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Abstract

In the last few decades, several alternative models of gravity have been developed in the hope to
produce large-scale deviations from general relativity (GR). The principal aim of this program is to
uncover what physics could be at works behind the present-day acceleration of the Universe, other than
a fine-tuned cosmological constant. Among other motivations to explore new models of gravity are also
the other puzzles of cosmology, such as dark matter, as well as the incompleteness of our description of
gravity in the UV. However, satisfying the constraints from current observations while guaranteeing full
theoretical consistency is still a challenging task for several such constructions; both do indeed put strong
restrictions on the theory space of gravitational theories. Two notable examples are the instabilities that
plague some of the cosmological realizations of massive gravity theories and its extensions, or the recent
restrictive bound on the speed of tensor modes from the multi-messenger observation of a neutron star
binary merger.

In this thesis we show that there exist new classes of alternative theories of gravity that are obser-
vationally and theoretically viable, and produce interesting phenomenology. In particular, we focus first
on minimally modified gravity (MMG) theories, which propagate only the two tensor modes by means
of violations of the Lorentz symmetry in the gravitational sector. In this context, we present a class
of theories constructed on the basis of the existence of an Einstein frame, in which the gravitational
Lagrangian is equivalent to GR. As observational constraints, we consider in particular the bound on
the speed of tensor modes, as well as on the variation of the gravitational constant. We find that there
subsists a wide class of interesting possibilities to modify GR. In addition to this construction, we review
other theories that fall into the MMG class.

As a second example of a new alternative theory of gravity, we construct and study the minimal
theory of quasidilaton massive gravity (MQD). This theory is motivated by some difficulties to find
viable Friedmann-Lemâıtre-Robertson-Walker cosmologies in the context of quasidilaton massive gravity
theories, but can also be effectively understood as an extension of a specific MMG theory, the minimal
theory of massive gravity, by rendering dynamical part of the fiducial metric structure. We show that
MQD is viable for a wide region of its parameter space, that it will be efficiently constrained by future
cosmological surveys, and can sustain interesting phenomenology, in particular produce weak gravity
while propagating the same number of degrees of freedom as usual scalar-tensor theories.

In order to motivate the models we present, this thesis also includes two compact review chapters,
which cover respectively the standard model of gravity and cosmology, and several alternatives to GR
together with current and prospective constraints. In light of the large number of future observational
efforts to constrain the cosmological dynamics as well as the behavior of gravity on these scales, model-
building efforts come by as crucial tools to be able to interpret the future data most efficiently.
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Chapter 1

Introduction

General relativity (GR), as proposed by Einstein more than a century ago, is one of the most successful
constructions of theoretical physics. What started only as a peculiar1 unified view of space, time, and
gravity, has now become a cornerstone of our understanding of Nature, and its predictions have led
to various technological and epistemic advances2. As recently as in the last five years, the theory has
provided humanity with new tools: thanks to the effort of large scientific collaborations such as the LIGO
(the Laser Interferometer Gravitational-wave Observatory) and Virgo collaborations, we are now able to
detect gravitational waves from compact binary inspirals, mergers, and ringdowns [2]; in parallel, recent
interferometric observations have also let us obtain the first image of a black hole’s photosphere [3]. These
recent achievements are only the last in a series of confirmations of GR as a solid theory.

It is intriguing that, in spite of this success, there are in fact very good reasons to think that GR should
be modified. One may distinguish two main physical clues in this direction: first, as far as is known today,
the microscopic world follows the rules of quantum mechanics, and second, the largest, macroscopic scales
harbor several unexplained phenomena. In the first case, the non-renormalizability of GR [4] indicates
that while it is a valid approximate model at our scales—as confirmed by all the experimental successes
until today—when shorter distances (or higher energies) are considered, it should be replaced by a more
exhaustive theory. Our failure to date to find and confirm this encompassing theory may be referred as
the quantum gravity problem, which has motivated a wide range of ambitious models (see, for example,
[5, 6, 7, 8, 9]). It is however not the quantum gravity problem, but instead the unexplained phenomena
at large scales (the aforementioned second reason to go beyond GR) that will be studied in this thesis.
In a nutshell, both the understanding coming with GR as well as technological advances have opened
the doors to the investigation of scales that range from galactic (O(105) ly) to cosmological (O(1010) ly)
(not to mention precision science on solar-system scales). Applying our understanding of gravity on
these scales has then led to the surprising indirect discovery of two yet misunderstood constituents of our
Universe: dark matter and dark energy. Dark matter is misunderstood because it is optically invisible,
and years after its indirect detection [10, 11] there remains the possibility that we will never observe it
other than through gravitational signatures, or even that it is not matter at all, but instead that we do
not understand some dynamics at these scales, hence a modification of the gravitational laws. Next, dark
energy is formally speaking the constituent that drives the current acceleration of the expansion of the
Universe (meaning on even larger scales than dark matter). It was detected some 20 years ago [12, 13],
and it is still a veritable theoretical puzzle due to its small yet non-zero value [14] while experimentally its
properties are not yet too strongly constrained. Several particular examples of theories and cosmological
scenarios, such as brane-world scenarios (see e.g. [15]), extra fields (see e.g. [16, 17, 18]), . . . have since
then effectively proved that modifications of the gravitational theory were especially apt to play a role in
the dark energy puzzle as well.

Motivated by the fundamental question “Can there be a consistent alternative to GR?”, in this thesis
we will explore the route of modified theories of gravity at the largest scales —commonly called infra-red
(IR) modifications of gravity3—in particular following the clues of the dark energy puzzle. Focusing on
the dark energy puzzle is a common approach, based both on simplicity, but also on the large separation
of scales between the different aforementioned mysteries. Nevertheless, as of today, it is not possible to

1There were several critical views at the time, see for instance [1].
2Notably, we can now discuss understanding how gravitational waves will tell us about the origins of our Universe, all

while driving guided by the GPS of a smartphone. Thanks Einstein!
3A common metonymy (which will be used from time to time in this thesis) is the use of the term “modified gravity”

alone, which should be understood as modification to GR, or modification at some given scales. . .
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CHAPTER 1. INTRODUCTION

exclude cosmological-scale physics eventually having an impact on our understanding of dark matter,
at smaller scales, or even quantum gravity, the ultimate ultra-violet problem. It is while keeping this
possibility in mind that we choose not to discuss in details either dark matter or high-energy physics.

Aside from the possibility to find a solution to the dark energy puzzle, there are several other technical
reasons to consider alternatives to GR. On the one hand, it is important to push and refine the boundaries
of our present theoretical knowledge of gravity: this includes for example exploring our “neighborhood”
in the space of gravitational theories. One may also entertain the idea that GR may have been singled
out (as a theory) for our Universe for some fundamental reason, and by exploring other possible theories
one could potentially find answers to the question “What makes GR special?”, and hence deepen our
understanding of GR itself. Maintaining a healthy skeptical view (here, of GR) may be the best route to
serendipitous discoveries, as has been countless times across the history of science. On the other hand, it
is especially interesting to study modifications now, due to the wealth of data that is projected to appear
thanks to ambitious experiments in the next decades. The most interesting experiments for the purposes of
this thesis are within cosmology; future lensing and spectroscopic galaxy surveys [19, 20, 21, 22, 23, 24],
on a volume yet unseen, will allow to refine our statistical mapping of dark matter, and probe both
the growth of structures and the background evolution of the Universe. In parallel to this, ever more
numerous gravitational wave detections [25, 26], as well as novel frequency windows [27, 28, 29, 30, 31],
will contribute to set other stringent constraints on alternative theories of gravity. In light of these future
observations, the coming years look very promising in terms of research in gravity.

In the last two decades, several archetypes of modified theories of gravity have attracted more at-
tention. Scalar-tensor theories4, in which a scalar field couples non-minimally to gravity, have recently
been explored more thoroughly, and a family of theoretically healthy theories has been delimited among
higher-order theories [32]. Due to the high precision of tests at astrophysical scales [33], it is now com-
monly admitted that a screening mechanism (see e.g. [34]) should be incorporated into most (if not all)
phenomenologically interesting scalar-tensor theories, in order to suppress extra forces within the regime
of these tests. Several screening mechanisms have therefore been considered. Higher-order theories will
for example tend to implement the Vainshtein screening mechanism [35]; other possibilities, for instance
the chameleon mechanism [36, 37], have been proposed. Interestingly, notwithstanding the presence of
screenings, many of these theories have already been constrained thanks to a measurement of the speed
of the gravitational waves [38, 39]5. Still, surviving scalar-tensor theories and more generally scalar fields
may represent reasonable candidates of dark energy. Note that one may also consider other extra fields
(in kind and number), for example vector fields, instead of just one scalar field (see e.g. [42]).

Intimately related to higher-order scalar-tensor theories, another class of theories has seen a renewal
of interest in the same two decades: massive gravity theories and their extensions [43]. These were first
revived in a form violating Lorentz symmetry [44, 45, 46], and a Lorentz-invariant theory was found a few
years later [47]. Massive gravity theories endow the graviton with a mass, hence modifying the dynamics
of gravity and, potentially, the force that is experienced by matter fields: one expects for example a
Yukawa-type suppression of the gravitational interaction. Another particularity of several massive gravity
theories is to provide a way to accelerate the Universe merely due to the vacuum expectation value of
the graviton potential. These two features render the proposal of a massive gravity theory a priori very
appealing. It was however found that cosmology within Lorentz-invariant massive gravity requires to go
beyond the standard homogeneous and isotropic Friedmann-Lemâıtre-Robertson-Walker cosmology [48],
and that its extensions are seldom “cosmology-complete”6 (i.e. can sustain a realistic cosmology) due to
instabilities in the extra modes (see e.g. [49]). Other properties shared by most massive gravity theories
include the use of the Vainshtein screening mechanism [35], and the presence of a high-energy cutoff scale
parametrically lower than the Planck scale [44].

The technical difficulties of massive gravity and its extensions, as well as the recent strong hints that
the speed of gravity should closely match the one in GR (and hence the possible stringent bounds of scalar-
tensor theories), motivate us to revisit the archetypes of modified gravity, and explore new avenues. More
particular questions we will try to address are, for instance: “How well do we understand the boundaries of
consistent modified gravity?” and “Can we develop new consistent (cosmology-complete) theories that have
non-degenerate phenomenology, and that are testable in a foreseeable future?” In particular, we explore
wider applications of violations of Lorentz invariance on cosmological scales, and revisit an extension of
massive gravity from this perspective. We will see that, in addition to satisfying the current bounds

4See [18] for a recent review.
5See [40] for some scrutiny regarding the scales. Conservatively, the measurements should therefore be seen as a hint

rather than a pure constraint on the theory. See also [41] for additional theoretical constraints.
6Term coined here in analogy with Pac-man completeness common in computer sciences: a useful programming language

should allow a full implementation of the pac-man game.
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CHAPTER 1. INTRODUCTION

and including promising cosmological scenarios, there are other benefits to the theories we present, in
particular the possibility of interesting phenomenology such as weakened gravity for cosmological matter
perturbations.

More holistically, we will also argue in favor of minimalism as a guiding principle for constructing
theories, which becomes particularly useful once violations of Lorentz invariance are allowed for. Minimal
theories [50] modify GR while keeping the minimum number of degrees of freedom. This is not only
practical from the point of view of simplifying computations, but it also ensures that no potentially
unstable or unphysical modes are added. In the case of minimally modified gravity theories with two
degrees of freedom, one may expect that screening mechanisms are not needed. In the case of massive
gravity theories, the often unstable extra modes of the graviton can be removed by a minimization
procedure [51].

Detailed outline of the thesis

General structure The thesis has been written with the intent of (i) giving the reader a clear introduc-
tion of the premises and the objectives of the field of modified gravity, and (ii) explaining why the models
proposed are interesting. We would like to introduce the reader to the reasons to modify GR, how to
modify GR, and what are some current limits of the alternatives to GR. We therefore start, in chapter 2,
with a comprehensive review of GR, cosmology, and several tools of the trade, such as the Hamiltonian
analysis or the study of cosmological perturbations. In chapter 3, we present several standard modified
theories of gravity, as well as some limitations of these theories. These two chapters will have hopefully
convinced the reader of the necessity to understand alternative theories further. In chapter 4 we then
present a class of new constructions called the minimally modified theories of gravity. I have contributed
to this class of theories through the works [50, 52]. Finally, in chapter 5 is presented another novel mod-
ified theory of gravity, the minimal theory of quasidilaton massive gravity, another original contribution
to the field realized during this thesis [53, 54, 55]. Chapter 6 presents the conclusions. The rest of this
section provides a more detailed summary of the arguments of the thesis.

Chapter 2 This is the first of the two review chapters. We start by a description of the basic elements
that lead to GR, and explain in which sense it is a unique construction. The construction of the gravi-
tational action of GR relies fundamentally on the equivalence principles (section 2.1.2), on the choice of
semi-Riemannian geometry and the use of tensors (section 2.1.3), and on covariance and local Lorentz
invariance (presented in section 2.1.4). Lovelock’s theorem, introduced in section 2.1.5 allows then to
single out the Einstein-Hilbert Lagrangian and the Einstein equations. We note in section 2.1.6 that the
matter couplings are another sine qua non of a gravitational theory; we then have all the ingredients to
define the action and equations of GR in 2.1.7. The end of the first part of the chapter, section 2.1.8,
is devoted to the discussion of Hamiltonian structure of GR, together with an exposition of the Dirac
analysis technique; we include also a preliminary remark on the field content of gravitational theories in
section 2.1.9.

The second part of chapter 2, section 2.2, discusses the study of cosmology. It is the puzzles of
cosmology, in particular the dark energy puzzle, that form the most important motivation for this thesis.
The presentation of cosmology is customary, and we divide the presentation into two further parts, one
concerning the homogeneous and isotropic Universe, and another devoted to the perturbative approach. In
section 2.2.1, we present FLRW (homogeneous and isotropic) cosmology, as well as the basic terminology.
We also present a rough picture of cosmological evolution, the different eras, and the importance of the
diverse matter content of the Universe. Shortly put, we present what is (roughly) known about the
Universe. This allows to set the basis for section 2.2.2, in which we present what is (definitely) not
known in cosmology, that is the dark sector of the Universe: dark matter and dark energy. We then
introduce the standard model of cosmology, and subsequently point out that this dark sector could be
explained not only by additional matter content, but also by a modification of our description of gravity.
Finally, we conclude the section by mentioning other possible future incognita, i.e. tensions within the
standard model of cosmology. At this point we have introduced the dark Universe from the point of view
of background cosmology, but it is not clear how to tell apart and constrain different models. For this,
one indeed needs to go beyond FLRW cosmology, and we therefore move on to a short introduction of
cosmological perturbation theory in section 2.2.3. We then present which observables are interesting for
studying alternative theories of gravity, in section 2.2.4. Among these are, notably, weak gravitational
lensing and the redshift-space distortion spectrum. We finally identify the common impact of modified
gravitational dynamics on these observables.
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CHAPTER 1. INTRODUCTION

Chapter 3 This is the second review chapter of this thesis. Motivated by our lack of knowledge of the
dark sector of the Universe, in section 3.1 we explore some possibilities to go beyond the Lovelock theorem.
In particular, we review the addition of scalar fields in section 3.1.1, which is one of the most commonly
used forms of modification of gravity. After discussing possible symmetry breakings in section 3.1.2, we
also review massive gravity, another notable example of modification to GR, in section 3.1.3. Massive
gravity is promising as a simple modification of gravity on large scales, but has proved difficult to im-
plement and has only recently been understood enough for cosmological applications. In fact, the need
to build consistent/stable cosmologies has motivated several extensions of the original formulation. The
second part of the chapter, section 3.2, is devoted to the bounds on large-scale modifications of gravity.
We first discuss some current constraints from cosmological observables in section 3.2.1. We then empha-
size the importance of planned future surveys for the characterization of the dark sector. Other regimes
are also discussed, such as the weak-field regime relevant for e.g. the solar system in section 3.2.2, strong
field regimes (e.g. black holes) in section 3.2.3, and the radiation regime in section 3.2.4. Gravitational
radiation has become recently accessible, and has already provided several bounds on alternative theories
of gravity. As a whole this chapter sets the context (and state of the art) for the original works in this
thesis.

Chapter 4 We review and investigate the possibility to obtain new interesting alternative theories of
gravity from Lorentz violations. The theories we present only propagate non-linearly two degrees of
freedom, as does GR, and are hence called minimally modified gravity theories (MMGs). In section 4.1
we discuss the motivations to study this class of theories specifically. Both consistency and simplicity
motivate us to follow the idea of the least number of propagating degrees of freedom. In section 4.2
we review the general construction proposed in [56, 57]. The following sections 4.3 and 4.4 are then
based on an original work realized during this thesis. In section 4.3 we segregate two types of MMGs,
in the hope that this will help systematize the study of MMGs. In section 4.4, we propose a new class
of theories built using specifically the property of one of the two types. The class of theories that we
proposed allows for interesting modifications of background cosmology that are dependent on the matter
energy momentum tensor. This modification is consistent with observations and can potentially answer
the mystery posed by the current tension in the measurements of the Hubble rate. In section 4.5, we
focus instead on a review of the minimal theory of massive gravity (MTMG) [51], which is an interesting
example of the second type of theory. This theory sustains weak gravity on the scales of cosmological
matter perturbations, and is hence especially interesting in view of future surveys. Finally we summarize
the chapter in section 4.6.

Chapter 5 We present the original minimal theory of quasidilaton massive gravity (MQD). We start
in section 5.1 by a presentation of the previous quasidilaton theories, including an introduction to the
motivations behind the addition of a quasidilaton field, and a comprehensive review of the extensions
proposed to cure the problems of the original formulation. This allows to introduce MQD in section 5.2.
This section and the following are based on the work realized during this thesis. We start by presenting
the action of MQD in section 5.2.2. Since some properties of the theory can be better appreciated
from the Hamiltonian perspective, we discuss the total Hamiltonian and the nature of the constraints
in section 5.2.3. We then move on to the phenomenology of the theory with background cosmology in
section 5.3, details on the attractor in section 5.3.1, and a detailed study of perturbations in section 5.3.2,
including the phenomenology in the sub-horizon limit and within the quasi-static approximation. We
conclude the section with a summary of the specificities of MQD in section 5.4, notably the possibility
of weak gravity at linear perturbation scales.

Chapter 6 Finally, we present our conclusions, summarize the results of the work realized during the-
sis—in particular the phenomenological interest of the theories we introduced—address the problematics
presented in this introduction, and discuss possible directions for future study.

Appendices This thesis also includes appendices containing useful tools and expressions that would
have charged excessively the main text. In appendix A, we give for reference some tools useful for the study
of cosmological perturbations. In appendix B, we give a few extra expressions for MTMG. In appendix C,
we describe the Hamiltonian analysis of the shift-symmetric cubic Horndeski theory (this appendix was
mostly reproduced from [54]). Finally, appendix D contains further details on the Hamiltonian analysis
and the analysis of cosmological perturbation of MQD.
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CHAPTER 1. INTRODUCTION

Declaration

The original part of this thesis is based, for the chapter on minimally modified gravity (chapter 4), on
publications [50] published in JCAP in collaboration with Katsuki Aoki, Antonio De Felice, Chunshan
Lin, and Shinji Mukohyama, and, for the minimal theory of quasidilaton massive gravity (chapter 5), on
the publications [53, 54, 55] all published in Physical Review D in collaboration with Antonio De Felice
and Shinji Mukohyama.

The original results presented within this thesis are:

1. The construction of a class of non-trivial modifications of gravity following from the existence of
an Einstein frame. These theories propagate no extra degree of freedom, can pass present bounds
such as on the speed of gravitational waves, and yet modify both the background (via a dynamical
dark-energy equation of state) and the short scale gravitational constant (which becomes time-
dependent). It is expected that the procedure presented can be generalized in several interesting
directions.

2. The construction of the to-date most promising candidate among quasidilaton theories of massive
gravity. The theory also generalizes MTMG so that viable cosmology with both a self-accelerating
background and interesting phenomenology can be expected. Phenomenology with a cosmological
matter fluid has been worked out.

We append to this thesis (in the version submitted towards the completion of the doctoral degree)
two additional publications, [58] published in Physical Review D in collaboration with Antonio De Felice,
Shinji Mukohyama, and Yota Watanabe, and [52] published in Physical Review D in collaboration with
Antonio De Felice, François Larrouturou and Shinji Mukohyama. Their content is not directly included
in this thesis. Indeed, although the two publications also explore alternative models of gravity, the results
they propose do not concern directly the construction of minimal theories. In these two works we have
shown that:

1. The proof-of-concept that a viable cosmology can be obtained within the chameleonic extension of
bimetric theory [59]. We both explore the background evolution from radiation-dominated initial
conditions, we study the stability of cosmological perturbations, and we show that the generalized
Higuchi bound [49, 60] can be satisfied at all times.

2. MTMG allows for a range of essential GR-like spherical symmetric exact solutions, in particu-
lar the Schwarzschild solution with or without cosmological background. This has not yet been
accomplished within other standard models of massive gravity [61].

These are two examples of necessary steps in order to test the validity of alternative theories of modified
gravity.

11



CHAPTER 1. INTRODUCTION

12



Chapter 2

Theories of gravity

2.1 General relativity, behind the scenes

In this chapter, we will discuss some fundamental building blocks of general relativity. Simply speak-
ing, it is by knowing more about these building blocks that one will garner a clear idea on how to think
beyond general relativity. As will be seen in the next chapter, these foundational elements may seem
at first glance difficult to evade, since generic modifications run into several problems, thus making the
construction of alternative theories of gravity a challenge. Fortunately this challenge was successfully
approached by several scientists and research groups, in rather inventive ways.

The content reviewed in this section can be found in several textbooks; we therefore chose to retain the
concise style of a cursory reminder rather than delving into an in-depth exposition. We invite interested
readers unfamiliar with these subjects to consider the textbooks [62, 63, 64, 65].

2.1.1 Notation

• Unless explicitly stated we will be working mostly in 4 space-time dimensions, with a (−,+,+,+)
signature of the metric.

• We work in natural units, where the speed of light and the reduced Planck constant are unity,
c = ~ = 1.

• Abstract spacetime indices follow the simple notation in which the 4-dimensional are written as
Greek letters such as µ, ν, ρ, . . ., whereas 3-dimensional indices have Latin letters such as i, j, k, . . .
When we introduce vielbeins, we use capital curly Latin lettersA,B, C, . . . for the local 4-dimensional
indices, whereas 3-dimensional indices are written with capital Latin letters such as I, J,K, . . .
Finally, internal indices are written using Latin letters a, b, c, . . . unless some confusion can arise, in
which case we explicit which set of indices is in use.

• Symmetrization and anti-symmetrization of indices are respectively denoted A(ij) ≡ 1
2 (Aij +Aji)

and A[ij] ≡ 1
2 (Aij −Aji).

• We use the Einstein convention for summed indices. Traces of tensors and matrices are commonly
written by omitting the indices, or using square brackets and explicit indices whenever there is a
chance of confusion.

• The symbols for metrics and derivatives are the following. For four-dimensional metrics we use
the letters g and f , with ∇ the covariant derivative for the metric g. For spatial slices and three
dimensional metrics we use the symbols γ, Γ, γ̃, and the covariant derivatives of γ and Γ are D and
D, respectively. When necessary, we write the Christoffel symbol also using the symbol Γ.

• To prevent any confusions, we use the symbol H for the Hubble rate, and the symbol H for Hamil-
tonians.

2.1.2 Equivalence principles

Einstein formulated his ideas about space-time by considering the equivalence principle, which ul-
timately helped giving form to GR. The rough idea of the equivalence principle is that our Universe

13



2.1. GENERAL RELATIVITY, BEHIND THE SCENES CHAPTER 2. THEORIES OF GRAVITY

exhibits broad equivalence classes of experimental setups for which the results are the same: for example,
as was already captured by the famous experiments by Galileo, two objects of diverse composition but
with the same mass will fall in the same way in the Earth’s gravitational field.

Although nowadays several experiments allow for considerable constraints, clear-cut limits of these
equivalence classes are still a subject of research. Different theories of gravity predict different equivalence
classes, therefore a careful understanding of these classes, in particular how encompassing they are, is
essential to understand gravity. In fact, after the advent of GR, with the refinement of experimental
research on the foundations of gravitational theories started by Dicke [66], several versions of the equiva-
lence principle were distinguished. Most notably, on has, from the least restrictive to the most restrictive:
the weak equivalence principle, the Einstein equivalence principle, and the strong equivalence principle.
Here we detail these principles, reproducing lines of [65].

The weak equivalence principle (WEP) is based on the idea that gravity should apply in the same
way to all test bodies1. In details, as expressed by Will [65]:

(WEP) “[I]f an uncharged test body is placed at an initial event in spacetime and given
an initial velocity there, then its subsequent trajectory will be independent of its internal
structure and composition.”

The existence of this equivalence class is fundamental when choosing how gravitational fields couple
to matter fields. Then, the Einstein equivalence principle (EEP) gives a broader equivalence class by
focusing not only on trajectories but also on any type of non-gravitational experiment. Again as in [65]:

(EEP) “(i) WEP is valid, (ii) the outcome of any local nongravitational test experiment
is independent of the velocity of the (freely falling) apparatus, and (iii) the outcome of any
local nongravitational test experiment is independent of where and when in the universe it is
performed.”

The existence of this equivalence class is fundamental as it can be related to the theory being a metric
theory. Clearly, Lorentz invariance for the matter sector is also closely related to the EEP: locally, one
can find coordinates in which the effects of gravity for the trajectory of point particles can be neglected,
implying that special relativity should be recovered. Finally, the strong equivalence principle (SEP), gives
an even broader equivalence class by broadening the class of test bodies and considering gravitational
experiments. We reproduce again the statement from [65]:

(SEP) “(i) WEP is valid for self-gravitating bodies as well as for test bodies, (ii) the
outcome of any local test experiment is independent of the velocity of the (freely falling)
apparatus, and (iii) the outcome of any local test experiment is independent of where and
when in the universe it is performed.”

This equivalence class is commonly related to GR alone, and the nonexistence of further fields in the
theory. This related idea, that a gravitational theory should be a theory for the metric alone, is one of
the hypothesis of Lovelock’s theorem [67, 68], which we will state later in the text.

2.1.3 Basic elements

As mentioned above, the equivalence principles translate the idea that a theory of gravity should
reduce locally to the ideas of special relativity, and should therefore be a theory of the space-time metric
[65]. In this subsection, we would like to make the notions of metric and space-time more precise. One of
the fundamental insights that the advent of general relativity has offered is that gravitational theories can
be seen as dynamical theories of geometry, and in particular of the geometry of space-time. We therefore
introduce here, rather canonically, a short list of tools that allow to describe this geometry.

It is generally assumed that space-time is well described by a semi-Riemannian geometry (in principle
it would be possible to generalize this structure, for example to metric-affine geometries [69, 70], but for
simplicity we will not do so). In such a description, one can measure (infinitesimal) distances using a
symmetric, invertible, positive semi-definite metric tensor gµν via

ds2 = gµν(x)dxµdxν (2.1)

1Here in the sense of [65]: “[a] body that has negligible self-interaction energy (as estimated using Newtonian theory)
and that is small enough in size so that its coupling to inhomogeneities in the external fields can be ignored.” See the same
reference for a detailed definition of a “local experiment”.
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where ds2 is an infinitesimal space-time interval, dxµ is the dual basis of the tangent space at location xµ

of the manifold, which can be interpreted as the small space-time displacements around x, with Greek
letters as indices.

On the tangent space to space-time points, contravariant vectors with upper-indexed components,
e.g. vµ, are then defined as components of the vector space generated by the vector basis {∂µ} of the
tangent space. Covariant vectors, e.g. wµ, can be defined as duals to the contravariant vectors, with
the basis {dxµ}. Tensors of type (l,m), with l upper indices and m lower indices can be defined within
the tensor product of copies of both tangent space and its dual. Finally it is easy to understand the
metric, a (0, 2)-tensor, as well as its inverse gµν , a (2, 0)-tensor, as the maps between covariant and
contravariant indices. Tensors have a simple transformation property under coordinate transformations,
or rather diffeomorphisms x→ x′(x),

T ′µ1...µl
ν1...νm (x′) = Tα1...αl

β1...βm
(x)

∂x′µ1

∂xα1
. . .

∂x′µl

∂xαl
∂xβ1

∂x′ν1
. . .

∂xβm

∂x′νm
. (2.2)

In order to go further in the understanding of the surrounding space-time (to a given point), we need to
define higher derivatives, especially derivatives of the tensors. The covariant derivative is defined using a
connection Γγµν , for example acting on a vector as

∇µvν ≡ ∂µvν + Γνµρv
ρ , (2.3)

which is easily generalized to tensors with all kinds of indices. Under metric compatibility with the
covariant derivative ∇λgµν = 0 as well as under symmetricity in the two lower indices, the connection
can be written as

Γλµν =
1

2
gλρ (∂µgρν + ∂νgρµ − ∂ρgµν) , (2.4)

defining what is called the Christoffel symbol. As we mentioned, these hypotheses are strictly-speaking
not necessary, and using a connection independently of the metric leads to metric-affine theories of
gravity2, see for example [69, 70].

One may then define curvature tensors, notably the Riemann tensor, and its traces the Ricci tensor
and the Ricci scalar

Rρσµν ≡ ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ + ΓρνλΓλµσ , Rµν ≡ Rρµρν , R ≡ gµνRµν . (2.5)

The Einstein tensor will also come in handy, we therefore define it as

Gµν = Rµν −
1

2
Rgµν . (2.6)

Among others, it satisfies the contracted Bianchi identity ∇µGµν = 0.

2.1.4 Symmetries

Symmetries are central in Einstein’s work. First, the Einstein equations, and later the Einstein-Hilbert
action, are postulated in a way that leaves the physics completely independent of the coordinates used to
describe it. This symmetry is coined general covariance, or diffeomorphism invariance. Although it was
later recognized that general covariance can be implemented in many physical constructions, it played
nevertheless an important role in the development of GR. In practice, general covariance is implemented
by using tensors, with all indices contracted, to build the Lagrangian of the theory. This, in turn, leads
to covariant equations of motion.

In fact, in GR invariance under diffeomorphisms rather translates a redundancy in our description
of the physics. It is a local symmetry, and thus should be rather called gauge invariance. One may
equivalently do calculations in any gauge (i.e. choice of coordinates), as long as the physically measured
variables are carefully defined: covariance will ensure that they will be gauge-independent. In several
cases, for example in context of cosmological perturbations, it is customary to form gauge-invariant
quantities ab initio, which are much more practical when one needs to relate them to observables (the
gauge-invariant variables for cosmological perturbations will be defined in section 2.2.3).

As a practical note, throughout the text, it will be often useful to rely on infinitesimal transformations
to probe and understand important properties about given symmetries. In the context of covariance,
infinitesimal diffeomorphism can be written as

xµ → xµ + ξµ(x) , (2.7)

2This generalization can be interesting for alternative theories of gravity, see e.g. [71].
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where x denotes the xµ collectively, and where the ξµ are unspecified space-time functions. At linear
order this transformation will hence act on the metric as

gµν(x)→ gµν(x) +∇µξν(x) +∇νξµ(x) . (2.8)

We now discuss a second important set of symmetries in GR. The equivalence principles is what
accounts and enforces these symmetries, pertaining to the local structure of spacetime. In the formulation
of the equivalence principles, the local notion of relativistic invariance is implied, i.e. reflecting a local
Lorentz symmetry. In fact, it is possible to construct general relativity out of the local Poincaré symmetry,
by gauging the translation subgroup of Poincaré. In order to include interactions with fermions, it becomes
convenient to gauge the Lorentz group as well [72, 73, 74, 75, 76].

2.1.5 Lovelock’s theorem

The study of invariants under coordinate transformations provides a beautiful guide to construct
theories of gravity. Under the assumption of diffeomorphism invariance, and with a few more hypotheses
essentially related to the strong equivalence principle, the number of Lagrangian densities that can be
constructed out of the metric and its first and second order derivatives are limited. This is nicely expressed
in the results derived by Lovelock [77], which limit the gravitational Lagrangian to the so-called Lovelock
invariants given by:

δµ1...µ2d

[ν1...ν2d]Rµ1µ2

ν1ν2 . . . Rµ2d−1µ2d

ν2d−1ν2d , (2.9)

where d is limited by the dimensionality of the space considered. In four dimensions, The Lovelock
invariants are: i) the Ricci scalar R, ii) the Pontryagin invariant P , as well as iii) the Gauss-Bonnet
invariant W . To this one may add the cosmological constant Λ. In the case of the Pontryagin and the
Gauss-Bonnet invariants, they are purely boundary terms, and therefore do not contribute to the field
equations [77].

On the basis of the study of the aforementioned invariants, and focusing on the gravitational field
equations, Lovelock derived a powerful theorem [67, 68], which can be stated as follows:

Theorem (Lovelock)—Assuming 4-dimensional space-time, and under the requirements of
diffeomorphism invariance and exclusive use of the metric field, the most general second order
equations of motion derivable from a local action and satisfying symmetricity and divergence-
freeness, are the Einstein field equations in vacuum, i.e.

Gµν + gµνΛ = 0 ,

with Gµν the Einstein tensor (defined in (2.6)) and Λ a constant.

The Lovelock theorem is one of the main guides to constructing theories beyond general relativity, since
one will need to break at least one of its assumptions to bypass the Einstein equations in vacuum. This
allows in particular to classify different modifications to the gravitational theory.

2.1.6 Minimal coupling

Inspired by the equivalence principles, the last assumption that we need to make to reach a complete
gravitational theory—once we have trusted Lovelock for the vacuum Lagrangian—is about the way matter
couples with the metric. In the case where only the metric is a gravitational field, the minimal coupling
prescription

ηµν → gµν , ∂ → ∇ , (2.10)

allows to correctly recover Lorentz invariance locally, starting from a flat space-time matter Lagrangian,
and couples to matter in a non-derivative way (see e.g. [78]). Note that in the case of spinors, the
situation is more involved (but can be treated in the vielbein formalism), and we will therefore only
consider bosonic fields from now on for simplicity.

2.1.7 General Relativity

Now we have all the elements to write the action for general relativity, i.e. an action for the metric
and the non-gravitational fields, which is diffeomorphism invariant. The Einstein-Hilbert action coupled
with matter is

SEH + Smat =
M2

P

2

∫
d4x
√
−g (R− 2Λ) + Smat[g, ψ], (2.11)
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which leads, as anticipated partly by the Lovelock theorem

Gµν + gµνΛ = 8πGNTµν , (2.12)

where the gravitational constant GN is here related to the Planck mass by MP = 1/
√

8πGN , and the
energy momentum tensor of the matter fields Tµν is defined as

Tµν =
1

2
√
g

δSmat

δgµν
. (2.13)

The equations (2.12) are called the Einstein field equations. The conservation of the energy-momentum
tensor ∇µTµν = 0 can be also obtained on-shell from the contracted Bianchi identity.

2.1.8 Constraint structure of GR

As Dirac showed [79, 63], the redundancies present in gauge theories can be best understood and
studied through the Hamiltonian formalism. However, in order to define an Hamiltonian, one should also
choose a direction of time: technically, one chooses a specific space-time foliation in 3-dimensional spatial
hypersurfaces, i.e. with a time-like normal vector.

3 + 1 decomposition

In practice, one may perform a foliation through the Arnowitt-Deser-Misner (ADM) decomposition
of the metric; one writes

ds2 = −N2dt2 + γij(dx
i +N idt)(dxj +N jdt) , (2.14)

which defines the lapse function N , the shift vector N i, and the spatial metric γij , whose inverse is then
denoted γij . A foliation can then be defined via the normal vector uµ, through

N = −u0 , N i = −u
i

N
, (2.15)

Working in this decomposition, the spatial metric can be pulled-back into a projection operator,

γµν = gµν + uµuν , γij = gij , γikγkj = δij . (2.16)

Indices on the spatial hypersurfaces, i, j, k, . . ., can be raised an lowered thanks to the spatial metric. Note
that in principle the ADM decomposition is general and needs no a priori, but it can be also reached
starting with a scalar field (say φ) with time-like gradient whose surfaces of constant value define the
foliation. The normal vector to the hypersurfaces can then be defined in each point via

uµ =
∂µφ√

−gµν∂µφ∂νφ
, (2.17)

which is then loosely equivalent to the decomposition (2.14). Going back to the ADM decomposition,
it is easy to construct a 3-dimensional Riemann curvature tensor with the induced metric γij , but this
object will of course not include all the information of the full four dimensional curvature. To have a
complete picture of space-time, one needs to define the extrinsic curvature

Kij =
1

2N

(
γ̇ij + 2D(iNj)

)
, (2.18)

where we have also used Di, the covariant derivative compatible with γij , and the over-dot denotes a time
derivative. The extrinsic curvature occupies a privileged place in the subsequent Hamiltonian analysis,
as it carries time-derivatives of the spatial metric, the field of interest. Finally, the decomposition of the
GR Lagrangian density is given by

L = N
√
γ
(
R[γ] +KijKij −K2

)
+ boundary term . (2.19)

More details on the 3+1 decomposition, in particular pertaining to the boundary term which will not be
relevant within this thesis, can be found in the standard textbooks, e.g. [64, 80].
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Hamiltonian of GR

The Hamiltonian is now obtained by Legendre transformation. Being fully agnostic about which ADM
elements are dynamical, we have in principle the canonical variables N , N i, and γij , collectively named
qA. The first step is to compute the conjugated variables, which we respectively name πN , πi, and πij ,
collectively named pA, and are given by

pA =
δL
δq̇A

. (2.20)

where the dot denotes a time derivative. In the context of field theory it is customary to use a field as
canonical variable, but this should really be understood as having a canonical variable at each point of
space. The GR Hamiltonian can then be written

H ≡
∫
d3x

(∑
A

pAq̇
A − L

)
=

∫
d3x

(
−NR0 −N iRi

)
,

where

R0 =
M2

P

2

√
γ R[γ]− 2

M2
P

1
√
γ

(
γilγjk −

1

2
γijγkl

)
πijπkl +R0,mat ,

Ri = 2
√
γγikDj

(
πkj
√
γ

)
+Ri,mat .

In fact it turns out that both πN = πi = 0, hinting that N and Ni are not dynamical variables.

Dirac analysis

We now turn to a brief summary of the Dirac analysis [79, 63] which we then apply to GR. The
Dirac analysis can make the constraints (for example gauge symmetries) in a system apparent; it relies
on a procedure that allows to exhaust the constraints that apply on the phase space and to ultimately
understand the correct number of degrees of freedom in a field theory. The analysis relies on the Poisson
brackets, which we define here (in three dimensional space) as

{f(x), g(y)} =

∫
d3z

∑
A

(
δf(x)

δqA(z)

δg(y)

δpA(z)
− δf(x)

δpA(z)

δg(y)

δqA(z)

)
. (2.21)

With this definition, the Poisson brackets give the usual result

{qA(x), pB(y)} = δABδ
(3)(x− y) , (2.22)

where δ(3) is a Dirac δ function. For a given function of the canonical coordinates and momenta, the
Poisson bracket with the full Hamiltonian allows to compute its time derivative,

d

dt
f [qA, pA, t] = {f,H}+

∂f

∂t
. (2.23)

In order to compute Poisson brackets with functions involving derivatives of the coordinates or momenta
it is convenient to define corresponding smeared functionals, as in

f → f [φ] ≡
∫
d3xφ(x)f(x) , (2.24)

with φ(x) a well-behaved function falling to zero at infinity. This allows to conveniently study the result of
Poisson brackets that would otherwise contain derivatives of Dirac δ functions. The result of the Poisson
bracket between to smeared functionals A1[φ1] and A2[φ2] is chosen to be the kernel A3(x, y) defined by

{A1[φ1], A2[φ2]} ≈
∫∫

d3x d3yφ1(x)A3(x, y)φ2(y), (2.25)

up to factors of the 3-dimensional measure
√
γ, in order to obtain only space-time scalars.

