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Abstract

Vortex crystals on the surface of a torus are relative equilibrium states of point vortices rotating at
a constant speed in the latitudinal direction without changing their relative configurations. They are
examples of stationary lattice structures subject to the logarithmic particle interaction energy, which
give rise to phenomenological models applicable to incompressible fluids, superconductors, superfluids
and Bose-Einstein condensates. The problem of finding vortex crystals is formulated as a linear algebraic
null equation AΓ = 0 for a non-normal matrix A whose entities are obtained by the locations of point
vortices, and Γ consisting of the strengths of point vortices and the latitudinal speed of rotation. Vortex
crystals are obtained numerically by prescribing their locations and/or by moving them randomly so
that the matrix A becomes rank-deficient through the singular value decomposition. Their strengths are
taken from the null-space corresponding to the zero singular values. We find many vortex crystals that
are specific to the toroidal geometry: the existence of a handle structure. (i) Polygonal arrangement
of point vortices around the handle; (ii) multiple latitudinal polygonal ring configurations of point
vortices that are evenly arranged around the handle; (iii) point configurations arranged along helical
curves associated with the fundamental group of the toroidal surface. We observe the strength of point
vortices and the behavior of their distribution as the number of point vortices gets larger. We also
investigate their linear stability and randomness as point configurations.

1 Introduction

For a 2D velocity field (u1(x, y), u2(x, y)) at (x, y) ∈ R2, the vorticity is defined by a scalar function, i.e.,
ω = ∂yu1 − ∂xu2 This is an important quantity describing the evolution of incompressible 2D fluid flows,
since interactions between high vorticity regions give rise to various complicated flow dynamics. When the
fluid flow subject to an external forcing is confined in 2D planar domains, those high vorticity regions are
localized and self-organizing into a beautiful stationary lattice structure owing to their mutual interactions.
For instance, in an experiment of small magnetic discs at a thin liquid-air interface under the influence of
a magnetic field, ring lattice structures of the discs at the centers of vorticity regions are formed owing
to a balance between the magnetic attractive interaction among the discs and a hydrodynamic repulsive
interaction associated with spinning fluid motion [19]. Another experiment of magnetized electrons in a 2D
turbulent flow shows that, in the relaxation process of the turbulence, the merger of vortex structures leads
to the formation of regular lattice patterns of vortices [18], whose physical process has been investigated
by numerical simulations [20].

Lattice structures of vorticity regions are observed not only in fluid flows, but also in the other physi-
cal phenomena such as superconductors, superfluid helium and Bose-Einstein condensates. Abrikosov [2]
predicted the existence of a 2D lattice structure of magnetic flux lines in type II superconductors, which is
experimentally confirmed by Essmann and Träuble [16]. This is a counterpart of localized vorticity regions
in electromagnetic fields. On the other hand, after Feynman’s publication on the formation of vortex tubes
in superfluid helium [17], the existence of stable ring lattices of vortex lines with quantized circulations was
confirmed in an experiment of rotating superfluid film [38]. Recently, with a development of experimental
techniques, the formation of various vortex lattice structures, not limited to regular lattices and ring struc-
tures, has been observed in many experiments of Bose-Einstein condensates. We can find those pattern in
Abo-Shaeer et al. [1] and Engels et al. [14, 15].
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The discoveries of such vortex lattices consisting of many vortex structures motivate us to develop
a mathematical model based on the interactions among vortex structures, which we call “Vortex lattice
theory”. The model is based on the assumption that the azimuthal velocity field induced by the localized
vortex structure depends only on the radius r, and it decays as 1/r as r goes infinity. A good survey
of the model’s history and the related references was given by Newton and Chamoun [27], in which we
also found a discussion in the Nobel Lecture by Aborisokov [3] for its physical relevance. This model
is phenomenological and different from solving partial differential equations such as the Navier-Stokes
equations and the Ginzburg-Landau/Gross-Pitaevskii equations with localized vorticity initial data, but it
is flexibly extendable to problems finding many vortex lattices when the number of vortex structures is
large and when we consider vortex structures on domains with various geometric properties such as 2D
curved surfaces and 2D domains with many boundaries.

Toward theoretical understanding of the lattice formation of localized vortex structures, assuming that
the high vorticity regions concentrate in a finite set of isolated points, we then express the vorticity as a
Dirac’s delta measure whose support consists of those points, which are called point vortices. Under this
assumption, the interaction of localized vorticity regions simply depends on their inter-particle distance
and decays as 1/r for large r as desired. However, the vorticity is no longer a meaningful quantity since it
diverges at the points, while the circulation, i.e.,

∫
C
u · ds for a closed Jordan curve C around the point,

still effectively represents the strength of the point vortex. The lattice structure of point vortex, in which
their relative configuration remains unchanged throughout the evolution, is called a vortex crystal which
we shall consider here.

The study of vortex crystals in planar domains has a long history, dating back to the “vortex atom”
theory of matter by Thomson [36] in 1860s. It is reformulated in a modern framework by Campbell
and Ziff [9], where a catalogue of vortex crystals in a circular disc domain was provided. Aref et al. [5]
and Newton [26] survey the mathematical aspects of vortex crystals and gave many vortex crystals in
planar domains with/without boundaries, on a sphere and the hyperbolic plane. Fixed vortex equilibria in
multiply connected domains with boundaries are constructed [31]. More vortex crystals on the sphere and
their stability have been intensively studied, since they have geophysical relevances [8, 23, 24, 29, 30].

In the present paper, we study vortex crystals on the surface of a torus. The toroidal surface has different
geometric properties from the 2D plane and the spherical surface: it has non-constant curvature and a non-
trivial handle structure. Importance of vortices in curved surfaces is discussed by Turner et al. [37]. 0n
the other hand, the vortex crystal on the toroidal surface is supposed to be a particle-interaction based
model of quantized vortex lattice in superfluid helium on the surface of a porous medium [10, 25] as in the
planar case. There is another application of vortex crystals to find good point configurations on the toroidal
surface, since mesh generation on curved surfaces based on the physical particle interaction is utilized in
computer graphics community [11, 39]. Only a few number of vortex crystals on the toroidal surface are
known so far. Sakajo and Shimizu [33] have shown the existence of three kinds of vortex crystals; (i) Point
vortices located at antipodal points; (ii) the polygonal ring configuration of N identical point vortices
along the line of latitude; and (iii) a symmetric two latitudinal ring configurations of point vortices with
the strengths of the opposite signs. The purpose of this paper is providing more vortex crystals and discuss
their properties such as linear stability and randomness as point configurations.

There are two ways to obtain vortex crystals. The first one is an “ansatz-based” approach, where
one prescribes the locations and the strengths of point vortices by assuming certain discrete symmetries
and confirm whether or not they form vortex crystals. Owing to the construction, most of the vortex
crystals obtained by the ansatz-based approach become symmetric. On the other hand, asymmetric vortex
equilibrium states in the unbounded plane have also been constructed by solving a nonlinear equation [4].
The second approach is a stochastic numerical method called the Brownian ratchet scheme, where point
configurations of vortex crystals are searched by moving points randomly. This method was proposed by
Newton and Chamoun [28] based on a linear algebraic formulation. It was successfully applied to produce
many symmetric and asymmetric point vortex equilibria in the unbounded plane [28] and on the spherical
surface [29, 30].

