new model that we name statistical
displacement model (SDM), instead of the traditional SSD for
the data augmentation. The displacement measures the defor-
mation during the deaeration process. We use Mp

i and Mq
i

to respectively denote the inflated and deflated lungs for Case
i (i ∈ {1, 2, ..., 8}) in this study, and then Di = Mp

i −M
q
i ,

where Di is the displacement of deaeration deformation of
Case i. Finally, the SDM is represented by

D = D +
∑Φ

j=1
ρjϕj , (2)

where D is the mean displacement of the eight cases, Φ is the
number of dimensions after PCA, ρ is the eigenvector of the
covariance matrix, and ϕ denotes the weight parameters. In
this study, Φ is set to be 2, where the cumulative contribution
rate reached 98%. Then we increase or decrease ϕ step by
step to create different deaeration displacements D. Finally,

Fig. 1. Schematic flow of the proposed data augmentation method

k different displacements are applied to the average inflated
lung Mp, and k deflated 3D shapes Mq

k will be augmented.
Moreover, the proposed algorithm can produce different size
of 3D shape between Mp and Mq

k by interpolation.

B. Data augmentation

To realize single-image-based 3D shape reconstruction, 2D–
3D pair data are required for training, i.e., a 2D image and
its corresponding 3D shape is regarded as one pair of data.
Using the CT data of both the inflated and deflated lungs of
eight cases, a total of 16 3D shape models were built (eight
inflated and eight deflated). As we mentioned above, first we
need to augment 3D shapes for learning. We apply various
displacements to the average inflated 3D model Mp, to create
various deflated 3D shapes, which are then added to the 16
shapes as training data. For each 3D shape of training data,
2D images are rendered from n different viewpoints. Thus, n
pairs of 2D–3D data are augmented from one 3D shape model.
This idea is inspired by PointNet [9], which uses rendered 2D
images from multiple viewpoints for training. Figure 1 shows
the structure of the proposed data augmentation.

C. CNN-based 3D reconstruction

In this research, a CNN is used to learn the relationship
between a single 2D image and its corresponding 3D point
cloud. The design of the CNN is shown in Fig. 2, which
is modified from VGG19. VGG19 is proved effective in
processing images [15]. The Encoding in Fig. 2 denotes one
convolution layer, one batch normalization layer, and one Relu
layer. To speed up the training, we reduce the number of filters
in each convolution layer. The batch normalization layer is

Fig. 2. Design of the CNN for 3D shape reconstruction from single image



added after each convolution layer so that all values can be
normalized. Also, a dropout layer is added to restrain over-
fitting, and a regression layer is added to predict the 3D
positions of each point in the point cloud. The input is a
200 × 200 pixel RGB image, and the output is a 3D point
cloud. Note that, in the training, the input 2D images are totally
different samples, but the output 3D shapes are the same for
those images that are rendered from the same 3D model.

The CNN here learns the connection between a single 2D
image and its corresponding 3D shape, and it is likely that,
it also learns the disparity among those 2D images rendered
from the same 3D model; because they are different inputs but
have the same output. For simplicity, we assume that there are
three groups of parameters in the CNN. The first two groups
stand for the X and Y axes, and the last one represents the
Z axis (depth). The first two groups can be easily deduced
using the 2D input image. With respect to the last group, the
CNN may select parameters randomly when it learned only
one 2D-3D pair. However, these parameters are refined when it
learns more 2D inputs who share the same 3D shape, because
it needs to adjust the last group of parameters to produce the
same output. In summary, the CNN learns how to adjust a CT-
based 3D model to fit any 2D image captured from various
viewpoints. Then in the test phase, the CNN automatically
tunes its parameters to fit a new 2D image. In this manner,
the 3D information can be computed from only one 2D image.

III. EXPERIMENT

In this section, we evaluate the effectiveness of the proposed
algorithm. A total of ten cases of in vivo lung CT images
were measured from the left lungs of ten Beagle dogs with
two bronchial pressures (14 and 2 cmH2O) at the Institute
of Laboratory Animals, Kyoto University, Japan. Eight cases
were used for training, and the left two were used for testing.
All the cases were aligned before training by a registration
approach [14]. The training takes about 5 min using the
Parallel Computing Toolbox (GPU) of MATLAB. The CPU
and memory of the desktop we used are i7-6700 @ 3.40 GHz
3.41 GHz and 32 GB, respectively.