Finally we express the notion of constraint surface, which is the restriction of the phase space
generated by the set of all constraints in the Hamiltonian, for example Φ(qA, pA, t) = 0, where H 3
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Figure 2.1: Operational scheme of the Dirac analysis of the Hamiltonian.

∫
d3xλΦ(qA, pA, t) (the constraints are enforced via the equations of motion of auxiliary fields, the La-

grange multipliers λ). With the constraint surface, one can define the notion of weak equality, to be
understood as equality when restricted to the phase space surface. This weak equality is denoted given
two functions f and g of the phase space variables,

f ≈ g . (2.26)

Now that we have defined the basic tools, we can describe the Dirac procedure, as summarized in
Fig. 2.1. This procedure goes as follows:

Step 1 • Define a Hamiltonian with all available constraints.

Step 2 • Compute the Poisson bracket of each constraint with the current Hamiltonian, which
yields the conservation in time of the constraint.

Step 3 • If any result of the previous step does not vanish weakly (on the constraint surface), and
cannot be solved in terms of Lagrange multipliers, they should be added to the set of
constraints.

Step 4 • Repeat from Step 1, unless no new constraints have been generated at the previous step.

Step 5 • Once the previous steps are finished, one may analyze the final constraint algebra (see
below).

In the final analysis, one may distinguish two types of constraints: those that commute with all other
constraints on the constraint surface, which are called first-class, and the rest, which are called second-
class. When there are several non-commuting constraints, some scrutiny may be needed before judging
whether there really is no first-class constraint. A foolproof method is to compute the determinant of the
matrix formed by all Poisson brackets between the constraints. If this determinant vanishes, it means
that there exists at least one first-class linear combination of constraints. One should therefore find and
exclude these first class constraints to then count the number of remaining constraints.

Once the constraints are categorized between first-class and second-class, the counting of the degrees of
freedom is straightforward: each first-class constraint removes 2 phase space degrees of freedom and each
second-class constraint removes 1 instead. In fact, first class constraints represent gauge invariances [63],
which can be seen as equivalence classes in the phase space. On the other hand second class constraints
can be visualized as constraints restricting the dynamics on a lower dimensional hypersurface in the phase
space.

The Hamiltonian analysis we described above is useful to determine degrees of freedom non-linearly.
We will first apply it to GR in this chapter, but also discuss its application to several modified models
of gravity in chapter 3. The analysis was especially important in the obtention of novel theories, as
explained in chapters 4 and 5.
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Hamiltonian analysis of GR

As we will see GR has a particular Hamiltonian structure: it is purely made of constraints. In the
case of GR one can should first add πN = πi = 0 as constraints to the starting Hamiltonian. We obtain
the primary Hamiltonian (this time in vacuum, for simplicity)

H(1) ≡
∫
d3x

(
−NR0 −N iRi + ξiπi + ξNπN

)
, (2.27)

where ξi and ξN are Lagrange multipliers. The constraint algebra is simple, the only Poisson bracket,
{πi, πN}, yielding identically 0. The conservation of these constraints turns out to yield exactly R0 and
Ri, which we now should add including Lagrange multipliers ΛN and Λi to the structure to form the
secondary Hamiltonian

H(2) ≡
∫
d3x

(
−(N + ΛN )R0 − (N i + Λi)Ri + ξiπi + ξNπN

)
. (2.28)

From now, we call R0 and Ri the Hamiltonian and the momentum constraints. If one now computes the
algebra of constraints, one finds commutators that vanish only on the constraint surface. The values of
these commutators are

{R0[φ],Ri[f i]} = −
∫
d3x
√
γ φDi

(
R0f

i
)
≈ 0 ,

{R0[φ2],R0[φ2]} =

∫
d3xRi

(
φ1Diφ2 − φ2Diφ1

)
≈ 0 ,

{Ri[f i],Rj [gj ]} =

∫
d3xRi

(
gjDjf i − f jDjgi

)
≈ 0 . (2.29)

Now, it is trivial to see that these constraints are indeed conserved in time. The loop procedure is now
finished, and one may move on to the inspection of the constraint algebra. In fact we already know that
all constraints are first-class, as the Poisson brackets presented previously show. Therefore there are

12 (γ(ij)) + 6 (N i) + 2 (N)− 2× 1 (R0)− 2× 3 (Ri)− 2× 3 (πi)− 2× 1 (πN ) = 4 (2.30)

phase space degrees of freedom, i.e. two physical degrees of freedom. These are the two gravitational
wave polarizations.

2.1.9 Remark on the field content of gravity

The question as to whether gravity can be correctly represented by a theory without dynamical metric
but with a lower spin field can be answered negatively (refer to e.g. Feynman’s lectures [81]). One may
then ask whether it is still possible to include other fields in addition to the metric in the gravitational
sector. In fact, this turns out to be difficult (although nowadays this difficulty is commonly bypassed
through screening mechanisms as we will see in the next chapter), for the following reason: a new field
which would couple to matter would add its own interaction to the game, thus affecting, for example, the
forces within the solar system. Since the current measurements of gravitational interactions and effects
within the solar system are very precise (see section 3.2.2 and [65]), a sizable new force is easily excluded,
unless the field is very massive. To summarize, based on a direct interpretation of the observations on
solar system scales, it is likely that the gravitational theory only contains the metric as a fundamental
field. We will however see in the next chapter that this need not necessarily be the case.

2.2 Cosmology

In this section we first review the very basic elements of the Friedmann-Lemâıtre-Robertson-Walker
cosmology. This is useful to present the basic definitions that will then be used in the latter chapters.
The discussion of the background cosmology also let us introduce the idea of both dark matter and dark
energy. We argue that these puzzles are one of the main reasons to try to modify gravity.

After background cosmology has been reviewed, we focus on the perturbed universe, motivated by the
insufficiency of background cosmology to resolve between possible modified theories of gravity. We again
discuss the basic elements of cosmological perturbation theory and move on to discuss how to probe the
inhomogeneous Universe.

As in the previous section, the results of this section are found in classical textbooks e.g. [82, 83, 84],
to which we refer the reader interested in more details.
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2.2.1 The cosmological background

On super-cluster scales (from about 100 Mpc), observations can be interpreted as the Universe being
roughly homogeneous and isotropic. This observation, is known as cosmological principle. The most
general metric satisfying the cosmological principle, homogeneity and isotropy, can be written, using
polar spatial coordinates

ds2 = −N(t)2dt2 + a(t)2

(
dr2

1− kr2
+ r2dΩ2

)
, (2.31)

where dΩ2 is a shorthand notation for the line element on S2,

dΩ2 ≡ dθ2 + sin2 θdφ2 , (2.32)

and where the constant k can take three values

k =

 +1 closed Universe,
0 flat Universe,
−1 open Universe.

(2.33)

This metric is commonly called Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric. The function
a(t), the scale factor, relates spatial distances at two given times, and hence its increase/decrease can be
understood as the expansion/contraction of the Universe. Note also that using time reparametrization
symmetry one commonly sets N(t) = 1. However, since in the next chapters we will be dealing with
cases without this symmetry, we will leave it from time to time in GR, and always in theories beyond
GR3. Finally, since observations strongly favor the k = 0 case [85], it is not abnormal to consider only
that case, for simplicity and agreement with observations (this is also motivated by inflationary models,
see the discussion after equation (2.49)), giving the flat FLRW metric (here given in spatially Cartesian
coordinates)

ds2 = −N(t)2dt2 + a(t)2δijdx
idxj . (2.34)

With the FLRW metric, it is customary to obtain time derivatives of a(t) once the Christoffel and
the curvature tensors are considered, therefore we define

H ≡ ȧ

aN
, (2.35)

the Hubble rate of expansion, with the over-dot denoting a derivative with respect to t. We will see
that this quantity is rather important. The detailed expressions for the metric quantities are then left
in the appendices. The existence of a time-dependent scale factor has some interesting consequences, in
particular the existence of a cosmological redshift of radiation defined as

1 + z ≡ a(tobs)

a(tem)
=
λobs

λem
, (2.36)

where obs stands for “observation” and em stands for “emission”. Redshift is commonly used to estimate
and discuss distances and time in cosmology. A redshift z = 0 corresponds to today and here, while
higher redshifts correspond to increasingly distant objects (and the light we receive from these objects
was emitted in the past). Other common time-variables include the conformal time dt = adη or the
e-folding number Ne = ln (a/ai), with ai a given initial scale factor.

The cosmological principle also restricts the form of the source term in the Einstein equations to

Tµν = (ρ(t) + P (t))uµuν + P (t)gµν , (2.37)

where uµ is the vector normal to spatial hypersurfaces. In fact, in the coordinates of the FLRW space-
time, one has uµ = δµ0 . It turns out that that the functions ρ and P can be interpreted as the density
and pressure of a comoving perfect fluid that fills the Universe. This is the way matter fields will appear
on cosmological scales.

Once plugged into the Einstein field equations, the FLRW metric and the fluid energy-momentum
tensor yield the Friedmann equations

3H2 =
1

M2
P

ρ− k

a2
+ Λ , (2.38)

2Ḣ = − 1

M2
P

(ρ+ P ) , (2.39)

3Leaving N(t) is also useful to keep in general as an accounting device for time derivatives.
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whereas the behavior of matter is directed by a conservation equation

ρ̇+ 3H (ρ+ P ) = 0 . (2.40)

In fact, only two of these three equations are independent, which can be understood by the Bianchi
identities conditioning the Einstein tensor.

We would like to understand a little bit better what physics enters into the fluid energy-momentum
tensor. One may define the equation of state,

w =
P

ρ
, (2.41)

which turns out to be expressed simply for a range of different types of matter. First of all, the cosmo-
logical constant can be interpreted as a fluid with w = −1. We will detail the behavior of the Universe in
its presence later. Then, one finds, after considering the microphysics, that non-relativistic matter will
behave as pressureless dust with w = 0, whereas radiation has w = 1

3 . Finally one may consider the
spatial curvature as behaving with w = − 1

3 . Indeed the conservation equation (for a constant w) yields

ρ ∝ a−3(w+1) . (2.42)

This last equation is important in recognizing that given an initial amount of each kind of fluid, for,
say, an expanding Universe, there may be different eras in which one or the other fluid dominates. In
our Universe, one commonly admits that at early enough times (yet after inflation) the content of the
Universe was given by (admitting here a non-zero k)

Ωr � Ωd � |Ωk| � ΩΛ , at some t� t0 , (2.43)

where t0 denotes the current time, and with the density parameters

Ωα =
ρα

3M2
PH

2
, (2.44)

where the subscript α reads Λ for the cosmological constant, k for the spatial curvature, d for dust,
r for radiation. With such initial conditions one starts in a radiation-dominated Universe, and then
subsequently reaches a dust-dominated era, whereas the Universe ”ends” dominated by the contribution
of the cosmological constant. See Fig. 2.2 for an example these dominance eras. The Universe in which
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Figure 2.2: Example evolution of the density parameters Ωα (the plots are indicative and should not be
interpreted as the exact values), showing the succession of radiation-dominated, matter-dominated, and
cosmological constant-dominated eras (here computed with k = 0).

we currently live is close to the moment of equality between the density of dust, Ωd and of what seems to
be the cosmological constant ΩΛ. More precisely, using the subscript 0 to denote present-day quantities
(i.e. evaluated at t0), we have

ΩΛ0 ≈ 0.7 , Ωd ≈ 0.3 , Ωr ≈ 10−3 , Ωk ≤ 1 · 10−2 . (2.45)
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We will come back as to how these are estimated.
As far as we understand our past history, the Universe has always expanded4, and will do so in the

future [12, 13]. Let us detail for example what lies ahead of us in the future of the Universe, if, as
predicted by the standard model of cosmology, the cosmological constant Λ dominates. One may quickly
see that the Friedmann equation (2.38), for the cosmological constant only, is solved by

H =
ȧ

a
=

√
Λ

3M2
P

→ a = a0e

√
Λ

3M2
P

t

. (2.46)

It is in fact possible to relate the FLRW metric with this scale factor to the de Sitter space-time, defined
as the embedding of an hyperboloid in 5 dimensional Minkowski space,

−X2
0 +X2

1 + . . .+X2
4 = H−2 , (2.47)

where H is a constant, which can be turned into

ds2 = −dt2 + e2Htδijdx
idxj , (2.48)

with H given by (2.46), by the flat chart

X0 +X1 =
1

H
eHt , Xj = eHtxj . (2.49)

This is the reason the term de Sitter space is often employed to describe the late-time acceleration by a
cosmological constant (the concept is of course also important during inflation, see below). The exponen-
tial expansion has several properties, the main one being to basically quickly dilute all matter content.
Of course locally gravitationally bound neighborhoods may subsist for a (long) while. Another property
is its ability to make the comoving horizon aH expand which is very relevant for perturbations with a
given mode k. These two properties, because they can solve both the flatness problem and the horizon
problem are at the origin of the proposal, called inflation, of a phase of accelerated expansion before the
standard big-bang scenario unfolds. This inflationary scenario is widely accepted today. However infla-
tion cannot be implemented by the cosmological constant Λ, simply because it is constant and therefore
its value, which is small (we will come back to this), was relatively even more negligible in the dense
early Universe. This is why inflation generally calls for at least one new ingredient: the inflaton. The
end of inflation is generally understood as a decay of the inflaton field into standard-model fields, during
a period called reheating. It is interesting to see the inflaton as the gauge boson of spontaneously broken
time diffeomorphisms: this has led to the study of (single-field) inflation as an effective field theory [86].

The epoch from reheating until when stars and galaxies form, once one goes through the microphysics,
is quite complex. We can and will not give the details but a short summary of what is called the hot big
bang scenario. Several tests of gravity rely on some of the microphysics (e.g. the big-bang nucleosynthesis).
A simplified chronology of the Universe is given in Table 2.1. Although the details of this chronology can
be very complex, it mostly relies on considering the rates of interactions between the dominant matter
species, while taking into account the decrease in temperature of the expanding Universe, as well as the
expansion rate itself. For example, some interactions can be efficient only above given temperatures, such
as the ionization of an atom, while other interactions may become inefficient simply because they are
slower than the cosmic expansion itself.

The first part of this history takes place during a radiation dominated Universe, approximatively
until the physics behind the cosmological microwave radiation (CMB) (see below) becomes relevant. In
a radiation dominated universe, one should understand how many particles are relativistic and therefore
contribute to radiation. The number of relativistic species is accounted by the quantity g∗, defined
through

g∗(T ) =
∑

i∈bosons

gi

(
Ti
T

)4

+
7

8

∑
i∈fermions

gi

(
Ti
T

)4

, (2.50)

where gi is the degeneracy of the species, and which yields the radiation density

ρr(T ) = g∗(T )
( π

30

)
T 4 . (2.51)

This, via the Friedmann equations, yields the cosmic expansion rate, H.

4Bouncing scenarios are not (yet?) within the standard model.
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very early • Inflation or other scenarios

early • Reheating

z ∼ 1015 • Electro-weak phase transition

z ∼ 1012 • Quantum-chromodynamical
phase transition

z ∼ 1010 • Neutrino decoupling

z ∼ 109 • Electron-positron annihilation

z ∼ 4 · 108 • Nucleosynthesis

z ∼ 3 · 103 • Matter-radiation equality

z ∼ 103 • Recombination

z ∼ 30− 40 • First stars form

z ∼ 0.3 • Dark energy-matter equality

Table 2.1: Rough cosmological chronology.

At first, reheating leaves the Universe with a quark-gluon plasma, in which hadrons cannot be formed
until the quantum-chromodynamical (QCD) phase transition. When the energy is low enough, baryons
and antibaryons annihilate, as does also eventually happen with electrons and positrons. These annihi-
lations leads in turn to the reheating of the photon bath. Nucleosynthesis is largely dependent on the
ratio of neutrons to protons in the Universe, which is approximately set once neutrinos decouple and
the freeze-out ratio is reached. At lower temperatures, once deuterium is not dissociated efficiently by
energetic photons anymore, nuclear fusion reactions start leading to the nucleosynthesis of light atoms
such as helium or lithium.

The times of matter-radiation equality roughly correspond to the epoch at which the CMB radiation
we observe today was emitted. In fact, matter-radiation equality happens shortly before recombination,
the epoch in which electrons are gradually captured and stabilized into (mostly) hydrogen atoms. Once
the Universe is mostly neutral, and photodissociation is low enough, it becomes transparent leading
to propagation of light, which will become CMB light after redshifting. The primordial plasma can
therefore be “observed” via the CMB. All sorts of interesting early-time physics can be observed in the
CMB, notably the primordial perturbation spectrum. One of its other most interesting features are the
baryon acoustic oscillations (BAO). These oscillations were due to the interplay between gravitation and
radiation pressure in the early-time plasma. Importantly they left an imprint both on the CMB and
on the matter perturbations, leading to the possibility to estimate distances using these oscillation as a
standard ruler.

2.2.2 The dark Universe

Until now we have brushed under the carpet one of the biggest teachings of cosmology: we don’t
understand what exactly composes most of our Universe. Shortly put, we don’t know what makes up
most of the dust component of the cosmological fluid, dark matter, and we are not sure of what exactly
contributes to the late-time era in addition to or instead of ΩΛ, i.e. dark energy. Of course, from
cosmological observations, we know a lot of things about how they behave on averaged large scales (and
will learn more in the near future), but a definite picture of the microphysics is completely missing. What
we have now are a variety of scenarios that can roughly fit all the observations we have until today.

The understanding of the dark sector of the Universe is one of the largest tasks of cosmology, today,
and in the future. In the next sections we will detail how some future tests will try to tackle this issue.
For now, let us summarize the common lore about the dark Universe. We first give an introduction about
dark matter. We then give a small summary about dark energy. Finally, we point out that as far as is
known, alternative theories of gravity may be a viable option to tackle the dark Universe puzzles.
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Dark matter

Dark matter has been recognized as a mystery for longer than dark energy. Several probes point at
its existence, at different scales. Historically three main observations have been decisive

• Galactic scales: missing mass in galaxies [11] (most of them, see e.g. [87]).

• Extra-galactic scales: missing mass in the clusters of galaxies [10].

• Cosmological scales: the shape and evolution of the matter power spectrum, structure formation
[88], and consistency with other cosmological probes [85].

From cosmological observations alone, one may estimate that baryonic matter represents about two-
fifths of the current matter content of the Universe, with the rest being mostly dark matter. There
are several plausible models for dark matter, but the standard one for now remains the so-called cold
dark-matter model. Although it is possible that dark matter is entirely decoupled from standard model
fields except from the gravitational interaction, some features such as its relic density may also indicate a
possible interaction with the standard model, e.g. via the weak interaction. Direct searches have therefore
been implemented [89]. Besides new fundamental fields, there are also other candidates for dark matter,
such as primordial black holes (see e.g. [90] and references therein for a review).

Dark energy

In the previous section we have seen that a cosmological constant could lead to an accelerated ex-
pansion of the Universe. In fact, this acceleration has been observed for the first time not so long ago,
and independently by two groups [12, 13]. However, although the cosmological constant seems to fit
consistently the observations, there are two reasons to be careful when trying to explain this acceleration.

The first reason is simply that for now, the precision of observations is not enough (see section 3.2.1)
to determine if the late-time acceleration is due to an effective cosmic fluid with equation of state w = 1
(the cosmological constant) or something else with w 6= 1.

The second reason is deeper, and involves considering what we know from the quantum world. All
quantum fields are subject to fluctuation even in their ground state, leading to what is called vacuum
energy, as far as the Hamiltonian is concerned. Although technically amounting to a tremendous energy
once a volume integration is performed, for most applications of quantum field theory, this vacuum energy
is however completely irrelevant. This of course not always the case, as for example the Casimir effect
can be understood as a manifestation of these vacuum fluctuations. However, by far, the vacuum energy
should appear once gravitational effects are considered. Since all contributions to the energy-momentum-
tensor gravitate, the standard lore posits that this vacuum energy should interact with the gravitational
field just like a cosmological constant (different possibilities are investigated, see for example the recent
[91]). Still, there is a doubt as to whether the vacuum energy can be the cosmological constant that
we observe: according to quantum field theory (see [14, 92]), the value of the quantum field’s vacuum
energy should not only be much larger (of order O(1)M2

P assuming a cutoff at the Planck scale) than
the observed value of the cosmological constant, of order O(10−60)M2

P—this could be admittedly be
canceled by a bare cosmological constant that would come on top of the vacuum energy—but the value
of the possible bare counter-terms are also largely unstable to vacuum corrections, and hence have to
be fine-tuned again for each effective field theory cutoff one is working with. One arguable view of the
problem is to separate the original problem into two problems: assume that a property of gravity in
the UV will set to zero the contribution from the vacuum energy (this is called the old cosmological
constant problem), in which case one simply needs to find a technically natural—read well-behaved under
quantum corrections, e.g. thanks to an approximate symmetry—source for the accelerated expansion of
the Universe (this is called the new cosmological constant problem). In this sense, models of dark energy
tend to only solve the new cosmological constant problem. On the other hand, it still possible that we
live in a world with a fine-tuning, e.g. due to anthropic selection [93]5.

Due to mainly these two reasons, it is tempting to be conservative, and not conclude prematurely that
we understand what is accelerating our Universe. It is therefore common to describe the cosmic fluid, or
mechanism, that causes the acceleration as dark energy. Taken as a fluid (be it effectively), we know that
it amounts for about 7 parts in 10 of the total density content in the Universe, and that its equation of
state is close to w ∼ −1. Experimentally, understanding dark energy is one of the main motivations for
more precise observations in cosmology, in particular future large-field surveys of the late-time Universe

5Despite all arguments against it, this explanation is at least a good last resort option, in lack of another one.
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[19, 20, 21, 22, 23, 24]. Theoretically, it has also led to the development of alternatives to the cosmological
constant (see for example the book [94] or the reviews [95, 96]), most notably models involving scalar
fields. It was also possible to build an effective field theory involving several (yet not all) of these models,
see [97, 98].

Finally let us mention recent conjectures emanating from progress in the understanding of string
theory, most notably the de Sitter swampland conjecture [99]. If correct, it would provide a further
motivation (which should not be conclusive, since it relies on string theory models and we don’t know
whether string theory is realized in our Universe) to consider alternatives to the cosmological constant,
which would produce a pure late-time de Sitter Universe and would be disfavored by the conjectures; see
e.g. [100] for the application of the swampland conjectures to dark energy models.

Although there is a doubt as to whether it is accelerating our Universe of not, it remains that the
cosmological constant for now is the most “economical” way to satisfy the cosmological observations,
and is therefore the scenario of reference in the standard model of cosmology. Since we have discussed
previously dark matter, and now dark energy, we have all the ingredients to name the standard model of
cosmology. Its name, ΛCDM, stands for the cosmological constant Λ and Cold Dark Matter.

Alternative theories of gravity

Several mysteries appear in cosmology as soon as large distances are considered: from galactic scales
up the elusive dark matter, and at larger, cosmic scales, the observed accelerated expansion. As we
have seen, it is possible to solve these mysteries by including new species of matter fields yet to be
observed. However there is another interesting possibility: since gravity sets the very stage where every
astrophysical phenomenon takes place, one could try to solve the problem not by adding new matter
fields, but by changing the stage itself. . . One could try to find a new theory of gravity, whose laws would
be different from GR on larger scales.

This alternative scenario is that of modified theories of gravity, and is not without advantages. It is
potentially an economic and universal solution, and it may provide the basis for a fundamental change
in our comprehension of space-time. Indeed, such a paradigmatic change could be expected from the
current lack of a fully workable UV completion for general relativity. Of course, that is not to say that
certain models of dark matter or dark energy wouldn’t also be game-changers.

In the previous section, we have seen (in particular from Lovelock’s theorem in section 2.1.5) that
general relativity relies on several pillars. These are well established, but it is possible to replace them.
As a simple example, one may take the route of adding a new field that would couple non minimally to
matter (or gravity, in a conformally transformed frame). Several models are in this category, e.g. f(R)
gravity, Horndeski gravity, and so forth, all grouped under the denomination scalar-tensor gravity. By
extension one may find theories such as vector-tensor, multi-metric theories, etc. However modifications
to GR can take more diverse forms and more speculative scenarios: for example, diffeomorphism- or
Lorentz-breaking models are just as interesting. In the next chapter we will present more in details this
wide variety, but for the remainder of the present chapter we will remain agnostic with what enters in
the theory.

Still, finding viable alternatives to GR is not trivial and is still an ongoing enterprise. Even considering
dark matter and dark energy separately, it is not trivial to explore all possibilities, and within to find
convincing solutions in this variety. In this text, we make the choice to focus only on the infrared (IR)
modifications of gravity that may have a chance to solve the dark energy puzzle. By doing so, we will
completely neglect a vast field dedicated to solve dark matter without introducing a new species of matter,
most notably theories which aim at a MOND-like behavior [101, 102].

However a point is clear: in order to have a better idea of the dark sector, one needs to go beyond
background cosmology. Indeed, as far as background (i.e. FLRW) cosmology is considered, dark energy,
and dark matter, can be well modelized by a fluids with given properties. By this alone we will however
not be able to distinguish, say, minimally coupled dark energy from alternative theories of gravity. It is
therefore crucial to make the next step and consider at least the perturbative regime atop the background
cosmology. We will discuss the inhomogeneous Universe in the next subsection.

Tensions

We finish this subsection about the dark Universe with a discussion which is not necessarily directly
related to the dark fluids such as dark matter or dark energy, but that is nonetheless mysterious and
will maybe lead us to revisit our models of cosmology. It turns out that assuming the standard model of
cosmology, there is an increasing tension in several, in particular two, measurements: the measure of the
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current Hubble rate H0, and the measure of σ8 (we will define it in the next subsection). Let us focus on
the first one. The tension (reported for example in [103]) arises from two independent measurements of
H0: on the one hand the measurements using standard candles such as type 1a supernovae in the Cepheids
[103], on the other the measurement using the CMB data, or even BAO data [104]. It is therefore easy
to describe this problem as a tension between early (CMB time) and late (z ∼ 0) data, as for example
other late-time probes such as lensing [105, 106] tend to agree with the supernova data. It is clear that
if this tension subsists, as it seems to do until now, novel scenarios will be needed. In particular it is
interesting to see that early-time modifications of gravity may be able to tackle this issue [107, 50].

2.2.3 Cosmological perturbation theory

It is clear that the cosmological principle doesn’t hold on gradually more resolved scales. This simply
means that the solutions of the Friedmann equations should be considered as the background solutions for
the more complicated sub-Hubble(-radius) physics (see below for a definition). This also means that on
a range of scales the subhorizon physics are well approximated by linear perturbation theory. Although
not all-encompassing, both background and linear perturbation physics tell us a lot about our Universe,
and in particular about the dark universe. As far as the results we present in this manuscript go (to
give qualitative constraints on alternative theories of gravity), these two will be sufficient. One should
however note that a lot of effort in theoretical cosmology goes into resolving smaller scales, which contain
a treasure of increasingly complicated but also interesting physics, and are essentially needed to give
more accurate constraints on gravity. In this subsection, we will focus on the theory of perturbations,
which we will employ in the later chapters. We will leave to the next section the discussion of what can
be learned from studying perturbative regimes.

Cosmological perturbation theory consists in studying the physics of general perturbations of the
metric and the matter fields while considering the background geometry to be a solution of the Friedmann
equations. For more detailed definitions, see e.g. [108, 109].

We first define the perturbations of the metric. Using the ADM decomposition (2.14), and restricting
ourselves to the flat FLRW case we decompose each variable as

N = N̄(1 + φ) , Ni = δN i , γij = a2δij + δγij , (2.52)

where δγij � a and φ, δNi � 1, the shift being being pure perturbation since it is zero on the FLRW
background. One may further decompose

δN i = N̄a(∂iβ + βi) , δγij = a2

[
2δijψ +

(
∂i∂j −

δij
3

∆

)
e+ ∂(iej) + hij

]
, (2.53)

where spatial indices can be raised an lowered with the Kronecker δij (and hence for practical purposes
the contra- or covariance become irrelevant), and where ∂iei = ∂iβi = ∂ihij = 0, hii = 0, and ∆ = ∂i∂

i.
After replacement we drop the bar from N̄ for simplicity of notation.

This decomposition is not innocent. Indeed, from the rotational invariance of the background it
follows [110] that at linear level (in the equations of motion) there is no mixing between the set of scalar
modes

{φ, ψ, β, e}, (2.54)

the set of (divergenceless, or transverse) vector modes

{βi, ei} , (2.55)

and the (transverse and traceless) tensor modes

{hij} ; (2.56)

this is called the scalar-vector-tensor (SVT) decomposition. The statement remains true when the matter
modes are included (to the scalar set). These are defined simply as

ρ = ρ̄+ δρ , (2.57)

where, just as for the lapse, the bar on ρ̄ will be dropped after replacement. For a convenient way to
introduce the density perturbations in a Lagrangian treatment, see appendix A.3.1.
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A second decomposition can be made, this time following from the spatial homogeneity of the back-
ground. One may decompose each perturbation into (again, linearly) non-interacting spatial Fourier
modes as

Ã(t,k) =

∫
d3x

(2π)3
A(t,x)e−ik·x . (2.58)

where A stands for any of the perturbations. In practice, this can be as simple as replacing spatial
derivatives ∂i → iki into the perturbed expressions.

The decomposition we have presented is far from unique, and even more, considering gauge invariance,
there is a redundancy in our choice: some intermediate results will be dependent on which coordinates
have been chosen. Due to gauge invariance it is not easy to understand whether a given perturbation
is real, or is just an artifact of the coordinates. In such a situation it is important to rely on the so-
called gauge-invariant perturbations. It easy to define such combinations out of the transformation of the
perturbations under gauge transformations (see appendix A.1). We define here a few such variables, the
Bardeen variables [110]

Φ ≡ φ+ a

(
Hβ +

β̇

N

)
− 1

2N

(
2a2Hė+ a2 ë

N
− a2ė

Ṅ

N2

)
, (2.59)

Ψ ≡ ψ +
k2e

6
+Ha

(
β − aė

2N

)
. (2.60)

We also define the gauge-invariant density contrast

δ ≡ δρm
ρm

+ 3 ζ , (2.61)

As mentioned, in addition to the use of gauge invariant variables, one may actually enforce some
gauge in order to make calculations simpler. A wide variety of gauges can be taken, but maybe the most
usual ones are

• the Newtonian gauge:

β = 0 , e = 0 , βi = 0 , (2.62)

given as in [84]. In this gauge the quantity ψ, on short scales, roughly corresponds to the Newtonian
potential. This is however not a fully fixed gauge; for a complete gauge fixing one may fix ei = 0
instead of βi = 0.

• the flat gauge:

ψ = 0 , e = 0 , ei = 0 . (2.63)

• the synchronous gauge:

φ = 0 , β = 0 , βi = 0 , (2.64)

often used for numerical calculations, since only the spatial hypersurfaces are perturbed, and one
may keep a simple interpretation of time. This is however not a fully fixed gauge [84] and some
extra condition may be needed.

In general, whether by working without gauge-fixing, or by working with alternative theories with
e.g. extra fields, several variables will be non-dynamical and hence redundant. On of the main tasks
within perturbation theory will generally be to integrate out these redundant degrees of freedom.

At the end of the day, even though the gauge freedom or integrating out variables may simplify the
calculations, it is not always enough to establish a clear picture of the physics, in particular as several
powers of the three-momentum come into play. Therefore one often relies on additional (physically
relevant) limits. We will discuss here the sub- and super-Hubble limits.

The sub-Hubble limit, also called the sub-horizon limit, in reference to the comoving Hubble horizon
1/(aH), is simply the limit

k � aH . (2.65)

This limit is interesting for considering perturbations when, or shortly after, they are created in the early
Universe. It also simply is more representative of the behavior at certain observable scales, which by
definition are smaller or at least comparable to the Hubble radius.
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On the other end, one finds the super-Hubble limit, also called the super-horizon limit

k � aH . (2.66)

This limit is useful in particular for the study of the fate of primordial perturbations. Indeed, these
modes tend to exit the comoving Horizon during inflation, as the Universe expands in an accelerated way
and the Hubble rate remains approximately constant. They then eventually re-enter later, once inflation
has ended and the Hubble rate starts evolving again. In fact, we are at a very good time for cosmology:
since it seems that we are entering a new de Sitter-like era, the super-Hubble modes will remain so in
the future.

Note that it is of no use to know the precise value of a perturbation field at a given place, since all
perturbations were sourced as by a random field. One should consider instead the statistical properties
of the field, such as correlation functions

〈δ(~x)δ(~x′)〉 , (2.67)

or, in momentum space, power spectra, e.g. the matter power spectrum Pδ(k) defined as

〈δ~kδ~k′〉 = δ(3)(~k + ~k′)Pδ(k) . (2.68)

Finally, one should bear with non-linear growth below given scales. The treatment of it was not
relevant to this work, and hence we do not delve into it. It will be sufficient to know that due to the
initial normalization of matter perturbations, typically the non-linearities become dominant below scales
∼ 8h−1Mpc with h = H0/(100 km s−1 Mpc−1). It is therefore common to normalize the observables by
the variance of the matter density contrast within a sphere of ∼ 8h−1Mpc. This quantity is noted σ8.

2.2.4 Phenomenology of perturbations

The dark universe puzzles arise at the largest scales, and at late times. However, as long as only the
background cosmology is concerned, it is not possible to distinguish a modification of the laws of gravity
from new matter species appearing as perfect fluids in the Friedmann equations (2.38) to (2.40). It is
therefore important to consider at least the perturbative regime of cosmology.

Perturbations can be witnessed within the two cosmological fluids that we can presently confidently
observe: baryonic matter and radiation6. Perturbations are also admitted within the dark sector(s), but
these cannot be directly seen: we observe them only via gravitational effects. It is understood that all
these perturbations were seeded quantum mechanically in the early Universe [111, 112], for example during
inflation, and that their subsequent linear and non-linear evolution has led to the high inhomogeneities
at observed short scales.

Perturbations in the CMB

An early imprint of the non-homogeneous and non-isotropic Universe can already be found on the
CMB. Down to about the 10−4 level, and once some distortions (e.g. due to the motion of the Earth with
respect to a comoving frame) are taken into account, the CMB is isotropic. However, the finer details
reveal temperature fluctuations. At present, these have been best mapped by the Planck mission [85].
The spectrum is measured on a broad range of wavelengths, limited by our resolution on the short scales,
and by cosmic variance (we only have one Universe) for the largest scales.

Although effects of alternative theories of gravity were not necessarily yet imprinted on the initial
CMB surface, they could however generically be found on the distortions induced on the CMB light in
their travel through the matter and then dark-energy dominated universe, filled with forming structures.
One calls these new perturbations the secondary anisotropies, in order to distinguish them from the
primary anisotropies present on the CMB initial surface (see for example [82]). There are two main
secondary anisotropies relevant to studying modified gravity [113, 114, 115, 116, 117]: the integrated
Sachs-Wolfe-effect (ISW) [118, 119, 120] on large scales, as well as CMB weak lensing [121, 122, 123, 124],
on shorter scales. On top of this the baryon acoustic oscillations also play an important role as a standard
ruler and will be useful for our discussion of matter perturbations.

For now, let us simply define how the ISW and lensing anisotropies can be related to the sum of the
gauge invariant potentials Φ and Ψ, defined in (2.59) and (2.60) (later in the text, we will show how these
potentials are a probe of modifications of GR). First, the ISW anisotropy is given by (see e.g. [84])

Θ(n̂) =

∫ η0

η∗

dη
∂

∂η

(
Φ + Ψ− n̂iΨ̄i − n̂in̂jhij

)
, (2.69)

6Although it is expected that within a foreseeable future we may be able to also observe primordial gravitational waves.
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where Θ ≡ δT
T is the temperature perturbation, η∗ is the conformal time of emission, n̂ is the direction

of observation and Ψ̄i is defined as in [84]. In the case of adiabatic initial conditions it will be detectable
for scales ` . 10. CMB lensing, on the other hand, shows up in the convergence angular power spectrum
[125, 126] by

Cκκ` = 8π2 (`+ 1)
2

`

∫ χ∗

0

dχχ

(
χ∗ − χ
χ∗χ

)
PΨ+Φ

(
k =

`

χ
, χ

)
, (2.70)

where we have used comoving distances χ, and PΨ+Φ is the the power spectrum of the potential Ψ + Φ.
We will explain how to relate the characteristics of the potential Ψ+Φ to modified gravitational dynamics
along with the discussion of matter perturbations.

Let us also mention the baryon acoustic oscillations (BAO) in the context of the CMB. The BAO arises
from the tight coupling of baryons and photons (through Thompson scattering), allowing for acoustic
oscillations, which left an imprint both on the CMB and on the distribution of matter. The BAO spectrum
is therefore important, as it can be found both on the CMB and on the matter power spectrum, and can
hence be used as a standard ruler (see e.g. [83] for more details).

Perturbations of the matter density

After briefly discussing the perturbations in the CMB, we turn to the matter perturbations. Indeed,
after the matter-radiation equality, the inhomogeneities in the matter sector (including dark matter),
have dominated the growth of inhomogeneities. Matter perturbations originally seeded by primordial
perturbations have gradually clustered more and more, up to non-linear regimes of evolution which have
seen the birth of galaxies and stars. However on large enough scales linear perturbations are still a
valid tool to understand how matter perturbations evolve. On scales below 100 Mpc matter takes a very
characteristic filamentary structure (see figure 2.3).

Figure 2.3: Simulations of the large scale structure. Left : MareNostrum simulation (composite of dark
matter, gas, and temperature map) [127]. Right: Millennium Simulation Project (dark matter map)
[128].

Here we follow [82]. In GR, whenever the linear regime is a good approximation, one may find the
evolution equation

δ̈ + 2Hδ̇ − 4πGNρδ = 0 , (2.71)

where δσ stands for a perturbations field, δ the density contrast as defined in (2.61), and G is the
gravitational constant. Assuming a spatially-dependent initial density field, one may separate variables
as

δ(t, ~x) = D(t)ε(~x) . (2.72)

written in terms of the scale factor, the purely temporal equation becomes

d2D

da2
+

(
1

H

dH

da
+

3

a

)
dD

da
− 4πG

H2

ρ

a2
D = 0 , (2.73)
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which gives a decaying mode D− and a growing mode D+. Considering the continuity equation in
Lagrangian coordinates one may characterize the divergence of the proper velocity perturbations by

1

aH
~∇ · ~u = −fδ , (2.74)

where f is the growth index defined as

f ≡ d lnD

d ln a
, (2.75)

and which therefore follows the equation [129]

df

d ln a
+ f2 + 2

(
1 +

d lnH

d ln a

)
f − 4πGρ

H2
= 0 . (2.76)

One of the main issues relative to the matter power spectrum, is that it can only be inferred. Indeed, a
large portion of matter being, as far as we understand, optically dark, we can only rely either on fractional
and biased information from the observation of visible tracers (for example, galaxies), or on indirect
information from the observation of gravitational lensing. Here we want to discuss two main methods
which can constrain models of modified gravity: weak lensing [130], and redshift space distortions7.