This paper is organized as follows. In Section 2, we provide a linear algebraic formulation of finding
vortex crystals on the surface of a torus based on the evolution equations of N point vortices given by Sakajo
and Shimizu [32]. Using an ansatz-based approach, we construct ring configurations of vortex crystals that
acquire certain longitudinal and latitudinal discrete symmetries and their properties when the number of
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point vortices gets larger in Section 3. We also discuss their linear stability and some stochastic properties
as point configurations on the surface. The Brownian ratchet scheme is utilized to provide another family
of vortex crystals that are arranged going along a line of helical curve around the handle of the torus in
Section 4. The final section is devoted to concluding remarks.

2 Formulation of vortex crystals on a toroidal surface

Let TR,r denote the toroidal surface of major radius R and minor radius r. Its modulus is the aspect ratio
α = R/r > 1, by which we define the two parameters A = (α2 − 1)−1/2 and ρ = exp(−2πA). Suppose
that the locations of N point vortices on the toroidal surface at time t are given by (θm(t), ϕm(t)) ∈
R/2πZ × R/2πZ and Γm ∈ R are their strengths, which are circulations around the point vortices, for
m = 1, . . . , N . In 3D Euclidean space, their locations are represented by

ι : (θm, ϕm) ∈ TR,r 7→ ((R− r cos θm) cosϕm, (R− r cos θm) sinϕm, r sin θm) ∈ E3.

We introduce a complex coordinate in the annular domain D = {ζ ∈ C | ρ < |ζ| < 1} associated with the
toroidal surface through the following stereographic projection.

ζ : (θm, ϕm) ∈ TR,r 7→ eiϕm exp

(
−
∫ θm

0

du

α− cosu

)
≡ eiϕm exp(rc(θm)) ∈ D, (1)

in which rc(θ) is defined by

rc(θ) = −
∫ θ

0

du

α− cosu
= |ζ|.

Let P (ζ) denote the Schottky-Klein prime function associated with the annular domain D,

P (ζ) = (1− ζ)
∏
n≧1

(1− ρnζ)(1− ρnζ−1).

The evolution equation of N point vortices located at (θm(t), φm(t)) has been described as follows [32].

θ̇m =

N∑
j ̸=m

ΓjFmj := Fm(θ1, . . . , θN , φ1, . . . , φN ), (2)

φ̇m =

N∑
j ̸=m

ΓjGmj + ΓmHm := Gm(θ1, . . . , θN , φ1, . . . , φN ), (3)

in which · denotes the temporal derivative, and Fmj , Gmj and Hm are specified by

Fmj =
i

r2(α− cos θm)

[
K(ζm/ζj)−K(ζm/ζj)

4π

]
, (4)

Gmj =
1

r2(α− cos θm)2

[
K(ζm/ζj) +K(ζm/ζj)

4πα
+

αθm − sin θm
4π2α

+
rc(θj)

4πA
− 1

4π

]
, (5)

Hm =
1

r2(α− cos θm)2

[
αθm − sin θm

4πα2
+

rc(θm)

4π2A
+

1

4π
sin θm

]
. (6)

Here, ζm = ζ(θm, ϕm) is the complex representation (1) of the mth point vortex and the function K(ζ)
is defined by K(ζ) = ζPζ(ζ)/P (ζ). Suppose that N point vorties form a vortex crystal, which is a
relative equilibrium state rotating at a constant speed V0 in the latitudinal direction, say, θm(t) = ϑm

and ϕm(t) = φm + V0t. Substituting the ansatz into the equations (2) and (3), we obtain the following
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algebraic equations for the vortex crystal.

N∑
j ̸=m

ΓjFmj(ϑ1, . . . , ϑN , φ1, . . . , φN ) = 0, (7)

N∑
j ̸=m

ΓjGmj(ϑ1, . . . , ϑN , φ1, . . . , φN ) + ΓmHm(ϑ1, . . . , ϑN )− V0 = 0. (8)

Note that the equations (2) and (3) are reformulated as a Hamiltonian dynamical system with its Hamil-
tonian function H given by

H(θ1, . . . , θN , ϕ1, . . . , ϕN ) = −1

2

N∑
m=1

N∑
j ̸=m

ΓmΓjGH(ζm, ζj)−
1

2

N∑
m=1

Γ2
mR(ζm), (9)

where

GH(ζm, ζj) =
1

2π
log |ζjP (ζm/ζj)|+

1

4π2A
rc(θm)rc(θj) + F (θm) + F (θj) +

1

4π
rc(θm) +

1

4π
rc(θj), (10)

R(θm) =
1

2π
log
∏
n≥1

(1− ρn)2 +
1

4π2A
r2c (θm) + 2F (θm) +

1

2π
rc(θm)− 1

2π
log(R− r cos θm) (11)

and the auxiliary indefinite integral F (θ) is defined by

F (θ) = − 1

4π2α

∫ θ

0

αu− sinu

α− cosu
du.

Hence, any vortex crystal is a critical point of the Hamiltonian function (9) containing the logarithmic
particle interaction energy term.

We here regard the equations (7) and (8) as a linear (null) equation AΓ = 0, in which the (2N + 1)×
(N+1) real matrix A are computed from the locations (ϑm, φm) of N point vortices and a vector Γ ∈ RN+1

is given by

A =



0 F12 · · · F1N 0
F21 0 · · · F2N 0
...

...
. . .

...
...

FN1 FN2 · · · 0 0
H1 G12 · · · GN1 −1
G21 H2 · · · G2N −1
...

...
. . .

...
...

GN1 GN2 · · · HN −1


, Γ =


Γ1

Γ2

...
ΓN

V0

 .

The matrix A is called the configuration matrix, since it encodes the geometric information on the config-
uration of the point vortices on the toroidal surface. The solution vector Γ is referred to as an extended
strength vector, since it consists of the strengths of N point vortices and the latitudinal speed of rotation
V0. When we find a point configuration satisfying det(ATA) = 0, the configuration matrix A becomes
rank deficient and has a non-trivial null space. Hence, if Rank(A) = k, then the extended vortex strength
vector Γ belongs to N + 1 − k dimensional null space. In particular, when the rank of the null space to
the configuration matrix A is one, which is the case for the most of vortex crystals obtained in this paper,
we identify the strength Γm of the mth point vortex uniquely up to ± sign under a certain normalization
condition. The null space of A is easily constructed by the singular value decomposition. Let σm ∈ R,
um ∈ R2N+1 and vm ∈ RN+1, m = 1, . . . , N + 1 denote the singular values and their corresponding left
and right singular vectors, which are obtained by solving the coupled linear systems Avm = σmum and
ATum = σivm with σ1 ≧ σ2 ≧ · · · ≧ σN+1 ≧ 0.