We assume that T = 0 represents the moment when the lung
is inflated, and T = 1 represents the moment when the lung
is totally deflated. Then T ∈ [0, 1] can represent any moment
during a deaeration deformation. In the training phase, the
original 16 3D models (eight inflated and eight delated), plus
81 augmented 3D models from moment T = 0.5 are used.
For each 3D model, the number of viewpoints n is set to
108. Thereby, a total of (16 + 81) × 108 = 10476 pairs of
2D–3D data were used to train the CNN. In the test phase, to
simplify the evaluation, we used the test 3D model at moments
T = 0, T = 0.5, and T = 1 to perform the evaluation. The test
images were synthesized by rendering from the test 3D model.
A total of 2 cases × 3 moments × 108 viewpoints = 648
2D images were tested. The RMSE between the ground truth
and reconstructed result is computed by Iterative closest point
method [16]. We compare our method with the shape from
shading (SFS) algorithm. Figure 3 shows the results, where

Fig. 3. One example of 3D shape reconstruction using the proposed method

the green dots show the ground truth, the blue dots show the
results of SFS, and the purple dots show our results. Using
our method, the RMSE of the upper lung is 2.59 mm, and
that of the lower lung is 3.08 mm. SFS can hardly obtain the
correct depth information. Its RMSEs of the upper and lower
lungs are 8.61 mm and 7.55 mm, which are much larger than
those of the proposed approach.

We also compared the CNN trained using the proposed data
augmentation with a CNN trained only using real data. Figure
4 shows one example of the comparison. The blue curves in
the figure show the RMSEs of a CNN that is trained only by
16 models (eight inflated and eight deflated). The red curves
show the RMSEs of a CNN that is trained by the proposed
data augmentation. For each moment T, 108 2D images from
different viewpoints were tested. These results show that the
data augmentation actually reduces the RMSEs of the CNN,
which makes training based on small size databases possible.
Tables 1 and 2 summarize all the comparison results for the
upper and lower lungs, respectively. In this study, 5-fold cross-
validation is used for the evaluation, i.e., eight cases are used
for the training and the remaining two are used for testing.
The two tables show that the proposed data augmentation
approach reduces the RMSEs significantly. This demonstrates
that the proposed method is effective for single-image-based
3D reconstruction even though the training data would be
insufficient for conventional machine learning methods.

Fig. 4. Comparison result of the CNNs for Case 5



TABLE I
COMPARISON OF THE RESULTS OBTAINED WITH AND WITHOUT DATA

AUGMENTATION FOR THE UPPER LUNG

Cases Without augmentation With augmentation
(mm) mean-RMSE max-RMSE mean-RMSE max-RMSE

Case 1 4.01 5.67 2.93 4.18
Case 2 5.01 9.72 3.80 4.89
Case 3 5.82 11.89 4.08 5.22
Case 4 4.62 8.25 3.03 3.84
Case 5 5.69 14.16 3.56 4.47
Case 6 4.70 12.27 3.47 4.46
Case 7 4.36 5.86 3.80 4.65
Case 8 5.87 9.48 4.50 5.19
Case 9 5.19 7.38 3.75 4.65
Case 10 4.83 9.60 3.74 4.58
Average 5.01 9.43 3.67 4.61

Improved — — 26.75% 51.11%

TABLE II
COMPARISON OF THE RESULTS OBTAINED WITH AND WITHOUT DATA

AUGMENTATION FOR THE LOWER LUNG

Cases Without augmentation With augmentation
(mm) mean-RMSE max-RMSE mean-RMSE max-RMSE

Case 1 4.68 8.73 2.84 4.36
Case 2 5.14 10.57 3.95 4.86
Case 3 5.92 13.48 2.98 4.37
Case 4 3.63 6.40 2.22 2.78
Case 5 5.17 8.16 2.51 3.30
Case 6 4.66 8.23 3.54 4.86
Case 7 4.53 6.52 3.29 4.24
Case 8 4.76 7.12 3.49 4.43
Case 9 3.80 8.22 2.76 4.31
Case 10 4.52 6.98 3.43 4.08
Average 4.68 8.44 3.10 4.16

Improved — — 33.76% 50.71%

IV. DISCUSSION

In lung surgeries, especially in minimally invasive surgeries,
only part of the organ can be captured via imaging. If these
partial 2D images are used for 3D reconstruction, only a
partial 3D shape can be reconstructed. Machine-learning-
based techniques seem to be promising solutions for the
above problem, because they can learn the model information
beforehand. Learning-based 3D shape reconstruction is more
like a fitting process than a building process. In this section,
we use 2D images that capture partial organ to test the trained
CNN. Figure 5 shows the reconstruction result. The green

Fig. 5. Examples of reconstruction results from partial 2D images

dots show the ground truth and the purple dots show the test
result. The RMSEs of the two examples are 4.50 mm and 4.13
mm, respectively. Note that the training data for this CNN
do not contain any 2D images of partial organs. Nonetheless,
the CNN still can reconstruct a 3D shape that is close to the
ground truth.

V. CONCLUSION

This paper first analyzed the problem of 3D reconstruction
during a lung deaeration deformation, and then proposed a
CNN-based 3D shape reconstruction algorithm. The proposed
method can reconstruct a 3D shape from only one 2D image.
The training database contains only eight samples. However,
the trained CNN is still effective, as demonstrated by the
experimental results. In the current research, we only tested
synthesized 2D images. In future work, we plan to use 2D
endoscopic images or 2D captures for the evaluation. In that
case, some image processing and synthesis techniques are
required to reduce the discrepancy between the endoscopic
images (or 2D captures) and the rendered images.
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