Starting with weak lensing, we can again use equation (2.70) [117], taking instead of (0, η∗) an inte-
gration along the new line of sight. Again, the matter perturbations encountered by the light along its
travel will impact through the potential Ψ + Φ. We will explain further down how this will be impacted
by modifications to the gravitational theory.

We now move on to our second method to study the matter power spectrum: redshift space distortions.
The idea, here, is to use the distribution of galaxies to understand properties of the matter power
spectrum. Two points are noteworthy. First, there is an intrinsic bias8 when identifying properties of
the total matter distribution by using the visible subset only. A naive approach would simply match
both, but a proper pessimistic approach should introduce parameters to take into account the possible
discrepancy between the distribution of dark matter and baryonic matter. Second point, we simply
cannot measure directly the radial distance to galaxies. All we can do is use spectroscopic surveys to
measure their redshift. This is why we use the term redshift-space.

Let us however define properly the redshift space: it is the distribution of galaxies projected by taking
into account only the cosmological redshift of a fiducial cosmology (for example obtained by another
type of observations). What remains is, of course, only a distorted notion of distance; other effects, in
particular peculiar velocities, will also produce a sizable redshift. One therefore talks of redshift space
distortions. We denote, in the vein of [117], the redshift-space distance vector by ~s, while the one in real
space is ~r. The relation between the density fields is therefore (for more details see e.g. [82, 117])

δs = δr

(
1 +

f(z)

b(z)
µ2

)
, (2.77)

where f(z) is the growth function, b(z) is the galaxy bias, and where µ is the cosine between momentum
of the matter perturbation and the line of sight. One can then relate the galaxy spectrum and matter
power spectrum in respectively redshift and real spaces by

P sg (k, µ, z) =
(
b(z) + f(z)µ2

)2
P rm(k, z) , (2.78)

This equation tells us that two main observables in the RSD spectrum will be fσ8, as well as bσ8.
As we will see, in order to probe alternative models of gravity, it also makes special sense to cross-

correlate RSD measurements with weak lensing probes, as one probes how gravity couples with matter
while the other probes how gravity couples with light. Other tools that allow to make better sense of
RSD data are standard ruler measurements such as BAO measurements.

Of course non-linear, i.e. shorter, scales need a more careful treatment. We won’t go too much
further into the complex treatment that is necessary to fully carry out RSD studies, but we leave the
reader to reviews (e.g. [131]). An important approach in non-linear studies are calibrations using n-body
simulations.

Recently, galaxy surveys have scaled in volume, and several future galaxy surveys are in preparation.
We will not discuss more closely the status of observations in this chapter. It is in the next chapter
(section 3.2) that we will detail the constraints that can be put on dark energy and modified gravity from
current and future studies. Here we only give some pointers as to why the studies of lensing, redshift
space, etc. are important to understand alternative theories of gravity.

7Other methods, such as galaxy clustering and 21cm-line cosmology, may have a word to say too.
8This is the commonly used technical term.
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Impact of modified gravity

Alternative theories of gravity directly impact the treatment of perturbations by complexifying it,
even at linear level: there may be new fields (several models introduce extra degrees of freedom), or for
example the integration of the non-dynamical degrees of freedom may be complicated. In these cases one
may need to rely on further approximations, such as the quasi-static approximation. In what follows we
give some details of this approximation in the case in which there is an extra scalar perturbation variable
which may mix with the matter density contrast. Still the modifications of (2.82) and following equations
can be found in a wider variety of alternative theories of gravity.

The quasi-static approximation is a refinement of the subhorizon limit, and is especially relevant in
the case of models of dynamical dark energy and alternative theories of gravity. In such a case, one
needs this approximation to obtain the effective gravitational potential induced by the presence of the
dark energy field. The idea is that the perturbations of the dark energy field may be decomposed into a
slow varying part (with time-variation of order H), and a fast varying part, which will then be neglected
inside the sound horizon, i.e.

k � cs
aH

, (2.79)

where cs is the sound speed for the dark energy field perturbations [132]. It is therefore interesting to take
this limit whenever cs ∼ O(1), as we do in the case of the model studied in chapter 5. The quasi-static
approximation was used already in [133], which studied a model of quintessence for which the dark energy
perturbations δσ satisfy an equation of the type

δ̈σ + 3H ˙δσ +

(
k2

a2
+m2

σ

)
δσ = background source, (2.80)

where we do not specify the source terms other than that they arise from background quantities and
hence vary at the “slow” rate H. It is clear that the fast varying part is typically sourceless within the
Hubble radius, and will hence decay, so that for small enough k one can take

δ̈σ

N2
' H

˙δσ

N
' H2 δσ � k2

a2
δσ . (2.81)

One can then compare between time derivatives of the perturbation and the spatial derivatives in the
other equations, which lead to an equation for the density contrast alone, for example,

δ̈ + 2Hδ̇ − 4πGeffρδ = 0 . (2.82)

The coefficients of the different terms may be different from standard GR. New coefficients such as Geff

can even be scale dependent. In fact, modifications of GR do not only affect the matter power-spectrum.
Notably, the Poisson equations that usually characterize the Bardeen potentials Φ and Ψ (defined in
(2.59) and (2.60)) may be modified even within the sound horizon as (in Fourier space, and neglecting
the anisotropic stress)

−k
2

a2
Ψ = 4πGΨ ρm δ , (2.83)

−k
2

a2
Φ = 4πGΦ ρm δ , (2.84)

hence typically the ratio Ψ/Φ, which is 1 in GR, can be modified. One therefore defines the gravitational
slip

η ≡ Ψ

Φ
, (2.85)

which will be in general different from 1. Taken together, Geff and η are often taken as standard
parametrization of alternatives theories of gravity (usually Geff = GΦ), and some parameters already
produce some interesting results9, although improvement must still be done since the background is still
taken as ΛCDM. We will detail these parametrizations in section 3.2.

The modifications we discussed mean for example that after relating PΨ+Φ, which we encountered
above in the discussion of weak lensing (equation (2.70)), to the matter power spectrum Pδ via the Poisson
equations, one will be able to relate modifications of gravity to some observables. Another example is
the growth index (2.75), which will also be affected by the modification in (2.82), and which will be
ultimately tested by RSD data. Other aspects of modifications of GR may be tested by studying RSD
data, for example screening mechanisms (e.g. [134]), which are detailed in the next chapter.

9e.g. to reduce the tension in H [107].
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Chapter 3

Beyond general relativity

3.1 Theories beyond Lovelock’s theorem

In the previous chapter, we have seen that the standard model of cosmology fails to elucidate the
nature of dark energy (and dark matter). It is therefore necessary to investigate the basic assumptions
behind the standard model; it is in particular possible that the acceleration of the expansion of the
Universe receives contributions from modifications to general relativity at large scales. The aim of this
chapter is to understand how to theoretically construct these alternatives to GR, and how these can be
constrained by observations.

Lovelock’s theorem [67, 68] (see section 2.1.5) identifies several assumptions behind general relativity,
and hence is effectively a guide to construct new theories. However, these different hypotheses, as well as
the equivalence principles (see section 2.1.2), also protect general relativity from a range of complications
that could arise in generic extensions. For example, the requirement of having second order equations
of motion avoids the Ostrogradsky instability [135, 136, 137]. Another example is that the Einstein
equivalence principle requires Lorentz invariance [65], which in turn may be associated to a restricted
notion of causation1. One should therefore tread carefully.

As we will show, it will be generally possible to evade these difficulties in different interesting ways. In
the next few sections, we will concisely review different modifications of GR at large scales2 that aim to
tackle the dark energy puzzle. We will in particular discuss two ways to go beyond Lovelock’s theorem:
adding extra fields, and relaxing symmetries.

3.1.1 Adding fields

Adding fields to the gravitational sector is arguably the simplest way to build a different theory of
gravity. Several types of field can be added to the theory, starting by scalar fields [18, 17, 16], vector
fields [42, 140], and up to spin-2 fields [141]. In particular, there has been a renewed interest towards
scalar-tensor (as well as vector-tensor) theories which could evade the presence of an Ostrogradsky-type
ghost while having higher order derivatives. In this short account, we will focus on scalar-tensor theories.
We discuss first Galileon theories, then Horndeski and its further generalizations, the theories beyond
Horndeski, and finally DHOST theories. Finally we also describe another class of scalar-tensor theories,
f(R) theories (they can accommodate both IR and UV modifications), which do not have higher order
derivatives but emerge as non-minimally coupled theories.

Scalar-tensor gravity

The idea of writing a novel theory of gravity involving a scalar field dates back to Jordan in the 1950s
[142], who wrote a theory

SJordan =
M2

P

2

∫
d4x
√
−gφγ

(
R− ω

φ2
gµν∂µφ∂νφ

)
+ Smatter[g, φ, ψ] , (3.1)

where ψ are the matter fields. In general, even after field redefinitions, it is not possible to render the
theory equivalent to GR plus a new minimally coupled scalar field. The simplest example example of

1For a discussion as to whether the Lorentz structure can be emergent see for example [138], and for a discussion of
causality within the context of superluminalities see [139].

2For extensions of GR in the UV, see for example [17, 7], or the recent [9].
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such theory is the Brans-Dicke theory [143] in which one choses γ = 1 in the Jordan frame—the frame
in which matter fields are minimally coupled. This gives the action

SBrans-Dicke =
M2

P

2

∫
d4x
√
−g
(
φR− ω

φ
gµν∂µφ∂νφ

)
+ Smatter[g, ψ] . (3.2)

Higher orders

With the advent of higher dimensional cosmological scenarios (in particular the DGP model [144]),
it was understood that an (effective) scalar-tensor theory of gravity could include non-trivial derivative
self-interactions, i.e. higher-derivative terms in the action. However, as crystallized by the long-standing
result by Ostrogradsky [135, 136, 137], generic higher-order Lagrangians incur the risk of exciting ghost-
like degrees of freedom.

The only way to circumvent the result by Ostrogradsky is by using trivial or non-trivial degeneracies
of the kinetic matrix. A degenerate Lagrangian is one for which the kinetic matrix is degenerate. One
can define the kinetic matrix even for a higher order theory simply by the adding auxiliary variables,
making the Lagrangian only first-derivative dependent [145].

Galileon theories

Galileon theories are an early example of degenerate scalar tensor theory: although their actions
include higher-order derivatives, they retain second order equations of motion, and thus evade the Ostro-
gradsky ghost. They have been built as a generalization of the effective theory for DGP [146], organized
as a field theory on Minkowski background. In fact, the Galileon higher-order terms may be seen as the
Wess-Zumino terms for the Goldstone-bosons of the spontaneously broken Galileon shift symmetry [147].
This symmetry reads

φ→ φ+ vµx
µ + c . (3.3)

which leads to the general Lagrangian

SGal =

∫
d4x

{
c1φ+ c2X − c3X�φ+ c4X

[
(�φ)

2 − φµνφµν
]

−c5X
3

[
(�φ)

3 − 3 (�φ)φµνφ
µν + 2φµνφ

νλφλ
µ
]}

, (3.4)

where here we consider only flat space derivatives, i.e. φµν ≡ ∂µ∂νφ, and X ≡ ∂µφ∂µφ/2. Galileon terms
are not only important per se, but can be found as limits of other theories e.g. in the decoupling limit of
Lorentz-invariant massive gravity [148].

Horndeski theory

Galileon theory can be seen as one of the first major steps that eventually led to the rediscovery of the
Horndeski Lagrangian. Several generalizations were still needed, however. First of all, the theory had to
be written on curved space (which led to breaking the original assumption of symmetry under Galilean
shifts (3.3)). This was not trivial, as higher derivatives of the metric tensor potentially appearing in the
equations had to be avoided [149]. Then, the theory was generalized to include a set of free functions,
since the Galilean symmetry was broken anyway; that theory was called generalized Galileon theory [150]

SgGal =

∫
d4x
√
−g

5∑
i=2

Li + Smat[g, ψ] , (3.5)

with

L2 = G2(X,φ) , (3.6)

L3 = G3(X,φ)�φ , (3.7)

L4 = G4(X,φ)R+G4,X

[
(�φ)

2 − φµνφµν
]
, (3.8)

L5 = G5(X,φ)Gµνφµν +
G5,X

6

[
(�φ)

3 − 3 (�φ)φµνφµν + 2φµνφ
νλφµλ

]
, (3.9)
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and where the Gi are free functions of X and φ (hence explicitly breaking Galilean shifts), and only
covariant derivatives are considered, φµν ≡ ∇µ∇νφ, X ≡ gµν∇µφ∇νφ. This theory is also commonly
called Horndeski theory, for the simple reason that it was in fact discovered (and largely forgotten) well
before by Horndeski [151]. Here we have chosen to present it from the point of view of Galileon theories,
as these are in fact important in the context of other alternative theories of gravity.

Beyond Horndeski

Thinking back to section 2.1.6, one may have noticed that we had not really discussed matter couplings
in scalar-tensor theories; yet, these play a crucial role. The freedom to chose a non-minimal matter
coupling may in fact be seen as a hint that one may find novel theories beyond the class defined in
(3.5). Some interesting matter couplings are the following: the conformal matter coupling, where matter
couples minimally with

g̃µν ≡ A(φ)gµν , (3.10)

and the purely disformal matter coupling [152]

g̃µν ≡ gµν +B(φ)∂µφ∂νφ . (3.11)

Note that this coupling can be found in brane cosmology for a moving brane [153, 154, 155]. Both can
be extended (and merged) into [156]

g̃µν ≡ A(φ,X)gµν +B(φ,X)∂µφ∂νφ . (3.12)

One possible way to construct theories beyond Horndeski is to use these extended disformal transforma-
tions [157]. This allowed to construct healthy theories, that however had more than quadratic equations
of motion. The teaching is therefore that there is a new class of healthy theories. It was noted that
this class of theories relatable to Horndeski is not encompassing, since other examples were found. One
common example is the GLPV theory [158]. Later, all quadratic degenerate higher-order scalar-tensor
theories (DHOST) were found [145], and this was later extended to cubic theories [159]. DHOST theories
where also found to be closed under disformal transformations (see [160] and references therein). For a
review of higher order scalar tensor theories see for example references [32, 18].

Hamiltonian analysis with higher-order derivatives

In the chapter 5 we will perform a Hamiltonian analysis involving, as part of the full theory, the
quadratic and cubic Horndeski theories L2 + L3. We therefore find it adequate to make some comments
regarding the analysis of higher-derivative theories. Since higher-order scalar-tensor theories exhibit
second time derivatives of the scalar function, one needs to either extend the Hamiltonian formalism
presented in section 2.1.8, or find a way to eliminate these higher order derivatives; we will pursue this
second avenue. There are two main approaches that have been used along with the development of
higher-order scalar theories.

The first approach to avoid the higher time derivatives consists in using the gauge-freedom of the
theory to fix the unitary gauge for the scalar field φ, in which the scalar field is assumed to be a given
monotonic function of time, i.e. φ ∼ f(t), or even φ ∼ t. Within the unitary gauge the scalar field is no
longer a dynamical degree of freedom, and therefore higher-order time derivatives do not pose a problem.
This approach was used in [161, 158, 162]. In the unitary gauge, after ADM decomposing the metric, the
GLPV Lagrangian (a subclass of beyond Horndeski Lagrangians) is (see for example [161])

L2 = A2(t,N) , (3.13)

L3 = A3(t,N)K , (3.14)

L4 = A4(t,N)
(
K2 −KijKij

)
+B4(t,N)R(3) , (3.15)

L5 = A5(t,N)
(
K3 − 3KKijKij + 2Ki

jK
j
kK

k
i

)
+B5(t,N)KijGij . (3.16)

One can then proceed to the usual steps. It is noteworthy that the class of theories that are degenerate
in the unitary gauge is in fact larger than the DHOST class see [163, 164].

The second option to avoid the higher time derivatives is the use of auxiliary fields. This second
option does not require to choose the unitary gauge, and hence is practical, as we will see, for theories
that rely on Stückelberg fields to recover covariance. This method was used for example in [163]. There,
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one replaces in the action all occurrences of ∂µφ by the four-vector Aµ, while ensuring the equivalence of
the theory via the extra constraint

Sauxiliary =

∫
d4xλµ (∂µφ−Aµ) , (3.17)

where λµ is a Lagrange multiplier. Now, at least for the Lagrangians that are at most quadratic in
derivatives, it is possible to remove all second time derivatives. For restricted classes of higher-order
theories, the use of Aµ is not the only option; for the cubic Horndeski it is for example possible to
introduce, instead of a four-vector, two (in fact in principle even a single) scalar fields

Sauxiliary =

∫
d4x [χ (X−X) + θ (S −�φ)] , (3.18)

where χ and θ are Lagrange multipliers, whereas X and S are the auxiliary fields. This approach will be
used in chapter 5, and we present in Appendix C the Hamiltonian analysis of L2 + L3.

f(R) theories

Another direction for adding more complexity to the scalar-tensor theories, aside considering higher-
order derivatives, is to add a potential or/and non-trivial interactions with matter. This is well encapsu-
lated by a popular scalar-tensor theory named f(R)-theory (here we follow [17]), whose action reads

Sf(R) =
M2

P

2

∫
d4x
√
−gf(R) + Smat[g, ψ] , (3.19)

where f is a general function. One may be puzzled as to why this theory enters the scalar-tensor
theory, as there is no explicit scalar in the construction. One may answer this question by the conformal
transformation

g̃µν ≡
∂f

∂R
gµν , (3.20)

where in general F ≡ ∂f
∂R is assumed to be positive, and one can then define further

φ =

√
3/2

κ
lnF , (3.21)

which can be inverted for given f(R). This field redefinition yields the action

Sf(R) =

∫
d4x
√
−g̃
(
M2

P

2
R̃− 1

2
g̃µν∂µφ∂νφ− V (φ)

)
+ Smat[F

−1(φ)g̃µν , ψ] , (3.22)

with the scalar field potential

V (φ) =
M2

P

2

FR− f
F 2

. (3.23)

By choosing both the potential and the coupling to matter appropriately, interesting regimes can be
reached.

Screenings

An appealing point of theories involving either potentials or higher-derivative interactions, is the
possibility to make their predictions consistent with astrophysical tests, while allowing for modifications
compared to general relativity at large scales. On short scales, one crucial point is to get rid of the
fifth-force effect by which scalars which couple with matter fields in the Einstein frame will intervene to
modify the first post-Newtonian parameters (see section 3.2.2).

The mechanisms that remove the fifth forces are called screening mechanisms. Here we present
two of the main ways to suppress the fifth forces. One is to make the scalar field acquire a mass, at
least in astrophysical context, so that it can be integrated out and doesn’t affect the dynamics at first
approximation. One of such screening mechanisms is the chameleon screening. Theories such as f(R)
can sustain a chameleon mechanism. The other way, is to make use of the higher derivative terms and
let them trivialize the profile of the scalar field. One has then a Vainshtein screening [35]. Examples of
theories that have such a mechanism are the higher-order derivative theories developed above, notably
Galileons and Horndeski theory [151, 150], notably cubic or above.
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The idea behind the chameleon screening [36, 37] is to make use of the interplay between the non-
minimal coupling of matter to the scalar field (in the Einstein frame) and the potential for the field.
Here, for a qualitative discussion3, we assume that this coupling is of conformal form, i.e.

Sm = Sm[A2(φ)gµν , ψmat] , (3.24)

with A(φ) = eβφ/MP , β being a constant. In the context of cosmology for example, the equations for the
scalar field are then

φ̈+ 3Hφ̇ = −V ′eff(φ, t) , V ′eff ≡
β

MP
A4 (ρ− 3P ) + V ′(φ) , (3.25)

where V (φ) is the Einstein frame potential of the field and a prime denotes a partial derivative with
respect to φ (note that the screening can also be seen in the Jordan frame, though the interpretation
may be different). From this equation, several regimes can be found: during radiation domination,
the contribution of matter fields being negligible, the field will tend to harmlessly roll the potential;
during matter domination the field will couple to matter, but perturbations will acquire an effective
mass in proportion to the matter density; with the decrease of the matter density towards dark energy
domination the chameleon field will acquire a stronger influence, and may be important during late-time
dynamics. This evolution is summarized in figure 3.1. The equation for the field for, say, a spherical

The chameleon 
field rolls down 

Radiation 
domination 

The chameleon 
settles at the 

minimum

Matter 
domination 

Figure 3.1: Cartoon of the effective potential for the chameleon field, during radiation domination (left)
and during matter domination (right). Veff is given by the sum of the contributions of V (blue) and the
trace of the energy momentum tensor of matter (orange). During radiation domination there is only
V , and hence the field rolls down the potential. During matter-(and Λ-)domination the potential has a
minimum.

body
d2φ

dr2
+

2

r

dφ

dr
= V ′eff(φ, r) (3.26)

requires a more careful treatment (see [37]). However, in the case of a homogeneous body, one may easily
find that the field settles to a given value (and a high effective mass) within the body, and that it will
relax to its cosmological value outside the body. The body is screened since perturbations of the field near
the body have a large mass, and can be integrated out. Finally, note that in f(R) theories, a chameleon
mechanism can be found if the coupling F−1(φ) in (3.22) is F−1(φ) ∼ eβ2φ/MP [17].

To present qualitatively the case of the Vainshtein screening, we follow closely the simplified discussion
from [18]. We admit here only perturbations about a slowly varying cosmological background, and choose
to neglect second time derivatives. The reader may find a more complete treatment in e.g. [165]. We also
focus solely on the subset of Horndeski (3.5) with c2T = 1, i.e. containing G2(X,φ), G3(X,φ), and G4(φ)
only4. This gives the following Lagrangian for linear perturbations, in Newtonian gauge and under the
quasi-static approximation (see sections 2.2.3 and 2.2.4),

L = a

{
M
(
−Ψ∂2Ψ + 2Ψ∂2Φ

)
− η

2
(∂ϕ)

2 − 6

[(
Mξ +

µX̄

Λ3

)
Φ− 2MξΨ

]
∂2ϕ

}
+

µ

aΛ3
LGal

3 − a3Φδρ ,

(3.27)

3Indeed, it is possible to consider a coupling which doesn’t couple universally (for example with dark matter). In such
a case, the weak equivalence principle may be violated in some way.

4This is both because c2T = 1 seems to be preferred by observations (see section 3.2.4.), and because this subset is the
most relevant to the discussion of chapter 5.
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where we have used X̄ = 1
2

˙̄φ2 and the perturbation

φ(x) = φ̄(t) + ϕ(x) , (3.28)

and defined M2 ≡ G4(φ̄),

LGal
3 ≡ −1

2
(∂ϕ)2∂2ϕ , (3.29)

and

Mξ ' G4,φ , µ ' −Λ3G3,X . (3.30)

Λ is the typical energy scale at which higher-order terms become relevant. One then studies the equations
on a (quasi-)static spherical configuration ϕ = ϕ(r), Φ = Φ(r), Ψ = Ψ(r), which read

η

2
x−

(
ξ +

µX̄

Λ3M

)
y + 2ξz + µx2 = 0 , (3.31)

y = A+

(
µX̄

Λ3M
− ξ
)
x , (3.32)

z = A+

(
µX̄

Λ3M
+ ξ

)
x , (3.33)

after defining

x ≡ 1

Λ3

ϕ′

r
, y ≡ M

Λ3

Φ′

r
, z ≡ M

Λ3

Ψ′

r
, A ≡ 1

MΛ3

M
8πr3

, M' 4π

∫ r

0

δρ(r′)r′2dr′ , (3.34)

and taking a = 1. In the limit A� 1, i.e. deep inside the Vainshtein radius

rV ≡
(

M
8πMPΛ3

) 1
3

, (3.35)

the equation for x then becomes[
η

2
−
(
ξ +

µX̄

MΛ3

)2
]
x+ µx2 =

(
µX̄

MΛ3
− ξ
)
A → x ∼ A1/2 � A ∼ y ∼ z . (3.36)

Within the Vainshtein radius, the GR behavior is recovered as Ψ = Φ = −GNMr , on the other hand,
when A ∼ 1 the radial profile of the field, x, will contribute to the potentials. Considering the mass of
the Sun, the Vainshtein radius encompasses much more than the solar system, indeed rV,� ∼ O(103) ly.
Even within the Vainshtein radius, the cosmological evolution may impact with a slowly time-varying
GN . The fate of the Vainshtein screening in theories beyond Horndeski has been studied e.g. in [166]
for GLPV theories. It is found for example that if the screening is efficient as much as in the spherical
case one then expects (within the subset of GLPV G5 = F5 = 0 for which the Vainshtein is stable and
exhibits the correct Newtonian behavior at short scales5)

GN = Gcosm =
1

16π

(
G4 − 4XG4,X − 4X2G4,XX − 10X2F4 − 4X3F4,X

)−1
, (3.37)

evaluated on the (time-dependent) cosmological background, where GN is the gravitational constant
as measured in a screened environment, and Gcosm is the gravitational constant for the background
Friedmann equation, as measured at early times when dark energy is irrelevant.

Phenomenology within the quasi-static limit

As mentioned in section 2.2.4, on large enough scales (yet within the sound horizon of the new gravi-
tational sector), modified gravity modifies the dynamics of matter perturbations and of the gravitational
potentials. The modification can be encapsulated by effective gravitational constants Geff, GΦ, and GΨ

5For more details see [166] and references therein.
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(see equations (2.82)-(2.84)). In fact, generically, one has Geff = GΦ. The expression for these, within
Horndeski theories (we chose these for simplicity) for example, is [167]

Geff =
1

16π

c2T
QT

{
1 +

2QT
[
c2T (1 + αB)− (1 + αM )

]2
Qsc2sc

2
T (1 + αB)2

}
, (3.38)

GΦ =
1

16π

1

QT

{
1 +

2QTαB
[
c2T (1 + αB)− (1 + αM )

]
Qsc2s(1 + αB)2

}
, (3.39)

where Qs > 0 is the scalar no-ghost condition, cs the scalar sound speed, αB and αM some functions
evaluated on the background (we do not specify here the previous quantities), QT > 0 the tensor no-ghost
condition, which is given by [168]

QT = G4 − 2XG4,X +XG5,φ −Hφ̇XG5,X , (3.40)

and cT the tensor speed given by

c2T =
1

QT

(
G4 −XG5,φ −Xφ̈G5,X

)
, (3.41)

where the quantities are evaluated on the background, e.g. X = φ̇2/2. In fact, due to the recent mea-
surement of the gravitational wave speed, theories with cT = 1 have become more interesting (see section
3.2.4). To have c2T = 1 on every background, one requires [168]

2G4,X − 2G5,φ +
(
Hφ̇− φ̈

)
G5,X = 0 . (3.42)

This indicates that this subclass, barring fine-tunings6, should have no G5 dependence and G4 should
not depend on X. More details can be found in the review [168].

3.1.2 Symmetry breaking

In the previous section we have studied some types of gravity theories that can be built by adding extra
fields to the gravitational action. In this section we want to study another way to bypass the Lovelock
hypotheses: reducing the set of invariances of the action. In GR, the action has both a gauge invariance
and local symmetries which are enforced on the gravitational action through the equivalence principles.
Space-time diffeomorphisms are gauge-invariances; indeed, GR can be recovered as a gauging of local
translations. As we will see, it is possible to recover this redundancy by the introduction of extra fields.
On the other hand, the Lorentz invariance in the gravitational sector is related to the implicit choice of
a Lorentzian geometry for space-time. Breaking Lorentz invariance may therefore in principle lead to
different notions of geometry. Note that Lorentz invariance is best emphasized by the introduction of a
tetrad (or vielbein), which renders GR explicitly invariant under Lorentz boosts on the flat space-time
indices, which is called local Lorentz invariance.

There are two main ways to “break” a symmetry. The first case is called spontaneous symmetry
breaking and denotes the case in which a field takes an non-trivial expectation value, and hence provides
a preferred background for perturbative expansions. In such a case, the symmetry is understood as a
symmetry of the underlying theory, but not necessarily of the solutions. In the case in which there doesn’t
exist symmetric solutions in the theory, the idea of “spontaneity” of the breaking disappears, but one
retains the terminology anyway. This is the case if, say, one considers matter fields on curved background:
they will break some symmetries anyway. In the case of spontaneous symmetry breaking, several powerful
results associate the symmetry breaking pattern to the emergence, within effective low-energy theories,
of degrees of freedom called Nambu-Goldstone bosons [169, 170, 171] (at least when global symmetries
are concerned). These results can be extended, with some scrutiny, to the case of spacetime symmetries
(see e.g. [172]). The other way to break a symmetry is sometimes called an explicit symmetry breaking,
in the sense that the underlying action does not possess the symmetry, at most an approximate version
of it.

6Note on fine-tunings: another (here unrelated) example of unwanted fine-tuning would be to demand G4,φ = −XG3,X ,
in a theory with c2T = 1. In such a case generically one would expect G4,φ to depend on X, and hence depart from the
requirement mentioned above.

39



3.1. THEORIES BEYOND LOVELOCK’S THEOREM CHAPTER 3. BEYOND GR

Effective field theories

The distinction between the two modes of symmetry breaking requires the knowledge of the funda-
mental or underlying theory, which is clearly not always the case, especially in the context of gravity. In
this sense, a top-down effective field theory (EFT) approach (such as the coset construction [172, 173])
cannot be used without assuming symmetries in the UV. On the other hand, a bottom-up EFT approach
may be used: one constructs, out of the geometrical tools needed to describe a given system (e.g. in
cosmology, the ADM variables and the associated derivatives and curvatures, or simply different compo-
nents of the metric), the most general action consistent with given symmetries (see e.g. [97, 98, 174]). In
this bottom-up EFT approach, there will be still some underlying assumptions permeating the choice of
which building blocks will be used.

In the context of modified gravity, several such bottom-up EFTs have been used. For the purposes of
this thesis, the EFT of dark energy [97, 98] is particularly interesting in that it allows for the description
of all models which propagate an extra dynamical scalar and possess time-dependent diffeomorphisms as
a residual symmetry. The first few terms of EFT action are for example given by

SEFTofDE =

∫
d4x
√
−g
[
m2

0

2
(1 + Ω(t))R(4) + Λ(t)− c(t)δg00 +

M4
2 (t)

2
(δg00)2 − M̄3

1 (t)

2
δg00δK . . .

]
,

(3.43)
in which one uses building blocks compatible with a metric description of spacetime and the residual
symmetries (here SO(3)), for example δg00 or δK (the perturbations around FLRW of the 00-component
of the metric and of the extrinsic curvature). Note that we have eluded several relevant operators for
the sake of presentation. Generalizations include for example higher derivatives [175]. General stability
properties in the presence of matter have been studied in [176]. Scalar-tensor theories can be naturally
related to a (gauge-) symmetry breaking. In fact, the presence of a time-like scalar field can be seen as
a spontaneous breaking of time-diffeomorphisms. From the point of view of the theory with diffeomor-
phisms, one may chose a particular time coordinate to coincide with the scalar field, say choose slicings
such that φ = f(t). This is called the unitary gauge of the theory. On the other hand, one may obtain
a covariantized action by the Stückelberg trick which we present below. Note also that in this chapter
we want eventually want to go beyond the scalar-tensor framework, which we discussed in the previous
section.

Stückelberg trick

Gauge-symmetries can be recovered by using the so-called Stückelberg trick, which involves adding
new fields to the theory. This trick is named after Stückelberg7 who first used it [177, 178] to build a
manifestly U(1)-gauge-invariant alternative to the Proca Lagrangian for the massive vector field Aµ,

LStückelberg = −∂µAν∂µAν +m2AµA
µ + ∂µB∂

µB −m2B2 ,

with help of a scalar field B transforming under U(1) as

Aµ → Aµ + ∂µα , B → B +mα .

Hence it is possible to write the theory with a U(1) gauge symmetry, although the original theory (recov-
ered by setting B → 0) is not U(1) invariant. Very interestingly for spacetime symmetries, this approach
can be generalized to the recovery of diffeomorphism invariance (for a review see [179]). The simplest
example is the EFT of dark energy (3.43), in which one may recover the broken time diffeomorphisms
by sending t → φ(x) and the 3+1 decomposition back from (2.17). In this case, the theory with broken
time diffeomorphisms maps well to scalar tensor theories.

We will see that in fact one may recover spatial diffeomorphism invariance in more complicated set-
ups, with even less residual symmetries. In the case the full set of diffeomorphisms is broken, one may
recover them by introducing 4 Stückelberg fields (since four gauged translations have been broken). It
would therefore be tempting to simply generalize the EFT of dark energy to these 4 fields, an approach
studied in [180, 181]. However, it turns out that in general cases, and in particular at non-linear level,
one of the fields has negative energy excitations [182].

7For Ernst Stückelberg’s (1905-1984) lecture notes see http://cours-physique.org/.
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3.1.3 Massive gravity

Following the idea of the Proca field—for which the U(1) gauge symmetry is broken (à bon entendeur)
by the mass term—it is possible to find novel theories of gravity by violating diffeomorphism invariance,
the gauge redundancy in GR. One of these types of theory is massive gravity, graviton mass terms being
prime examples of terms breaking general covariance. In what follows we will detail on these theories.

Massive gravity is interesting for several reasons, but most notably for its phenomenology at large
scales. In fact, it is often regarded as the simplest example, in principle, of an infrared (IR) modification
of gravity: again in principle, it is expected that the novel scale given by the graviton mass should help
set an energy scale above which GR is recovered, and under which (for example at cosmological distances)
gravity is modified. Massive gravity can be schematically written

SmG = SEH[gµν , ∂ρgµν ] + Sm[gµν ] + Smat[gµν ,Ψa] , (3.44)

where Sm is the mass term and has some polynomial structure in gµν , and where the subscripts m are
the new scale characterizing the graviton mass. The equations of motion will then also involve a novel
contribution Λµν , as

Gµν + Λµν =
1

M2
P

Tµν . (3.45)

The contribution Λµν will not generally vanish even in very symmetric situations. In cosmology, where
the curvature radius roughly depends on the average matter content, it may play an important role
whenever the energy momentum tensor of matter is low, typically at late times with Λµν ∝ m2 ∼ H2

0

where m is the graviton mass parameter, and H0 the current Hubble rate. The hope is that the graviton
mass thus contributes to the acceleration of the Universe. We will see that self-accelerating models can
be found, i.e. acceleration without a dark component.

Massive gravity can also affect gravity at large distances in other ways, e.g. by changing the gravi-
tational interaction between bodies. The most direct modification is the appearance of a Yukawa-type
modification to the Newtonian potential

ΦmG = −GN
M
r
e−mr , (3.46)

with, again, m as the graviton mass parameter, and M the mass of the source. As will be seen in the
latter chapters 4 and 5, other modifications, such as a scale-dependent effective gravitational constant
Geff = Geff(k) may be produced, in particular in the context of cosmological perturbations.

It turns out that the previously mentioned scale separation may not necessarily be so simple, especially
in the most conservative versions of massive gravity, as cutoffs and strong coupling scales hint at possible
new physics even at higher energy scales. In the latter chapters we will study theories for which a simpler
scale separation is realized, but we chose to remain rather general in this chapter.

Fierz-Pauli theory

The first theory of massive gravity, consistent at linear order in perturbation theory around Minkowski
(gµν = ηµν + hµν), and Lorentz invariant, was given by Fierz and Pauli [183]. Fierz-Pauli theory reads

LFP =
M2

P

8

(
−∂µhαβ∂µhαβ − 2∂µh∂νh

µν + 2∂µh
µν∂αhαν + ∂µh∂

µh
)
− m2M2

P

8

(
hµνh

µν − h2
)
, (3.47)

where the first term can be compacted in −M
2
P

4 hµνEαβµν hαβ , Eαβµν being called the Lichnerowicz operator.
The equations of motion for the field are roughly (i.e. after choosing an appropriate gauge and a proper
variable redefinition) (

�−m2
)
hµν = 0 , (3.48)

those of a propagating massive field. The action also explicitly breaks linearized diffeomorphisms xµ →
xµ + ξµ(x). Interestingly the special structure of the mass term preserves Lorentz-invariance but also
exorcises a ghost degree of freedom (which reappears in the non-linear theory), so that although four
gauged symmetries are broken, only three new degrees of freedom appear, for a total of five—as expected
for a massive spin-2 theory.

Just as for the U(1) invariance broken by the Proca mass term, the diffeomorphism invariance broken
by the mass term can fortunately be recovered via the the Stückelberg trick. This leads to a theory
which has a novel version of general covariance implemented by a transformation of the Stückelbergs.
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It is simple to implement the new scalar fields. In the linear theory of massive gravity, the idea is to
perform a coordinate transformation xµ → xµ + ξµ(x), and promote the ξµ(x) to fields belonging to the
theory, i.e. ξµ(x)→ −χµ(x). One can then reabsorb further coordinate transformations by corresponding
transformations of the χµ(x). This allows to see the disappearance of a ghost at linear level.

Fierz-Pauli theory may be consistent at linear level, but it was recognized early on that the limit
of zero mass is in fact disconnected from GR, fact known as the van Dam-Veltman-Zakharov (vDVZ)
discontinuity [184, 185]. This discontinuity is a hint that higher orders need to be taken into account;
shortly after the discontinuity was found, Vainshtein argued that the problem could be solved through
the screening of the extra mode by the non-linear interactions [35]. Unfortunately, it was also argued
by Boulware and Deser (BD) that generic non-linear completions of Fierz-Pauli theory would invite a
ghost-like degree of freedom into the theory [182]. As we will see, it was not until several years later
that non-linear ways to remove the BD ghost would be found, using two different approaches: Lorentz-
violations, and non-trivial degeneracies of the Lagrangian.

Non-linear massive gravity?

Before approaching the non-linear theories of massive gravity, we note that it is also possible to define
the Stückelberg trick non-linearly. In a non-linear theory, one would like to write a potential directly for
the metric gµν not just for the perturbation hµν . Since this is trivially impossible (gµνgνα = δµα) without
introducing derivatives of the metric, a novel structure which will couple with the metric has to be defined
at some level. In fact, one may first break diffeomorphisms using a fixed but generic extra background
structure fρν , which is often called the fiducial metric. The interaction term can then roughly be given
by traces of gµρfρν . To implement the Stückelberg trick, one may then write

fµν = fab∂µφ
a∂νφ

b (3.49)

where fab can be understood as a metric over an internal space with indices a, b, . . ., and φa are the
Stückelberg fields. Since the φa are space-time scalars, general covariance is recovered. The frozen
structure fµν hence can be understood as the pull-back of the internal space metric into real space. Since
the interaction term only consist in traces, it is common as well [43] to consider a second version of the
non-linear Stückelberg trick. In that approach one recovers a covariant theory by writing it in terms
of traces of gacfcb where gab ≡ gµν∂µφ

a∂νφ
b is the push-forward of the 4-dimensional metric onto the

internal space. In [54], for example, we have used this second approach.
It can prove useful, at times, to write the theory in a non-covariant fashion, just as in GR one may

choose convenient coordinates to simplify some treatment. Starting from the covariantized theory, and
using the new diffeomorphism, one may freely chose to work in the full space-time unitary gauge. In the
non-linear case, this gauge is defined as

φa(x)→ xa , (3.50)

which translates in the linearized case to setting all the χµ to zero.
Now that we have discussed the non-linear Stückelberg, we can draw the lines of a non-linear theory

of massive gravity.