As discussed by Newton and Chamoun [27], the singular values of the configuration matrix A for a given
vortex crystal measure how disorderly the point vortices are distributed on the surface of a torus. Suppose
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that we define the normalized eigenvalues by λ̂m = λm/
∑k

n=1 λn for m = 1, . . . , k with k = Rank(A),

where λm = (σm)2 is the eigenvalues to the covariance matrix ATA. Then the sequence (λ̂1, · · · , λ̂k) is
regarded as a discrete stochastic distribution, for which we introduce the entropy as follows.

S = −
k∑

m=1

λ̂m ln λ̂m.

If the configuration matrix is a random matrix, its corresponding entropy takes the maximum Smax = lnN ,
since the stochastic distribution is uniform, i.e., λ̂m = 1/N for all m ≦ k. On the other hand, the minimum

entropy Smin = 0 is attained for the most ordered state λ̂1 = 1 and λ̂k = 0 for k ≧ 2. Accordingly, the
entropy ratio ωN = S/ lnN (0 < ωN < 1) becomes a measure of “disorder” of the point configuration
for a vortex crystal. In addition, Newton and Chamoun [27] also discussed that vortex crystals with high
entropy ratio ωN become more “robust” than those with low entropy ratio, since the entropy tends to
increase when a point configuration is subject to generic perturbations,

Once the point configuration of a vortex crystal and its corresponding normalized strengths are specified,
we easily check its linear stability by computing the eigenvalues to the Jacobi matrix L ∈ R2N×2N of (2)
and (3) linearized around the configurations. Each component of L is approximated numerically by the
standard forward finite difference. For instance, its (m, j) component Lmj for m, j = 1, . . . , N is computed
by

Lmj =
∂Fm

∂θj
≈ 1

h
[Fm(ϑ1, . . . , ϑj + h, . . . , ϑN , φ1, . . . , φN )− Fm(ϑ1, . . . , ϑj , . . . , ϑN , φ1, . . . , φN )]

for a sufficiently small h > 0. Since the equations (2) and (3) are written as a Hamiltonian dynamical
system, the eigenvalues of the Jacobi matrix L become either a pair of real numbers with the opposite
signs or a conjugate pair of pure imaginary numbers. Let {µm}2Nm=1 denote the eigenvalues to the linearized
matrix L, and µN

L be the maximum of the real part of the eigenvalues, i.e., µN
L = max1≦m≦2N Re(µm).

Then, the vortex crystal is linearly unstable when µN
L > 0, while it is neutrally stable when µN

L = 0.

3 Ring configurations

A latitudinal polygonal ring configuration of identical N point vortices is called an N -ring, whose locations
are given by

ϑm = Θ0, φm =
2π

N
m, Γm = Γ, m = 1, . . . , N, (12)

for Θ0 ∈ R/2πZ and Γ ∈ R. It is shown that this configuration becomes a vortex crystal [32] and its linear
stability and nonlinear evolutions have been investigated by Sakajo and Shimizu [33]. In this section, we
consider the other two families of ring configurations of N point vortices that acquire a discrete rotational
symmetry in the longitudinal direction and confirm if they are vortex crystals.

3.1 Longitudinal vortex rings

Suppose that N point vortices are polygonally arranged along the line of longitude ϕ = 0. Owing to the
discrete longitudinal rotational symmetry by the angle γ0 = 2π/N , their locations are specified by

ϑm =
2π

N
(m− 1) + γ, φm = 0, m = 1, . . . , N, (13)

for γ ∈ [0, γ0). We here refer the configuration (13) to as a longitudinal N -ring. Figure 1 is an illustration
of a longitudinal 6-ring on the toroidal surface of R = 3 and r = 1, i.e., α = 3.0, in 3D Euclidean space.
The first point vortex with the strength Γ1 is set at ϑ1 = γ and φ1 = 0 and the others are polygonally
arranged around the line of longitude ϕ = 0 in the counter-clockwise direction.

The longitudinal 2-ring is always a vortex crystal. In particular, for γ = 0, the dimension of the null-
space of the configuration matrix A is four, since it corresponds to an antipodal configuration that has
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Figure 1: A longitudinal 6-ring configuration. The configuration of point vortices forms a regular hexagon
arranged along the line of longitude ϕ = 0 of the toroidal surface TR,r of aspect ratio α = R/r with R = 3
and r = 1. For the sake of visibility, we cut the torus in half and show its section to show the configuration
clearly.

an additional symmetry. Even when γ ̸= 0, it still gives a vortex crystal, but its corresponding null-space
is one-dimensional and their strengths become the same magnitude with the opposite signs. For N > 2,
the configuration matrix A for (13) always satisfies Rank(A) = N regardless of γ, which means that the
configuration becomes a vortex crystal with dimNull(A) = 1. Then the strength Γm(γ) of the mth point
vortex and the speed V0 belongs to the one-dimensional null-space spanned by the right eigenvector vN+1(γ)
to the zero singular value σN+1 = 0. Owing to one-dimensional freedom, we choose the extended strength
vector Γ(γ) by normalizing the right eigenvector vN+1(γ) so that its L2 norm up to N components becomes
the unity, namely

Γ(γ) =
vN+1(γ)√∑N

k=1 Γ
2
k(γ)

, (14)

in which Γm(γ) and V0(γ) are the mth component and the N + 1 component of the normalized strength
vector Γ(γ), respectively.

Figure 2 shows the strengths Γ(γ) of longitudinal N -rings for various N . First, we find that the identical
point vortices cannot be a vortex crystal along the longitude, since [1, 1, . . . , 1, V0]

T /∈ Span(Γ) for any V0,
which is in contrast with the latitudinal N -ring (12). Figure 2(a) indicates that, when the number of point
vortices is odd, the strengths are positive for all γ satisfying the following periodicity owing to the discrete
rotational symmetry.

Γ1(γ0) = Γ2(0), · · · ,Γk(γ0) = Γk+1(0), · · · ,ΓN (γ0) = Γ1(0).

The point vortex with the strongest vortex strength is always located in the inner region of the torus
where the curvature is negative, that is to say, the strongest one is Γ1(γ) for γ ∈ [0, γ0/2) and ΓN (γ) for
γ ∈ [γ0/2, γ0). For even cases, the situation is different from the odd cases as we see in Figure 2(b). The
magnitude |Γm(γ)| stays at the same level, while their signs are the opposite. To be specific, with N = 2M ,
we observe

Γ1(γ) = Γ3(γ) = · · · = Γ2M−1 > 0, Γ2(γ) = Γ4(γ) = · · · = Γ2M < 0 (15)

up to numerical tolerance.
The speed of the latitudinal rotation V0(γ), which is not shown here, is almost zero for even N , while it

has a small variation with the magnitude of O(10−4) for N = 3 but it vanishes as N increases. The entropy
ratio ωN (γ/γ0) for γ ∈ [0, γ0) is plotted in Figure 3(a). It becomes less dependent on γ and its magnitudes
decreases as odd N gets larger. This indicates that the point configuration of the longitudinal N -ring gets
well-organized as N increases. We now change the aspect ratio α and observe the linear stability of the
longitudinal N -ring. Panels (b) and (c) of Figure 3 show the log plots of the real part of the maximum
eigenvalue µN

L (γ) corresponding to the linearized matrix around the vortex crystal (13) for γ ∈ [0, γ0). The
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Figure 2: The strengths {Γm(γ)}Nm=1 for γ ∈ [0, 2π/N), when the number of point vortices is (a) N = 3, 5,
7 (odd) and (b) N = 4, 6, 8 (even).

strengths are chosen from the normalized extended strengths vector. The aspect ratio varies from α = 1.5
to α = 10. Since µN

L (γ) are all positive, the vortex crystals are linearly unstable. For N = 3 in Figure 3(b),
the vortex crystals for γ ∈ [0, γ0/2), where the number of point vortices in the inner region is larger than
those in the outer region, are more unstable than those for γ ∈ [γ0/2, γ1). For N = 4 in Figure 3(c), the
profiles are almost flat and tend to a certain positive constant as α gets larger.

We increase the number of point vortices. As far as we have confirmed, longitudinal N -rings of N ≦ 400
are vortex crystals for any γ. Their corresponding configuration matrix A has a one-dimensional null-space.
Since the speed V0 is almost zero and γ0 becomes smaller for large N , we focus on the vortex crystal of γ = 0
to observe how the distribution of the strengths converges as N increases. By normalizing the strengths so
that Γm = Γ(θm) with θm = 2πm/N , we regard them as a distribution Γ(θ) on θ ∈ [0, 2π), which is plotted
in Figure 4. For odd N , the distribution Γ(θ) tends rapidly to a positive continuous function as N → ∞ as
in Figure 4(a). This indicates that the longitudinal N -ring configuration converges a longitudinal vortex
sheet with the circulation distribution Γ(θ). The distribution has the maximum value at the innermost
point of the negative curvature θ = 0 and the minimum at the outermost point of the positive curvature
θ = π. On the other hand, the strength distribution for even N inherits the same sing-changing property
as that of (15) and becomes oscillatory. As N goes to infinity, the arrangement of point vortices seems
to converge a continuous “sheet” configuration, but the circulation distribution along the curve becomes a
discontinuously sign-changing singular one, which is unphysical.

3.2 K-aligned/staggered M-rings

For positive integers K and M , we consider a configuration of point vortices, where K latitudinal M -rings
are arranged evenly in the longitudinal direction. Its configuration is specified by

ϑk,m =
2π

K
(k − 1) + γ, φk,m =

2π

M
(m− 1) + Φk, k = 1, . . . ,K, m = 1, . . . ,M, (16)

in which γ ∈ [0, γ1) with γ1 = 2π/K and Φk ∈ R/2πZ denote the longitudinal and latitudinal phase
differences between M -rings respectively. For Φk = 0, the configuration is called a K-aligned M -ring, while
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Figure 3: (a) Plots of the entropy ratio ωN (γ/γ0) for N = 3, . . . , 8. (b,c) Log plots of the maximum of
the real part of the eigenvalues µN

L (γ) corresponding to the longitudinal N -rings for N = 3 and N = 4
respectively. The aspect ratio varies from α = 1.5 to α = 10.
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Figure 5: (a) The 3-aligned 10-ring and (b) the 3-staggered 10-ring for γ = 0 in (16).

it is referred to as a K-staggered M -ring when Φk = 2π
M (k mod 2). We note that N = KM is the total

number of point vortices of this configuration.
For K = 1, this configuration is nothing but a single M -ring (12), which is always a vortex crystal with

the identical strength [32]. The 2-aligned/staggered M -ring is a special case of relative equilibria, called
pairs of M -rings that has also been considered in [32]. Accordingly, in what follows, we focus on the case
of K ≧ 3. Figure 5 shows the illustration of the 3-aligned/staggered 10-rings with γ = 0 in 3D Euclidean
space. When we change γ, each of the latitudinal M -rings slides in the longitudinal direction. As far as we
have examined, for any γ ∈ [0, 2π/K) with K = 3 and any 3 ≦ M ≦ 10, 3-aligned/staggered M -rings are
always vortex crystals whose corresponding configuration matrices have a one-dimensional null-space. We
thus normalize the right eigenvector to the zero eigenvalue in the same manner as (14) in §3.1 to obtain
the strengths, which is denoted by Γk,m(γ) for the mth point vortex on the kth M -ring. As a matter of
fact, we find that M point vortices on the same line of latitude (M -ring) have the same strength. In other

words, Γk,m(γ) is independent of m. Hence, we consider the representative strength Γ̃k(γ) ≡ Γk,m(γ) for
the kth vortex ring in what follows.

Figure 6 is the plots of the representative strengths {Γ̃k(γ)}Kk=1 for γ ∈ [0, γ1) with γ1 = 2π/K.

When K = 3, they are all positive, namely, Γ̃k(γ) > 0. In addition, owing to the discrete rotational

symmetry in the longitudinal direction, we observe Γ̃1(0) = Γ̃3(γ1), Γ̃2(0) = Γ̃1(γ1), Γ̃3(0) = Γ̃2(γ1)

for the aligned configuration, and Γ̃1(0) = Γ̃3(γ1), Γ̃3(0) = Γ̃1(γ1), Γ̃2(0) = Γ̃2(γ1) for the staggered

configurations. We also notice that the strength Γ̃2(γ) of the second vortex ring becomes the largest
for all γ. In other words, the outermost vortex ring located in the positive curvature region has the
maximum representative strength. When K = 4, the sign of the strengths changes alternately, i.e., Γ̃1(γ),

Γ̃2(γ) > 0 and Γ̃3(γ), Γ̃4(γ) < 0. Owing to the discrete rotational symmetry, they satisfy Γ̃1(0) = −Γ̃4(γ1),

Γ̃2(0) = −Γ̃1(γ1), Γ̃3(0) = −Γ̃2(γ1) and Γ̃4(0) = −Γ̃3(γ1) for both configurations. We find numerically that
the K-aligned/staggered M -rings with K = 3, 4 and M = 10 become vortex crystals for the aspect ratios
α = 1.5, . . . , 10. Regarding the linear stability, we confirm that µN

L > 0 for γ ∈ [0, γ1) and they are thus
linearly unstable, although the plots of µN

L are not shown here to avoid redundancy.
Fixing M = 10, we increase the number of latitudinal rings. For K = 5, 6, 7 and 8, the K-

aligned/staggered 10-rings become vortex crystals whose configuration matrices have a one-dimensional
null-spaces except for the case of K = 6 and 8 with γ = 0, in which the dimension of the null-space is
two. Since the strengths of the point vortices on the same latitude are equivalent as observed for the
cases of K = 3 and K = 4, we again observe on the normalized representative strengths {Γ̃k(γ)}Kk=1 for

γ ∈ [0, γ1) with γ1 = 2π/K. Figure 7(a) and (b) show the plots of the representative strengths {Γ̃k(γ)}Kk=1

of K-aligned/staggered 10-rings for odd K = 5 and 7 respectively. They are positive and satisfy the same
periodicity as in K = 3. To be precise, we have

Γ̃1(0) = Γ̃K(γ1), Γ̃2(0) = Γ̃1(γ1), · · · , Γ̃k(0) = Γ̃k−1(γ1), · · · , Γ̃K(0) = Γ̃K−1(γ1)
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for aligned configurations and