Lorentz violating massive gravity

The first avenue leading to non-linear massive gravity was opened using Lorentz violations. Most
commonly one uses a Lorentz breaking which leaves 3-dimensional rotations, i.e. SO(3) untouched after
a choice of preferred time-direction, i.e. a preferred foliation. This is justified in the context of cosmology,
since matter fields will spontaneously break boosts anyway (and which for example has led foremost to
theories of a single Stückelberg field as seen in the previous section). For massive gravity, one still wants
to include all four spacetime Stückelberg fields, but making a difference between the temporal one φ0,
which defines the preferred slicing, and the spatial ones φi. Out of these fields it is indeed possible to
build the following objects

N =
√
−gµν∂µφ0∂νφ0 , nµ = N∂µφ

0 , (3.51)

N i = nµ∂µφ
i , (3.52)

Y ij = gµν∂µφ
i∂νφ

j , (3.53)

γij = Y ij + nµnν∂µφ
i∂νφ

j , (3.54)
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which are all 3-dimensional tensors (except the normal vector nµ). It is then easy to construct SO(3)
invariant contractions out of them by using δij . The most general mass term is

Sm =
M2

Pm
2

2

∫
d4x
√
−g V (N,N i, Y ij) . (3.55)

which also includes Lorentz-invariant theories (see below). To avoid the BD ghost as well as strong
couplings one should avoid having functions depending only on the lapse N . Indeed it is through the
lapse that the constraint that removes the BD ghost arises. When linearized this yields

Sm =
M2

P

8

∫
d4x

(
m2

0h
2
00 + 2m2

1h
2
0i −m2

2h
2
ij +m2

3h
2 − 2m2

4h00h
)
. (3.56)

The Lagrangian (3.56) allows discussing a classification in terms of residual symmetry groups. When
breaking diffeomorphisms, in addition to keeping global linear subgroups such as SO(3), one may in fact
maintain more complex combinations. An example maintaining time-dependent spatial reparametriza-
tions

xi → xi + ξi(t) (3.57)

will restrict, at linear order, m1 = 0, i.e. there should be no quadratic contraction of the lapse. Theories
that benefit from this symmetry will propagate less than 6 degrees of freedom non-linearly. However it
turns out that this type of residual symmetry also leads to a strong coupling around Minkowski [43].
Other choices are possible, for example, asking that the theory is at most linear in the lapse gives (at
linear level) m0 = 0, and this ultimately allows to build a constraint that removes the Boulware-Deser
ghost.

Supersolid Lagrangians and massive gravity

Finally we comment on the distinguishability of massive gravity from other theories of gravity with
extra fields. Thanks to the presence of what one could call the Stückelberg frame, it is clear that the
theories developed on the basis of a breaking of symmetries can be arguably conflated with particular
multi-scalar-tensor theories. Although generic scalar-tensor theories may involve a wider array of sym-
metry (breaking) patterns and other couplings than the ones of massive gravity, it is true that a different
perspective on massive gravity, e.g. as self-gravitating medium, can be taken [181]. It was found that the
internal space construction of supersolid medium in fact coincides with Lorentz violating massive gravity.
This is due to the symmetry breaking pattern on which general supersolids are constructed: it is the
same as the one characterizing the Stückelberg sector for massive gravity, i.e.

SO(3) & φa → φa + cst. (3.58)

Note that more classes of four-dimensional media (solids, superfluids, perfect fluids, and Λ-media) can
be constructed with larger residual symmetry groups [180, 181].

Lorentz-invariant massive gravity

Drawing inspiration from Galileon theories (see section 3.1.1), it was realized (and achieved) by
de Rham, Gabadadze, and Tolley (dRGT) that a particular structure could both solve the problems
encountered at non-linear order (BD ghost, vDVZ discontinuity) while keeping Lorentz invariance.

To preserve Lorentz invariance in the unitary gauge, it is not enough anymore to contract terms with
δij as one may do in SO(3) preserving massive gravity. Instead the full Minkowski matrix should be
used. Also, it does not make sense anymore to write the theory from the standpoint of a foliation, since
a Lorentz invariant theory should have no preferred time direction. Therefore, we start by constructing
nontrivial contractions with the fiducial metric fµν , introduced with the non-linear Stückelberg trick (see
above), on the scheme of

. . . gβγfγδ . . . . (3.59)

This will be the unitary gauge form of the building blocks of Lorentz invariant theory (in particular
Lorentz invariance will manifest whenever one choses fµν = ηµν). Moving on towards the particular
structure of dRGT theory, we first introduce here the notation in terms of the fundamental matrix
square-root Kαβ , defined by

KαγKγβ = gαγfγβ . (3.60)
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Note that dRGT theory may be written in different ways (including the convenient vielbein form which
we introduce in chapter 4). Finally, the special structure that allows to write a non-linear, Lorentz
invariant, and ghost free theory is reached by using exclusively symmetric elementary polynomials of
Kαβ , the ei(K), i = 0, . . . , d, where the polynomials are defined by

en(X) =
1

n!(d− n)!
εµ1...µnλn+1...λdεν1...νnλn+1...λdX

ν1
µ1 . . . X

νn
µn , (3.61)

with d the space-time dimension, and X any matrix, or through a recursive relation

en(X) =
1

n

n∑
i=1

(−1)i−1
[
Xi
]
en−i(X) , (3.62)

with
[
Xi
]

the trace of the i-th power of X, and choosing a Minkowski fiducial metric, i.e. fµν = ηµν . The
graviton mass term is then written

Sm =
M2

Pm
2

2

∫
d4x
√
−g

4∑
i=0

ciei(K) . (3.63)

This graviton potential, taken together with the Einstein-Hilbert action, defines dRGT theory.

Hamiltonian analysis of nonlinear massive gravity

We now discuss the Hamiltonian analysis which will help understand how the BD ghost is removed
from the theories described above. First, since a generic mass term breaks 4 gauged translation invari-
ances, one may expect that the number of degrees of freedom for a generic massive gravity theory should
be 6. In the Hamiltonian language, the breaking of diffeomorphism invariance leads to completely los-
ing the Hamiltonian and momentum constraints that GR enjoys. On the other hand, based on Lorentz
symmetry one expects that a healthy spin-2 theory should have only 5 degrees of freedom, hinting at
the 6th mode entering generically as a ghost (the BD ghost). Fortunately, as we have seen, there are
constructions that propagate less degrees of freedom and hence avoid this ghost. In this section, we will
try to understand better how this counting arises.

The absence of the BD ghost translates in the Hamiltonian language as at least one novel constraint (in
fact either two second-class constraints or a single first-class constraint) allowed by the specific structure
of the action. The theories that have this special structure are the cases of Lorentz violating massive
gravity, and ghost-free Lorentz invariant massive gravity.

In the case of Lorentz violating massive gravity, the lapse should enter linearly in the action. This
implies at least one related constraint, reminiscent of the Hamiltonian constraint of GR. Schematically
one has

H
(tot)
LVmG =

∫
d3x

[
−NR̃0 − λC + . . .

]
. (3.64)

where C represents an a secondary constraint automatically generated by Ṙ0 ≈ 0, λ is a Lagrange
multiplier, and where the ellipsis denotes possible additional constraints, depending on the shape of the
mass term. We do not discuss here an alternative class of Lorentz-violating theories which leads to an
infinitely strong coupling around Minkowski space-time [43]8 (the one with m1 = 0 at linear level).

For Lorentz-invariant massive gravity, the mass form of the mass term is more constrained than in the
Lorentz-breaking theory. However the idea remains the same: find an appropriate form of the mass term
that will leave the lapse as a Lagrange multiplier. We will follow [187] for this explanation, whereas the
original non-linear proof of ghost-freeness was presented in [188, 189]. One may start by noticing that,
by using a lapse-dependent redefinition of the shift variable N i → ni, the matrix Kij may be rewritten
as a combination

Kij =
1

N
Ki(−1)j(n

i, γij) +Ki(0)j(n
i, γij) , (3.65)

where both K(−1) and K(0) do not depend on the lapse N , and where

Ki(−1)j = uivj , (3.66)

here without need of specifying the details of ui, vj , and K(0). Due to this peculiar structure, one may

build contractions that are linear in 1
NK(−1) by considering only traced polynomials anti-symmetrized on

8For another general discussion on the Hamiltonian analysis of massive gravity theories, see [186].
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either of the indices (which are a limited number in given dimensions). We end up with the set presented
previously, the symmetric polynomials ei(K) defined in (3.61). From here on we assume that the mass
term is (3.63).

Now, having made sure that only symmetric polynomials are included in LdRGT, we perform the
Legendre transformation, yielding the primary Hamiltonian

H
(1)

dRGT =

∫
d3x

[
−NR0 −N i(N,ni, γij)Ri +

M2
Pm

2

2

(
NH0(ni, γij) +MH1(ni, γij)

)
+ ξiπi

]
, (3.67)

where we didn’t include a term ξNπN as we already know that N is simply a Lagrange multiplier.
Indeed, an important information (in addition to N having a vanishing conjugated momentum) is that
the equation for ni can be inverted solely in terms of the spatial metric γij , and will hence not add powers
of the lapse. M denotes here the fiducial lapse function (defined in the same way as N but with the
fiducial metric).

Considering systematically the conservation in time of the constraints, one finds a single additional
constraint C (in addition to the one fixing the shift function, Pi), leading ultimately to the secondary and
total Hamiltonian

H
(tot)
dRGT =

∫
d3x

[
−NR̃0 −Hrest + λC + ξiπi + ζiPi

]
. (3.68)

where we have left all non-constraint parts in Hrest. We have therefore shown the broad lines of how the
special structure of dRGT grants the propagation of 5 degrees of freedom instead of 6. The Boulware-
Deser ghost has been exorcised again.

Regimes of massive gravity

It would be easy to (naively) assume that the phenomenology of dRGT massive gravity tends to GR at
high energies, but it turns out this issue is not so simple, as exemplified already within Fierz-Pauli theory
by the presence of the vDVZ discontinuity. In fact a more careful treatment can be done by considering
which are the relevant operators for each degree of freedom in the theory. It is possible to render explicit
a scalar- and a vector-graviton via a further decomposition of the Stückelberg. Looking for the canonical
normalization of the different modes helps setting the scales right. Around a flat background, one has

φa → xa − 1

MP

(
1

m
Aa +

1

m2
ηab∂bπ

)
. (3.69)

Going from low energies-up, it has been shown (again, see [43] and references therein) that the first

relevant non-linear interactions in dRGT theory arise at the scale Λ3 ≡
(
MPm

2
)1/3

. It makes therefore
sense to define a decoupling limit (a limit in which modes may only decouple but the number degrees of
freedom remains unchanged)

MP →∞ , m→ 0 , Λ3 fixed. (3.70)

In this decoupling limit, considering only the scalar- and tensor-graviton for simplicity, one finds after
unmixing the interactions (reproduced from [43])

LΛ3
= −1

4

[
h̃µνEαβµν h̃αβ +

5∑
n=2

bn

Λ
3(n−2)
3

LGal
n [π]− 2b5

b1Λ6
3

h̃µνX(3)
µν

]
, (3.71)

where Eαβµν is the Lichnerowicz operator, the bi are related to the constants ci from (3.63), the LGal
n

correspond to the different parts of the action (3.4), and

X(3)
µν [Π] ≡

(
[Π]3 − 3[Π][Π2] + 2[Π3]

)
ηµν − 3

(
[Π]2Πµν − 2[Π]Π2

µν − 3[Π2]Πµν + 2Π3
µν

)
, (3.72)

with Πµν = ∂µ∂νπ. Ultimately, the presence of X
(3)
µν indicates that in order to be phenomenologically

viable the theory necessitates b5 = 0 [43]. However, once this choice is made, the emergence of a Galileon
theory in the decoupling limit hints that dRGT massive gravity (as does Fierz-Pauli theory) enjoys the
same Vainshtein screening as in the case of the Galileon, with a Vainshtein radius (see section 3.1.1)

rV =

(
M

Λ3
3MP

)1/3

, (3.73)
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which, taking the mass of the Sun as a reference M, and m ∼ H0 the current expansion rate, gives a
radius parametrically larger than the solar system (rV,� ∼ O(103) ly). Note however, that besides b5 = 0
other parameters have to be tuned to ensure stability [43].

In a generic theory of massive gravity non-linear interactions appear at lower energies Λ5 ≡
(
MPm

4
)1/5

,

while in Lorentz violating models the interactions may appear much higher e.g. Λ2 ≡
√
MPm [44, 46],

or even higher [51]. Considering the phenomenologically interesting m ∼ H0, one has for example
Λ−1

2 ∼ O(10−4) m, or Λ−1
3 ∼ O(106) m. These scales are only indicative, especially in the case of the

presence of a Vainshtein screening, since they should be redressed in a screened environment, thus run-
ning towards higher energies/shorter distances (see section 10.2 of [43]). Finally, it should be emphasized
that the Vainshtein screening is more difficult to study in time-dependent or non-spherical cases. In these
cases the conclusions may be modified.

Cosmology for dRGT massive gravity

In this chapter we have focused on models that can address or at least contribute to solve the dark
energy puzzle. Scalar-tensor (and vector-tensor alike) are very diverse in this regard, but the difficulties
in finding cosmologies are generally mild. On the other hand recovering cosmologies within models
of massive gravity has been more complicated. Notable difficulties are (i) (non-)existence of FLRW
solutions, (ii) (non-)existence of viable 9 background dynamics, (iii) linear and non-linear (in)stability
of the solutions, (iv) (non-)viability of other phenomenology w.r.t. observations. In this part, we briefly
review cosmologies within massive gravity theories.

Massive gravity, in its dRGT formulation, does not necessarily accommodate the FLRW ansatz 2.31.
This fact arises for several reasons depending on the generality of the ansatz for the fiducial metric. In
the case of the original ansatz with the Minkowski metric

ds2
f = −dt2 + δijdx

idxj , (3.74)

one finds that the divergence of the Einstein equations within the unitary gauge systematically [190] leads
to

ȧ = 0 , (3.75)

which precludes the existence of interesting cosmologies excepted a Minkowski universe. This condition
can alternatively be obtained using the equation for the Stückelberg fields since (see for example [191])

∇µ
(

2√
−g

δS

δgµν

)
=

1√
−g

δS

δφa
∂νφ

a . (3.76)

Non-trivial open FLRW solutions can be found when choosing, for the fiducial metric, an open slicing of
the Minkowski metric instead of the ansatz above [192]. However these solutions exhibit strong couplings
or non-linear instabilities, as worked out in [193, 48]. More general fiducial metrics, still compatible with
the symmetries of FLRW10

ds2
f = −M(t)dt2 + ã(t)2δijdx

idxj , (3.77)

have been studied for example in [60] where it was found that a Higuchi-type ghost arises. Higuchi
[49] originally derived a bound on the graviton mass from the study of spin-2 excitations on a de Sitter
background. In fact, this bound can be generalized to more general cosmological backgrounds (see for
example [194]). References [60, 195] then explored the bound in the context of bimetric theories and
dRGT massive gravity on FLRW background. We do not reproduce here the explicit bound but give its
approximate form

m2
S & O(1)H2 , (3.78)

where the subscript S stands for scalar, as this mode arises in the scalar sector (from the scalar part of
the massive graviton).

Taken together, the previous results show how massive gravity does not accommodate FLRW solutions.
After this realization, it was argued that one should instead consider anisotropic (see e.g. [196, 197], or
inhomogeneous cosmology (see e.g. [190, 198, 199, 200]). Several considerations, such as the possible
super-Hubble inhomogeneity of the Universe, and the presence of the Vainshtein screening at short
scales, are arguments that may point in this direction [43]. In other words, the non existence of FLRW
solutions doesn’t preclude the existence of healthy and viable cosmologies within dRGT theory. However,

9In the sense of being roughly compatible with the expansion history of the Universe.
10Else one might see deviations from isotropy and homogeneity within the dynamics of cosmological perturbations.
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the treatment of perturbations, especially structure growth, is rendered more difficult by background
anisotropies or inhomogeneities (the usual mode decompositions cannot be used), and a comprehensive
treatment has not been concluded yet.

Extensions of dRGT massive gravity

The difficulties of dRGT theory with FLRW cosmology have been one of the main motivations to
explore cosmology within extensions. The overarching idea is that new dynamical modes can be added
to for example de-trivialize expression (3.75). Maybe the most notable of the extensions is the framework
of bimetric theories as implemented by Hassan and Rosen (HR) [141] (later extended to multi-metric
theories). In this extension, one renders the fixed background metric dynamical by adding a second
Einstein-Hilbert action

SHR = SEH[g] + SEH[f ] + Sm[Kαβ ] + Smat[g,Ψmat], (3.79)

in this case healthy FLRW solutions may be indeed found (while there exists also unhealthy regimes).
Other extensions of dRGT massive gravity include a generalization of the coefficients as functions of
the Stückelberg or the addition of scalar fields. Among these latter category, dubbed extended massive
gravity, one finds mass-varying massive gravity [190, 201, 202, 203] and quasidilaton massive gravity.
Chapter 5 will focus in particular on the quasidilaton theories.

Let us summarize the cosmology of these extensions:

• In generalized modified gravity [200] the mass parameters are allowed to depend on space-time,
effectively allowing for stability of the gravitational degrees of freedom. Matter perturbations were
not studied further.

• In bigravity theory (3.79), several situations are interesting: (i) it is possible to have a self-
accelerating universe albeit degenerate with GR by exploiting a hierarchy between the two Planck
scales11 [204], (ii) it is possible to have a non-GR-degenerate cosmology with a self-acceleration
given by m ∼ H0 at the cost of having a gradient instability [205] (see also [206]) in the scalar
sector at early times (which may however potentially be cured through Vainshtein mechanisms
[207]), (iii) rely on less studied exotic branches, which for example including bouncing cosmologies
(for a discussion see [206]). Although in principle interesting [208], a fourth fine-tuned option with
m� H0 has been recently shown to be difficult to achieve [209], but can be cured by an extension
[59, 58]. Finally, note that bimetric theories are especially interesting for the study of massive
gravity, as the latter can be found as a decoupling limit of the former [43].

• Cosmology in quasidilaton massive gravity has been shown to be unstable [203], unless extra ele-
ments are included. See chapter 5 for more details.

• Mass-varying massive gravity may have viable cosmologies [201, 202, 203] but cosmological pertur-
bations (within a very wide parameter space) in presence of matter still have to be investigated.

Finally, we discuss theories of Lorentz-violating massive gravity, well summarized as a subset of the
self-gravitating media [181]. In these references the question of matter perturbations has not yet been
analyzed. More recently, the subset of theories satisfying c2T = 1 (see section 3.2.4) has been shown in
[210] to have a phenomenology of matter perturbations degenerate with GR inside the sound horizon12.

Two common (yet not generic) patterns arise: complications and difficulties emerge in the construction
of a stable cosmology, or one has a tendency towards cosmologies degenerate with GR on the phenomeno-
logical level. In the case of mass-varying massive gravity further study is needed to approach the very
large parameter space. Of all possibilities considered, a few known ones have a chance to produce in-
teresting new phenomenology, as shown in [210]. All the previous models considered, the current lack
of a fully elucidated alternative to ΛCDM cosmology, excepted few cases, is ultimately a motivation to
consider minimal models as in chapter 4 or at least reductions of the number of degrees of freedom as in
chapter 5.

11One may argue that introducing a scale higher than the Planck cutoff of the theory should be taken with a grain of
salt. This is nevertheless an interesting and calculable limit of bigravity.

12In some specific cases it is possible to have a small sound horizon, in which case deviations from GR may be detectable.
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3.2 Constraining modified gravity

In this section, we discuss several ways to test and constrain alternative theories of gravity, and hence
test GR for modifications or inconsistencies. The simple idea is that one needs to apply the theory
to given regimes (e.g. homogeneous and isotropic for cosmology, weak field regime,. . . ), derive certain
characteristic observables, and constrain these estimates with observations. The observables may often
be statistical, as is the case for example in cosmology. In such a case, the confrontation of different
theories will be made using appropriate statistical tools.

3.2.1 Cosmological constraints

Background observables

As discussed in section 2.2.2, dark energy and modified gravity models can (although not necessarily)
already impact on the background evolution of the Universe in the form of modified equations of state
wDE 6= −1, i.e. deviations may be measured w.r.t. the ΛCDM model already in background observables.
One may also try to put generic constraints on these deviations from ΛCDM, which will in turn constrain
all candidate theories.

One complication is the time-dependence of the equation of state in models of dark energy and
modified gravity. Constraining a full free function of time with limited statistical data (in addition to the
other ΛCDM parameters) is difficult, hence one needs to rely on a parametrization wDE(a), unless one
wants to constrain a very particular (and probably unlikely) solution of a particular model. A typical
example of parametrization, in addition to the constant one, is (see for example [85])

wDE = w0 + (1− a)wa , (3.80)

with w0, wa = cst. The bounds one obtains are largely dependent on the parametrization, and on the
dataset used to constrain the model. The re-analysis (done in 2018) by the Planck collaboration [85]
gives the following constraints for a constant parametrization

w0 = −1.028± 0.032 , (3.81)

and for parametrization (3.80)

w0 = −0.961± 0.077 , wa = −0.28+0.31
−0.27 , (3.82)

in both cases for 68% confidence limits on the combined Planck, SNe, and BAO datasets. If one uses
current BAO/RSD and WL data (as of 2019) instead of the combination of SNe and BAO data, one finds
less stringent constraints

w0 = −0.76± 0.20 , wa = −0.72+0.62
−0.54 , (3.83)

but which will neatly improve with future galaxy surveys. Other recent datasets give analogous con-
straints, see for example [211] for the inclusion of 3-year-data of the Dark Energy Survey (DES).
Note again that tests presupposing a general parametrization are limited, and one needs to adjust this
parametrization case by case for more model-specific constraints.

Other cosmological observables can be used to constrain modified background dynamics. Big-bang
nucleosynthesis is an example which gives a powerful and early-time estimation of the gravitational
constant and of the expansion rate [212, 213, 214] (for reviews mentioning this possibility see e.g. [215,
33, 65]). The idea is that the final cosmological abundance of given light elements (for example Helium
or Lithium) is controlled, in a first approximation13, by two rates: the weak interaction rate ΓW and the
Hubble rate H. One of the primary bottlenecks is the freeze-out of the weak interactions (see previous
references for a more precise description). From the Friedmann equation one has roughly

H ∼
√
GcosmN∗k

2
BT

2 , (3.84)

with N∗ the number of relativistic degrees of freedom, while the weak interaction rate scales as

ΓW ∼ G2
Fk

5
BT

5 . (3.85)

Therefore, there is a crossing temperature which is roughly dependent on the gravitational constant
Gcosm or other factors affecting the expansion rate. Considering a varying gravitational constant (and
a non-varying Fermi constant) gives a bound |Gcosm − GN |/GN . 10%, where GN is the gravitational
constant as measured within the solar-system.

13See the previous references for more precise discussions.
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Perturbative observables

However, considering only background observables, the details of the new component—in particular
whether one has a given model of dark energy or modified gravity—are mostly unintelligible; in order
to differentiate models one has to study the inhomogeneous Universe (see sections 2.2.3 and 2.2.4 for an
introduction within GR). One can roughly split between linear scales, for which linear perturbation theory
works, and non-linear scales. On linear scales, modified gravity and dark energy are often parametrized
on their impact on the Poisson equations (2.83) and (2.84), which we reproduce here:

−k
2

a2
Ψ = 4πGΨ ρm δ , (3.86)

−k
2

a2
Φ = 4πGΦ ρm δ , (3.87)

where Ψ and Φ are the Bardeen gravitational potentials, and on the evolution of matter perturbation
(2.82). One may then define the related variables µ and η by

GΦ = Geff ≡ µ(a, k)Gcosm , GΨ ≡ η(a, k)µGcosm , (3.88)

where different notations exist for these variables, e.g. with Ψ and Φ interchanged, and where Gcosm is
the gravitational constant for the cosmological background evolution. Another widely used quantity is
Σ = µ(1 + η)/2, which controls the potential for lensing Ψ + Φ. Note in particular, these quantities may
be time- and scale-dependent, again the same issue as for the parametrization of wDE. Within available
data analyses, typical parametrizations focus again on a simple Taylor expansion at linear order (see
e.g. (56a) and (56b) of [85])

µ(z) = 1 + E11ΩDE(z) , η(z) = 1 + E12ΩDE(z) , (3.89)

with constants E11, E12. This parametrization will indeed cover only a subset of models and solutions,
but is simple to implement. In addition to this parametrization, one often assumes that the background
evolution is given by ΛCDM —another unfortunate but (until now) necessary non-trivial assumption.
Current bounds, for example from [85], are

µ0 − 1 = −0.07+0.19
−0.32 , η0 − 1 = −0.32+0.63

−0.89 , (3.90)

where the subscript 0 here stands for the present-time value, and where the bounds are derived from
Planck data (including CMB lensing) combined with BAO/RSD and WL. The presence of two different
parameters shows the importance of combined future studies of RSD and weak lensing. In [85] one
used RSD BOSS data [216, 217]; other recent datasets include e.g. FastSound [218], VIPERS [219], and
WiggleZ [220]. For weak lensing DES data was used [221, 211]; another dataset is for example the KiDS
[222, 223]. Note also that an alternative to the parametrizations (3.89), (3.80), etc. is to use the so-called
principal component analysis (PCA) on a scale- and/or time-binning of the quantities of interest (see
for example [224]). This is interesting as a way to remain model-independent; one can then balance the
number of bins with the desired precision.

Several future observations will take the RSD and weak lensing data to the next level. For a comparison
of some expected constraints see for example [19], which will reach errors of O(1%) on parameters such as
µ and Σ, of course given a particular parametrization (here affine in a). For ground-based based missions,
the first on the line is DESI (survey 2019-2024) [225, 21], which is spectroscopic survey mission, with
focus on the BAO and growth of large-scale structures. Other future interesting ground-based missions
include the Square Kilometer Array (SKA) (2023- ) [226, 20] which will perform among other radio weak-
lensing observations; the Large Synoptic Survey Telescope (LSST) (survey 2022- ) will also allow for weak
lensing measurements [22]. On the side of space-based missions, up next is Euclid (launch 2020), which
will perform an imaging and spectroscopic survey of a large number of galaxies. Euclid RSD expects
constraints of about 20% on µ and Σ, while Euclid WL will be able to constrain Σ up to 10% [23]. Wide
Field Infrared Survey Telescope (WFIRST) (launch 2025), if launched, will also help observe the dark
Universe [227, 24] on infrared scales through lensing and wide-field surveys.

The discussion wouldn’t be complete without mentioning the real tool to connect theories and observ-
ables on linear scales: the Einstein-Boltzmann solver codes. These codes (see for example CAMB [228],
CLASS [229], or PyCosmo [230] to cite a few) solve the coupled equations for the evolution of the pertur-
bations at linear level, including the full transfer function that allows to go from given initial conditions
to the observables. In the context of modified gravity, these codes have to be modified to account for the
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new equations (and other subtleties, such as the choice of gauge, etc.). The parametrizations given above,
e.g. (3.89) or (3.80) are meant to be implemented in these codes. However, the models of modified gravity
will in general have more specific features. It is therefore of utmost importance to modify the codes in a
way that accommodates models. Finally, one needs to solve multi-dimensional fitting problems, usually
using Markov Chain Monte-Carlo (MCMC) techniques. All this has yet to be done for several models,
in particular the ones exposed in this thesis.

Finally, note that modified gravity gravity can be distinguished from dark energy mainly from the
existence of η 6= 1. Even including anisotropic stress producing dark energy models such as vector field
models, the η parameter should deviate from unity only at horizon scales (see for example [231] and
references therein).

Non-linear observables

Non-linear cosmology, even in the context of modified gravity, has been developed extensively; we
primarily refer the reader to reviews [116, 232]. In this thesis, we will completely stick to linear observables
and thus we give only a very brief account of the field. One important application for non-linear studies
within modified gravity is the study of the screening mechanisms.

Growth becomes non-linear approximately on scales . 8h−1Mpc, hence the linear treatment used
above will break down. At the interface between linear and non-linear scales, one may use higher-
order perturbation theory—an approach called standard perturbation theory (SPT) —to approximate
the dynamics on increasingly small scales (for a review see [131], and for a recent work see [233]). In the
case of modified gravity models one may apply similar techniques (for an early work [234], and for a more
recent discussion [235]). The difference between real-space and redshift-space must also be taken into
account [236]. However there is a limit to this endeavor, and one needs to move to N-body simulations to
reach smaller scales. Initial conditions are set using the Zel’dovich approximation [237], or with higher
order perturbation theory [238]; several codes may then be used for the evolution of the perturbations,
e.g. [239]. In the case of modified gravity, N-body simulation codes are especially important because they
allow to study short scales hence the efficiency of screening mechanisms. For a comparison and a more
recent reference see e.g. [240, 241]. Finally, codes for computing observables quasi-nonlinear scales may
then use N-body simulation data input to become more efficient (for example [242]).

3.2.2 Observations in the weak field regime

Aside from late-time cosmology, weak field regimes include astrophysical regimes. In particular, solar
system tests are potentially interesting since they allow very tight constraints. We first review a time-
tested parametrized framework, and then discuss briefly its limits.

As we have seen with cosmology, since there are multiple models of modified gravity, it is important
to build generalized frameworks that try to encapsulate modifications of gravity in an agnostic way. This
is an effort that cannot completely replace model-specific tests, since some models may have unique
particularities, but should go hand in hand with them.

The most famous of such frameworks in the weak-field regime is the parametrized post-Newtonian
(PPN) formalism [65] which considers an expansion for small vc , where v is the characteristic velocity for
a virialized system. Indeed for such systems

GNM
rc2

∼ v2

c2
� 1 , (3.91)

whereM here denotes the typical mass of the system. It is sufficient to consider matter as a perfect fluid
(not necessarily comoving, as we had assumed in cosmology), with

Tµν = [ρ (1 + Π) + P ]uµuν + Pgµν (3.92)

where the rest-mass density ρ, the specific energy density Π ∼ v2

c2 , and the pressure P ∼ ρ v
2

c2 , are enough

to characterize the fluid up to one order in v2

c2 above the Newtonian level, i.e. at firstpost-Newtonian level.
Out of the matter variables one may build relevant functionals, called potentials, and one may parametrize
different theories of gravity by the coefficients for each of them. By relevant, it is understood that a range
of further assumptions are made, to ensure for example that the metric becomes asymptotically flat, etc.
Ultimately, this leads to a set of parameters that can be tested against observations, and constrained,
and hence constrain the theories that predict these parameters.
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Derivatives are assumed to scale as ∂0 ∼ v
c∂i. As far as the Einstein equations are concerned, hence the

Ricci curvature tensor, to compute them at one order v2

c2 above the Newtonian limit one needs therefore
only to expand the metric as

g00 = −1 + h
(0)
00 + h

(1)
00 +O(ε6)

g0i = −h(1/2)
0i +O(ε5) ,

gij = δij + h
(0)
ij +O(ε4) , (3.93)

where the superscript denotes the order in v2

c2 above the Newtonian order, and ε = v
c . At leading order,

Newtonian physics is recovered, and there is only one relevant parameter (i.e. one potential), which fixes
the gravitational constant. However, at higher order, the parameters one can build out of the lower-order
potentials and fluid variables multiply quickly. One finds them in the PPN metric [65],

g00 =− 1 + 2U − 2βU2 − 2ξΦW + (2γ + 2 + α3 + ζ1 − 2ξ) Φ1

+ 2(3γ − 2β + 1 + ζ2 + ξ)Φ2 + 2(1 + ζ3)Φ3

+ 2(3γ + 3ζ4 − 2ξ)Φ4 − (ζ1 − 2ξ)A+O(ε6) ,

g0i =− 1

2
(4γ + 3 + α1 − α2 + ζ1 − 2ξ)Vi −

1

2
(1 + α2 − ζ1 + 2ξ)Wi +O(ε5) ,

gij = (1 + 2γU)δij +O(ε4) , (3.94)

where the gravitational constant, which is in fact determined by the coefficient of 2U in g00, has been set
to 1, and where U , ΦW , Φ1, Φ2, Φ3, Φ4, A, Vi, and Wi are commonly used14 potentials defined in [65].
All other quantities are the parameters of the parametrized expansion. In order to obtain the parameters
for a given theory of gravity, one simply needs to compute the Einstein equations, as well as the equations
for the other gravitational fields, order by order. In particular, the parameters for GR are γ = β = 1,
with all other parameters 0. Working at order O(ε2) already allows for deviations from gravity, since
γ 6= 1 may appear.

In the previous section about cosmology, we have discussed the high-momentum, sub-Hubble limit.
Since the matter source in cosmology is also assumed to be a perfect fluid (usually comoving, in particular),
it is in general possible to find a relation between the gravitational constant for dust perturbations, as
well as the gravitational slip (2.85) into the parameters GN and γ. We will use this in chapter 4.

The PPN parameters are well bounded by laboratory (e.g. torsion balance), solar-system (e.g. the
motion of planets), and astrophysical (e.g. pulsar timings) experiments. We reproduce in table 3.1
the current bounds on the PPN parameters, as given in table 4 of [33]. It denotes for example bounds
γ−1 ≤ 2.3·105 derived from time delay for radio waves from the Cassini probe, or the bound β−1 ≤ 8·10−5

derived from a measurement of Mercury’s perihelion shift. See the reference for more details on the
different tests.

The presence of strong constraints on modifications of gravity on astrophysical and in particular solar
system scales, is a strong motivation to implement screening mechanisms (see section 3.1.1). Furthermore,
while the PPN formalism is useful for some theories of modified gravity, it is not appropriate in screened
regimes for which non-linearities become important, e.g. when the Vainshtein screening mechanism is
effective. In this case dedicated studies are necessary. A notable simple example is the case of binary
pulsars, in which the pulsation rate diminishes slowly due to the emission of gravitational waves (and
potentially other types of radiation in modified gravity) by the system (for a descriptions of these systems
see for example [243]). There have been several studies of these systems15 with a Vainshtein screening
[246, 247]. Numerical studies have also been important in exploring the screened regimes dimension;
in the case of binary systems, see for example [248]. Eventually, going beyond pulsar binaries (see for
example [249] for a study in the solar system), a full set astrophysical tests of modified gravity may then
be designed to explore screenings mechanisms per se (see chapter 6 of [116] for a review). Note that in the
case of the Vainshtein screening, new formalisms have recently been developed to push in this direction,
such as the post-Vainshteinian formalism [250], or the use of effective field theory techniques [251].

14There may be more, since the metric (3.94) is obtained using gauge freedom. In a theory without the full gauge-freedom
this is not necessarily possible, and more potentials may be needed.

15See also [244] for the impact of massive tensor modes only, and for example [245] for other screening mechanisms.
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Parameter Effect Limit Remarks

γ − 1 time delay 2.3× 10−5 Cassini tracking

light deflection 2× 10−4 VLBI

β − 1 perihelion shift 8× 10−5 J2� = (2.2± 0.1)× 10−7

Nordtvedt effect 2.3× 10−4 ηN = 4β − γ − 3 assumed

ξ spin precession 4× 10−9 millisecond pulsars

α1 orbital polarization 10−4 Lunar laser ranging

7× 10−5 PSR J1738+0333

α2 spin precession 2× 10−9 millisecond pulsars

α3 pulsar acceleration 4× 10−20 pulsar Ṗ statistics

ζ1 — 2× 10−2 combined PPN bounds

ζ2 binary acceleration 4× 10−5 P̈p for PSR 1913+16

ζ3 Newton’s 3rd law 10−8 lunar acceleration

ζ4 — — not independent (see Eq. (71) of [33])

Table 3.1: Table of the current limits on the PPN parameters. Reproduced and adjusted from [33].

3.2.3 Strong field regimes

Existence of black hole solutions

Another horizon for modified gravity is the existence of black hole solutions. Black holes, as very
fundamental systems in astrophysics (whose photosphere we can now see [3]), should be described by
any theory of gravity (or at least equivalent compact objects). On top of this, the black hole metrics are
cornerstones of many analysis currently done in astrophysics, cosmology, and other fundamental inquiries.
It is therefore natural that one of the first steps for alternative theories of gravity is to try and obtain
black hole solutions. However, with the increased complexity of these theories, black hole solutions, have
in general proved more difficult to obtain.

One direction of research involves looking first for Schwarzschild-like solutions, for example in the
Schwarzschild coordinates

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2dΩ2

2 , (3.95)

with f(r) ≡ 1 − 2GNM
r with M the black hole mass16. One may also look for new black-hole solutions,

as we will discuss. It would be out of place to offer a complete review on the efforts to recover black
holes in different theories of gravity. We nevertheless give a short account specifically on scalar-tensor
and massive gravity theories.

Black holes in scalar-tensor theories

Black hole in theories with extra fields immediately lead to the question of the celebrated no-hair
theorem, which restricts the quantities characterizing a black hole to its mass, angular momentum, and
electric charge (see e.g. [252]). If a no-hair result exists, this means that the field should have a trivial
configuration around a black hole. In several early models of scalar-tensor theories, new no-hair theorems
have been shown to exist, for example in f(R) and related theories [253], or in Galileon theories [254].
However, a number of assumptions (in particular staticity of the extra fields) may be broken and it
was shown that a range of hairy solutions can be found. Time dependent solutions may also be found.
Some the modifications one can make are for example the non-minimal coupling of the fields, such as
in [255, 256, 257], or within higher-order scalar-tensor theories in special cases [258, 259, 260], through
non-trivial asymptotics as in e.g. [261, 262], or time-dependent scalar fields, e.g. in [259, 260, 263]. More
references can be found in the reviews and classifications [264, 265, 18, 266].

16One defines the Schwarzschild radius as rs ≡ 2GM .
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fµν ∝ gµν fµν 6∝ gµν
both diagonal both diagonal

× Singularity at
the horizon

[268]

Infinite strong
coupling.

[61]

Table 3.2: Static and spherically symmetric, Schwarzschild-(anti-)de Sitter-like black holes solutions in
Lorentz-invariant massive gravity. The mention “both diagonal” indicated that the metrics are both
diagonal simultaneously, while “both diagonal” indicates the complementary case. There are trivially no
solutions where the metrics are proportional to each other. The categorization was adapted from [61].

Black holes in massive gravity

Finding black holes in massive gravity theory, in particular dRGT theory, has been a recent challenge
(for reviews see [267, 61], also for bimetric theories) The known astrophysically relevant black holes in
massive gravity have no hair [267]. Under the assumption of sphericity and staticity, a few classes of
solutions can be detailed, and all have a pathology: either a physical singularity or a strong coupling [61].
We present in table 3.2 an account for these spherical static solutions. The classification depends on the
form and relation between physical and fiducial metric, which allows to systematize the analysis. First,
one segregates between solutions in which the metrics are proportional to each other for simplicity we
note here as the case i) as opposed to solutions ii) in which the metrics are not proportional. In the case
ii) one may further differentiate ii.a) the bidiagonal case, and ii.b) its complement. To summarize, every
different case i), ii.a), or ii.b), a static Schwarzschild-like solution either does not exist or has a given
unhealthy property. This has led to believe that a different route needs to be taken to explore black holes
in dRGT. The recent works by Rosen [269, 270] give a strong push to the idea [271] that black holes in
dRGT can exist if a time dependence is introduced. A full solution (not only a near-horizon expansion)
is yet to be shown. Numerical solutions are also one of the future hopes for the field. Finally, note that
with Lorentz-violating massive gravity, in particular in the minimal theory of massive gravity (MTMG)
described in this thesis, the situation is different, and Schwarzschild solutions can be found [52] (see also
[272] for a study of black holes in other Lorentz violating massive gravity theories).