Γ̃K̃(0) = Γ̃K̃(γ1), Γ̃k(0) = Γ̃K̃−k+1(γ1), Γ̃K̃−k+1(0) = Γ̃k(γ1), k = 1, . . . , K̃

for staggered configurations with K = 2K̃−1. For even K = 6 and 8, as shown in Figure 7(c,d) respectively,
the sign of the strength changes alternately and the discrete rotational symmetry gives rise to

Γ̃1(0) = −Γ̃K(γ1), Γ̃2(0) = −Γ̃1(γ1), · · · , Γ̃k(0) = −Γ̃k−1(γ1), · · · , Γ̃K(0) = −Γ̃K−1(γ1),

which is consistent with the case of K = 4.
Figure 8 shows the entropy ratio ωN of K-aligned/staggered M -rings with γ = 0 for K = 3, . . . , 10

and M = 3, . . . , 10. In both cases, the ratio increases monotonically as K and M get larger, which is
equivalent to say that the distribution of point vortices over the toroidal surface tends to be uniform as
N = KM increases. On the other hand, comparing Figure 8(a) and (b), the staggered configurations have
higher entropy ratio than the aligned ones, which is consistent with the fact that the points of the staggered
configuration fills the toroidal surface in a more scattered manner than those of the aligned configurations.

We consider many latitudinal rings to see the limiting behavior of K-layered 3-rings for K ≦ 800.
As far as we have confirmed numerically, those configurations are always vortex crystals with a one-
dimensional null-space. Figure 9 shows the 400-aligned 3-rings and the 800-staggered 3-rings illustrated
in 3D Euclidean space. As K gets larger, the aligned configuration tends to three longitudinal curves
around the handle of the torus, while we have the convergence of six longitudinal curves for the staggered
configuration. Generally, K-aligned/staggered M -rings tend to M/2M longitudinal continuous curves as
K → ∞. Since point vortices on each of the longitudinal K-rings have the same strengths, we pay attention
to the distribution of the representative strengths along one of the longitudinal curves around the handle.
We define Γ̃(θk) = Γ̃k(0) for θk = 2π/K. When K is odd, for aligned configurations, the value of Γ̃(θk)
converges to a continuous distribution as shown in Figure 10(a). This is consistent with the distribution of
a single longitudinal vortex sheet as shown in Figure 4. However, for staggered configurations, their value
change discontinuously. Specifically, the strength of every three vortex rings forms a continuous curve and
so we observe three curves in Figure 10(b). In the meantime, for even K, the distribution of the vortex
strength of the aligned configurations for K = 50, 100, 200 and 400 in Figure 10(c) are almost identical two
uniform lines with the opposite signs. For staggered configurations, the distribution converges very slowly
to four distributions that are composed of the strengths of every four layers.

4 Vortex crystals on helical curves

In the previous section, vortex crystals are constructed based on the “ansatz-based” approach, in which
we assume certain discrete rotational symmetries both in the longitudinal and latitudinal directions. Here,
we explore the existence of another family of vortex crystals that are specific to the toroidal geometry:
the existence of a handle structure. Let us notice that the fundamental group associated with the toroidal
surface has two non-trivial generators, say, x and y, corresponding to loops rotating in the latitudinal and
longitudinal directions respectively. Then any element in the fundamental group is expressed by xpyq for
p and q ∈ Z, which is realized as a curve in 3D Euclidean space that is homotpic to the following helical

curve x
(p,q)
h defined on R/2πZ:

x
(p,q)
h : s ∈ R/2πZ 7→ ((R− r cos ps) cos qs, (R− r cos ps) sin qs, r sin ps) ∈ E3.

We will find vortex crystals that are arranged along the helical curve in what follows.

4.1 Asymmetric vortex crystals

The simplest choice of N points is an evenly spaced arrangement on the helical curve. Namely, setting
sm = 2π

N m for m = 1, . . . , N , we simply check whether or not the configuration matrix corresponding to
(ϑm, φm) = (psm, qsm) has a zero singular value. However, unfortunately, this is not the case. Therefore, we

need to look for a good configuration of N point vortices along the helical curve x
(p,q)
h in a random manner.
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To accomplish this task, we use the Brownian ratchet scheme developed by Newton and Chamoun [28].

Without loss of generality, we assume that p and q are coprime positive integers so that the map x
(p,q)
h

becomes injective. For given (p, q) and N , letting N points move randomly along the curve, we find vortex
crystals as follows.

(i) [Guess the initial location] For m = 1, . . . , N , sampling ξm from the uniform distribution on [0, 2π
N ),

we set sm = 2π
N m + ξm. For each trial, we compute the singular values of the configuration matrix

for (ϑm, φm) = (psm, qsm). Repeating this step many times, we store the locations {sm}Nm=1 where
the minimum singular value becomes the smallest. The initial guess of the ratchet scheme is given
by this configuration with the smallest singular value, say, σmin, among the trials. This step is done
only once.

(ii) [Ratchet scheme] For m = 1, . . . , N , taking samples ξ̃m from the normal Gaussian distribution of

mean 0 and variance σmin and setting s̃m = sm + ξ̃m, we compute the smallest singular value σ̃min
of the configuration matrix for {s̃m}Nm=1. If σ̃min ≤ σmin, we renew the locations, i.e., sm = s̃m for
m = 1, . . . , N , and set σmin = σ̃min, otherwise the trial is discarded.

(iii) [Terminate the ratchet] The process is repeated until σ̃min falls below a certain predetermined thresh-
old, which is set to be of O(10−13) in this paper. We call the final state as an approximated configu-
ration of a vortex crystal.

(iv) [Post processing] The strengths {Γm}Nm=1 of point vortices and the latitudinal speed V0 are found from
the basis set consisting of the extended strength vector for the null space. Since all vortex crystals
shown here has one-dimensional null space, i.e., Rank(A) = N , normalizing the right singular vector

Γ̃ to the zero singular value so that
∑N

m=1 Γ
2
m = 1, we obtain the strengths and the latitudinal speed.

The ratchet scheme successfully generates vortex crystals for 3 ≦ N ≦ 8 on the helical curves x
(p,q)
h with

p+ q = 3, 4, 5. On the other hand, for N ≧ 9, the algorithm hardly converges, indicating that the singular
value σ̃min falls into a non-zero local minimum with a positive value. This is a drawback of the ratchet
algorithm originating from its stochastic nature, since the dimension of the search space for the random
walk gets larger. This phenomenon was observed in the studies of vortex crystals on the sphere [29, 30].

Figure 11 shows vortex crystals of eight point vortices on the helical curves x
(p,q)
h with p = 3, 4, 5 on

the toroidal surface of aspect ratio α = 3.0 in 3D Euclidean space. They are asymmetric point vortex
equilibria and their corresponding normalized strengths {Γm}8m=1 are listed in Table 4.1. Catalogues of
vortex crystals of N point vortices from N = 3 to N = 7 are shown in Figure 12 for p+ q = 3 and 4, and in
Figure 13 for p+ q = 5. They are illustrated as point configurations in the annulus {ζ ∈ C | ρ < |ζ| < 1} in

the complex ζ-plane defined through the stereographic projection (1). In each panel, the helical curve x
(p,q)
h

corresponding to the element xpyq of the fundamental group is drawn as dashed curves. The strengths of
the point vortices corresponding to the vortex crystals of Figure 12 and 13 are listed in Table 2 and Table 3
respectively. The vortex crystals in Figures 11, 12 and 13 are linearly unstable except for the case of N = 5
and (p, q) = (1, 2).

4.2 Helical longitudinal rings

As we observed in the previous section, when the number of the randomly moving points gets larger, it is
more difficult to obtain vortex crystals on the helical curves. This is due to the increase of the search-space
dimension for the random walk in the Brownian ratchet scheme. To deal with this difficulty, by imposing
a certain constraint on point configurations and exploring a smaller dimensional search space, we obtain
vortex crystals consisting of many point vortices. Let (p, q) be a given pair of coprime positive integers.
Suppose now that we choose L lines of latitudes, ϕℓ ∈ R/2πZ for ℓ = 1, . . . , L, going around the handle

of the toroidal surface. Then, each longitudinal line intersects with the helical curve x
(p,q)
h at q points.

We thus generate N = Lq point configurations aligned along the helical curve. In other words, the point
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Figure 11: Vortex crystals consisting of eight point vortices along the helical curves x
(p,q)
h on the toroidal

surface of aspect ratio α = 3.0 for the pairs of coprime positive integers (p, q) with p+ q = 3, 4 and 5. The
dashed curves represent the helical curves. They are all linearly unstable.

(p, q) Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ7 Γ8

(2, 1) 2.924e-2 4.666e-1 2.524e-1 4.666e-1 2.924e-2 4.666e-1 2.524e-1 4.666e-1
(1, 2) 2.592e-1 4.140e-1 2.950e-1 -4.047e-1 1.021e-1 -2.120e-1 -3.613e-2 6.738e-1
(3, 1) 5.154e-1 -2.428e-1 4.529e-1 -1.669e-1 3.302e-1 -1.844e-1 4.732e-1 -2.746e-1
(1, 3) 1.144e-1 4.254e-1 1.208e-1 2.155e-1 4.865e-1 4.993e-1 5.019e-1 8.379e-2
(4, 1) 1.613e-1 3.835e-1 3.347e-1 4.010e-1 3.903e-1 4.021e-1 3.146e-1 3.755e-1
(1, 4) 1.076e-1 -4.445e-2 5.141e-1 -4.837e-2 -5.262e-1 -1.519e-1 -6.474e-1 -2.859e-2
(3.2) 7.966e-1 2.127e-1 9.448e-3 -2.626e-4 -5.353e-1 -1.290e-2, 8.214e-2 1.629e-1
(2, 3) 2.105e-2 3.393e-1 6.571e-1 5.421e-2 4.608e-1 -1.263e-1 4.596e-1 1.005e-1

Table 1: Normalized strengths Γ = (Γ1, · · · ,Γ8) of eight point vortices on the helical curves x
(p,q)
h with the

pairs of coprime positive integers (p, q) corresponding to Figure 11.
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Figure 12: Vortex crystals consisting ofN = 3−7 point vortices on the helical curves x
(p,q)
h for (p, q) = (2, 1),

(1, 2), (3, 1) and (1, 3). In each panel, the points are illustrated as filled circles in the annular domain
{ζ ∈ C | ρ < |ζ| < 1} that are mapped by the stereographic projection (1) and the helical curve is drawn as
dashed curves. Symbols “u” and “s” indicate that the point vortex configuration is linearly unstable and
neutrally stable respectively.
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(p, q) N Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ7

(2, 1) 3 6.260e-1 7.690e-2 7.760e-1
4 3.262e-1 5.980e-1 3.109e-1 6.628e-1

　　　　 5 7.472e-1 -2.884e-1 5.681e-1 1.631e-1 -9.621e-2
　　　　 6 3.916e-3 5.163e-1 -2.366e-1 7.591e-1 -1.345e-1 2.885e-1
　　　　 ’7 1.112e-1 4.066e-1 6.026e-2 5.329e-1 3.175e-1 3.732e-1 5.428e-1

(1, 2) 3 5.026e-1 8.583e-1 -1.033e-1
4 1.369e-1 6.994e-1 -2.095e-1 -6.695e-1

　　　　 5 6.711e-1 3.864e-1 4.093e-1 3.238e-1 3.576e-1
　　　　 6 3.658e-2 -4.457e-1 5.478e-1 -4.106e-2 4.384e-1 -5.532e-1

7 6.098e-1 4.128e-1 -3.213e-3 8.849e-4 1.577e-1 4.690e-1 4.614e-1

(3, 1) 3 2.102e-1 9.716e-1 1.091e-1
4 1.457e-1 4.613e-1 7.180e-1 5.005-1
5 4.855e-2 -5.598e-1 -5.351e-1 3.237e-2 -6.300e-1
6 2.919e-1 1.404e-1 2.919e-1 4.714e-1 6.046e-1 4.714e-1
7 4.616e-2 3.478e-1 4.265e-1 3.624e-1 4.236e-1 3.907e-1 4.812e-1

(1, 3) 3 7.052e-1 2.315e-1 6.701e-1
4 6.777e-1 5.856e-1 -4.091e-1 1.743e-1
5 6.620e-1 5.878e-1 1.833e-1 -4.264e-1 -2.795e-2
6 7.877e-1 4.996e-1 2.311e-2 2.780e-1 1.642e-1 1.585e-1
7 1.836e-1 -4.000e-1 -3.502e-1 2.061e-1 2.826e-1 -4.269e-1 -6.157e-1

Table 2: Normalized strengths Γ = (Γ1, · · · ,ΓN ) of N point vortices corresponding to Figure 12.

(p, q) N Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ7

(4, 1) 3 5.784e-1 8.155e-1 -1.828e-2
4 5.000e-1 5.000e-1 5.000e-1 5.000e-1
5 4.481e-1 2.829e-1 4.264e-1 5.259e-1 5.108e-1
6 3.460e-1 3.754e-1 5.256e-1 3.979e-1 5.472e-1 7.311e-2
7 3.149e-1 1.890e-1 4.253e-1 3.747e-1 4.668e-1 3.571e-1 4.454e-1

(1, 4) 3 1.699e-1 3.280e-1 9.294e-1
4 5.821e-1 -3.937e-1 2.821e-1 6.532e-1
5 7.340e-1 4.180e-1 -2.404e-1 3.489e-1 3.272e-1
6 4.555e-2 2.295e-1 3.528e-1 8.256e-1 2.308e-1 2.931e-1
7 6.083e-1 2.201e-2 1.553e-1 -5.972e-1 -1.018e-2 2.899e-1 4.056e-1