Relativistic stars

Of course, black holes are not the only strong gravity systems that get modified. Self-gravitating
matter systems, in this case neutron stars in particular, are also impacted by modifications of gravity.
Here again we will not offer a thorough review but simple point to certain references, especially in the
case the theory relies on Vainshtein mechanism. As for other systems, the question of relativistic stars
is largely dependent on which modification of gravity one considers. The case of higher-order scalar-
tensor theories beyond Horndeski has been considered in [273, 274], then revisited in [275, 276] (see also
references therein). The equations of state in the latter works are yet to be extended to the more realistic
polytropic case. As for massive gravity, the solutions were explored in [277, 278]17

Probing the strong-field regimes

The hope is that all these modifications may be observed through, for example, gravitational wave
signals. The advent of gravitational wave astronomy is indeed very exciting as a future window into
strong-field dynamics. For reviews on these prospects see [280, 281]. To use most efficiently the future
observations one will need to classify and systematize the different solutions and/or theories. See for
example [282] for an effective field theory take on the quasinormal modes. See also [283] for a classification
of modified gravity theories with respect to their black hole solutions. Finally, obtaining gravitational
wave templates in theories of modified gravity is an important future challenge. At present, the post-
Newtonian perturbative analysis of compact object inspirals has studied in a subclass of scalar-tensor
theories (see e.g. [284, 285, 286]). However, the studies are yet to be extended to higher orders, and full
templates including strong-field phases of the coalescence of binary systems are still missing.

17See also [279] for bigravity.
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3.2.4 Constraints from the propagation of GW

Gravitational wave astronomy is not only interesting as a probe of the strong-field regime, but has
been able to put constraints on models of modified gravity from the mere fact that the gravitational
waves have traveled long distances (O(101) ∼ O(103) Mpc).

The most notable constraint on modifications of gravity was given by a binary neutron star merger
detected as the gravitational wave event GW170817 [39] and the gamma ray burst GRB170817A [38] (and
references therein). This sets several constraints on alternative theories of gravity via the difference in
timing of arrival of both signals (which was of a few seconds). The current constraint is |1− cT /cEM| =
O(1) × 10−15, at around 100 Hz. This bound is a strong motivation to consider only theories with
cT = 1. This assumption would constrain several scalar-tensor theories as explanations for the cosmic
acceleration, in particular the Horndeski class (3.5) would be restricted to the subset of up to cubic
theories in addition to G4(φ) instead of G4(φ,X) [287, 288, 289, 290, 291, 167, 168]. This, at least within
phenomenologically interesting scalar-tensor theories, implies that one should expect µ > 1 (defined in
(3.88)), if the Vainshtein mechanism is efficient (see equations 3.37 to 3.40).

Another possibility lies into reaching dynamically cT = 1 at present time [292, 293]. Scrutiny should
however be put on this bound, due to the frequency window close to the cutoff of the theories [40]. In
parallel, it was pointed out that cT = 1 should be preferred due to the possible decay of gravitational
waves into dark energy [41].

Another concurrent bound from gravitational waves is on the mass of the graviton. From event
GW170104 [294], the graviton mass µT has been bounded to |µT | < 7.7×10−23 eV. This is only marginally
weaker than the bound from solar-system observations |µT | < O(1)× 10−24 eV [295]. Future space-based
interferometers such as LISA [27] will provide an increasingly better bound, of order |µT | < O(1)×10−26

eV [296]. Several other model dependent constraints have and will be investigated (for a review see [297],
and for an interesting proposal [298]).

Finally note that gravitational waves will test several other aspects of gravity. To cite one, LISA-type
interferometers will be sensitive to the different polarizations of gravitational waves [299], whereas this is
only partially the case current detectors.
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Chapter 4

Minimally modified gravity

4.1 Philosophy of minimal theories

As was exposed in part 2.1.5, it is clear that to build novel theories one must relax some of the
assumptions of Lovelock’s theorem. A common conception is that breaking any of these assumptions is
generally equivalent to adding degrees of freedom. Several examples speak for this line of thought: dRGT
massive gravity propagates 5 degrees of freedom due to breaking general covariance, brane scenarios
have naturally emergent scalar fields (e.g. [300, 15]), higher-dimensional compactifications [301], higher
derivative theories [17], spontaneously-broken continuous symmetries [97, 98], . . . all of these generically
involve new modes in their effective low-energy theory. From this perspective alone, it is no wonder that
scalar-tensor theories are seen as an archetypal modifications of gravity.

Yet as we will show explicitly in this chapter, breaking Lorentz invariance (LI) allows for theories which
do not necessarily propagate new gravitational fields. Intuitively relaxing LI allows to treat temporal and
spatial components and derivatives independently. Hence it is possible to choose appropriate terms, or to
set constraints, that will render the extra modes non-dynamical. In fact, this is similar to what has been
done in dRGT theory to remove the BD ghost; however, in that case, by restricting firmly the structure
of the potential term, Lorentz invariance still constrains the massive graviton to propagate five degrees
of freedom as a massive spin-2 field should. Therefore in dRGT it was not possible to remove more than
the BD ghost except on given strongly coupled backgrounds. On the contrary, in the context of Lorentz-
violating massive gravity, relaxing LI allows to consider subgroups of unbroken diffeomorphisms [45, 46],
and hence potentially less degrees of freedom [181]. As we will show, in addition to considering residual
symmetries, it is also possible to consider constrained Lagrangians. In the Hamiltonian formalism this
corresponds to second-class constraints. It should be noted that we will only consider cases in which
SO(3) invariance is retained. In addition to allowing for a simple implementation of cosmology, this also
allows to think easily in terms of the scalar-vector-tensor (SVT) decomposition.

Since relaxing LI allows for more freedom in constructing theories, it is interesting to ponder whether
there are practical guiding principles that could orient the model building efforts. Here, we discuss
two lines of thought, one centered on consistency and another based on the idea of simplicity. First,
consistency comes as an essential criterion in physics. In our case, we would for example demand the
(UV-)stability over “reasonable” backgrounds, as well as the possibility to sustain a “realistic” cosmology,
cosmology-completeness. These two criteria are completely heuristic, and should be eventually replaced
by confrontation against empiric observations and in-depth studies of stability. Nevertheless, they are
useful since they allow to select subclasses of theories (e.g. SO(3)-invariant), which have a good chance
to offer a good description of our world.

The second criterion, simplicity, can be seen as a continuation of Occam’s ideas in the context of field
theories. In the case of Lorentz invariant theory, one may easily conflate number of parameters with the
number of fundamental fields, and hence the number of degrees of freedom. However, when symmetries
are not so clear cut, theories with the same number of fields may propagate a different number of degrees
of freedom, as is the case in massive gravity, especially classically. We propose to choose as a working
principle to consider theories with the least number of degrees of freedom. Following on the naming of
the minimal theory of massive gravity (MTMG) [51] and [56], this criterion can be named minimalism1.
Interestingly, one can expect that this specific choice for the second criterion, minimalism, can in fact
impact positively on the study of consistency, since less degrees of freedom may indicate less numerous

1This idea was first proposed in [302].
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and therefore less stringent stability conditions. It will be also generally easier to satisfy observational
constraints and to relieve the necessity of screening mechanisms.

In the next sections, we will therefore study some classes of modified gravity which fall under this
idea of minimalism. This research program can be traced back to [51, 56]. In the next section, a first
review section, we will summarize the analysis of [56]. The example introduced allows then to present
with more perspective the work realized during this thesis [50] in sections 4.3 and 4.4. Finally, we close
the chapter with another review section, presenting the model introduced in [51].

4.2 Unbroken symmetries

As a first simple example of MMGs, one may consider theories in which although Lorentz is violated,
the full group of diffeomorphisms is only broken up to a given subgroup. Since we are interested in
retaining SO(3) invariance, it makes special sense to conserve spatial diffeomorphisms, i.e.

xi → xi + ξi(t, xj) . (4.1)

as the subgroup of diffeomorphisms. This approach was considered in [56], in which general conditions for
which a theory propagates only two degrees of freedom were derived. Another approach based directly on
the Hamiltonian has been pursued in [57]. The class of theories considered is linear in the lapse function,
and was written

S =

∫
dtd3x

√
γNF

(
Kij , Rij ,Di, γij , t

)
, (4.2)

with all spatial indices contracted, and where all the quantities can be found defined in section 2.1.8.
Note that the action does not depend on the shift, other than in Kij , as this could lead to a violation
of (4.1). Mixed derivatives are also not taken into account and would need a separate treatment. By
considering theories that are linear in the lapse function, one may expect to obtain a degeneracy such
that the new dynamical mode of the metric in fact is not dynamical at all.

In fact, in the Hamiltonian formalism, it is easy to see that there exists a primary constraint associated
with the linearity in the lapse which is noted C. Due to the residual symmetry (4.1), it is also possible to
find three first-class constraints noted R̃i. It is however non-trivial to ensure that either the constraint
R0 can be linearly combined with other second class constraints2 to find a first-class constraint, or that
there exists a tertiary second-class constraint due to consistency. Indeed, recall that one may start with
twelve phase space degrees of freedom from the three-metric γij and that the constraints R̃i remove six
of them. To reach four phase space degrees of freedom either there exists a first-class constraint, or two
independent second-class constraints including R0.

The authors of [56] find that the sufficient and necessary condition is∫
d3x
√
γ

{
Dj
(

1
√
γ

δ 〈√γFα〉
δRkl(x)

)
Di
[(
Qjlγik −

1

2
Qklγij −

1

2
Qγikγjl

)
β

]
− (α↔ β)

}
≈ 0 ∀α , β ,

(4.3)
where Qij is an auxiliary field introduced to replace Kij in the Lagrangian; in fact, this condition is in
general sufficient also in the more general class

S =

∫
dtd3x

√
γN

[
F
(
Kij , Rij ,Di, γij , t

)
+G

(
Rij ,Di, γij , t

)]
. (4.4)

This general construction has allowed to build new MMGs, for example3 square-root gravity (SQGR),
defined by

F =
√
A(t) (KijKij −K2) +B(t)

√
C(t)R+D(t) + Λ(t) , (4.5)

which has four first-class constraints. SQGR has been shown to be perturbatively equivalent to GR
in vacuum [303] (see also [304]), at least up to the five-point functions. Using the coupling to matter,
however, one may obtain theories which are not GR. One example of coupling is given in [305], which pre-
serves the structure with four first-class constraints, which however do not correspond to four-dimensional

2For simplicity, we have not alluded here to the use of auxiliary fields to take care of the terms with overall more than
two time-derivatives, due to F being a free function of Kij . This leads to an extended phase space, with other second-class
constraints than only R0.

3Another example is exponential gravity, see [56].
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diffeomorphisms. Another possibility of matter coupling was proposed in [306], which relies on a gauge-
fixing, thus reducing the first-class constraint related to the lapse into two second class constraints, thus
allowing for the usual minimal coupling to matter.

Finally note that, as we will see later, spatial diffeomorphisms are not necessary to build MMGs
(notably [51]).

4.3 Type-I and type-II MMGs

As we have seen, one may define a MMG theory as a theory that only carries the same gravitational
degrees of freedom as general relativity. Considering the existence of large classes of MMGs, it is especially
interesting to proceed to a categorization of the theories. It is interesting to further segregate type-I gravity
theories from type-II gravity theories, on the basis of the existence of an Einstein frame [50]. Type-I
theories have an Einstein frame, and therefore can be written, via field redefinitions, as the Einstein-
Hilbert Lagrangian, plus a Lagrangian involving the kinetic terms of other fields, and plus a matter
Lagrangian (in general non-minimally coupled). This is a rather common type of theories, e.g. many
scalar-tensor theories (say, Brans-Dicke) fall into this category. On the other hand, two examples of
type-II gravity theories are Hořava-Lifshitz gravity and MTMG.

This categorization is a concrete aid to the discussion of theories of gravity which can often be linked
through change of variables, and as we will see it can also be an aid to the construction of MMGs. In
Figure 4.1, we present a scheme of the theory space of MMG theories, organized on the basis of the
constraint algebra of their Hamiltonian formulation. The low population of the map may be a hint that
there are yet several theories or fundamenta to understand.

Minimal theories

GR
MTMG

SQGR 
+ self-consistent 
matter coupling Type-I 

+ gauge-fixed 
matter coupling

4× 1st class
∃ 2nd class

4D diffeos.

Time 2nd 
class

Space 2nd 
class

Ty
p
e
-I

I

Ty
p
e
-I

Figure 4.1: Scheme of the space of minimally modified theories of gravity (MMGs), here noted simply
minimal theories. Type-I (in orange) and type-II (in blue) theories are disjoint sets. We further separate
the case in which there are four first-class constraint, and the case in which second-class (in particular
when time and/or space diffeomorphisms are downgraded to second-class) constraints exist. SQGR
denotes the square root gravity of [56] with the self-consistent matter coupling [305]. Type-I theories
with a gauge-fixed matter coupling include the theories constructed via canonical transformation of
[306, 50], but do include theories such as SQGR when a gauge-fixed matter coupling is used. MTMG is
the model of massive gravity [51].

In the following chapter we move on to consider MMG theories through two examples: a construction
of a class of type-I MMG theories based on [306, 50], and the presentation of MTMG [51] as a type-
II MMG theory. In particular, we will show that the phenomenology of MMGs can be of interest for
late-time cosmology.
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4.4 Type-I theories from canonical transformation

In this part we review our construction of a non-trivial type-I minimally modified gravity theory. The
idea behind the construction is to use the Hamiltonian language, in which it is easy to understand the
constraint structure, i.e. the structure of the diffeomorphism algebra, and in which we can use the tool
of canonical transformations. This idea was first explored in [306], where however it was recognized that
more generic canonical transformations would be needed to obtain non-GR phenomenology.

4.4.1 Construction

The idea is to start from the total GR gravitational Hamiltonian (the matter fields will be treated
afterwards), i.e.

Htot =

∫
d3x(NH0[Γ,Π] +N iHi[Γ,Π] + λΠN + λiΠi) , (4.6)

with

H0 :=
2

M2
√

Γ

(
ΓikΓjl −

1

2
ΓijΓkl

)
ΠijΠkl − M2

√
Γ

2
R[Γ] ,

Hi := −2
√

ΓΓijDk

(
Πjk

√
Γ

)
,

where we rename for later convenience, compared with chapter 2, the lapse into N , the shift into N i, and
the spatial metric into Γij , and Di is the covariant derivative compatible with Γij . Proceeding just as
in (2.20) allows us to define the conjugated momenta, respectively ΠN , Πi, and Πij . M is the UV mass
scale of this purely gravitational theory. Note that the lapse and shift are considered as variables as well.

From any Hamiltonian it is possible to define an equivalent Hamiltonian by a canonical transformation
of the variables. A general canonical transformation of the second type (see for example [307]) can be
defined through a generating functional

F = −
∫
d3xF (PA, qA, t) , (4.7)

denoting collectively the canonical momenta and variables as PA and QA, and where we have introduced
the new set of canonical variables qA, target of the canonical transformation. One may relate the two
sets of variables and momenta by

QA = − δF
δPA

,

pA = − δF
δqA

,

where pA are the momenta conjugated to the qA. Finally the new Hamiltonian is written as

H̄tot = Htot +
∂F
∂t

.

The procedure is completed as it can be written in terms of the new variables
It is possible to apply this procedure to the gravitational theory in (4.6) just by setting QA =

(N ,N i,Γij). Although the construction should work in generality, here we restrict ourselves to the case

F = −
∫
d3xF (PA, qA, t) , (4.8)

F = −
∫
d3x(M2√γf(Π̃, H̃) +N iΠi) , (4.9)

where

Π̃ =
1

M2√γ
Πijγij , H̃ =

1

M2√γ
ΠNN , (4.10)
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and f is an arbitrary function of Π̃ and H̃. Note that this generating functional does not depend explicitly
on time and so the Hamiltonian is formally left the same. Then, we obtain

Γij = − δF

δΠij
= fΠ̃γij , (4.11)

N = − δF

δΠN
= fH̃N , (4.12)

πij = − δF

δγij
= fΠ̃Πij +

M2

2

√
γγij

(
f − fΠ̃Π̃− fH̃H̃

)
, (4.13)

πN = − δF
δN

= fH̃ΠN , (4.14)

For convenience (since we want to keep f general we prefer not to invert it) we define the auxiliary
variables φ ≈ Π̃ and ψ ≈ H̃ by using the constraints

C := πijγij −
M2

2

√
γ(3f − fφφ) +

3M2

2

√
γfψψ ≈ 0 , (4.15)

B := πNN −M2√γfψψ ≈ 0 . (4.16)

The Hamiltonian after the canonical transformation becomes therefore

Htot =

∫
d3x(NfψH0 +N iHi + λπN + λiπi + λCC + λDB + λφπφ + λψπψ) , (4.17)

with

H0 =
2

M2f
3/2
φ

√
γ

(
γikγjl −

1

2
γijγkl

)[
πij − M2

2

√
γ(f − fφφ− fψψ)γij

] [
πkl − M2

2

√
γ(f − fφφ− fψψ)γkl

]

−
M2f

1/2
φ

√
γ

2

[
R[γ]− 2D2 ln fφ −

1

2
Di ln fφDi ln fφ

]
, (4.18)

Hi = −2
√
γγijDk

(
πjk
√
γ

)
+ C∂i ln fφ + B∂i ln fψ − πNN∂i ln fψ , (4.19)

and where Di is the covariant derivative with respect to γij .
Expressions (4.6) and (4.17) are strictly equivalent. However, it is still possible to define different

gravity theories using them, in a straightforward way: by choosing a matter coupling. Although many
properties of a theory of gravity is defined by the gravitational Lagrangian, even in GR, the matter
coupling is still one of the foundations.

We chose to set the canonically transformed theory (4.17) as the Jordan frame of our theory, hence
defining the original theory as the Einstein frame. Setting a theory as being the Jordan frame one
translates into choosing a minimal coupling, i.e. after Legendre transformation,

N
√
γL = M2f1N

√
γ

[
f ′0

3/2

2

(
1

f2
1

KijKij −
1

3f2
1

K2 +
1

f ′0
R(γ)

)
+
K

f1

(
f0 −

1

3
f ′0φ

)

− f ′′0
f ′0

1/2
D2φ−

(
Diφ
f ′0

3/4

)2(
f ′0f
′′′
0 −

3

4
f ′′0

2

)
+

1

3
f ′0

1/2φ2

]
+
√
γ Lgf +

√
γ Lmat ,

(4.20)

where we have introduced Kij as the extrinsic curvature for γij , Kij := (γ̇ij − 2D(iNj))/2N . On the
constraint surface, ψ = 0, allowing us to expand f as

f(φ, ψ) = f0(φ) + f1(φ)ψ +O(ψ2) .

Notice that we have added a new piece yet to define, Lgf . This can be best understood by reflecting
about diffeomorphisms.

In the Hamiltonian language, the introduction of the minimally coupled matter downgrades the Hamil-
tonian constraint, associated to time diffeomorphisms, from a first class into a second class constraint.
This in principle is fatal to the theory, since as a result, a badly defined half degree of freedom would
emerge. To prevent this, one can fix a gauge by the introduction of a gauge fixing term, which has the
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effect of splitting the Hamiltonian constraint into two second-class constraints, a primary and a secondary
one. Now the primary would-be Hamiltonian constraint cannot be downgraded anymore.

Finally, one may chose a gauge, in our case,

Lgf = −λigf∂iφ . (4.21)

this gauge allows to ultimately rewrite the Lagrangian of the new theory as

L = M2f1

[
f ′0

3/2

2

(
1

f2
1

KijKij −
1

3f2
1

K2 +
1

f ′0
R(γ)

)
+
K

f1

(
f0 −

1

3
f ′0φ

)
+

1

3
f ′0

1/2φ2

]
− λigf∂iφ+ Lmat . (4.22)

4.4.2 Cosmology

We first consider the background dynamics4 with a flat FLRW ansatz (2.34), which yields the equations

M2

3
φ2f1

√
f ′0 = ρ , (4.23)

6H
√
f ′0 (2f ′0 − f ′′0 φ) = −φ (4f ′0f1 + f ′′0 f1φ+ 2f ′0f

′
1φ) , (4.24)

ρ̇+ 3H(ρ+ P ) = 0 , (4.25)

where H is the Hubble expansion rate, and ρ and P derive from the total energy momentum tensor in
the Jordan frame, including the cosmological constant and the contribution from matter fields, i.e.

ρ = M2Λ + ρmat , P = −M2Λ + Pmat . (4.26)

For clarity, we define

f0m ≡ 2f ′0 − f ′′0 φ , (4.27)

df ≡ 4f ′0f1 + f ′′0 f1φ+ 2f ′0f
′
1φ ; (4.28)

this allows to combine (4.23) and (4.24) into an effective Friedmann equation

3M2H2 = ρ+
M2φ2

12

(
−4f1

√
f ′0 +

1

f ′0

d2
f

f2
0m

)
. (4.29)

The gravitation constant for the background can be identified as Gcosm ≡ 1/(8πM2). As we will see later
on, this value does in general not coincide with the effective gravitational constant that drives the linear
dynamics of the dark matter fluid fluctuations, Geff . Note also that modifications of gravity contribute
to the Friedmann equation (4.29), and the form of the modification is controlled by functions f1 and f0,
as well as by the density of matter fields through (4.23). One may understand this as a contribution to
dark energy.

Moving on to the study of perturbations, it is first of all clear that tensor modes propagate with a
modified speed, which we can relate to the speed of light (in this expression noted cEM) as

c2T = c2EM

f2
1

f ′0
. (4.30)

As we will discuss further, since modifications to the propagation of gravitational waves have been con-

strained, this will motivate us to look for a viable subclass of models. Once matter is added f
′3/2
0 /f1

becomes the no-ghost condition for the tensor modes. This is however already satisfied, since both free
functions were already chosen as positive.

Since vector modes are trivially absent, we now focus on scalar modes. After integrating out the
non-dynamical variables defined as in section 2.2.3, we obtain the quadratic order action for the density
perturbations

N
√
γLδ = A δ̇2 − B δ2 , (4.31)

From this Lagrangian, one may write the equation of motion of the density perturbations,

δ̈ + 2CHδ̇ − 4πGδρ̄δ = 0 , (4.32)

4 As already mentioned, we assume the gauge condition imposed by (4.21).
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and we can express the Bardeen potentials as

−k
2

a2
Ψ = 4πGΨρδ + 4πGΨρδ̇ , (4.33)

−k
2

a2
Φ = 4πGΦρδ + 4πGΦρδ̇ . (4.34)

where C, Gδ, GΨ, GΦ, GΨ, and GΦ are (gauge- and) scale-dependent and are given by

Gδ = GΨ = GΦ
K1

K2
= Gcosm

1

f1

√
f ′0

K1

K2
2

, (4.35)

C =
K3

K1
, (4.36)

GΨ = Gcosm
a2

k2

2c2Tφ(f ′0f1p − 2f ′′0 f1φ)

f1f ′0f0m

1

K1
, GΦ = Gcosm

a2

k2

c2T dfφ
2

2f1f ′0f0m

1

K1
; (4.37)

the functions Ki are defined by

K1 := 1 +
a2

k2

c2Tφ
2

2
, (4.38)

K2 := 1 +
a2

k2

φ2

2
, (4.39)

K3 := 1 +
a2

k2

3c2Tφ
2(f0mf1 + 2f ′0f

′
1φ)

2df
, (4.40)

with

f1p := f1 + 2f ′1φ . (4.41)

The decomposition we have just presented allows to straightforwardly take the subhorizon limit as in
(2.79), since in that limit Ki → 1 and Gi → 0, and hence we obtain

Gδ →
Gcosm

f1

√
f ′0
≡ Geff , C → 1 , η → 1 , (4.42)

where we have included the slip parameter η := Ψ/Φ. As a result, the only change caused by the canonical
transformation for the evolution of the density perturbations in the sub-horizon limit is the change of the
gravitational constant. The gravitational constant at short scales Geff is generally time dependent since
f1 and f ′0 are functions of φ. We may also compute the scalar no-ghost condition

Q = lim
k→∞

A
a3

=
1

2

a2

k2

ρ2

ρ+ P
, (4.43)

Therefore, there is no ghost instability as long as ρ + P > 0. This result is equivalent to the standard
case in GR (the null energy condition). Along the same lines we find that matter waves, in the high-k
limit, propagate with the squared-speed

c2s = lim
k→∞

a2

k2

B
A

= c2mat . (4.44)

with cmat defined as for example (A.20). This result extends to multiple matter fields, since all matter
fields share the same minimal coupling in the Jordan frame.

4.4.3 Considering constraints

In this section, we take the results we have obtained in the previous section, and discuss them taking
into account observations that can constrain the theory. We have considered two main constraints on:

1. the speed of propagation of gravitational waves,

2. the time-variation of the gravitational constant.
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Starting with the speed of propagation, the recent multi-messenger observation of a binary neutron
star merger has put a constraint (. 10−15) on the relative difference between speed of light and speed
of gravitational waves (see section 3.2.4). It is thus worthwhile to restrict ourselves to the case c2T = 1
for all times, i.e. f2

1 = f ′0, for this discussion. From the action (4.22) we see that the same will also hold
on different backgrounds. Note however that the constraint was verified only at late-times, and it would
therefore be technically possible to have f2

1 6= f ′0 at early times.
On choosing cT = 1, we may combine the equations (4.23)-(4.25) to find

φ̇+
ρ+ P

4ρ
(3Hφ− φ2) = 0 . (4.45)

The Friedmann equation (4.29) is then

3M2H2 = ρmat + ρDE , (4.46)

where

ρDE := M2Λ +
M2φ2

3

[
(2f ′0 + φf ′′0 )2

(2f ′0 − φf ′′0 )2
− f ′0

]
, (4.47)

is the effective energy density of the dark energy. The effective pressure of the dark energy is found using
equation (4.45) as

PDE := −Pmat − 2M2Ḣ − ρDE − ρm . (4.48)

In the case in which matter is a cold dust fluid, i.e. Pmat = 0 and cmat = 0, the equation of state parameter
of dark energy is

wDE :=
PDE

ρDE
(4.49)

= −6Λ(4f ′0
2 − 5φ2f ′′0

2 + 4φf ′0f
′′
0 + 4φ2f ′0f

′′′
0 ) + φ3(8φf ′0f

′′
0

2 − φ2f ′′0
3 − 4f ′0

2f ′′0 − 8φf ′0
2f ′′′0 )

(2f ′0 − φf ′′0 )[3Λ(2f ′0 − φf ′′0 )2 − φ2{4(f ′0 − 1)f ′0
2 − 4φf ′0(f ′0 + 1)f ′′0 + φ2(f ′0 − 1)f ′′0

2}]
.

(4.50)

We need to assume wDE < −1/3, at least at low redshifts, in order to have an accelerating universe.
Considering perturbations, the sub-horizon Geff is gauge independent and can be constrained with

existing and future data (e.g. RSD data, see section 3.2.1). In our case, we have

8πM2Geff =
1

f ′0
. (4.51)

whereas as mentioned η := Ψ/Φ = 1, even away from the case c2T = 1. Furthermore, since the gravity at
short scales is dominated by Geff , we will set that Geff(z = 0) = GN , where z is the redshift and GN is
the Newton gravitational constant.

We may now consider constraints coming from the time-variation of the gravitational constant. Indeed,
one will have in general a time-dependent Geff , since φ depends on the density of the matter fields
(including the cosmological constant). This is slightly different from the usual simple models of time-
varying GN [65], since in these models the gravitational constant on cosmological scales will tend to agree
with the short scale one.

A stringent constraint comes from big bang nucleosynthesis (BBN) (see section 3.2.1). BBN is sensitive
to the difference between the gravitational constant at cosmological scales at BBN, hence Gcosm and
today’s measured Newton constant, i.e. GN , the difference being constrained to less than 10%. BBN
therefore puts a constraint

|f ′0(z = 0)− 1| . 0.1 . (4.52)

On the other hand, we conservatively require that general relativity be recovered at early times, hence

f ′0(z � 1) = 1 . (4.53)

Of course, a less stringent constraint could be extracted if we were to allow c2T 6= 1 at early times. A
cartoon of these constraints and possible scenarios is given in Figure 4.2.

In what follows we try to construct models that satisfy these constraints. We will first show that
the accelerating expansion of the universe can be realized even in the case Λ = 0, which would however
have important consequences on the future evolution of the Universe. We then present more conservative
models with a non-zero Λ, and show that one may have interesting time evolutions for Geff as well as
wDE.
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BBN 
bound

GR limit Conservative model

Less conservative 
models

Figure 4.2: Cartoon of some constraints on the function f ′0. A conservative choice would respect the big
bang nucleosynthesis (BBN) bound, in addition to having an early-time GR limit (see for example the
model (4.57)). The BBN effectively translates into a bound on f ′0 at present time z = 0.

Models without Λ

We are interested in first building a model that produces acceleration without cosmological constant.
Setting Λ = 0 changes the asymptotic behavior of equation (4.23), which under c2T = 1 is written

M2f ′0φ
2 − 3ρ = 0 . (4.54)

Since ρ now vanishes at late-times, one will have either f ′0 → 0, or φ,H → 0, or both, from equation 4.24.
The same argument in fact holds even without imposing cT = 1, based on (4.23)-(4.25). A simple model
that realizes GR at early times and a de Sitter expansion at late times is

f ′0 =
φ2
cφ

2 + φ4

(3H∗ − φ)4
, (4.55)

where φc marks the transition epoch and H∗ the Hubble rate at late times. Also, since

H =
6H∗φ

2
c + 9H∗φ

2 − φ3

6φ2
c + 9H∗φ+ 3φ2

, (4.56)

one should ensure that there is no singularity of the Hubble rate at finite time in the past by choosing
8φ2

c > 9H2
∗ , so that the denominator does not vanish.

As far as phenomenology is concerned, we find that the late-time Geff > Gcosm, however, in the far
future the same Geff →∞. At early times wDE → −1/2.

Dark energy with wDE 6= −1 from Λ

An interesting example in the case Λ 6= 0 is

f ′0 =
(M∗/M)2 + (φ/φc)

2

1 + (φ/φc)2
, (4.57)

where M∗ and φc are constants, which can satisfy both the BBN bound and enjoy an early-time GR limit,
and hence is one of the conservative models depicted in figure 4.2. Again φc fixes the transition between
two regimes: one has the limits f ′0 → 1 for |φ| � |φc| and f ′0 → M2

∗/M
2 for |φ| � |φc|. This model

can therefore be seen as two GR limits with different effective gravitational constants for |φ| � |φc| and
|φ| � |φc|.

Again, some scrutiny is needed: equation (4.54) gives a solution for φ,

φ2

φ2
c

=
1

2

 3ρ

M2φ2
c

− M2
∗

M2
±

√(
3ρ

M2φ2
c

− M2
∗

M2

)2

+
12ρ

M2φ2
c

 , (4.58)
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hence, in the late-time limit ρ�M2φ2
c , one finds two branches

φ2 → 0 (+ branch), −M2
∗φ

2
c/M

2 (−branch) . (4.59)

The minus branch is unphysical, and we therefore consider only the plus branch. It is then easy to
show that this model reproduces the expected behavior, hence a GR limit at early times, and Geff,late =
1/(8πM2

∗ ). The BBN bound can be realized simply by choosing an appropriate M∗. In the presented
model, one has still some freedom, and for example setting φ2

c ' Λ ' H2
0 , will lead to the modification

from GR to only appear in the present universe. We present in Fig. 4.3 the time evolutions of wDE and
Geff/GN for the cases M2

∗/M
2 > 1 and M2

∗/M
2 < 1.

Figure 4.3: Time evolutions of the equation of state parameter and the effective gravitational constant
for the model (4.57) with M2

∗/M
2 = 1.1 (black solid curves) and M2

∗/M
2 = 0.9 (blue dashed curves) and

Λ = φ2
c . Here, we have also set Ωm0 = 0.3. Image reproduced from [50].

The effective equation of state parameter wDE is dynamical even though the acceleration is caused
by a cosmological constant. At late times, limφ→−∞ wDE = −1. Hence, this model achieves early-times
weak or strong gravity regimes for the dust-fluid fluctuations but still with wDE = −1 at high redshifts.

Although a more detailed study would be needed, the possibility to modify the short scale gravitational
constant may be interesting from the standpoint of the appearing tensions within the standard model
of cosmology (see section (2.2.2)). Indeed if data sets point more and more towards the possibility of
early-times modifications of gravity, for example as described in [107], then the type of models presented
in this section will have a good chance to mend these tensions.

Reconstructed Dark Energy models

Finally, we present the possibility of reconstructing the f0(φ) function from the background dynamics.
The reconstruction program for dark energy was initiated several years ago, and has been reviewed for
example in [133]. For a given (i.e. obtained from observations) evolution of the Hubble rate

H = H(a) = H0E(a) , (4.60)

where E is a given function of the scale factor which determines a particular dark energy dynamics,
which satisfies the condition E(a = 1) = 1, one may obtain at least numerically the function f0(φ). One
should consider the presence of radiation, matter and a cosmological constant, and hence the Friedmann
equation can be written

3M2H2
0E

2 = ρm + ρr + ρDE , (4.61)

where ρr and ρm are energy densities of radiation and matter, respectively, and ρDE is given by (4.47).
One may show [50], that the system of background equations of motion may be written as a self-consistent
system of ODEs giving the evolution of φ̄, i.e. φ after normalization.
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After introducing the e-fold variable N̄ := ln(a), the system of differential equations is written as

∂N̄ φ̄ =
φ̄ (3Ωm0 a+ 4Ωr0)

(
βφ̄− 3E

)
4E (λ a4 + 3 Ωm0 a+ 3Ωr0)

, (4.62)

∂N̄a = a , (4.63)

φ̄(N̄ = 0) = 1 , (4.64)

a(N̄ = 0) = 1 , (4.65)

where we have used the definition (2.44), and the subscript 0 stands for the present-day value. With the
solution of these ODEs, we are able to evaluate

Geff

GN
=

(λ+ 3 Ωm0 + 3 Ωr0) φ̄2a4

λ a4 + 3 Ωm0 a+ 3 Ωr0
. (4.66)

The reconstructed models can be tested for empirical consistency, in principle, via the dynamics of the
gravitational constant Geff compared with the background Gcosm through several data sets (see section
3.2.1): RSD, BBN, etc.

4.5 Type-II theories

In the previous section we have presented Type-I theories. Type-II theories, by contraposition, are
those theories that do not have an Einstein frame, i.e. they cannot be phrased as GR plus non-minimally
coupled matter. As we will see, this allows for other interesting signatures that may be of interest in the
context of late-time cosmology.

Although a direct construction that relies on the transformation between Einstein and Jordan frame
was possible for type-I theories—one example of which we have presented in the previous subsection —by
definition, such a direct construction will not exist for type-II theories. Instead, two ways to construct
these theories can be described, along the lines of [56] and [51]. In the first method, as in [56], one
constructs a general Lagrangian which respects a set of desired symmetries, including at least spatial
rotations, SO(3). Through a Hamiltonian analysis, one may then find the conditions under which the
theory propagates two or less degrees of freedom. The non-existence of an Einstein frame should then be
shown via the non-equivalence, in vacuum, with GR. This program has not yet been explored.

The second approach, employed in [51], depends on the knowledge of a non-minimal theory, which may
or may not have an Einstein frame. One proceeds then to what we will call here a minimization, i.e. a self-
consistent choice of new constraints that will reduce the number of degrees of freedom. The conditions for
the existence, in general, of such a self-consistent choice have not yet been explored thoroughly, but the
minimal theory of massive gravity (MTMG) [51], as well as the minimal theory of quasidilaton massive
gravity (MQD) [53] (the subject of next chapter), are two examples of minimizations. In what follows,
we review MTMG from the point of view of this minimization procedure. This section is a review section
and does not directly include new results obtained during this thesis, aside some compact notations for
the theory.

4.5.1 Constrained vielbein formalism

Before reviewing MTMG, we briefly discuss the vielbein formulation of massive gravity, in particular
the constrained vielbein formalism. A partially constrained vielbein was also introduced in [308] to allow
for a consistent non-minimal matter coupling within dRGT massive gravity.

Lorentz invariant massive gravity [47] can be expressed in an equivalent way using vielbeins (see for
example [309]), which allows to bypass the square-root structure we presented previously. The vielbeins
eAµ are defined by

gµν ≡ ηAB eAµeBν , (4.67)

where ηAB is the Minkowski metric, and indices A,B, . . . ∈ {0, . . . 3} are local Lorentz indices. This
description is redundant (the vielbeins have 6 more components w.r.t. the metric), which accounts for
the possibility to perform a Lorentz transformation at each point in space-time. Once vielbeins are
introduced, hence, local Lorentz invariance is rendered explicit by the possibility to transform the internal
coordinates labeled by A,B, . . . as

e′
A
µ = ΛABe

B
µ , (4.68)
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where ΛAB is a Lorentz transformation with ΛAA′Λ
B
B′ηAB = ηA′B′ . On a side note, this can prove

practical when coupling standard model fields to gravity. Returning to massive gravity, one may define
a similar set of vielbeins for the fiducial metric as

fµν ≡ ηABEAµEBν . (4.69)

This decomposition makes the Lorentz invariance on the internal coordinates explicit. With this decom-
position it is possible to write down the potential for the graviton as

Sm =
M2

Pm
2

2

∫
d4xεµνρσεABCD

(
c0

1

4!
EAµE

B
νE
C
ρE
D
σ + c1

1

3!
EAµE

B
νE
C
ρe
D
σ

+c2
1

2!2!
EAµE

B
νe
C
ρe
D
σ + c3

1

3!
EAµe

B
νe
C
ρe
D
σ + c4

1

4!
eAµe

B
νe
C
ρe
D
σ

)
,

(4.70)

where the ε are the fully antisymmetric Levi-Civita symbols with ε0123 = 1. This formulation is in fact
entirely equivalent to dRGT massive gravity. Since the Einstein-Hilbert kinetic term is written down using
exclusively one of the metrics, the Lorentz invariance is maintained, and one may transform independently
both vielbeins. However the mass term is written down by combining both types of vielbeins, it is therefore
not possible to perform an independent transformations anymore: only the simultaneous transformation

e′
A
µ = ΛABe

B
µ , E′

A
µ = ΛABE

B
µ , (4.71)

is a symmetry of the action. Still one may use the Lorentz transformation to write one of the vielbeins,
say, the physical one, into e.g. the ADM vielbein form

(eAµ) =

(
N ~0j

eI iN
i eI j

)
. (4.72)

The potential with the ADM vielbein formalism seems to be linear in the shift and lapse. It is however
not so in the metric formalism, in which at least the shift appears non-linearly. However, in both cases
the shift can be integrated out at the end of the day, and hence this is not a problem for the equivalence.

Another important point is that Lorentz invariance of the matter sector and the structure of the
Einstein-Hilbert Lagrangian imply (see e.g. [310])

GµνeB
µeA

ν = GµνeA
µeB

ν , and TµνeB
µeA

ν = TµνeA
µeB

ν , (4.73)

where we have use vielbein contractions to emphasize that one should now compute equations of motions
for the vielbein instead of the metric. Therefore, in dRGT theory with unconstrained (dynamical)
vielbeins, the equations of motion imply that the following condition must be satisfied

δSm
δeAα

eCαηCB =
δSm
δeBα

eCαηCA , (4.74)

and therefore, unless some parts of Sm vanish, one needs to have

Y[AB] = 0 , (4.75)

where YAB ≡ (E−1)A
µeBµ. This condition is interesting since it is sufficient for showing that there indeed

exists a square root structure (
√
f−1g)αβ , once one goes back to the metric formulation. In the case

of a minimal coupling (as in the original formulation of dRGT), instead of finding (4.75) through the
equations of motion, one may equivalently set this condition from the start, resulting in the constrained
vielbein formulation of dRGT gravity. On the other hand, the so-called partially constrained vielbein
formalism [308], implements the following condition

Y[IJ] = 0 , (4.76)

where YI
J ≡ (E−1)I

ieJ i. This is a Lorentz breaking condition off-shell, since space- and time-like (space-
time) indices are treated independently. However, since one may fix a boost to set the ADM form (4.72),
and a residual three-rotation OIJ , it is possible to find an equivalence

∃OIJ ∈ SO(3) | Y[IJ] = Y[IJ] +OL[IδJ]K(E−1)L
0eK0 = Y[IJ] . (4.77)
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Therefore, as long as (4.75) is valid on-shell, the partially constrained vielbein is also equivalent to dRGT.
If one chooses to put the physical vielbein in the ADM form (4.72), one can parametrize the fiducial

vielbein as a corresponding (fixed) ADM form on which acts a general boost (which will eventually depend
on the dynamical variables of the physical vielbein).

(EAµ) =

(
Mγ +MkbLE

L
k bLE

L
j

MbI + ELiM
i
(
δIL + bIbL

1+γ

)
ELj

(
δIL + bIbL

1+γ

))
. (4.78)

where the Lorentz boost is determined by bI with γ =
√

1 + bLbL.

dRGT Hamiltonian in the vielbein formalism

It is instructive to understand the Hamiltonian analysis of dRGT theory from the “ADM-style”
vielbein perspective (see [309]). We define the momentum for the three dimensional Hamiltonian as

ΠI
j ≡ δSdRGT

δeI j
. (4.79)

We assume that the vielbein forms (4.72) and (4.78) have been replaced everywhere. From the absence
of momentum for N and N i and bI one may already extract seven primary constraints πN ≈ 0, πi ≈ 0,
pI ≈ 0. However, the conservation in time of πi ≈ 0 could be solved for the bI5 , and since these have
no momenta they can simply be integrated out. The conservation in time of πN ≈ 0 remains and this
yields the would-be Hamiltonian constraint R̃0. In fact there are also additional primary constraints: a
particular combination of momenta that does not appear,

P[IJ] ≡ Π[I
iδJ]Ke

K
i . (4.80)

The associated secondary constraint then enforces the symmetry condition (4.76). There is a unique
tertiary constraint C, found considering the conservation in time of R̃0, and which closes the procedure.
On then finds the total Hamiltonian

H
(tot)
dRGT =

∫
d3x

(
−NR̃0 + λC +Hrest + αIJP[IJ] + βIJY[IJ] + ξπN

)
, (4.81)

in clear correspondence with (3.68), with all secondary constraints except πN (which could be removed
by considering the lapse as a Lagrange multiplier). Going back to our argument, we now would like to
find, via a Lorentz transformation, new constraints that could reduce the number of degrees of freedom.

4.5.2 Precursor of MTMG

Considering Lorentz violations, it turns out to be especially interesting that the vielbein formulation
renders the local Lorentz invariant structure explicit and practically dissociates it from diffeomorphism
invariance. Indeed, it is possible to make use of the vielbein formalism to break Lorentz invariance in
simple yet interesting ways. In particular, following the ideas presented in section 4.1 we are interested
in breaking Lorentz in a way that can minimize the degrees of freedom.

Thinking back to the Hamiltonian formalism, massive gravity is characterized by the absence of the
momentum constraints that would come from the linearity in the shift. The graviton potential term is
indeed characterized by non-linearities in the shift, and therefore the theory ends up having more degrees
of freedom than GR. It was found in [51] that one could render the potential term linear in the shifts (and
hence add a set of new constraints) by an appropriate Lorentz violation. In this subsection we expose
this particular way to break Lorentz.

The starting point is the result of the previous subsection, which states that by an appropriate boost
one may choose the ADM form for one of the vielbeins, while keeping a residual SO(3) invariance, and a
boosted ADM form with boosts parameters bI . It turns out that, indeed, it is possible to add constraints
to the dRGT Hamiltonian simply by setting the boost parameters bI to zero. This is a Lorentz-violating
condition. In such a way, the conservation πi ≈ 0 cannot be solved for other variables without dynamics,
and hence one should add new corresponding constraints. This choice is in particular compatible with

5Alternatively, one could have solved the conservation of the pI ≈ 0 for other variables, but we do not discuss this
equivalent case.
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the symmetry condition (4.76). In principle it can also be made compatible with the four-dimensional
condition (4.75) if

∀ I , Y[0I] =
1

M
ηIJe

J
i

(
N i −M i

)
= 0 ⇒ M i = N i , (4.82)

although we won’t need this feature in the discussion that follows. Indeed, M i doesn’t appear in the
action, and hence this condition is harmless unless the theory is formulated directly with four-dimensional
metrics. The potential term is then given (we leave the explicit form to the following subsection) by

Sm = −M
2
Pm

2

2

∫
d4x (NH0 +MH1) . (4.83)

This time directly recognizing N and N i as Lagrange multipliers one can write a primary Hamiltonian

H
(1)
PMmG =

∫
d3x

(
−NR̃0 −N iRi +Hrest + αIJP[IJ]

)
, (4.84)

where PMmG stands for precursor minimal massive gravity, since it will not be minimal and we will
need more steps to minimize it (as seen further). Hrest is the only part of the Hamiltonian that is not a
constraint. Note that although we are using the same names as in (4.81), for example, the quantities are
different and should be compared exclusively in terms of structure. The conservation in time of R̃0 and
Ri is interesting since one has

{R̃0,Ri} 6≈ 0 and {R̃0,Hrest} 6≈ 0 , {Ri,Hrest} 6≈ 0 , (4.85)

the first one due to the contribution from the graviton mass term to R̃0 (here in the metric formalism),

{H0[φ],Ri[f i]} = −
∫
d3xφγk(iDj)(fk)

{√
γ̃c2γ

li
(
K−1

)j
l +
√
γ
[
c3
(
γijK− γilKj l

)
+ c4γ

ij
]}
. (4.86)

Therefore one may solve d
dtR̃0 ≈ 0 for one component of the shift N i and d

dtRi ≈ 0 for the lapse N .
There are therefore only two new constraints generated from these equations, and except for the usual
Y[IJ] no new constraints are generated. The total Hamiltonian for PMmG is therefore

H
(tot)
PMmG =

∫
d3x

(
−NR̃0 −N iRi + λτCτ +Hrest + αIJP[IJ] + βIJY[IJ]

)
, (4.87)

with τ = 1, 2. All the constraints are second class (one can show that the determinant of the matrix
of Poisson brackets does not vanish), therefore one finds that the theory propagates three degrees of
freedom.

We would like to make one comment. Suppose one could find Hrest = 0 on some background (since it
depends on dynamical fields this is not possible in general, of course). Then one may not solve d

dtRi ≈ 0
for the lapse N . On such backgrounds, which in fact correspond to the self-accelerating branch of dRGT,
there are thus more constraints arising, and it turns out the the kinetic term for the third mode vanishes,
which is problematic.

With the precursor theory we have discussed how introducing Lorentz violations may reduce the
number of degrees of freedom, reaching a theory with three gravitational degrees of freedom. In the next
subsection we thus continue on this route to review MTMG, a theory of massive gravity with two degrees
of freedom. The Hamiltonians presented so-far, and that of MTMG are summarized in table 4.1.

Theory Total Hamiltonian density Degrees of freedom
GR −NR0 −N iRi 2

dRGT [47] −NR̃0 + λC +Hrest 5

PMmG [51] −NR̃0 −N iRi + λτCτ +Hrest , τ ∈ {1, 2} 3

MTMG [51] −NR̃0 −N iRi + λαCα +Hrest , α ∈ {0, 1, 2, 3} 2

Table 4.1: Short summary of total Hamiltonian and number of degrees of freedom in selected theories of
massive gravity (in the four- or three-dimensional metric formalism). Red-colored quantities are first-class
constraints while blue-colored quantities are second-class constraints. Only the structure is denoted, and
quantities are not necessarily the same across the lines.
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4.5.3 MTMG

In this section we finally review the construction of the minimal theory of massive gravity, as a theory
of massive gravity with only two degrees of freedom [51, 311]. This theory is unique considering SO(3)
invariance and requiring that the cosmological background is the same as the precursor one, while keeping
two degrees of freedom.

As we have seen, the symmetric condition is enough to ensure that a square root structure is possible.
In the case of the precursor theory, the only relevant symmetry condition (4.76) is three-dimensional, and
therefore it is possible to define a three-dimensional square-root structure out of the metrics. In what
follows we thus use the metric formalism. The first step is to split the fiducial metric as

ds2
f = −M2dt2 + γ̃ij

(
xi +M idt

) (
xj +M jdt

)
, (4.88)

and we use (2.14) to define the physical lapse N , shift N i, and three-dimensional metric γij . We may
then define the 3-dimensional matrix

KikK
k
j = γikγ̃kj , (4.89)

as well as the time derivative of the fiducial metric which will be useful later on

ζ̃ij ≡
1

2M
γ̃ik∂tγ̃kj , (4.90)

where γ̃ij is the inverse of γ̃ij . The potential term in the metric formalism is then given by

Sm = −M
2
Pm

2

2

∫
d4x (NH0 +MH1) , (4.91)

where

H0 ≡
√
γ

4∑
i=1

cie4−i(K) , H1 ≡
√
γ

3∑
i=0

cie3−i(K), (4.92)

including the 3D symmetric polynomials ei(X), the structure needed to evade the Boulware-Deser ghost.
The fact that this potential leads to the same theory as the potential (4.70) with the ADM form for the
vielbein is justified by condition (4.76).

Hamiltonian structure of MTMG

Basing ourselves on (4.87), we can find the total Hamiltonian of MTMG, in its metric formulation,
simply by (i) removing P[IJ] and Y[IJ], which simply enforce the symmetry conditions for the physical
metric and the composite vielbein, and (ii) replacing the constraints Cτ by Cα, α ∈ {0, . . . , 3}, defined as

C0 ≡ −{R̃0,H1}+
∂

∂t
H0 ,

M2
P

2
Ci ≡ −{Ri,H1} . (4.93)

More explicitly, we can write the constraints as

Ci ≡
1

2

√
γMDj

(
F jkγki

)
, (4.94)
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2
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F ikKkj ζ̃
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(
γikγjl −
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2
γijγkl
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F ij π

kl

√
γ

2

M2
P

]
, (4.95)

with the following definition (see appendix for the explicit expression)

F ij ≡ 2γik
δ
(
H0/
√
γ
)

δKkj
= 2

1
√
γ

δH1

δγij
. (4.96)

This last property derives from the symmetry of the potential term under exchange of fiducial and physical
metrics. One can show that the Cτ are included as linear combinations of these new constraints, and that
no extra constraints are generated; the non-vanishing Poisson bracket

{C0[φ], Ci[f i]} 6≈ 0 , (4.97)

indeed indicates that the conservation equations can a priori be solved for Lagrange multipliers. One
thus has

HMTMG =

∫
d3x

[
−NR̃0 −N iRi +

M2
Pm

2

2

(
MH1 − λC0 − λiCi

)]
, (4.98)
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where λ, λi, N and N i are directly understood as Lagrange multipliers, and MH1 is the sole non-
constraint part of the action. Note that λ and λi have dimensions of inverse energy. In MTMG, all
constraints are again second class6, for a total of 8 second class constraint on reducing the 12-dimensional
phase space down to 4 dimensions. Back in field space, there are therefore 2 degrees of freedom: the two
polarizations of the metric perturbations.

Action for MTMG

By making a Legendre transform, one easily finds the action for MTMG. From the Hamiltonian
equations, the canonical momentum for the metric reads

πij =
√
γ
M2

P

2

[
Kij − γijK − λm

2

4

M

N
F ij
]
. (4.99)

This expression can thus be replaced during the Legendre transformation. After conveniently redefining
the Lagrange multipliers (in particular λi), the action of MTMG is thus given by

S = SEH + Sm + SC + Smat , (4.100)

with SEH the usual GR action derived from the Lagrangian (2.19), Sm the same graviton potential term
as in the precursor theory (4.91), SC a set of constraints explicited below and Smat a generic minimally
coupled matter action, which can be added a posteriori. The constraint part of the action reads

SC ≡
m2M2

P

2

∫
d4x

(
λiCi + λCλ + λ2Cλ2

)
, (4.101)

where λi has been redefined, Ci is given by (4.94), and where

Cλ ≡
1

2
M
√
γ
(
F ikKkj ζ̃

j
i −F

ijKij

)
, (4.102)

Cλ2 ≡ m2

16
M
√
γ
M

N

(
FijF ij −

1

2
F2

)
, (4.103)

Note that λ appears quadratically in the action since the constraints have mixed with the extrinsic
curvature. Solving the equation λ will render explicit a modification to the kinetic part of the action.

Phenomenology of MTMG

In the previous discussion we have reviewed the construction of MTMG, following [51, 311], a theory
of massive gravity member of the class of minimally modified gravity theories (see e.g. [50]). We now
review some of its interesting phenomenology along the lines of [311, 312, 313].

One of the most interesting characteristics of MTMG is its cosmology. Indeed, while dRGT theory
and several extensions do not allow for a (healthy) FLRW cosmology (see section 3.1.3), MTMG reduces
the problem by getting rid of any potentially unstable modes, and allows for two healthy branches of
cosmology.

Notably, it is possible to show [311] that on flat FLRW (2.34), jointly with a flat, FLRW fiducial
metric ansatz (time dependent but not dynamical)

ds2
f = −M(t)2dt2 + ã(t)2δijdx

idxj , (4.104)

one may combine the equations of motion to find a unique solution λ = 0. Since λi = 0 already by
symmetry, this considerably simplifies the study of cosmology. We then define for convenience

X ≡ ã

a
, H̃ ≡

˙̃a

Mã
, (4.105)

as well as

Γ = c4 + 3c3X + 3c2X 2 + c1X 3 , (4.106)

6Since the computation of the determinant of the matrix of Poisson brackets is cumbersome, we rely on the analysis of
cosmological perturbations to show that at least two degrees of freedom propagate.
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which is basically H0 evaluated on the Friedmann background.The combination Γ appears hence the
Friedmann equations, and is directly responsible for the dark energy density contribution

3M2
PH

2 = ρmat + ρg , (4.107)

2M2
P

Ḣ

N
= ρmat + ρg + Pmat + Pg (4.108)

where ρmat and Pmat are the usual density and pressure of the matter fields and

ρg ≡
M2

Pm
2

2
Γ , Pg ≡ −

M2
Pm

2

2

[
Γ +

1

3
Γ,XX

(
M

N

1

X
− 1

)]
. (4.109)

In the limit M
N

1
X → 1 the background contribution of the graviton potential is an effective cosmological

constant with Pg = −ρg. The equation for λ should still be considered and gives, once λ = 0 is replaced

Γ,X

(
X H̃ −H

)
= 0 . (4.110)

This defines the two branches of MTMG, the self-accelerating branch with Γ,X = 0, and the normal

branch with X H̃ = H. Without going into the details, we present the phenomenology general to both
branches, and the one more specific to each of the two branches, following [311, 312].

We define the quantities to be used for the discussion. For the study of perturbations, we use the
quantities defined in section 2.2.3. On top of these, the fields specific to MTMG are perturbed as

λ = δλ , λi =
δij

a2
∂jδl + δli , (4.111)

with ∂iδl
i = 0, both vanish on the background and are therefore pure perturbations.

Self-accelerating branch of MTMG—The self-accelerating branch is characterized, on the background,
by an exact agreement with ΛCDM cosmology. Indeed, one has

Γ,X = 0 ⇒ X = cst. (4.112)

and that the equation of state of dark energy becomes w = −1. For perturbations, the equations for δλ
and δl set ψ = e = 0. One then finds that the phenomenology for perturbations is the same as GR.

Normal branch of MTMG—In the normal branch, the equation of state of dark energy can differ from
w = −1, unless the dynamics leads to X = cst. and M

N
1
X → 1. The scalar perturbations have a modified

behavior. There is a non-trivial no-ghost condition equivalent to

M2
P

ρm

(
m2Γ1 +H2

)2(1

3

k2

a2
+m2Γ1(r − 1)

)
+m2Γ1

(
m2Γ1 +H2

)
> 0 , (4.113)

with Γ1 ≡ − 1
12Γ,XX . In the sub-Hubble limit, i.e. for k � H & m, the no-ghost condition is automatically

satisfied. Within the same limit, one finds for dust perturbations a non-trivial effective gravitational
constant

Geff

GN
=

2ρ2 + 3m2M2
Pρ [Γ1(2r + 3) + Γ2(1− r)] +m2M2

PPg − 18m4M4
PΓ2

1(r − 1)

2 (3Γ1m2M2
P + ρ)

2 , (4.114)

where ρ = ρg + ρmat, and a non-trivial gravitational slip

η =
3m2M2

PΓ1 + ρ

ρ

Geff

GN
. (4.115)

In addition to deriving these results, it was shown in [311] that one may have Geff/GN < 1 in a substantial
region of the parameter space. Note that the phenomenology will tend to agree with GR whenever
|Γ1m

2| � H2, hence typically up to some time in our past.
The normal branch, since it provides non-trivial growth of the matter perturbations, has been tested

against growth data [312], as well as ISW-galaxy cross-correlation data [313], in both cases assuming
the same background as ΛCDM, with X = cst. and r = 1 for simplicity. In such a case the theory
only has one extra parameter with respect to ΛCDM, which can be related to the graviton mass µ2

T .
Notwithstanding the extra parameter, MTMG still fits the observations better. In particular RSD data
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and weak lensing seems to allow, although not yet conclusively, for the range Geff/GN < 1 (see section
3.2.1).

Non-branch specific phenomenology—In both branches of MTMG one finds that the vector and tensor
modes are characterized by a similar behavior. Metric vector modes βi are set to zero by the equation
for li. There are therefore no dynamical vector modes. For tensor modes one finds the action [311]

M2
P

8

∑
ε=+,×

Na3

[
ḣ2
ε

N2
− 1

a2
(∂ihε)

2 − µ2
Th

2
ε

]
, (4.116)

with the graviton mass

µ2
T = m2X

6

[
Γ,X + (r − 1)

Γ,XXX
2

]
. (4.117)

4.6 Summary

In this chapter, we have explored novel directions for constructing alternative theories of gravity. In
particular, when relaxing Lorentz invariance, it is possible to construct theories which propagate as few
degrees of freedom as general relativity, minimally modified gravity theories (MMGs).

In section 4.3 we segregate two types of MMGs, depending on whether they can be mapped by a
redefinition into non-minimally coupled GR (type-I) or not (type-II). The separation of the cases allows
to emphasize some possible systematic ways to construct new theories. In particular in section 4.4 we
leverage the existence of an Einstein frame to build a class of novel and non-trivial MMGs. Just as scalar
tensor theories are known to be linked by frame transformations (for example conformal or disformal
transformations), which has helped find novel classes of theories, the study of classes of equivalence is
essential for a systematic construction of MMGs and the discovery of new theories.

In addition to simply allowing to find new theories, adopting minimalism as a guiding principle can be
interesting because (i) the theories are more tractable, (ii) the theories involve a smaller number stability
conditions (since there are less potentially unhealthy modes), (iii) Lorentz-breaking theories allow for
interesting phenomenology in view of recent and future data. For both types I and II, we have reviewed
some interesting examples. These examples satisfy recent stringent bounds on modifications of gravity,
in particular the bound on the speed of tensor modes.

The class of type-I theories we have realized during this thesis, constructed using canonical trans-
formations, presents a time dependence of the effective gravitational constant at short (cosmological or
astrophysical) scales. This dependence is mild and can be made to accommodate bounds such as the BBN
bound. On the other hand, the cosmological gravitational constant is fixed. Furthermore, the equation
of state for the dark energy (without extra mode) is non-trivial and can differ from w = −1. We argue
that models of this type could in principle alleviate the H0, tension if it becomes more significative with
future data.

To summarize, we have found that MMGs hold interesting prospects, especially considering future
data. However, as shown in image 4.1, and as briefly commented for each model (see also section 3.2.1),
a lot of future development is still needed to both understand the theory space of MMGs and to connect
theory and observations for all theories, along the lines of what was done for MTMG in [312, 313].
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Chapter 5

Minimal quasidilaton

In this chapter present the construction of a quasidilaton theory which does pass the current observa-
tional constraints: the minimal theory of quasidilaton massive gravity. We first begin with a short review
(section 5.1) of the origin and current status of quasidilaton theories. We then present the construction
and study of the minimal quasidilaton, as realized during this thesis, in sections 5.2 to 5.4. We will see
that the new construction has relative advantages compared to the other quasidilaton theories.

5.1 Quasidilaton theories

In the search for theories of massive gravity which could accommodate an exact FLRW cosmology
one milestone was quasidilaton theories. The simple intuition is that one replaces the cumbersome (3.75)
by

ȧ = 0 → ∂t(af(σ)) = 0 , (5.1)

where σ is a scalar field. It is therefore clear that by coupling a scalar field directly to the graviton
potential, one would then have a chance to obtain a theory with a FLRW cosmology. This is the idea
that has motivated several scalar field extensions of massive gravity.

As discussed previously, one possibility to couple a scalar to the graviton potential is to promote
the constants of the graviton potential to general functions of the scalar field. This class of theories is
called mass-varying massive gravity. In such a case one may have a heavier mass for the graviton at, say,
early-times, with a lighter mass m ∼ 0 in the late Universe (see [190, 201, 202, 203] and section 3.1.3 for
a discussion of the cosmology of these models). It may however be necessary to tune the potential of the
scalar mode to pass astrophysical tests. Here, we do not focus on this possibility.

Another situation of coupling between graviton potential may arise within the context of conformal
transformations of the metric between a minimally coupled frame and an Einstein frame, as we have
seen in section 3.1.1. An especially interesting class of theories are dilaton theories, which make the
Einstein theory scale invariant, that may arise from brane scenarios, and which naturally allow for late-
time attractors. Inspiration for building novel massive gravities was sought naturally within this class
of theories, especially since the frame transformation allowed to build a frame in which the graviton
potential was coupled to the scalar field. For the purposes of clarity we therefore review dilaton theories,
before discussing quasi-dilaton theories.

5.1.1 Dilaton

The quasidilaton theory was inspired by theories with a dilaton, a scalar field appearing as the
Goldstone boson of spontaneously broken scale invariance. Since scale invariance is generally a desired
feature in the UV, and is broken in the standard model by the Planck mass, the cosmological constant,
and the Higgs mass, the presence of such a scalar field is well motivated; it also appears in the low-energy
effective action for string theory constructions [314].

Let us review shortly dilatation symmetry, the specific scale invariance we are interested in, as well as
its relation to conformal symmetry. Dilatations are best introduced in the Jordan frame (we will discuss
the coupling to matter a little ahead), where we require a transformation

xµ → eσ0xµ , g̃µν(xµ)→ g̃µν(xµ) , (5.2)
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where σ0 is a dimensionless constant, which can be understood as a particular conformal isometry followed
by a conformal transformation to make the metric invariant. This definition maps well to Minkowski
space-time, for which the metric is trivially constant. GR by itself, in this frame, is not scale invariant,
since a dilatation maps

M2
P

2

∫
d4x
√
−gR → M̃2

P

2

∫
d4x
√
−gR (5.3)

where M̃P = eσ0MP. For now still considering only the gravitational sector, one can build an example
scalar-tensor theory invariant under these dilatations as

M2
P

2

∫
d4x
√
−g̃e2σ

(
R̃− (ω − 6)g̃µν∂µσ∂νσ

)
, (5.4)

where the constant ω is introduced for later convenience, as long as the dilaton σ maps as

σ → σ − σ0 . (5.5)

One may equivalently call this theory scale-invariant in the sense of (5.2), since the Planck scale can be
arbitrarily changed by a dilatation. Then, we may focus on the matter fields, which in facts are the very
ones that define the Jordan frame. Let us see how these transform under dilatations. Starting with an
agnostic coupling

Ψi(x
µ)→ ediσ0Ψi(e

σ0xµ) (5.6)

to the matter fields Ψi, we require that free, massless fields have an action invariant under dilatations,
so as to be consistent with the usual notion of scale freedom (there can be other notions e.g. [315]). This
leads for example to the following scaling (see e.g. [62]) for a scalar field in 4 dimensions

φ(xµ)→ e−σ0φ(eσ0xµ) . (5.7)

Now as customary we couple matter minimally

Lmat = Lm(g̃µν ,Ψi) . (5.8)

Due to the Higgs mass, the standard model of particle physics is not invariant under (5.2)—but it is
approximately so at high enough energies. Therefore if, say, we want to include the standard model
of particle physics in a scale-invariant fashion, in this Jordan frame, we should include for example a
non-minimal coupling of the dilaton to the Higgs. Except for the Higgs mass, one may use the minimal
coupling prescription (therefore still approximately relating to our notion of Jordan frame, the one in
which matter fields couple minimally).

After having discussed the Jordan frame, we may study shortly what happens in the Einstein frame,
which is defined via the conformal transformation1

gµν(x) = e2σ(x)g̃µν(x) , (5.9)

(here given in its passive form). The total action becomes

M2
P

2

∫
d4x
√
−g (R− ωgµν∂µσ∂νσ) +

∫
d4x
√
−gLmat(e

−2σ(x)gµν ,Ψi) , (5.10)

where there exists a non-minimal coupling between matter and the gravitational sector. Of course, since
we have just made a field redefinition, both frames should be equivalent, notwithstanding matter having
acquired a non-minimal coupling. It is interesting to ask what happened to the dilatations: these have
become

xµ → eσ0xµ , gµν(xµ)→ e−2σ0gµν(xµ) , σ(xµ)→ σ(xµ)− σ0 , Ψi(x
µ)→ ediσ0Ψi(e

σ0xµ) , (5.11)

which, for the gravitational sector amounts to a constant shift in the dilaton and a global conformal
isometry.

It is important to note (again) that it is only when choosing the coupling of gravity matter fields that
we are choosing the physics. A theory of gravitational fields alone may be freely mapped into another
via field redefinitions, but the real difference is made when including matter fields. What we have seen
in the previous chapter is testimony of this fact.

1Concerning terminology, we employ the term conformal transformation in the sense of Wald’s textbook [62].
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5.1.2 Original quasidilaton

When massive gravity (or bigravity) are considered, one should review the previous results considering
the newly introduced fields. In order to be able to retain a familiar notion of covariance, one may work
with Stückelberg fields. The novel mass term may be written schematically as

Lm = Lm(gµν∂µφ
a∂νφ

b, fab(φ
c)) , (5.12)

where indices a, b, . . . are internal, and are contracted with a frozen metric which may depend on the
Stückelberg fields), where we allow for square-root structures, and we don’t specify yet whether gµν is
the Jordan frame or the Einstein frame metric. Given choices of fab may lead to different symmetries in
the unitary gauge φa → xa, e.g. fab = ηab obviously retaining its Lorentz invariance. In order to retain
any properties of scale invariance in the unitary gauge, it is natural to demand that under dilatations,
the Stückelberg transform as coordinates, i.e.

φa(xµ)→ eσ0φ
a(xµ) , (5.13)

meaning that Yab ≡ g̃µν∂µφ
a∂νφ

b is invariant under dilatations and we may thus keep scale invariance
by writing the gravitational action as

M2
P

2

∫
d4x
√
−g̃e2σ

[
R̃− (ω − 6)g̃µν∂µσ∂νσ + e2σLm(Y ab, fab)

]
. (5.14)

In the conformally transformed frame, this will translate to

M2
P

2

∫
d4x
√
−g
[
R− ωgµν∂µσ∂νσ + Lm(e2σY ab, fab)

]
. (5.15)

Now, as we mentioned, a choice of matter coupling is crucial. Several choices are possible leading to
different theories. Following [316], choosing to couple matter minimally in the frame (5.15), thus breaking
the dilatation invariance in what we shall now call the dilaton frame, to avoid confusion with the other
notions of frames. The action in the Jordan —minimally coupled—frame therefore reads

M2
P

2

∫
d4x
√
−g
[
R− ωgµν∂µσ∂νσ + Lm(e2σY ab, fab)

]
+

∫
d4x
√
−gLmat(gµν ,Ψi) . (5.16)

It is invariant under a new symmetry which is called quasidilatation, i.e.

σ → σ − σ0 , φa(xµ)→ eσ0φa(xµ) , (5.17)

whereas scale invariance is generally broken by the matter fields. The scalar field is named quasidilaton.
It is interesting to note that by coupling matter minimally with the metric g̃µν instead, we may have
defined dilatonic massive gravity, a scale invariant theory (we will not explore this further here).

Let us now further describe the geometric meaning of the quasidilatation symmetry. In the unitary
gauge φa → xa, the transformation (5.17) can be transferred to the fiducial metric: every internal index
being contracted with the fiducial metric one obtains the equivalent transformation

σ → σ − σ0 , fµν → e2σ0fµν . (5.18)

We therefore have two equivalent pictures: i) rescaling of the internal space coordinates φa with respect
to the space-time coordinates (in the covariant theory), and ii) global conformal transformation of the
fiducial metric.

Finally let us point out that, in practice, the action (5.15) can be obtained by performing the following
replacement on the dRGT Lorentz invariant action, in the covariant formulation

fµν ≡ ηab∂µφa∂νφb → e2σfµν . (5.19)

5.1.3 Cosmology with a quasidilaton

The quasidilaton was mainly introduced for cosmological purposes, in particular to lead to a healthy
cosmology and late-time acceleration. Since at late-times matter fields dilute away, the theory regains its
scale invariance. Background cosmology was indeed enhanced as flat FLRW solutions can be found; here
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we reproduce some results, in order to show a recurring feature of quasidilaton models, the presence of
late-time attractors.

On flat FLRW, it is customary to define

X =
eσ/MP

a
, r =

a eσ/MP

N
, Σ =

σ̇

N
. (5.20)

Working in the covariant formulation, one may obtain the constraint equation from the φ0 Stückelberg

d

dt
[a4X J(X )] = 0 , (5.21)

where J ≡ X 3c0 + 3X 2c1 + 3X c2 + c3 ∝ δLm
δM , implying that

X J(X ) =
cst

a4
. (5.22)

Since necessarily Ẋ → 0 at late times, equation (5.22) essentially amounts to having a late-time de Sitter
attractor, as the Friedmann equation is, in vacuum,

H2 =
ω

6− ω
Ẋ
NX

(Σ +H) + Γ̃ (X ) , (5.23)

where we do not give Γ̃ (X ) for brevity. We have of course excluded the strongly coupled case X → 0.
Unfortunately, perturbations were quickly shown to be plagued with a ghost in the scalar sector (see

[317, 203]). This motivated the development of extensions which we describe in the next section.

5.1.4 Extensions to the original formulation

Motivated by the absence of cosmology in the original formulation, several extensions to the quasidila-
ton theory have been proposed. Essentially three routes have been studied: an extended potential term
which preserves the quasidilatation global symmetry [318, 319, 320, 321, 322], an extended coupling of the
quasidilaton kinetic term [323], and Lorentz violations [324]. Although in some cases the extensions were
unsuccessful to cure the original unhealthy features without introducing new problems [325, 320, 322],
several promising approaches have emerged [324, 53, 321]. We will shortly present all these extensions
in this subsection The last in date, the minimal theory of quasidilaton gravity (MQD), is one of the
main results of this thesis and is studied from the next section on. A visual summary of the different
quasidilaton theories can be found in table 5.1.

Theory Lorentz No BD-ghost? Phenomenology
Quasidilaton

LI

3 UV ghost [317, 203]
Extended quasidilaton ω 6= 0 7 [321, 322]
Extended quasidilaton ω = 0 3 -

New quasidilaton 7 -
PC new quasidilaton

LV
3 -

Precursor quasidilaton 3 Strong coupling
Minimal quasidilaton 3 3

Table 5.1: Brief summary table of different formulations of the quasidilaton. “LI” stands for “Lorentz
invariant”, while “LV” stands for “Lorentz violating”. Reintroducing the Boulware-Deser ghost may
be softened as an issue if one ensures that it appears at high enough energies. This is the case in the
new quasidilaton theory (and not in the partially constrained formalism, which removes the ghost non-
linearly). “Phenomenology” stands for phenomenology with matter, or for distinctive problems when
they appear.

The first extension of the quasidilaton theory has been called generalized quasidilaton and extended
quasidilaton [318, 319]. The generalization is done in the way the quasidilaton couples to the metric,
as an extra term is in principle allowed by the formulation. One may indeed generalize the replacement
(5.19) to

fµν → e2σfµν −
ασ
m2

∂µσ∂νσ , (5.24)
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where ασ is a new constant parameter, while retaining the symmetry under quasidilatations (5.17). From
the perspective of extra-dimensions, this novel coupling can be naturally understood for a moving brane.
There are thus at least 2 new parameters {ω, ασ} with respect to dRGT theory. Several studies have then
explored the cosmology of this theory; it was however recognized that the extension (5.24) reintroduces
the BD ghost, unless ω = 0 or ασ = 0 [320]. It may be possible to generalize further the theory using
Lovelock invariants of the curvature, while the tadpole extension proposed in [325] is readily taken into
account by using the dRGT potentials (3.63) (see appendix A of [321]). Finally it should be noted that
the addition of a Horndeski kinetic term for the quasidilaton, instead of the standard one, was proposed
in [319].

The cosmology of the extended quasidilaton with ω = 0 was studied in [321] in vacuum, and we report
here the constraint equation

m2JX (Hr − Σ) = 0 , (5.25)

where the definition of r is slightly modified, i.e.

r ≡ a n
N
, (5.26)

with n the effective lapse function for the fiducial metric. Condition (5.25) gives two branches, J = 0,
for which the scalar and vector modes are strongly coupled, and Hr = Σ which divides again into two
further branches with different late-time attractors. One of these branches develops a late-time ghost,
while the other can be healthy as far as vacuum cosmology goes. To our knowledge, cosmology with
matter was not explored in details.

The second extension of the quasidilaton theory is commonly called the new quasidilaton [323]. This
extension proposes a yet new class of terms that maintains the quasidilatation symmetry, by coupling
the quasidilaton kinetic term to a composite metric,

g̃µν = gµν + 2βeσgµλKλν + β2e2σfµν , (5.27)

i.e. defining the kinetic term as

Sσ,NQD = −ωM
2
P

2

∫
d4x
√
−g̃g̃µν∂µσ∂νσ . (5.28)

It is expected that the BD ghost generically reappears in this theory. Indeed, viewing the quasidilaton as
a matter field allows a straightforward analogy with doubly-coupled matter (see [43, 326] and references
therein). The ghost is expected to have a mass (as explained in [323])

mBD ∼
m3M2

P√
βσ̇∂iσ

. (5.29)

With the scaling σ̇ ∼ H ∼ m and for ∂iσMP . Λ2
3, one expects the ghost to have the mass

mBD ∼
Λ3√
β
, (5.30)

i.e. much higher than Λ3 for β � 1. In such a case the ghost may be integrated out, since the Lorentz
invariant massive gravity theory can be seen as an effective theory for energies below Λ3. Lastly, the
cosmology of the new quasidilaton doesn’t have two branches as the extended quasidilaton, but only a
de Sitter attractor with J = 0.

The third avenue was to recognize that via the partially constrained vielbein formalism, i.e. a Lorentz
violation introduced through a specific choice of vielbein, that the BD ghost that reappears due to the
mixed coupling in the new quasidilaton theory could be removed non-linearly ([324], which we follow
here). Recalling the arguments used in MTMG, one may use Lorentz invariance to put the fiducial
vielbein in the ADM form via a boost

EAµ =

(
M 0

MkEIk EI j

)
. (5.31)

One imposes then the physical condition YIJ = YJI , with YIJ ≡ EI iδJKeKi. In the case of a coupling of
matter to gµν only, the theory is equivalent to dRGT theory; however, it becomes different (perturbatively
on FLRW) when composite matter couplings are considered. The partially constrained vielbein formalism
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was used in the theory of massive gravity first [308], and then applied to the new quasidilaton theory
[324].

Lorentz violations in fact allow for more constrained structures, even without composite matter cou-
pling, and this was used to completely remove the scalar and vector modes from the theory of massive
gravity, in the realization called minimal theory of massive gravity (presented in the previous chapter).
Lorentz transformations are broken up to its SO(3) subgroup, and are hence still in agreement with the
phenomenology in cosmology. It turns out that this removal of modes can be applied to the quasidilaton
as well, thereby defining the minimal theory of quasidilaton massive gravity. From the point of view of
the extensions presented in this section, this has the advantage of making the treatment of perturbations
relevantly simpler, as there will be less degrees of freedom involved.

5.2 Minimal quasidilaton

In the previous chapter, we have studied one particular massive gravity theory that followed from
principles of minimalism: MTMG. This theory [51, 311, 312, 313] is healthy and viable for all known
aspects of it. As we have seen, novel cosmological solutions can be obtained, provided that the background
metric has a time-dependence. One may ask oneself whether this time dependence can be made dynamical,
just as HR bigravity renders dynamical the fiducial metric of dRGT massive gravity.

The simplest realization of such a dynamical structure is to render the conformal mode of the fiducial
metric dynamical. Indeed, as far as the cosmological solutions are concerned, only the presence of a time
dependent scale factor is necessary to provide interesting solutions. Therefore, we just need one field:
this is exactly what the quasidilaton can achieve.

In the following we present the construction of the minimal theory of quasidilaton massive gravity,
which will be abridged here minimal quasidilaton (or MQD). Although the minimal quasidilaton is not
a minimal theory in the sense discussed previously, it inherits at least the techniques used to build
minimal theories. It therefore receives part of the advantages of these minimal theories, i.e. simplicity
and healthiness.

We introduced the Horndeski extension of the quasidilaton kinetic term in order to implement a
Vainshtein mechanism. Indeed, since the graviton scalar mode does not appear anymore, there are no
higher order derivative interactions that can become important, and hence no Vainshtein radius. It is
therefore important to add the derivative interactions in a different way, hence, through the kinetic term.

5.2.1 Properties of the minimal quasidilaton

The minimal quasidilaton is a theory satisfying the following properties:

• The tensor modes are massive in a way that lets the mass term contribute to the vacuum energy
via the vacuum expectation value of the metric.

• The tensor modes travel at the speed of light.

• It is free of the Boulware-Deser ghost.

• It non-linearly propagates 2 tensor modes and 1 scalar mode.

• The extra scalar mode sustains a Vainshtein screening.

• A time-independent fiducial structure is enough to realize FLRW cosmology.

Just as in MTMG it is clear that in order to obtain massive tensor modes without having 5 associated
degrees of freedom one needs to break Lorentz invariance. Again, in order to realize FLRW cosmology
SO(3) at least should be an unbroken subgroup of symmetries.