(3, 2) 3 6.990e-1 -7.135e-1 -4.807e-2
4 5.563e-2 9.608e-1 2.690e-1 3.757e-2
5 4.929e-1 5.835e-1 5.717e-1 1.963e-1 -2.260e-1
6 2.716e-1 5.218e-1 -3.569e-2 1.930e-1 -5.648e-2 7.824e-1
7 5.151e-1 4.773e-1 4.297e-1 8.684e-3 -1.641e-1 4.454e-1 -3.112e-1

(2, 3) 3 7.175e-1 4.055e-2 6.954e-1
4 4.910e-1 -6.281e-1 -5.397e-1 2.700e-1
5 3.880e-1 5.895e-1 3.907e-1 5.197e-1 2.814e-1
6 1.260e-1 9.793e-1 9.145e-2 -3.739e-2 8.628e-2 8.835e-2
7 4.813e-1 1.645e-1 1.842e-1 1.384e-1 1.748e-1 8.048e-1 9.996e-2

Table 3: Normalized strengths Γ = (Γ1, · · · ,ΓN ) of N point vortices corresponding to Figure 13.
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Figure 13: Vortex crystals consisting ofN = 3−7 point vortices on the helical curves x
(p,q)
h for (p, q) = (4, 1),

(1, 4), (3, 2) and (2, 3). In each panel, the points are illustrated as filled circles in the annular domain
{ζ ∈ C | ρ < |ζ| < 1} that are mapped by the stereographic projection (1) and the helical curve is drawn as
dashed curves. Symbols “u” and “s” indicate that the point vortex configuration is linearly unstable and
neutrally stable respectively.
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configuration forms L longitudinal q-rings revolving helically around the handle. We investigate whether
the point configuration can be a vortex crystal for an appropriate choice of {ϕℓ}Lℓ=1.

For instance, taking naively ϕℓ = 2π
L (ℓ − 1) for ℓ = 1, . . . , L, we set the N = Lq parameters as

sℓ,m = ϕℓ

q + 2π
q (m − 1) ∈ R/2πZ for m = 1, . . . , q so that the points at (ϑℓ,m, φℓ,m) = (psℓ,m, qsℓ,m)

are on the helical curve x
(p,q)
h . Then we find that the smallest singular value of the configuration matrix

corresponding to this point configuration is not zero. Accordingly, allowing the L latitudinal lines move

randomly, we search for L longitudinal q-rings along the helical curve x
(p,q)
h that form vortex crystals using

the following modified Brownian ratchets scheme:

(i) [Guess the initial location] For ℓ = 1, . . . , L, sampling ξℓ from the uniform distribution on [− π
L ,

π
L ),

we set ϕℓ = 2π
L (ℓ − 0.5) + ξℓ. For each trial, we obtain sℓ.m = ϕℓ

q + 2π
q (m − 1) for ℓ = 1, . . . , L

and m = 1, . . . , q, from which we compute the singular values of the configuration matrix for
(ϑℓ,m, φℓ,m) = (psℓ,m, qsℓ,m). Repeating this step many times, we store the locations {ϕℓ}Lℓ=1 where
the minimum singular value becomes the smallest. The initial guess of the ratchets scheme is given
by the configuration having the smallest singular value, say, σmin, among the trials. This step is
done only once.

(ii) [Ratchet scheme] For ℓ = 1, . . . , L, taking samples ξ̃ℓ from the normal Gaussian distribution of mean

0 and variance σmin and setting ϕ̃ℓ = ϕℓ + ξ̃ℓ, we compute the smallest singular value σ̃min for the

configuration matrix corresponding to {ϕ̃ℓ}Lℓ=1. If σ̃min ≤ σmin, we renew the locations, ϕℓ = ϕ̃ℓ for
ℓ = 1, . . . , L, and set σmin = σ̃min, otherwise the trial is discarded.

(iii) [Terminate the ratchet] The process is repeated until σ̃min falls below the threshold of O(10−13).

(iv) [Post processing] When the dimension of the null space of the configuration matrix is one, the strengths
Γm and the latitudinal speed V0 are obtained as the basis set consisting of the extended strength
vector for the null space. Normalizing the right singular vector to the zero singular value so that∑N

m=1 Γ
2
m = 1, we obtain the strengths and the velocity.

For L = 1, it is nothing but a single longitudinal q-ring, which is always a vortex crystal as shown in § 3.1.
When L = 2, the modified Brownian ratchet scheme provides vortex crystals for any q = 2, . . . , 19 and

p < q. That is to say, for each pair of (p, q), there exists a real γ
(p,q)
2 ∈ [0, π) such that the two q-rings are

aligned along the longitudinal lines at ϕ1 = γ
(p,q)
2 and ϕ2 = γ

(p,q)
2 + π, which are the two sections of the

toroidal surface cut by the plane −x sin γ
(p,q)
2 +y cos γ

(p,q)
2 = 0 in 3D Euclidean space. For L ≧ 3, the ratchet

scheme hardly converges, except that we obtain vortex crystals when L = 3, 5, 7 and q = 5, 3, 7, 11, 13, 17, 19
are prime numbers, and p are multiples of L less than q. Then the longitudinal lines {ϕℓ}Lℓ=1 are evenly

spaced in the latitudinal direction. To be specific, for each (p, q), there exists a real γ
(p,q)
L such that the

longitudinal q-rings are arranged helically on the lines of latitude ϕℓ =
2π
L (l − 1) + γ

(p,q)
L for l = 1, . . . , L.

This observation gives rise to the following conjecture.

Conjecture 1. Let L and q be prime numbers, and p < q be multiples of L. Then there exists a real

γ
(p,q)
L ∈ [0, 2π/L) such that L longitudinal q-rings consisting of the intersection points between the helical

curve x
(p,q)
h and the lines of latitude ϕℓ =

2π
L (l − 1) + γ

(p,q)
L form a vortex crystal.

These vortex crystals are referred to as L helical longitudinal q-rings on the curve x
(p,q)
h . As examples,

we show the vortex crystals for L = 7 and q = 19 consisting of N = Lq = 133 = 19·7 point vortices arranged
helically along the curve x

(p,q)
h for p = 7 and p = 14 in Figure 14(a) and (b) respectively. In both panels,

the seven longitudinal 19-rings are evenly spaced in the latitudinal direction, revolving around the handle
in the longitudinal direction along the helical curve. Since those 19-rings on the latitudinal line have the
same strength distribution, we thus plot the strengths of point vortices on one of the longitudinal 19-rings
for (p, q) = (7, 19) and (14, 19) in Figure 14(c) and (d) respectively, which indicate that the strengths are
positive and the distribution depends on the number of branches p.