5.2.2 Action of the minimal quasidilaton

In what follows we detail the action for the minimal quasidilaton. Although the action itself may
seem exceedingly complex, one must remember that in unitary gauge the minimal quasidilaton action
reads

S = S̃EH + S̃σ + Sm + SC + Smat , (5.32)

We will develop on each of the terms one by one, but we first give an intuitive explanation. S̃EH and
S̃σ are related to the usual kinetic terms for the metric and the quasidilaton. Sm is a Lorentz-breaking
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graviton mass term (so as to satisfy the first property). SC restricts the dynamical surface to remove
consistently the graviton scalar mode. Finally, as usual, S̃mat involves the minimally coupled matter
fields. Starting from the Einstein-Hilbert and quasidilaton kinetic actions, we have

S̃EH =
M2

P

2

∫
d4xN

√
γ
(
R(3) + K̃ijK̃

ij − K̃2
)
, (5.33)

and the quasidilaton kinetic term as

S̃σ =

∫
d4x
√
−g

[
P (X)−G(X)�σ + λχ

(
X̃σ −X

)]
, (5.34)

where R(3) is the three-dimensional Ricci curvature, λχ is a Lagrange multiplier, P (X) and G(X) are
free functions of the auxiliary field X. The kinetic term of the quasidilaton corresponds to a cubic
shift-symmetric Horndeski once all auxiliary fields are integrated out (the shift-symmetry is necessary
to preserve the quasidilatation symmetry); this allows in principle to implement a Vainshtein screening.
Note that the quasidilaton is not normalized as in the previous section but has dimensions of energy.
We have also included, for compactness, other terms along the extrinsic curvature Kij and the “normal”
derivative of the quasidilaton ∂⊥σ ≡ 1

N

(
σ̇ −N i∂iσ

)
, as

K̃ij = Kij +
1

M2
P

λT
N
G,X (Xγij + σ;iσ;j) ,

X̃σ =
1

2

[
∂̃⊥σ

2
− γij∂iσ∂jσ

]
, ∂̃⊥σ = ∂⊥σ +

λT
N

=
1

N

(
σ̇ −N i∂iσ

)
+
λT
N

. (5.35)

In fact terms proportional to the Lagrange multiplier λT arise from the particular constraint structure
of the theory. Note also that once the constraints are integrated out there will be novel contributions to
the kinetic term coming from what we now defined as the constraint part of the action, SC. We move on
to detail the potential term

Sm = −M
2
Pm

2

2

∫
d4x (NH0 +MH1) , (5.36)

where the structure of H0 and H1 may remind one of what we have seen with MTMG in section 4.5.2,
but with the additional presence of the quasidilaton,

H0 ≡
√
γ

4∑
i=0

cie
(4−i)σ/MPe4−i(K) , H1 ≡

√
γ

4∑
i=0

cie
(α+4−i)σ/MPe3−i(K) , (5.37)

including the 3D symmetric polynomials ei(X), just the structure needed to get rid of the Boulware-
Deser ghost, and using the same definition for Kij as in (4.89). We have introduced the extra constant
parameter α, in order to account for the absence of Lorentz invariance at the level of the Stückelberg
transformation; the time Stückelberg does not necessarily transform as the spatial ones

σ → σ − σ0 , φi(xµ)→ eσ0φi(xµ) , φ0(xµ)→ e(1+α)σ0φ0(xµ) , (5.38)

The constraint side of the action can be decomposed as

SC =

∫
d4x

[
M2

Pm
2

2

(
λiCi + λC̃λ + λ2Cλ2

)
+ λTCλT

]
, (5.39)

with

Ci =
1

2

√
γDj

(
F jkγik

)
−Fσ∂iσ, (5.40)

C̃λ = −1

2

(
2Fσ∂̃⊥σ +

√
γK̃ijF ij

)
, (5.41)

Cλ2 =
m2

16N

√
γ

(
FijF ij −

1

2
F2

)
, (5.42)

CλT = N
√
γ
λT
N

[
G,X ∂̃⊥σ σ

;i
;i −G,X

(
∂̃⊥σ

);i

σ;i −G,X∂⊥X − P,X ∂̃⊥σ
]
, (5.43)

where the semicolon indicates a covariant (with respect to γij) derivative, and with the following defini-
tions

F ij ≡ 2γikeασ/MP
∂
(
H0/
√
γ
)

∂Kkj
= 2

1
√
γ

δH1

δγij
, Fσ ≡

∂H1

∂σ
. (5.44)

The explicit expressions for these two last quantities are given in appendix D. Finally the matter action
is, as usual, general but minimally coupled. For given calculations we will take a k-essence ansatz.
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5.2.3 Total Hamiltonian of the minimal quasidilaton

In order to demonstrate that the minimal quasidilaton propagates 3 degrees of freedom non-linearly,
we present the total Hamiltonian of the model (a few more details are given in appendix D). This will
show that the theory propagates at most 3 degrees of freedom. Then, by the study of perturbations (see
section 5.3.2), we will show that the theory propagates at least 3 degrees of freedom, hence completing
our argument.

The total Hamiltonian of MQD, without matter, is

H
(tot)
MQD,v =

∫
d3x

[
−NR̃0 −N iRi +

M2
Pm

2

2
MH1 + ξXPX + ξχPχ + ξSPS

+
√
γ
(
λXSX + λχSχ + λSSS + λT T̃

)
+
M2

Pm
2

2

(
λiCi + λC0

)]
, (5.45)

where the subscript v stands for vacuum, and where N , N i, ξ∗, λ∗ (∗ standing for any subscript), λ,
and λi are all Lagrange multipliers. It is useful to define the analog of X̃σ in the Hamiltonian language,
XH = 1

2

(
π̃2
θ − γij∂iσ∂jσ

)
. We then give the explicit expressions for the constraints, starting by the

would-be Hamiltonian and momentum constraints which are given by

R̃0 =
M2

P

2

√
γ R[γ]− 2

M2
P

1
√
γ

(
γilγjk −

1

2
γijγkl

)
πijπkl −Hσ −

M2
P

2
m2H0 , (5.46)

Ri ≡ 2
√
γγikDj π̃kj −Hσi , (5.47)

with the following contributions from the Horndeski action

Hσ√
γ

= χ (XH −X)− π̃θπ̃σ − F − θS − γij∂iσ∂jθ , Hσi ≡ πσ∂iσ + πθ∂iθ . (5.48)

In order to keep expressions compact and easily accountable we have introduced the π̃∗ ≡ π∗/
√
γ, where

π∗ stands for any of the canonical momenta. There are also the primary and secondary constraints
associated with the auxiliary fields

PX ≡ πX , Pχ ≡ πχ , PS ≡ πS , (5.49)

SX ≡ χ+ F,X , Sχ ≡ X − XH , SS ≡ θ −G(X) . (5.50)

A tertiary constraint is also generated, as

T̃ ≡ −π̃σ − P,X π̃θ −G,X
[

2

M2
P

π̃ij (∂iσ∂jσ + γijX)− π̃θγijDiDjσ + γijDiσDj π̃θ
]
, (5.51)

and its conservation can be solved for some Lagrange multiplier. Finally, the minimal theory is defined
on the introduction of the four constraints

C0 = M

[
1

M2
P

(
γikγjl −

1

2
γijγkl

)
F ijπkl −Fσπ̃θ

]
,

Ci = −1

2

√
γDj

(
MF jkγki

)
+MFσ∂iσ . (5.52)

These constraints are defined via the time evolution with the modified Hamiltonian H1

{Ri, H1} ≈
M2

Pm
2

2
Ci , {R̃0, H1} ≈

M2
Pm

2

2
C0 , (5.53)

in which we defined

H1 =
M2

Pm
2

2

∫
d3xMH1 . (5.54)

Out of this set of constraints, it is possible to single out a first-class constraint P̃S ≡ PS + G,XPχ
(whose associated symmetry has not yet been elucidated), also using suitable redefinitions of the other
constraints. There are therefore 14 (at least) second-class and 1 first-class (P̃S) constraints, which reduces
the 22 phase space degrees of freedom (6 metric components, 1 quasidilaton, 4 scalar fields Horndeski-
Lagrange multipliers) to 6 phase space degrees of freedom, i.e. at most 3 degrees of freedom. We give
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a few more details on the Hamiltonian analysis in appendix D. The Hamiltonian analysis of the cubic
Horndeski theory has been detailed in appendix C, whereas the analysis of MTMG has been detailed in
section 4.5.3. Roughly, the steps of the analysis of the minimal quasidilaton can be found in analogy to
these. We refer the curious reader to the explicit construction in [54]. Among the differences between
these approaches, one may note the additional non-vanishing Poisson brackets between Sχ, SS and C0, as

well as between T̃ and C0, Ci. Since the conservation in time of these constraints is solved for Lagrange
multipliers, this fortunately yields no difference in the counting of degrees of freedom.

The addition of matter does not complicate the previous discussion of the Hamiltonian analysis of
MQD. It can be shown that with a suitable redefinition of the constraints R̃0 and R̃i, one may make
the matter sector commute in the usual way with these new would-be Hamiltonian and momentum
constraints, and that the conditions for the conservation in time of all constraints are unaffected (i.e. can
still be solved for the same Lagrange multipliers). The same constraints are therefore generated, and the
first-class constraint P̃S remains first-class. It is therefore possible to write formally

H
(tot)
MQD = H

(tot)
MQD,v + H

(tot)
mat . (5.55)

Since the minimal quasidilaton has been built from the Hamiltonian formulation of a different theory, the
precursor theory (see section 4.5.3), this was a priori non-trivial and was checked in [55] for the k-essence
ansatz.

Finally, note that the construction via the Hamiltonian language explains our use of auxiliary fields
in (5.32). These are invoked in order to remove second time derivatives on the quasidilaton field σ, which
appear from �σ. The use of auxiliary fields to perform the Hamiltonian analysis is standard [161, 158, 162]
(see also section 3.1.1), but unfortunately renders the constraint algebra more opaque. After Legendre
transformation, the auxiliary fields appear in a non-trivial way through the new constraints, and hence
it is not trivial to integrate them out again.

5.3 Cosmology with the minimal quasidilaton

Although the action for the minimal quasidilaton looks rather complex, its cosmology is relevantly
simplified, just as in the case of MTMG, by

λ = λi = λT = 0 . (5.56)

To study the cosmology at the background level, we use again the flat FLRW ansatz (2.34), keep a
Minkowski fiducial metric (γ̃ij = δij and M = 1), and let σ = σ(t) and φm = φm(t). Since these
combinations appear repeatedly, we collect

X =
eσ/MP

a
, r =

a eασ/MP

N
, Σ =

σ̇

N
. (5.57)

We then reproduce here the cosmological background equations,

E1 ≡ 3M2
PH

2 − ρg − ρm = 0 , (5.58)

E2 ≡M2
P

2Ḣ

N
+ 3M2

PH
2 + Pg + Pm = 0 , (5.59)

Em ≡ ρ̇m + 3H(ρm + Pm) = 0 , (5.60)

Eσ ≡
1

2
XM2

Pm
2[(α+ 1)rJ + rJ,XX + Γ,X ] + P,XΣ

(
3H +

Σ̇

ΣN

)

+ Σ3 Σ̇

ΣN
(P,XX +G,XXΣH) + 3G,XHΣ2

(
3H +

Ḣ

HN
+ 2

Σ̇

ΣN

)
= 0 , (5.61)

EX ≡ G,X

(
Σ̇

N
+ 3HΣ

)
+ P,X − λχ = 0 , (5.62)

EλT ≡ EXΣ = 0 , (5.63)

Eλχ ≡ X −
1

2
Σ2 = 0 , (5.64)

Eλ ≡ Γ,XHMP + Σ[(α+ 1)J + J,XX ] = 0 , (5.65)
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corresponding respectively to the Friedmann equation, the second Einstein equation, the equation for
matter, and the equations for the variables appearing as labels n of the En, and where several definitions
are still needed. First of all we defined the new contributions from the gravity sector (including the
quasidilaton) to the density and pressure balances

ρg ≡ 2XP,X − P + 6HG,XXΣ +
M2

Pm
2

2
Γ , (5.66)

Pg ≡ P − 2G,XX
Σ̇

N
− M2

Pm
2

2

[
Γ +

Γ,XX
3

(r − 1)

]
. (5.67)

These contributions can be seen to follow a conservation equation separately once the Bianchi identity
and the conservation of matter are applied,

ρ̇g + 3H(ρg + Pg) = 0 . (5.68)

They play the role of dark energy at late-times, as we will show in the next subsection. We also have
grouped

Γ = X 3c1 + 3X 2c2 + 3X c3 + c4 , J = X 3c0 + 3X 2c1 + 3X c2 + c3 , (5.69)

combinations which can be identified as the contributions of H0 and H1 defined in (5.37). Contrary to
MTMG, there is no tadpole term, and therefore we do not remove c0.

5.3.1 Cosmological attractor

We first focus on the equation for λ, Eλ, which can be rewritten as a time-conservation equation

d

dt
[a4+αX 1+α J(X )] = 0 . (5.70)

implying that

X 1+α J(X ) =
cst

a4+α
, (5.71)

This result strongly motivates considering cosmology on the late-time attractor solutions given by{
X = cst , for α = −4 ,

J = 0 , X = cst , for α 6= −4 .
(5.72)

For α > −4, the system will tend to the second attractor solution J = 0. In fact, for α ≥ −1, the
attractor will settle faster than the end of the matter dominated era. When studying cosmology on the
attractor, one may thus take

Σ|attractor = HMP , X|attractor =
M2

PH
2

2
. (5.73)

Whenever X = cst, the graviton potential induces an effective cosmological constant even without
c4, which is the usual bare cosmological constant as found in GR. One therefore has in principle the
possibility to sustain self-acceleration. In the remainder of the study, we will always assume c4 = 0.
Further requiring that an increase in the bare cosmological constant will always lead to an increase in
the Hubble parameter gives the condition

g(H) ≡ P,X − 6 + 12G,XH
2MP + 3G,XXH

4M3
P +H2M2

PP,XX < 0 , with X = X|attractor . (5.74)

This quantity appears in several expressions for the background and for its perturbations. One may
label the complementary scenario as background ghost. In the remainder of the work, we also avoid the
infinitely fine-tuned case α = −4 and the strongly coupled solution X = 0.

Assuming the attractor as a background, we can reach a few more relations. For example, r is given
by

r − 1|attractor =
6H2(3G,XH

2MP + P,X)

m2Γ,XX
+

6(Pm + ρm)

m2M2
PΓ,XX

g − 3g1

g
, (5.75)
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Figure 5.1: (Figure reproduced from [55].) On the left-hand side, one finds the unhealthy regions (shaded)
of the minimal quasidilaton, in the (g,G,XX/MP)-parameter space, on the late-time attractor (5.72).
There, the functions g and G,XX depend uniquely on Hubble rate H, as given by (5.74) and (5.73).
Background ghost denotes a decrease in the Hubble rate when the bare cosmological constant is increased.
This is avoided by fixing g to be negative. The scalar no-ghost condition 5.93 is obtained from studying
the quadratic action for scalar perturbations. On the right-hand side, one finds the equation of state of
dark energy wg (5.76), on the attractor, as a function of g. Since the equation of state also depends
on the matter density, we present it for different values of the ratio of dust and dark energy densities
ρd/ρg. Late-times (full gray line) are characterized by an effective cosmological constant. The thick line
corresponds to a ratio close to the current ratio, and shows that any measure of the current or the past
wg will heavily constrain g, whereas the quantity G,XX is most constrained by the no-ghost condition.
Bounds on |wg − 1| with e.g. Euclid may be smaller than O(10−1).

where g is given in (5.74) and g1 ≡ G,XH
2MP − 2 are functions of H only since X = X|attractor. One

may further write the effective equation of state of dark energy wg = Pg/ρg as

wg + 1|attractor = − (Pm + ρm)

ρg

(g + 6)

g
, (5.76)

Due to the presence of the attractor, and with the dilution of the matter fields, the Universe transitions
to (and ends in) a de Sitter epoch, characterized by wg|late = −1. Corrections close to the attractor
appear as powers of H/Hlate.

As seen in equation (5.76), on the attractor, the equation of state depends on the matter fields, in a
simple way. It is then possible to characterize its sign as a function of the parameters of the theory. For
−6 < g < 0 the typical equation of state will be slightly wg > −1 whereas in the complementary cases,
the equation of state will be slightly wg < −1. We reproduce Fig. 5.1 from [55] to illustrate these results.

Finally, we discuss the asymptotic Minkowski limit of our theory. This is given by r → 1, since this
choice cancels the effective cosmological constant ρg|late = −Pg|late (see (5.75)). The contributions from
P (X) and G(X) cannot be neglected in general, since this would correspond to a case of infinitely strong
coupling.

5.3.2 Perturbed attractor

We now study the linear perturbations on the attractor solution detailed in the previous subsection,
with α > −4. One may further refine to α ≥ −1, if one wants to make sure that the attractor solution is
reached before or during matter domination. Since a detailed study of the early Universe should include
a study of the dynamics away from the attractor, we do not cover radiation fields here. The cosmological
constant will also be set to zero by c4 = 0 to study only self-accelerating cases.

Note that for the assumption of the attractor will not be needed in the case of tensor and vector
perturbations. We start by these two cases, an then move on to scalar perturbations.

Tensor modes

The quadratic Lagrangian for the tensor perturbations, defined in (2.56) is

L =
M2

P

8

∑
ε=+,×

Na3

[
ḣ2
ε

N2
− 1

a2
(∂ihε)

2 − µ2
T h

2
ε

]
, (5.77)
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with, as usual, + and × denoting the two different polarizations of tensor perturbations, and where

µ2
T =

1

6
Xm2

[
Γ,XX + (r − 1)

Γ,XXX 2

2

]
, (5.78)

is the effective mass of the gravitational waves. The tensor mass doesn’t vanish in the Minkowski limit

r → 1. Notably, one may then write the dispersion relation for modes hε ∝ ei(
~k·~x−ωt) as

ω2
T = c2T

k2

a2
+ µ2

T , (5.79)

with c2T = 1. Hence, the tensor modes satisfy all the present constraints (which we discussed in section
3.2.1). This result is valid both on and away from the attractor (5.72).

Vector modes

We consider the vector perturbations as defined in (2.55). In addition to these λi contributes by

λi = δλi , (5.80)

since its background value is zero. All vector perturbations are considered to be transverse, i.e. ∂iei =
∂iβi = ∂iδλi = 0. Using the equations from δλi one may integrate out all degrees of freedom, thus leaving
no propagating vector mode. This is the result of the constraints Ci. This result is valid both on and
away from the attractor (5.72).

Scalar modes

Scalar modes are chosen as defined in (2.54). We also need to define perturbations for the quasidilaton,
as well as the auxiliary fields and Lagrange multipliers that were not yet integrated out:

σ = σ(t) + δσ , X = X(t) + δX , (5.81)

λχ = λχ(t) + δλχ , λT = δλT , λi =
1

a2
∂iλV , λ = δλ . (5.82)

Finally we use the density contrast δ, defined in (2.61) to represent matter perturbations. All the
background quantities are chosen to satisfy the attractor equations (5.72). One finds that all but two
modes can be integrated out, yielding

L = k2A11 δ̇
2
2 −A22

˙δσ
2

2 + B (δ̇2 δσ2 − δ2 ˙δσ2)− C11 δ
2
2 − C22 δσ

2
2 − 2 C12 δ2 δσ2 , (5.83)

in Fourier space, where we have used the field redefinitions

δσ = δσ2 − Z δ , δ = k δ2 , (5.84)

with Z a function of k and the background variables (such that the kinetic matrix in (5.83) becomes
diagonal), and where the order of each coefficient in the Lagrangian in the high-k limit is

A11 = O(k−2) , A22 = O(k0) , B = O(k−1) , C11 = O(k0) , C12 = O(k1) , C22 = O(k2) . (5.85)

We refer the reader to [55] for further details in the decomposition of the terms in (5.85). We have chosen
not to present them in this thesis since they can be considered as intermediate results.

Subhorizon approximation—In order to say anything more about the scalar perturbations, we need
to take the subhorizon approximation as given by (2.65). The quadratic Lagrangian then becomes

L ≈ 1

2
Na3

[
Q1

δ̇2
2

N2
+Q2

˙δσ2
2

N2
+
a

k
B

(
δ̇2
N
δσ2 − δ2

˙δσ2

N

)
− L11 δ

2
2 − 2L12

k

a
δ2 δσ2 − L22

k2

a2
δσ2

2

]
, (5.86)

where Q1, Q2, B, Llm (l,m ∈ {1, 2}), are all functions of time and of the parameters of the theory,
with no more scale dependence. The explicit expression for the coefficients Q1, Q2, and Lij are given in
Appendix D.2.1, in order to keep a reasonable presentation.
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The structure of the kinetic coefficients can be explored further, i.e.

Q1 = a2 ρm , (5.87)

Q2 =
Γ2

1

Γ2
2

q2

4Qd2
, (5.88)

with

Γ1 ≡ X
(
c1X 2 + 2c2X + c3

)
=

1

3
Γ,XX , (5.89)

Γ2 ≡ X 2 (c1X + c2) =
1

6
Γ,XXX 2 , (5.90)

d = m2Γ1 + 2H2 (4 + α)
(
MPH

2G,X − 2
)
, (5.91)

Q ≡ g +
3

2
(G,XH

2MP − 2)2 , (5.92)

where g is the no-background-ghost condition (5.74) (which needs to be positive separately), and where
we have chosen to explicit only those coefficients which are relevant to the discussion (see Appendix
D.2.1). From these, it is possible to read the no ghost conditions in the high-k limit. The no-ghost
conditions for the field δ2 and δσ2, read respectively

ρm > 0 , Q > 0 . (5.93)

where the first is always satisfied for canonical matter and the second is a non-trivial condition. Now,
from the Lij , it also is possible to read the scalar sound speed in the high-k limit. In particular, for

modes for which ω2 = c2s
k2

a2 , we have (
ω2Q2 − L22

k2

a2

)
δσ2 ≈ 0 , (5.94)

so that

c2s =
L22

Q2
, (5.95)

which may be different from 1 (but generally ∼ O(1)) outside of the GR limit, whereas dust still has zero
speed of propagation. The equations extracted from (5.86) are

− d

dt

(
a3Q1

δ̇2
N

)
− 1

2

d

dt

(
a4

k
B δσ2

)
− a4

2k
B ˙δσ2 −N a3 L11 δ2 −N a3 L12

k

a
δσ2 = 0 , (5.96)

− d

dt

(
a3Q2

˙δσ2

N

)
+
a4

2k
B δ̇2 +

1

2

d

dt

(
a4

k
B δ2

)
−N a3 L12

k

a
δ2 −N a3 L22

k2

a2
δσ2 = 0 , (5.97)

a coupled system of equations, which cannot be diagonalized in general.
Quasi-static approximation—Although in the pure subhorizon approximation the equations for the

quasidilaton and matter perturbations are coupled, it is possible to explore deeper the phenomenology by

taking the quasi-static approximation, as described in equation (2.81), i.e. by assuming
¨δσ2

N2 ' H
˙δσ2

N '
H2 δσ2 � k2

a2 δσ2. Under the mild assumption, valid within the sound horizon of dark energy (2.79), the
friction coefficient B is sub-leading, and it is possible to decouple the equations for δ2 and δσ2, the first
of which yields

1

N

d

dt

(
δ̇2
N

)
+ 2H

δ̇2
N

+
1

ρma2

(
L11 −

L2
12

L22

)
δ2 ≈ 0 . (5.98)

This allows to identify the time- and parameter-dependent effective gravitational constant

Geff

GN
=

2M2
P

ρ2
ma

2

(
L2

12

L22
− L11

)
, (5.99)

where the coefficients Lij are detailed in Appendix D.2.1. As it can be easily conceived, and as we will
more explicitly show in the next subsection, the effective gravitational constant Geff may be well different
from GN .
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We evaluate the Bardeen potentials (2.59) and (2.60), which as usual satisfy Poisson equations, but
with modified gravitational constants

−k
2

a2
Ψ =

1

2M2
P

Geff

GN
ρm δ , (5.100)

−k
2

a2
Φ =

1

2M2
P

GΦ

GN
ρm δ , (5.101)

where the ratio Geff/GN is given in Eq. (5.99) and in the appendix D.2.1, whereas we detail the ra-
tio GΦ/GN in the appendix D.2.2. Both are time- and parameter-dependent. Both equations can be
combined to find the gravitational slip parameter η, given by

η ≡ Ψ

Φ
=
Geff

GΦ
, (5.102)

which is also generally different from one, aside from the GR limit. In what follows, we verify the presence
of this limit.

We expect that the GR limit is recovered at early times, when ρm → 3M2
PH

2 and m2/H2 → 0.
Choosing a simple case for the illustration, |Γ2| � 1, G,XH

2MP → 0, and G,XXH
4M3

P → 0, we recover

Geff → GN , (5.103)

η → 1 , (5.104)

Q2 →
(α+ 4)

2 (
M2

PH
2P,XX + P,X

)
Γ2

1

4Γ2
2

, (5.105)

c2s →
3

6−M2
PH

2P,XX − P,X
. (5.106)

There is therefore at least a region of the parameter space for which the early times limit is healthy and
recovers the GR behavior for the growth of structure, provided that 0 < M2

PH
2P,XX + P,X < 6. The

simple limit m→ 0 corresponds to a limit towards GR plus the cubic shift-symmetric Horndeski sector.

5.4 Expected cosmological scenario and predictions

The construction of the minimal quasidilaton introduces a range of new parameters, yet it has some
unique particularities. Thanks to these future tests may be able to tell apart MQD from other models. In
this short section we summarize these particularities, but also more generally the expected cosmological
scenario.

Summary of a conservative scenario

In our analysis of the phenomenology, we have chosen to remain conservative with respect to the
standard cosmological evolution. If possible, the model should modify only late-times, since the early-
time cosmological scenario—from reheating up to the end of the radiation dominated era—is relatively
well understood. For this reason, we expect the scenario as summarized in the following table.

Early-time, matter domination • Due to the density of matter fields, and with a good choice of P
and G, the modifications of gravity are expected to be negligible.

At or before matter domination • Settling of the attractor J = 0. The phenomenology discussed in
this work becomes valid.

Attractor epoch • The equation of state can be temporarily wg 6= −1 (see figure
5.1), but will eventually settle to wg = −1 at late times during
deep dark energy domination. There are modifications of gravity
on unscreened scales.

It should be noted that although there are good reasons to think that early-time cosmology can remain
close to GR (e.g. there exists a GR limit), a dedicated analysis would be necessary to be more affirmative.
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Figure 5.2: Gravitational constant for matter perturbations Geff/GN , evaluated in the present Universe,
for a range of graviton masses µ2

T /H
2
0 , using an illustrative choice of parameters (5.107). In this example

weak gravity (Geff/GN < 1) for matter perturbations may be realized. Figure reproduced from [55].

Particular signatures

An essential feature for a model of modified gravity should be its distinguishability from other models.
Although it is true that, at background level, the minimal quasidilaton on the attractor can be modelized
by a dark energy fluid with a time dependent equation of state, it is possible to distinguish it from a pure
fluid dark energy model at perturbative level, most notably due to the presence of non-trivial Geff and
η. We argue here that MQD can also be discriminated from a selection of modified gravity models that
also modify Geff and η; we discuss (i) scalar-tensor theories, (ii) Lorentz invariant massive gravity and
extensions, (iii) Lorentz violating massive gravity such as MTMG.

A common model for dark energy physics is scalar-tensor gravity (see section 3.1.1). Here we would
like to compare MQD to these models. Compared with scalar-tensor gravity, say for example Horndeski
theories, MQD has an analog number of free functions (the scalar kinetic terms), P (X) and G(X),
necessary for the screening, but also implements several additional real parameters that determine the
graviton potential, 4 without counting the cosmological constant (say m, c1, c2, c3, since for example c0
can be absorbed by a redefinition of m). However, there are a positive trade-offs for adding a potential
term: notably the model sustains weak gravity, i.e. Geff/GN

∣∣
today

< 1, while keeping cT = 1 on any

background. This is not possible with Lorentz-invariant scalar-tensor theories, as we will discuss below.
It can be also noted that late-time acceleration in MQD is due principally to the graviton potential, and
not to the choice of free functions in the kinetic term. This means that there is more freedom in choosing
P (X) and G(X) to produce a particular cosmology.

In what follows we discuss in more details the weak gravity feature of MQD. First of all, we show
with an example choice of parameters that weak gravity can be obtained at late times. We choose

α = 0 , Γ1 = 1 , Γ2 = 3 , Ωm,0 ≡
ρ

3M2
PH

2
0

= 0.3 ,

P (X) = X , G(X) = cst. (5.107)

where all time-dependences are fixed to the present time t0. As a result, as presented in Fig. 5.2, we
obtain a one-parameter (say µ2

T /H
2
0 ) family of models which has a wide allowed range of parameter space

with the property Geff/GN
∣∣
today

< 1. Illustratively, for µ2
T /H

2
0 = 5, one obtains Geff/GN

∣∣
today

' 0.91.

Second, we refer to section 3.1.1, in particular to equation (3.38) and related, where we followed
[167, 168] to show that in the standard Lorentz-invariant scalar-tensor theory case, e.g. in the class
of Horndeski theories and beyond, it is difficult to achieve weak gravity. The idea is that it is in fact
technically possible to produce weak gravity through the time-dependent “squared Planck mass”G4, ifGN
is defined with the present-day value of the Newton constant (defined in a perfectly screened environment,
or with the cosmological background). In other words, G4(z > 0) > G4(z = 0) is a necessary condition.
However other contributions (which can only contribute to increase the gravitational constant) do not
favor this in practice. This holds in particular under the requirement cT = 1, which is strongly favored
by the recent observations (see section 3.2.4).
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We note that although current observations do not yet have enough constraining power, future surveys
will be relevantly more efficient to do so. Currently, deviations from Geff/GN = 1 are constrained up
to about 10% [85]. It is expected that future surveys will constrain much better Geff/GN and η (see
section 3.2.1), and hence it may be possible to distinguish scalar-tensor from MQD (or similar theories
such as MTMG). In fact, future surveys will not only probe the perturbative dynamics of MQD, but it
will be also possible to constrain its background dynamics; the same future surveys will thus set strong
constraints on g as defined in (5.74), and as can be seen from figure 5.1.

We now discuss possible comparisons between MQD, and other models of massive gravity. First of
all the comparison with Lorentz-invariant massive gravity, i.e. dRGT theory, is difficult, as the exact
necessary FLRW solutions do not exist, and hence the study of cosmology needs a different treatment. It
would be interesting to compare MQD with future investigations of non-FLRW cosmology within dRGT
theory. Extensions of dRGT theory that do have FLRW cosmology are for example the new quasidilaton
theory, in particular its partially constrained ghost-free form, mass-varying massive gravity, or bigravity.
In the case of the new quasidilaton theory, cosmology with matter has not yet been studied within that
model. Note that due to the presence of more degrees of freedom the study may be more complex than
in MQD. Finally healthy cosmology within bigravity (aside from less explored exotic branches) either has
a degenerate phenomenology with GR in the case of a large hierarchy between Planck masses [204], or
needs to rely on the Vainshtein mechanism to bypass instability issues [207].

Turning to models of Lorentz-violating massive gravity, we see that it is natural to compare with a
version with the same number of degrees of freedom. In [327, 181], it is indeed pointed out that without
modifying the kinetic term for gravity, as was instead done in this work, one may obtain theories with
three or even two gravitational degrees of freedom. The theory with two degrees of freedom does not
allow for self-accelerating solutions. See also [210] for a study of stability. On the other hand the theory
with three degrees of freedom shows signs of strong coupling issue on Minkowski backgrounds. One may
see the presence of free-functions for the quasidilaton field as the price to pay for a more interesting
and varied phenomenology. We expect that observational constraints and the requirement of an efficient
Vainshtein screening, may still efficiently restrict and constrain our model.

Finally, we discuss differences between MQD and MTMG. It should be noted that the presence
of a dynamical scalar field should generically allow a more varied phenomenology than MTMG (see
section 4.5.3), although a more complete investigation of cosmology (including the study of the Vainshtein
screening) within MQD is still needed. We nevertheless expect that there may be a regime of sufficient self-
acceleration, yet with sizable modifications of gravity at perturbative level, that can fit the observations
and yet produce interesting signatures for future surveys to observe.

5.5 Summary

In this chapter, we have presented the minimal theory of quasidilaton massive gravity [53, 54, 55], a new
model which propagates one scalar field in addition to endowing gravitational waves with a mass. Before
introducing the model in section 5.2, we have reviewed, in section 5.1, other models of quasidilaton massive
gravity, as well as discussed which of these had possibilities to achieve a viable cosmology. Although the
original quasidilaton is unstable on cosmological backgrounds, some of its extensions may allow for viable
cosmologies. These extensions have nonetheless not been explored thoroughly. In comparison with these
models, the minimal quasidilaton is relevantly simpler (and stable by construction), and this has allowed
us to explore the phenomenology in more details. The review of the minimal quasidilaton starts from the
Lagrangian presented in a compact fashion in section 5.2.2. We have also discussed its properties via the
total Hamiltonian in section 5.2.3. In the latter sections we explored in details the phenomenology, and
in particular delineate the expected scenario, comparison with other models of modified gravity, as well
as future prospects for constraining the theory in section 5.4.
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Conclusion

From front to end of this thesis, we have gone from depicting the present standard model of gravitation,
general relativity (GR), to exploring different new theories of gravity. We are motivated to go beyond
Einstein’s theory by one of the biggest mysteries of cosmology and hence of gravitational physics: the
nature of dark matter and dark energy remains elusive, and therefore we are still unable to converge
towards a full picture of our cosmos. Exploring alternatives to GR will also allow to widen our perspective
on future observations, as well as to understand GR better theoretically.

Research in modified gravity, i.e. alternatives to general relativity for which the laws of gravitation
are modified at given scales, had already started several years ago, for example with the works of Jordan
in the ’50s. Despite this early start, and notably in light of many fundamental progresses of the last
decade (e.g. on the theoretical front, holography, or more specifically to this work, scalar tensor theories,
multi-metric theories, etc.), one may arguably say that there is still a lot to learn about gravitational
theories, even only classically. As was done in this thesis with minimally modified gravity and the minimal
quasidilaton, hopefully new theories of gravity are yet to be found and investigated. In fact, in these last
years, on the front of alternative models of gravity, novel constructions have appeared more often than
not. This has also gradually allowed to understand how they are related to each other; hopefully this
“canvas” of relations may become even clearer with future research.

It is of course well possible that GR is the final theory at large scales, but we hope that Nature will
have the last word on this question. At least as long as mysteries persist in our picture of the Universe, it
is essential to probe the borders of our knowledge; one should work under the hypothesis that although
GR has been favored by experiments so far, a subtle variation may in fact be more accurate at the end
of the day. Epistemologically, we are forced to conflate, the understanding of gravity, as the force that
our Universe exhibits, with the understanding of the theories of gravity, which may or may not describe
our world. In addition to this, one may understand better the reason, if there is, as to why GR should
be favored.

An element that gives reasonable boundaries to such an association is experimental research. With-
out experiments it would be difficult to give a direction to theoretical investigations. Recently, many
constructions, such as a large subclass of scalar-tensor theories, have been severely constrained by grav-
itational waves, more precisely the observation of a neutron star binary merger via both gravitational
waves and X-rays. This experiment has therefore reinforced GR as a solid construction. But this also
had another implication: it has cast light on a smaller subset of theories which are still viable as far as
it is presently known (theoretically and experimentally). This is a very strong motivation to revisit the
ensemble of theories of modified gravity in light of these observations.

In this thesis, we have explored a novel set of models that are, as far as we understand, compatible
with the recent observations, in particular those from gravitational wave observations. On the one hand,
we have proposed a new class of type-I minimally modified gravity theories, which only propagate two
degrees of freedom and have an Einstein frame. On the other hand, as an extension of the minimal
theory of massive gravity, and a net simplification of previous works on the quasidilaton theories, we
proposed the minimal theory of quasidilaton massive gravity. Both the minimal theory of quasidilaton
massive gravity and a large subclass of the type-I minimally modified gravity theories we presented enjoy
a unity speed for gravitational waves by construction, and are hence robust with respect to the binary
neutron star bound. For type-I minimally modified gravity theories, the time-dependence of the effective
gravitational constant at short scales sets a further bound on the theory, but it still allows for sizable
deviations of gravity. On the other hand, in the case of the minimal quasidilaton, we made sure it allows
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for the possibility of a Vainshtein-type screening, which ensures that astrophysical tests are satisfied.

The construction of the minimal quasidilaton is noteworthy simply because it allows to propagate
massive gravitons without instabilities (the theory is stable for a wide range of parameters), as recent
years have seen several models of massive gravity be plagued by difficulties at the level of cosmology.
The minimization as we have called it in this text, answers radically to this problematic: less degrees of
freedom results in less potential unstable modes, which could invalidate the realization of a cosmological
scenario. Thanks to it we obtained a model that can sustain self-acceleration, while having interesting
phenomenology at perturbative level.

Considering minimal or minimized theories also allows for simplicity of treatment. For minimal
theories, one does not need to rely on certain common approximations in the field of dark energy, such
as the quasi-static approximation. Since the minimal quasidilaton propagates a third degree of freedom,
we had to take this approximation. Within the context of Lorentz violating theories, minimalism, in the
sense of having the least number of degrees of freedom, is a valid new take on the generally used principle:
one should describe the world with the minimal number of extra assumptions, as has been argued by
Occam’s razor-type arguments.

Important observations will also be made in the coming years, with increased precision. The sensitivity
of these new experiments is therefore another clear pointer as to which directions to explore in modified
gravity: proposed new theories should have a chance to be constrained or reinforced by observations in a
foreseeable future. The theories proposed in this thesis satisfy such a requirement. They will be indeed
considerably constrained by the coming experiments, in particular those that will put constraints on weak
lensing and structure growth. More interestingly, the theories we presented propose novel potentially
detectable phenomenology, which is difficult to obtain in Lorentz-invariant scalar-tensor theories. An
example is the fact that the minimal quasidilaton can sustain weak gravity in the context of cosmological
matter perturbations. The situation is similar with type-I (and type-II) minimally modified gravity,
which also propose interesting differences within perturbative dynamics. Among the future observations,
the fate of current tensions within the standard model of cosmology will also be of special interest in the
context of modified gravity. It was shown that modified gravity can relieve certain tensions [107], and if
the mismatch is confirmed new elements will be called to explain the observations. The type-I minimally
modified gravity may then offer a simple and minimal model to explain this mismatch.

The construction of interesting new theories of gravity might have seemed difficult from the point
of view of Lovelock’s theorem, which argues on the unicity of GR, under a set of assumptions. In fact,
the theories presented in chapters 4 and 5 all rely on relaxing the symmetry under diffeomorphisms and
under Lorentz transformations, both of which characterize GR. In the exploration of the wide range of
theories that comes with the removal of these base assumptions, minimalism can be seen as a systematic
guiding principle, obviously together with consistency of the theories. The results presented in this thesis
all support this claim further. We have also shown that the prospects for finding new, interesting, and
viable theories of modified gravity are good, and that the possibilities of finding novel theories in the
future have a good chance not to be exhausted. The diagrammatic depiction of figure 4.1, for example,
makes it clear that the space of minimally modified gravity theories can still be populated, and that
the relationships between these minimal theories can still be investigated. We are certainly far from
understanding the extent of minimal theories of gravity.