Let us summarize the properties of the L helical longitudinal q-rings for L = 3, 5, 7 and q = 5, 7,
11, 13, 17, 19. The strengths of the point vortices are positive and all longitudinal q-ring have the same
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Figure 14: Point configurations of L = 7 helical longitudinal 19-rings for (a) p = 7 and (b) p = 14. They are

vortex crystals consisting of N = 133 = 19 ·7 points arranged helically along the curves x
(7,19)
h and x

(14,19)
h ,

which are drawn as dotted curves, respectively. Their normalized strengths Γ1, . . . ,Γ19 corresponding to one
of the longitudinal rings on the same longitude are plotted for (c) (p, q) = (7, 19) and (d) (p, q) = (14, 19).
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Figure 15: Entropy ratio ωN for L helical longitudinal q-rings on the curve x
(p,q)
h for L = 2, 3, 5, 7 and

q = 5, 7, 11, 13, 17, 19. The number of point vortices is N = Lq.

strength distribution. This is consistent with what we have observed in § 3.2 for K-aligned/staggered
M -rings with odd M , since N = Lq is odd. They are all linearly unstable since we confirm numerically
µN
L > 0 for those configurations. The entropy ratios for those vortex crystals with respect to N = Lq are

plotted in Figure 15, which shows that the ration increases as N gets larger. Comparing the entropy ratio
with those for K-aligned/staggered M -rings in Figure 8(a) and (b), we find that helical longitudinal q-rings
tend to acquire a larger entropy ratio for the same N . This means that the point vortices on the twisted
longitudinal q-rings spread in a complicated manner on the surface of the torus than K-aligned/staggered
M -rings.

5 Concluding remarks

5.1 Vortex crystals and the toroidal geometry

We obtain vortex crystals on the surface of a torus, in which relative configuration of point vortices are
unchanged with rotating in the latitudinal direction at a constant speed. Regarding the equations (7) and
(8) as a linear null equation for the configuration matrix, we look for point configurations whose corre-
sponding configuration matrix becomes rank-deficient. The strengths of point vortices and the latitudinal
speed of rotation belong to the null space of the configuration matrix. All calculations are performed via the
singular value decomposition of the configuration matrix, which is much easier than solving the equations
as a nonlinear equation with respect to point locations for given strengths.

To find rank-deficient configuration matrices, we have adopted an ansatz-based approach and/or a
stochastic approach. The ansatz-based approach reveals that longitudinal N -rings andK-aligned/staggered
M -rings become vortex crystals. Those vortex crystals are linearly unstable regardless of the aspect ratio
of the torus, which is in contrast with latitudinal N -ring configurations whose linear stability depends on
the aspect ratio [33]. When the number of point vortices on the latitudinal ring is odd, the strengths of
point vortices are positive and their distribution varies in accordance with the curvature of the torus. As we
increase the number of point vortices, each longitudinal vortex ring converges to a longitudinal vortex sheet
with a continuous positive strength distribution. On the other hand, when the number of point vortices
is even, the sign of the strengths change alternately. As a result, each vortex ring tends to an unphysical
“vortex sheet” with a singular sign-changing distribution as the number of point vortices gets larger.

We have also found vortex crystals of N point vortices on the curve x
(p,q)
h winding around the handle
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of the torus for a pair of coprime integers p and q with p < q. They are obtained by allowing N points
random walk on the curve using the Brownian ratchet scheme. For small N , the Brownian ratchet scheme
generates asymmetric vortex crystals, which are linearly unstable. In addition, combining an ansatz-based
approach with the ratchet scheme, we obtain vortex crystals, called L helical longitudinal q-rings, consisting
of N = Lq points located at the intersection points between L equi-spaced longitudinal lines and the curve

x
(p,q)
h for primes L and q, and p(< q) that are multiples of L. Those helical vortex crystals are all linearly

unstable.
To summarize, vortex crystals obtained in this paper give rise to longitudinal point configurations that

are specific to the existence of the handle structure of the torus. Let us remember that the Brownian
ratchet scheme has been utilized to obtain many vortex crystals in the plane [28] and on the surface of a
sphere [29]. Comparing the present results with the preceding ones, the ratchet scheme is less probable to
find vortex crystals on the toroidal surface. We expect that it substantially stems from the inhomogeneity
of the toroidal geometry that is less symmetric than the plane and the spherical surface with a constant
curvature. It is interesting to consider the number of vortex crystals for given N on the toroidal surface in
comparison with those on the spherical surface.

In connection with the configurations of quantized vortices, the longitudinal N -ring for odd N is not
realizable, since the ration of their strengths cannot be integers generically as we see in Figure 2(a). On
the other hand, the longitudinal N -ring for even N may be always realizable, while the magnitudes of the
vortex strength are almost the same. The other vortex crystals obtained in the paper fail to have quantized
strengths. This may be remedied by adding a special flow called “pore” flow on the surface of a torus as
discussed in [10, 25], which will be a future study.

5.2 Vortex crystals and point configurations on manifolds

The problem of finding vortex crystals is closely related to finding “good” point configurations on manifolds
that are used quadrature rules, computer design and interpolation of functions in the finite element scheme.
Apart from the particle-interaction based approach adopted in this paper, one can take another approach to
find good point configurations that minimize a given energy function. The most famous problem is finding
a set of N points ωN = {xi}Ni=1 over d′-dimensional compact set A embedded in d-dimensional Euclidean
space that minimize the following Riesz s-energy Es(ωN ).

Es(A,N) := inf
ωN⊂A

∑
i̸=j

|xi − xj |−s,

where s > 0 and | · | denotes Euclidean distance. The parameter s controls the particle interaction. If s = 1,
the energy E1(ωN ) is Coulomb energy corresponding to the classical potential theory of charged particles.
As s → ∞ with keeping N unchanged, this is equivalent to the best packing problem, while it becomes the
minimizing problem of the following inter-particle energy with the logarithmic kernel,

E0(A,N) = inf
ωN⊂A

∑
i ̸=j

log |xi − xj |,

which has the same singularity of the Hamiltonian (9). See the review of this minimizing problems by
Hardin and Saff [21]. One of the central issues of this problem is clarifying the behavior of Es(A,N) as
N → ∞. See the results in [6, 7, 22] for d-rectifiable compact manifolds with Hausdorff dimension dH ,
where Es(A,N) = O(N2) for 0 < s < dH and Es(A,N) = O(N2 logN) for s ≧ dH . Another minimizing
energy problem in connection with the quadrature rule on compact manifolds has been investigated by
Damelin et al. [12, 13].

Let us finally discuss the relation between the minimizing point configurations and vortex crystals on
compact surfaces. The spherical surface has been the main object, since the problems of s = ∞ and s = 0
are related to famous Tammes problem [35] and Smale’s seventh problem [34]. See also the introduction and
the reference list in Newton and Sakajo [29] in terms of the applications to many physical and biological
problems, in which they discussed the connections between their point configurations and the optimal
packings of the spherical surface. On the contrary, there are less results on point configurations on the
toroidal surface. In the numerical simulation of finding point configurations minimizing Riesz s-energy
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by Hardin and Saff [21], most of the points are distributed in the outer domain of the torus where the
curvature is positive for small s ≪ 1, while they spread uniformly for larger s > 1. Vortex crystals given
here spread in the longitudinal and latitudinal directions evenly and their randomness has been measured
through the entropy ratio associated with the configuration matrix. Although the Hamiltonian energy (9)
has the same logarithmic singularity as E0(ωN ), the ring configuration of point vortices in Sections 3 and
4 scatter over the surface and can not be a minimizer of the Hamilton energy, since the it is not positive
definite, i.e., the Hessian around the configuration have the positive eigenvalues. The relation between the
enery-minimizing point configurations and vortex crystals will also be an interesting future topic.
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