In the future, it will be essential to relate further these new constructions with observations. On the
one hand, within current model-independent implementations of cosmological Einstein Boltzmann solvers,
one often makes some assumptions to limit the complexity of the searches. It is therefore important to
inquire model by model whether the usual simplified parametrizations are compatible, or whether model
specific changes have to be implemented within the numerical schemes. Analytical advances may also be
needed; for example, in the case of the minimal quasidilaton, further understanding of early-time dynamics
and of the screening mechanism will be essential. On the other hand, with the advent of gravitational
waves, it will be important to study more in details both astrophysical and strong field regimes, since
these may be tested in the future. For this ultimately one will need a more detailed understanding of
the solutions for compact objects (for example in the context of the minimal theory of massive gravity
[52]), a study of their perturbations and their stability, as well as a study of modified gravitational wave
production. Understanding gravitational wave production within GR has been technically (analytically
and numerically) challenging (for some references see section 3.2.3), at it is fair to say that more effort
will be needed within modified gravity theories.

The question of quantum corrections within modified gravity theories is important, and calls for a
future in-depth study. On the one hand, one may show explicitly the suppression (by power counting of
order O(m2/M2

P)) of Lorentz violating corrections appearing in the matter sector through graviton loops.
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On the other hand, the constraint structures of some minimally modified gravity theories (this is of course
also valid beyond this class) relies only on second class constraints, and hence are not protected against
quantum corrections by some symmetries. UV cutoffs, for which the perturbative expansion becomes
questionable at best, may also be found, for example within the minimal quasidilaton theory. Indeed,
these cutoffs are found within several classes of scalar tensor, or massive gravity theories. Finally, still
on the theoretical side, the search of novel models, and the delineation of the boundaries of minimally
modified gravity theories will be crucial. Pioneering systematic studies have already been successful for
type-I minimally modified gravity theories, whereas type-II may need a new approach to be studied more
systematically. A generic Hamiltonian approach as in [57] may be a first step in this direction.
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Appendix A

Tools for cosmology

A.1 Gauge transformation of the perturbations

Under diffeomorphisms xµ → xµ + ξµ, the first order perturbed metric transforms as

δg̃µν = δgµν + g
(0)
µν,λξ

λ + g
(0)
µλ ξ

λ
,ν + g

(0)
νλ ξ

λ
,µ . (A.1)

By applying this to the 00, 0i, and ij components, one can find

φ̃ = φ+
Ṅ

N
ξ0 + ξ̇0 , (A.2)

β̃ = β − N

a
ξ0 +

a

N
ξ̇ , (A.3)

B̃i = Bi +
a

N
ξ̇⊥i , (A.4)

ψ̃ = ψ +HNξ0 +
1

3
∆ξ , (A.5)

ẽ = e+ 2ξ , (A.6)

Ẽi = Ei + 2ξ⊥i , (A.7)

h̃ij = hij , (A.8)

where we decompose ξi = ξ⊥i + ∂iξ, with ∂iξ⊥i = 0. For a perfect fluid, one has the transformation of the
density perturbation (ρ→ ρ+ δρ), at first order,

δ̃ρ = δρ+ ρ̇ξ0 . (A.9)

By using these transformations it is simple to find gauge invariant variables, such as (2.59), (2.60), and
(2.61).

A.2 Integrating by parts the friction matrix

Here we give, for reference, a reminder on the integration by parts of the friction matrix (multiplying
terms with a single time-derivative over the perturbation variables). Assuming the terms in the quadratic
action for perturbations

S(2) 3 aφ1φ̇2 + bφ2φ̇1 , (A.10)

one can split the symmetric and antisymmetric part.

S(2) 3 a+ b

2

(
φ1φ̇2 + φ2φ̇1

)
+
a− b

2

(
φ1φ̇2 − φ2φ̇1

)
. (A.11)

The total derivative to be subtracted from the action is simply

Stotder ≡
a+ b

2

(
φ1φ̇2 + φ2φ̇1

)
+
ȧ+ ḃ

2
φ1φ2 , (A.12)

which removes the symmetric part of the friction matrix.
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A.3 Extracting the sound speeds

The equations of motion for the remaining perturbations (after all non-dynamical fields are integrated
out) can be given in matrix form. One starts from the action at that stage, given by

S(2) = ~̇φ>K~̇φ+ ~̇φ>F ~φ+ ~φM~φ , (A.13)

where ~φ is a column vector containing the remaining perturbations, K is the kinetic matrix and it can
be made diagonal, F is the friction matrix and it can be made antisymmetric by integration by parts,
andM is the mass matrix and doesn’t have any particular symmetries a priori. The equations of motion
then are

− 2K~̈φ− dF
dt
~φ+ 2M~φ = 0 , (A.14)

which in the case of oscillating fields, ~̈φ = −Ω2~φ, reduces to(
Ω2K − 1

2

dF
dt

+M
)
~φ = 0 . (A.15)

The solution is non-trivial only if

det

(
Ω2K − 1

2

dF
dt

+M
)
≡ det E = 0 (A.16)

One needs to consider the determinant of the equations of motion (det E), in the subhorizon limit,
where k,Ω� 1. In this case, it can be factorized as

A(Ω2 − c2s,1k2) . . . (Ω2 − c2s,nk2) , (A.17)

where n is the number of degrees of freedom, A is some coefficient which—if the kinetic matrix is properly
normalized—does not contain any power of k, and cs,i is a sound speed. By collecting the coefficients of
different powers of k, one can obtain expressions for the partial sums and products of the sound speeds
cs,i. In the case in which one or several of these sound speeds are 0, then a corresponding power of Ω2

will be factorisable.

A.3.1 Matter action for cosmology

Depending on the observables one wants to compute it is often convenient (and we will use this
approach) to work directly in from the Lagrangian, as opposed to working with the equations of motion.
In order to do so, one has to write not only the gravitational action but also the matter part of the theory.
However, the matter action involves a lot of complex microphysics, which represents an unnecessary
complication for understanding the physics on large scales. It is therefore customary to work with a
simple proxy matter sector that is known to at least reproduce the physics of perfect fluids and their
perturbations. Let us define one such proxies which will be used throughout the text.

One option is to use a so-called k-essence scalar field. Naming the field φm, its action reads

Smat =

∫
d4x
√
−gP (X) , Xm ≡ −

1

2
gµν∂µφm∂νφm , (A.18)

where, as indicated by the definition, X is the canonical kinetic term for a scalar field. Computing the
energy-momentum tensor for the field yields

Tµν = P,X∂µφ∂νφ− gµνP , (A.19)

and for a homogeneous and isotropic configuration one may identify

P ≡ P (X) , ρ ≡ 2P,XX−P (X) , w ≡ P

ρ
=

P

2P,XX − P (X)
, c2s ≡

P,X
ρ,X

=
P,X

2P,XXX + P,X
. (A.20)

where cs is the typical speed of propagation of the perturbations in this k-essence component. After
making the right replacements one can then adjust directly the equation of state, the pressure, and so
forth.
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In the treatment of perturbations it is then simple to change variables, from the k-essence perturba-
tions, to the density perturbations δρ that we have defined in the previous sections. Perturbing linearly
the expression for the density, and matching with ρ′ = ρ+ δρ,

δρ = (2P,XXX + P,X) δX =
1

2Xc2s
(ρ+ P ) δX =

ρ+ P

c2s

(
˙δφ

φ̇
− Φ

)
(A.21)

One can replace the k-essence perturbations with density perturbations by adding the adequate piece
(constraint) to the action. The idea is to replace the kinetic term of the k-essence perturbation, by the
corresponding value in terms of density perturbations. One adds, for example in Fourier space,

−
∫
d3k dt a3 c2s

2(P + ρ)
(δρ− δ̄ρ)2 , (A.22)

up to some coefficient, such that the kinetic term of δφ vanishes, and the field can therefore be integrated
out. Here δρ stands for its expression in terms of the k-essence and other perturbations.
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Appendix B

Expressions for MTMG

B.1 Action and Hamiltonian

In the section 4.5.3 we have presented the construction of MTMG mostly schematically. However, the
explicit details between each argument are rather tedious. Therefore, we give here, for reference, some
important expressions and results.

In [311], the metric formulation, which we have implicitly used, was introduced. In addition to the

square-root matrix Kij ≡ (
√
γ−1γ̃)ij , defined by (4.89), one may define its inverse K by

KacKcb = KacKcb = δab , KacKcb = γ̃acγcb . (B.1)

Passing from the vielbein formalism to the metric formalism can only be achieved under the symmetric
condition (4.76)

Y[IJ] = 0 . (B.2)

In [51, 311] the theory was constructed from the perspective of the vielbein formalism. It is however possi-
ble to construct MTMG from a precursor theory entirely in the metric language. During the construction
of the secondary Hamiltonian, one encounters the variations

δK
δγij

=
1

2
γk(iKj)k ,

δK

δγij
= −1

2
γk(iKj)k , (B.3)

which are easily obtained from the definition of Kab and Kab. We have noted K and K the traces of the
respective matrices. On the other hand, the variation δKab

δγij
is not uniquely defined. This could seem

to be a problem both for finding the equations of motion and for computing the secondary constraint
algebra; indeed, the secondary Hamiltonian, in particular C0 and Ci contain such factors. Fortunately,
the square root becomes (almost) uniquely defined in certain situations, for example if the expansion is
done for a diagonal background (as in cosmology). In order to make contact with the choice of vielbein
picture Kab = EI

aeIb as in [311], we choose

δKab
δγij

=
1

2
Kakγk(jδ

i)
b ,

δKab
δγij

= −1

2
γa(iKj)b . (B.4)

This allows to complete the analysis. We also give the following definition

F ij =

√
γ̃
√
γ

[
(c1 + c2K)

(
Kikγkj + γikKjk

)
− 2c2γ̃

ij
]

+ 2c3γ
ij , (B.5)

which should not be confused with the analog expression for MQD (D.1).
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Appendix C

Cubic Horndeski

We present here the steps leading to the complete Hamiltonian analysis of a cubic shift-symmetric
Horndeski theory, using the method of auxiliary fields. This appendix is referred to in section 3.1.1, and
in chapter 5, as the cubic Horndeski Lagrangian is invoked as the kinetic term for the quasidilaton scalar.
This appendix is largely reproduced from [54].

C.1 Lagrangian of H3

The full Lagrangian density of the cubic Horndeski theory is given by

LH3 = LEH + L3 . (C.1)

where LEH = M2
P

√
−gR[g]/2 is the Einstein-Hilbert Lagrangian density, without cosmological constant.

We define the scalar part of the (now restricting to shift invariant) cubic Horndeski Lagrangian by use
of Lagrange multipliers

L3 =
√
−g [F (X,S) + χ (X − X) + θS + gµν∂µθ∂νσ] , (C.2)

where we write the canonical kinetic term for the scalar field σ as

X ≡ −1

2
gµν∂µσ∂νσ, (C.3)

and where
F (X,S) ≡ P (X)−G(X)S , (C.4)

in which P (X) and G(X) are sufficiently well-behaved general functions. The Lagrangian density (C.1)
is equivalent to the usual expression of the cubic Horndeski Lagrangian density once the e.o.m. of X, χ
θ, and S are taken into account. The e.o.m. of X, χ θ, and S, calculated from (C.1), are respectively

F,X + χ = 0 ,

X − X = 0 ,

S −�σ = 0 ,

θ −G(X) = 0 .

(C.5)

where we have used subscripts after a comma to denote derivatives, for instance, F,X ≡ ∂F
∂X . The system

of equations is trivially solved by χ = −F,X , X = X, θ = G(X), and S = �σ, and after replacing
this solution in the Lagrangian density (C.1) one recovers its standard form (3.7). By using Lagrange
multipliers one can evade all second or higher time derivatives. The equation of motion for the scalar
field σ is

χ�σ +�θ + gµν∇µχ∇νσ = 0 , (C.6)

which also reduces to the usual equation of motion once the auxiliary fields have been integrated out,

F,X�σ −G,X�(X) + gµνF,XX∇µ(X)∇νσ = 0 . (C.7)

We use here the (3+1) ADM decomposition of the 4-dimensional metric, which necessitates to define
the lapse function N , the shift vector N i as well as the spatial 3-dimensional metric γij . These are defined
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via the line element (2.14). The indices i, j, · · · ∈ {1, 2, 3} are used as spatial indices. The 4-dimensional
metric gµν and its inverse gµν are then given by

g00 = −N2 + γijN
iN j , g0i = γijN

i , gij = γij , (C.8)

g00 = − 1

N2
, g0i =

N i

N2
, gij = γij − N iN j

N2
, (C.9)

where the spatial indices of the lapse function are raised and lowered using the spatial metric γij , and its
inverse γij . In Eq. (C.3) we have used, and define from here on the “normal” derivative to the spatial
hypersurfaces,

∂⊥∗ =
1

N

(
∗̇ −N i∂i∗

)
, (C.10)

where ∗ stands for any field. Using these definitions we have for example that

X =
1

2

[
(∂⊥σ)2 − γij∂iσ∂jσ

]
. (C.11)

C.2 Variables, conjugated momenta, and primary constraints

We consider {γ(ij), σ,X, χ, θ, S} and their conjugate momenta as 22 canonical variables, and {N,N i}
as Lagrange multipliers, as these only appear linearly in the action. Upon calculating the conjugate
momenta, we get

πij ≡ M2
P

2

√
γ
(
Kij −Kγij

)
, πσ ≡ −

√
γ(χ∂⊥σ + ∂⊥θ) , πθ ≡ −

√
γ(∂⊥σ) , (C.12)

πχ = 0 , πS = 0 , πX = 0 , (C.13)

where

Kij =
1

2N
(γ̇ij −DiNj −DjNi) . (C.14)

As an intermediate step before computing the Hamiltonian, we invert relations (C.12) as

γ̇ij = 2NKij(π
kl) +DiNj +DjNi (C.15)

σ̇ = −Nπ̃θ +N i∂iσ (C.16)

θ̇ = N(χπ̃θ − π̃σ) +N i∂iθ . (C.17)

We have found useful to define the tilded momenta as three dimensional scalars, i.e., for instance, π̃θ ≡ πθ√
γ .

In addition to previous relations, the primary constraints related to X, χ, and S are defined as

0 = PX ≡ πX , 0 = Pχ ≡ πχ , 0 = PS ≡ πS . (C.18)

C.3 Primary Hamiltonian, constraint algebra, and consistency
conditions

The Hamiltonian with all primary constraints can be now written as

H
(1)
H3 =

∫
d3x [−NR0 −N iRi + ξXPX + ξχPχ + ξSPS ] , (C.19)

where the Lagrange multipliers λX , λχ and λS are scalars (density weight 0) of mass dimension 5, 3, and
4, respectively and where we define

R0 =
M2

P

2

√
γ R[γ]− 2

M2
P

√
γ

(
γilγjk −

1

2
γijγkl

)
π̃ij π̃kl −Hσ ,

Hσ =
√
γ

[
χ

2
π̃2
θ − π̃θπ̃σ − F − χ

(
X +

1

2
γij∂iσ∂jσ

)
− θS − γij∂iσ∂jθ

]
,

Ri = 2
√
γγikDj π̃kj − πσ∂iσ − πθ∂iθ .
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Just as in general relativity, the Hamiltonian is vanishing on the constraint surface. For further use we
define the equivalent of the scalar canonical term X in the Hamiltonian language,

XH ≡
1

2

(
π̃2
θ − γij∂iσ∂jσ

)
. (C.20)

From here one can compute the algebra of the primary constraints. The relations will be helpful for
computing the evolution of the constraints. First, it is found that if we want to have the momentum
constraint as a generator for translations, we need to modify it so as to include πX , πχ, and πS . We thus
define

R̃i ≡ 2
√
γγikDj π̃kj − πσ∂iσ − πX∂iX − πχ∂iχ− πS∂iS − πθ∂iθ . (C.21)

Clearly, this momentum constraint is equivalent to the original one when restricted to the constraint
surface. We turn to analyzing the constraint algebra, which is summarized in table C.11.

{↓,→} R0 R̃i PX Pχ PS
R0 0 0 −(χ+ F,X) −(X − XH) −(θ −G(X))

R̃i 0 0 0 0
PX 0 0 0
Pχ 0 0
PS 0

Table C.1: Primary constraint algebra in the cubic Horndeski theory. Dirac δ-functions were omitted in
the entries.

We give some results in their integral form,

{P?, R̃i[f i]} = −
∫
d3x
√
γDi

(
P?f

i
)
≈ 0 , (C.22)

{R0[φ2],R0[φ2]} =

∫
d3xRi

(
φ1Diφ2 − φ2Diφ1

)
≈ 0 , (C.23)

{R0[φ], R̃i[f i]} =

∫
d3xR0f

iDiφ ≈ 0 , (C.24)

{R̃i[f i], R̃j [gj ]} =

∫
d3xR̃i

(
gjDjf i − f jDjgi

)
≈ 0 . (C.25)

One can observe that the Hamiltonian and momentum constraints obey the usual algebra. In equation
(C.22) the symbol ? stands for any of X, χ, and S.

Armed by the complete algebra of constraints one can move on to study the consistency conditions.
Consistency of the primary constraints PX , Pχ, and PS with the time evolution of the system yields the
following conditions which cannot be solved for Lagrange multipliers (unless one sets N to be zero, which
is unphysical):

ṖX ≡
√
γ{πX ,H(1)

H3} = N
√
γ(χ+ F,X ) ≈ 0 (C.26)

Ṗχ ≡
√
γ{πχ,H(1)

H3} = N
√
γ(X − XH) ≈ 0 (C.27)

ṖS ≡
√
γ{πS ,H(1)

H3} = N
√
γ(θ −G(X)) ≈ 0 . (C.28)

We thus use these conditions to define the secondary constraints

SX(X,χ, S) ≡ χ+ F,X , (C.29)

Sχ(γ, σ,X, πθ) ≡ X − XH , (C.30)

SS(θ,X) ≡ θ −G(X) . (C.31)

1In the entries of all tables we have omitted Dirac δ-functions, unless otherwise stated. In particular, we give more
details whenever the result of the Poisson brackets formally includes derivatives of δ-functions – i.e. when these cannot be
factorized out.
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C.4 Secondary Hamiltonian, constraint algebra, and consistency
conditions

We can now define the Hamiltonian with all primary and secondary constraints

H
(2)
H3 =

∫
d3x [−NR0 −N iR̃i + ξXPX + ξχPχ + ξSPS +

√
γ (λXSX + λχSχ + λSSS)] , (C.32)

where the Lagrange multipliers λX , λχ, and λS are spatial scalars, i.e. have a density weight of 0, of mass
dimension 4, 0, and 3, respectively.

{↓,→} R0 R̃i PX Pχ PS SX Sχ SS
R0 0 0 0 0 0 0 Tχ TS
R̃i 0 0 0 0 0 0 0
PX 0 0 0 −F,XX −1 G,X
Pχ 0 0 −1 0 0
PS 0 G,X 0 0
SX 0 0 0
Sχ 0 πθ/

√
γ

SS 0

Table C.2: Secondary constraint algebra in the cubic Horndeski theory. Dirac δ-functions were omitted
in the entries.

The secondary constraint algebra is summarized in table C.2 where Tχ and TS stand for

Tχ =
2

M2
P

π̃ij [γijXH −DiσDjσ]− π̃θ
[
S − γijDiDjσ

]
− γijDjσDiπ̃θ , (C.33)

TS = χπ̃θ − π̃σ . (C.34)

One can simplify a little the algebra by defining a revised version of the Hamiltonian constraint,

R̃0 = R0 − Tχ(PX − F,XXPχ) , (C.35)

which in turn yields Table C.3.

{↓,→} R̃0 R̃i PX Pχ PS SX Sχ SS
R̃0 0 0 0 0 0 0 0 TS +G,XTχ
R̃i 0 0 0 0 0 0 0
PX 0 0 0 −F,XX −1 G,X
Pχ 0 0 −1 0 0
PS 0 G,X 0 0
SX 0 0 0
Sχ 0 πθ/

√
γ

SS 0

Table C.3: Secondary constraint algebra in the cubic Horndeski theory, with modified Hamiltonian
constraint. Dirac δ-functions were omitted in the entries.

The consistency conditions yield the following equations

Ṗχ ≈ 0 ≈ ṖS : λX ≈ 0 (C.36)

ṖX ≈ 0 : λχ − λSG,X ≈ 0 (C.37)

Ṡχ ≈ 0 : ξX + λS π̃θ ≈ 0 (C.38)

ṠX ≈ 0 : ξXF,XX + ξχ − ξSG,X ≈ 0 (C.39)

ṠS ≈ 0 : N(TS +G,XTχ) + ξXG,X + λχπ̃θ ≈ 0 (C.40)

˙̃R0 ≈ 0 : λS(TS +G,XTχ) ≈ 0 . (C.41)
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By plugging Eqs. (C.37) and (C.38) into Eq. (C.40), we obtain

N(TS +G,XTχ) = 0. (C.42)

As a consequence, since setting the lapse to zero would be unphysical, we need to impose the tertiary
constraint T ≈ 0, where

T = TS +G,XTχ = χπ̃θ − π̃σ −G,X
[

2

M2
P

π̃ij (DiσDjσ + γijXH) + π̃θ
(
S − γijDiDjσ

)
+ γijDjσDiπ̃θ

]
(C.43)

In order to simplify further the constraint algebra, we can form the following combinations

P̃X = PX − F,XXPχ , (C.44)

P̃S =
1
√
γ

(PS +G,XPχ) , (C.45)

S̃S = SS +G,XSχ − π̃θP̃X , (C.46)

where P̃S is a first-class constraint. The resulting algebra is summarized in table C.4, where

A = G,XXTχ + F,XXD , (C.47)

D = π̃θ , (C.48)

Qχ(x, y) = δ(x− y)

[
G,X

1

M2
P

(
π̃2
θγ
ij − γkiγljDkσDlσ

)
(DiσDjσ + γijXH)− 1

2
γijDiDjσ

]
− 1

2

{[
γijDiσ

]
(y)D(y)

j δ(x− y)−
[
γijDiσ

]
(x)D(x)

j δ(x− y)
}
, (C.49)

B = P,X + P,XX π̃
2
θ − 2G,Xγ

ijDiDjσ −G,XX
[
π̃2
θγ
ijDiDjσ − γijγklDiDkσDjσDlσ

]
+

1

M2
P

[
2G,X π̃π̃θ +G2

3,X

(
3

2
π̃4
θ −

1

2

(
γijDiσDjσ

)2 − π̃2
θγ
ijDiσDjσ

)]
+
G,XX
M2

P

[
π̃2
θ π̃ + π̃θDiσDjσ

(
2π̃ij − γij π̃

)]
, (C.50)

where A, D, and B are purely local expressions.

{↓,→} R̃0 P̃X Pχ SX Sχ S̃S T

R̃0 0 0 0 0 0 0 −Q̃
P̃X 0 0 0 −1 0 A
Pχ 0 −1 0 0 D
SX 0 0 0 0
Sχ 0 0 −Qχ
S̃S 0 B
T QT

Table C.4: Tertiary constraint algebra, with some new combinations, in the cubic Horndeski theory.
First-class constraints were omitted. Dirac δ-functions were omitted in the entries, excepting for Q̃, Qχ,
and QT , which yield derivatives of δ-functions.

At this point we define a new Hamiltonian constraint that will commute with all the constraints. Such
a constraint becomes thus first-class in the tertiary constraint algebra.

R̄0 = R̃0 +
Q̃

B
S̃S , (C.51)

This combination is well defined under the condition that B 6= 0. In the case B = 0, the constraint S̃S
becomes first-class. As a result, we have the right number of constraints even though the Hamiltonian
constraint is not first-class. In what follows we will assume that B 6= 0.
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C.5 Closedness of the algebra and total Hamiltonian

To show that the algebra is closed, we need to show that

det (M(x, y)) 6= 0 , (C.52)

where M(x, y) is the constraint algebra matrix. This is equivalent to showing that, for all ~u,∫
d3xd3y ~uᵀ(x)M(x, y)~v(y) = 0 , (C.53)

implies that ~v = 0.
We make the constraint algebra explicit, and obtain

0 =

∫
d3xd3y

{
u1 [−v5 +Av6] + u2 [−v3 − π̃θv6] + u3 [v2] + u4 [Bv6] + u5

[
v1 −Q0

χv6 −Qiχ∂iv6

]
u6

[
−Av1 + π̃θv2 −Bv4 +Q0

χv5 +Qiχ∂iv5 − ∂i
(
QiT v6

)
−QiT∂iv6

]}
. (C.54)

Here we have defined Q0
χ, Qiχ, Q0

T , and QiT by∫∫
d3xd3yf1(x)Qχ(x, y)f2(y) =

∫
d3xf1

(
Q0
χf2 +Qiχ∂if2

)
, (C.55)∫∫

d3xd3yf1(x)QT (x, y)f2(y) =

∫
d3x

[
f1f2Q

0
T +QiT (f2∂if1 − f1∂if2)

]
, (C.56)

where f1 and f2 are any auxiliary well-behaved functions. As a consequence of setting the whole integral
to zero we need to impose each expression between square brackets to vanish separately. As B 6= 0 we
can use the first 5 square brackets to say v1 = v2 = v3 = v5 = v6 = 0. By plugging these into the last
squared bracket we obtain that also v4 = 0 necessarily. The determinant ofM(x, y) is thus different from
zero.

The candidates for the second-class constraints are therefore indeed second-class if B 6= 0. In such a
case the candidates for the first-class constraints are indeed first-class. The algebra is then closed. Further-
more, as the Hamiltonian is only composed of constraints, we have shown that the tertiary Hamiltonian
is the total Hamiltonian and that there are no further constraints given by the consistency conditions.

C.6 Total Hamiltonian

The total Hamiltonian of the cubic Horndeski theory is given by

H
(tot)
H3 =

∫
d3x [−NR̄0 −N iR̃i + ξX P̃X + ξχPχ +

√
γ (ξSP̃S + λXSX + λχSχ + λSS̃S + λTT )] . (C.57)

where the total number of degrees of freedom is 3. This is due to the presence of the 5 first-class
constraints (R̄0, R̃i, P̃S) and 6 second-class constraints (the remaining ones), which kill the degrees of
freedom introduced by the auxiliary fields.
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Appendix D

Expressions for MQD

In this appendix we describe some further details of the action and the study of perturbations within
the minimal quasidilaton model (studied in chapter 5), since several expressions are rather large. This
appendix has been in part reproduced from [55].

D.1 Details for the action and Hamiltonian of MQD

In sections 5.2.2 and 5.2.3, we have skipped some large explicit expressions and manipulations when
they would not have significantly affected the discussion. In this section, we reproduce the most useful of
these relations. We start by giving the explicit expression of F ij and Fσ defined compactly in (5.44), as

F ij ≡ eασ/MP

{√
γ̃
√
γ

[(
c1e

3σ/MP + c2e
2σ/MPK

)(
Kikγkj + γikKjk

)
− 2c2e

2σ/MP γ̃ij
]
+ 2c3e

σ/MPγij
}
, (D.1)

Fσ ≡
e(α+1)σ/MP

MP

{√
γ̃

[
(4 + α)c0e

3σ/MP + (3 + α)c1e
2σ/MPK+

2 + α

2
c2e

σ/MP (K2 −KijKji)
]

+ (1 + α)c3
√
γ

}
.

(D.2)

The first expression should not be confused with the analog expression for MTMG (B.5). These first
derivatives (with respect to the metric, and the quasidilaton field) of part of the graviton potential are
central in MQD, as they appear in the additional constraints one introduces to “minimize” the theory
and hence, at the end of the day, in the equations of motion.

We now give more details regarding the Hamiltonian analysis: we discuss the would-be Hamiltonian
and momentum constraints. These should yield Poisson brackets corresponding to the diffeomorphism
algebra (2.29) in the limit of zero graviton mass. For the would-be Hamiltonian constraint, as in (C.35)
and (C.51), one may define (note that we are using a slightly different notation w.r.t. [54])

R̄0 = R̃0 − TχP̃X +
Q̃

B
S̃S , (D.3)

where we have used the following constraints and quantities to simplify the constraint algebra at primary
and secondary level

P̃X = PX − F,XXPχ , (D.4)

S̃S = SS +G,XSχ − π̃θP̃X , (D.5)

Tχ ≡ {R̃0, Sχ} =
2

M2
P

π̃ij [γijXH −DiσDjσ]− π̃θ
[
S − γijDiDjσ

]
− γijDjσDiπ̃θ , (D.6)

whereas the following other quantities were used to simplify the tertiary constraint algebra

Q̃ ≡ {T, R̃0 − TχP̃X} , B ≡ {S̃S , T} , (D.7)

T − T̃ = G,X
2

M2
P

π̃Sχ + π̃θSX . (D.8)

The would-be momentum constraint is given as in (C.21) by

R̃i ≡ 2
√
γγikDj π̃kj − πσ∂iσ − πX∂iX − πχ∂iχ− πS∂iS − πθ∂iθ . (D.9)
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Note again that whereas the constraints R̃i and R̄0 were actually first-class in the cubic shift-symmetric
Horndeski case, in MQD their Poisson bracket does not vanish due to the graviton potential.

We now discuss the main differences of with the cases of Horndeski (appendix C), and MTMG (section
4.5.3). At the level of the structure of the constraint algebra, one may see by choosing appropriate
constraints, that the MTMG structure and Horndeski structure couple only through the additional non-
vanishing Poisson brackets between Sχ, SS and C0, as well as between T̃ and C0, Ci. On the one hand,

since we expect the conservation in time of T̃ , C0, and Ci to be solved for Lagrange multipliers (in the cubic
shift-symmetric Horndeski case, and in MTMG, respectively), the presence of the extra non-vanishing
brackets between them will be harmless. On the other hand, one may worry that the Poisson brackets
Dχ and DS defined by

Dχ ≡ {Sχ, C0} , DS ≡ {SS , C0} , (D.10)

may produce some changes in the structure of the algebra1. To see that it is not the case, we inspect
the conservation in time of Sχ and S̃S (the equivalents of (C.38) and (C.40)) with the total Hamiltonian
MQD. These conditions become respectively

{Sχ,H(tot)
MQD,v} ≈ ξX − λTQχ +

M2
Pm

2

2
λDχ ≈ 0 , (D.11)

{S̃S ,H(tot)
MQD,v} ≈ λTB +

M2
Pm

2

2
λ (DS +G,XDχ) ≈ 0 , (D.12)

where for a simple calculation, we have used the combinations R̄0 and P̃X . Whether in the pure Horndeski
case, or in the minimal quasidilaton case, these two relations have to be solved for λT and ξX . Therefore
the presence of the extra terms does not change the structure of these consistency conditions. This of
course is valid only if B 6= 0. Finally note that P̃S is still a primary constraint.

The constraint algebra, for the constraints appearing in the Hamiltonian (5.45) can be found summa-
rized in table D.1. Notably, there is a single first-class constraint P̃S , not presented in the table, of which
the associated symmetry has not yet been elucidated.

{↓,→} H1 R̄0 R̃i C0 Ci P̃X Pχ SX Sχ S̃S T
H1 0 6≈ 0 6≈ 0 6≈ 0 0 0 0 0 0 0 0
R̄0 0 6≈ 0 6≈ 0 6≈ 0 0 0 0 0 0 0

R̃i 0 6≈ 0 6≈ 0 0 0 0 0 0 0
C0 0 6≈ 0 0 0 0 −Dχ −DS −G,XDχ −Q0

Ci 0 0 0 0 0 0 −Qi
P̃X 0 0 0 −1 0 A
Pχ 0 −1 0 0 D
SX 0 0 0 0
Sχ 0 0 −Qχ
S̃S 0 B
T QT

Table D.1: Constraint algebra of the minimal quasidilaton. A first-class constraint P̃S was omitted.
Dirac δ-functions were omitted in the entries, excepted for Q0, Qi, Qχ, and QT , which formally include
derivatives of δ-functions. When 6≈ 0 is indicated, the entry may formally include not only Dirac δ-
functions but also derivatives of Dirac δ-functions.

D.2 Explicit expressions in the subhorizon limit

In this appended section, we give the explicit expressions for the important phenomenological quan-
tities of the subhorizon and quasi-static approximations. For compactness, we start with some useful

1However, the existence of T is not put into question: the minimal theory is defined by the addition of C0 and Ci a
posteriori (not at the secondary step), hence T should be kept as a constraint.
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definitions

Γ1 = X
(
c1X 2 + 2c2X + c3

)
=

1

3
Γ,XX , (D.13)

Γ2 = X 2 (c1X + c2) =
1

6
Γ,XXX 2 , (D.14)

q = 2Q
[
2H2 (4 + α)2 +m2Γ2

]
− 3m2

[(
2−MPH

2G,X
)2

Γ2 + (4 + α)
(
2−MPH

2G,X
)

Γ1

]
, (D.15)

d = m2Γ1 + 2H2 (4 + α)
(
MPH

2G,X − 2
)
, (D.16)

Q = 3M3
PG,XXH

4 +
3

2
M2

PH
4 (G,X)2 +M2

PP,XXH
2 + 6MPG,XH

2 + P,X ≡ g +
3

2
(G,XH

2MP − 2)2 . (D.17)

as well as ιn ≡ (4 + α)Γ1 + nΓ2, for n ∈ R, and

g1 = G,XH
2MP − 2 , (D.18)

g2 = 2G,XH
2MP +G,XXH

4M3
P , (D.19)

ε = 2(α+ 4)Γ1 − (3 + 2α)Γ2 (D.20)

ξ1 = (α+ 4)2Γ2
1 − 4(α+ 4)Γ1Γ2 − 2(P,X + 6)Γ2

2 (D.21)

ξ2 = (α+ 4)2Γ2
1 + 6(α+ 4)Γ1Γ2 + 2(P,X + 6)Γ2

2 (D.22)

ξ3 = 3(α+ 4)2Γ2
1 − 4(α+ 4)(α+ g1 + 2)Γ1Γ2 + 2(2(α+ 3)g1 + P,X + 6)Γ2

2 (D.23)

g = P,X − 6 + 12G,XH
2MP + 3G,XXH

4M3
P +H2M2

PP,XX = Q− 3

2
g2

1 . (D.24)

We remind the reader that Γ (see equation (5.69)) is the contribution of the graviton interaction term to
the Friedmann equation. The free parameters characterizing the graviton potential are c1, c2, c3, α, and
m, while the free functions P and G characterize the quasidilaton kinetic term.

D.2.1 Mass terms of scalar perturbations and Geff/GN

For the ease of reading, we first decompose the mass coefficients in powers of m as

L11 = − a2ρ2
m

2q2M2
PΓ2

1

(
L11,0 +m2L11,2 +m4L11,4

)
, (D.25)

L12 = − aρm
2dqM3

PΓ1Γ2

(
L12,0 +m2L12,2 +m4L12,4

)
, (D.26)

L22 =
1

2d2M2
PΓ2

2

(
L22,0 +m2L22,2 +m4L22,4

)
. (D.27)

The coefficients appearing in the mass terms for scalar perturbations, as defined in equations (D.25)-
(D.27), are given by

L11,0 = 16(α+ 4)2H2Q2

[
H2(ξ2 − 6Γ2ι−g1) +

2Γ2
2(g − 3g1)ρm
M2

Pg

]
, (D.28)

L11,2 = 8(α+ 4)Γ1Q

[
H2(3g1ι0ι2 + 2Γ2Qε) +

6Γ2
2Qρm
M2

Pg

]
, (D.29)

L11,4 = 3Γ2
1g1

[
3g1(8Γ2ι−g1 + ξ1) + 8Γ2Qι−(1+α) −

18Γ2
2g1g2ρm

H2M2
Pg

]
, (D.30)

L12,0 = 8(α+ 4)2H2Q

{
H2M2

P

[
(g1 + 2)

(
ι20 − 6Γ2ι−g1

)
− 2Γ2P,Xι−g1

]
+

2Γ2ι−g1(3g1 − g)ρm
g

}
,(D.31)

L12,2 = 2(α+ 4)Γ1M
2
P

(
H2
{

3g21ι−6ι0 + 2g1
[
3(α+ 4)Γ1ι−(6+P,X ) + 2Γ2Qε

]
− 2Qι0ι−2(3+α)

}
−6Γ2ρm(3g1g2ι0 + 2Qι−g1)

M2
Pg

)
, (D.32)

L12,4 = Γ2
1M

2
P

{
12Γ2g

2
1ι−(3+α) − 3g1

(
ι2−(3+α) + Γ2

2

(
−α2 − 6α+ 2P,X + 3

))
+ 4Γ2gι−(1+α)

−18Γ2
2g1g2ρm

H2M2
Pg

}
, (D.33)
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L22,0 = 4(α+ 4)2H2

(
g1H

2M2
P

{
2Γ2P,X(ι−g1 + ι0)− (g1 + 2)

[
ι20 − 6Γ2(ι−g1 + ι0)

]}
+2ρm

[
3

g
(g1ι

2
−g1 + g2ι

2
0)− ι2−g1

])
, (D.34)

L22,2 = 4(α+ 4)Γ1

(
H2M2

P

{
g1(ι2−2αι−g1 − Γ2g1ι−5)− (α+ 4)Γ1 [ι0 − 2Γ2(P,X + 6)]

}
+
ρm
g

[
6(α+ 4)Γ1Γ2g2 − 3ι2−g1

])
, (D.35)

L22,4 =
Γ2
1

H2

(
H2M2

Pξ3 + 6Γ2
2g2

ρm
g

)
, (D.36)

D.2.2 GΦ/GN

The Bardeen potential Φ (see (2.59)) satisfies a Poisson equation (5.101) with a modified gravitational
constant, which we detail in this appendix. In order to maintain relatively contained expressions, we first
collect powers of the graviton mass coefficient m, as

GΦ

GN
=
gΦ,n,4m

4 + gΦ,n,2m
2 + gΦ,n,0

gΦ,d,4m4 + gΦ,d,2m2 + gΦ,d,0
. (D.37)

The coefficients appearing in Eq. (D.37), are then explicitly given by

gΦ,n,4 = − 2Γ2
1H

2ι2M
2
Pgι−(1+α) , (D.38)

gΦ,n,2 = − 4(α+ 4)Γ1H
2
(
3ρm

[
Γ2g1ι2 + Γ2(g2 − 2)ι0 − ι20

]
+H2M2

Pg
{
g1

[
ι0ι6−α − 2(2α+ 3)Γ2

2

]
+ ι0 [Γ2(2α+ P,X + 12)− ι0]

})
, (D.39)

gΦ,n,0 = − 8(α+ 4)2H4
{
ρm
[
ι2ι−g1(3g1 − g) + 3g2ι

2
0

]
+H2M2

Pg
[
Γ2g1ι2(3g1 + P,X + 6) + ι0(g1ι−6 + 2ι−(6+P,X))

]}
, (D.40)

gΦ,d,4 = − Γ2
1

[
H2M2

Pg(4ι−(3+α)ι−g1
− ξ1) + 6Γ2

2g2ρm
]
, (D.41)

gΦ,d,2 = 12(α+ 4)Γ1H
2ρm

[
ι2−g1

− 2(α+ 4)Γ1Γ2g2

]
(D.42)

− 4(α+ 4)Γ1H
4M2

Pg
{

(g1 + 2)
[
−2αΓ2ι−g1

+ 3Γ2(ιg1
+ ι2) + ι0ι−2(2+g1)

]
− ξ3 + 2Γ2ι1P,X

}
,

gΦ,d,0 = − 24(α+ 4)2H4ρm
[
g1ι

2
−g1

+ (α+ 4)2Γ2
1g2

]
+ 8(α+ 4)2H4ρmgι

2
−g1

+ 4(α+ 4)2g1H
6M2

Pg
{

(g1 + 2)
[
ι20 − 6Γ2(ι−g1

+ ι0)
]
− 2Γ2P,X(ι−g1

+ ι0)
}
. (D.43)

where we have used definitions (D.18)-(D.24) and (D.13)-(D.17).
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