On the Mourre estimates
for Floquet Hamiltonians

Tadayoshi ADACHI

Course of Mathematical Science, Department of Human Coexistence
Graduate School of Human and Environmental Studies, Kyoto University
Yoshida-Nihonmatsu-cho, Sakyo-ku, Kyoto-shi, Kyoto 606-8501, Japan

and
Amane KIYOSE
Department of Mathematics, Graduate School of Science, Kobe University
1-1 Rokkodai-cho, Nada-ku, Kobe-shi, Hyogo 657-8501, Japan

Dedicated to Professor Kenji Yajima on the occasion of his 70th birthday

Abstract

In the spectral and scattering theory for a Sclinger operator with a
time-periodic potentiall (t) = p?/2 + V (¢, z), the Floquet Hamiltonian
K = —i0, + H(t) associated wittH (¢) plays an important role frequently,
by virtue of the Howland-Yajima method. In this paper, we introduce a new
conjugate operator fak in the standard Mourre theory, that is different from
the one due to Yokoyama, in order to relax a certain smoothness condition
onvV.

1 Introduction

In this paper, we consider the following time-dependent &timger equation
i0wu(t) = H(t)u(t), t€ R, (1.1)
H(t) = Ho + V(2), m—%2m%wmmw, (1.2)

wherep = —iV,, andV (t) is the multiplication operator by the real-valued func-
tion V (¢, z) on R x R® which is periodic int with a periodI’ > 0:

V(t+T,z)=V(tz), (t.z)eRx R (1.3)
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Under some suitable conditions &f) the existence and uniqueness of the unitary
propagatorl (¢, s) generated by (¢) can be guaranteed (see e.g. Yajima [23]).
In the study of the asymptotic behavior B¢, s)¢, ¢ € J#, ast — +oo, we
will frequently utilize the so-called Floquet Hamiltoni&h associated with (¢):
LetT = R/(TZ) be the torus. Sew” := L*(T; ) = L*(T) ® L*(R"), and
introduce a strongly continuous one-parameter unitary gi{éu@ ) },cr on ¢
given by

(U(0)®)(t) = U(t,t — 0)D(t — o) (1.4)

for & € ¢ . By virtue of Stone’s theorent/(¢) is written as
Ulo) =e 7K (1.5)

with a unique self-adjoint operatéf on.#". K is called the Floquet Hamiltonian
associated witlH (¢), and is equal to the natural self-adjoint realization-a9, +
H(t). Here we denote by, the operator—i0, with domain AC(T'), which is

the space of absolutely continuous functions®mwith their derivatives being
square integrable (following the notation in Reed-Simon [17]). As is well-known,
D is self-adjoint onL?(T'), and its spectruma(D;) is equal t0.7 := wZ with
w:=27/T.HenceR \ .7 C p(D,) can be decomposed as

R\ 7 = U IL,, I,:=(nw,(n+1)w),

nez

wherep(D,) = C \ o(D;) is the resolvent set ap,.
In [24], Yokoyama introduced the self-adjoint operator

Av= e p )7 + (042 pa) (16)

on.# as a conjugate operator fé&f. Roughly speakingd; is defined by multi-
plying the generator of dilations

A

1
Ao =@ p+p-) 1.7)
and the resolventl + p*)~! = (p)~2 of p?. He established the following Mourre
estimate under some suitable conditionsianLet \p € R\ 7 and0 < § <
dist(Ag, 7). Putd;(\) := dist(\, 7 N (—o0,A]). Then, for any real-valued
fs € C§°(R) supported irj—d, §], the Mourre estimate

fs(K = Xo)i[ K, Aq] f5(K —Xg) > 2(d1(No) — )

Z T 2 gy — oy 2 ) gy (18)



holds with some compact operato6f ,, ;, on JZ". (1.8) which we have given
above is slightly better than the estimate obtained in [24]

Fs(B = X)i[ K, Ay f5(K — X) = 1 i(gzzgﬁfg i)(S)

Js(K = Xo)? + Ci,)\o,f(;

with some compact operatdr; , , on ¢, sincedist(\, 7) is less than or
equal tod; (Ao). Then the standard Mourre theory (see e.g. Cycon-Froese-Kirsch-
Simon [6], Amrein-Boutet de Monvel-Georgescu [5] and so on) yields the fol-
lowing spectral properties at” which are important in the scattering theory: The
eigenvalues of{ in R\ .7 are of finite multiplicity, and can accumulate only at
. T Uo,,(K) is acountable closed set. Moreover, the limiting absorption prin-
ciple for K holds: Lets > 1/2, and! be a compactinterval iR\ (.7 Uo,,(K)).
Then, for instance, one has

Rsupj ||<A1>_S(K — z)_l(Aﬁ_SHB(%) < 0. (1.9)
eze
Im z#0

Here(z) = /1 + |z|%.

In this paper, we will propose an alternative conjugate operatdkfata non-
threshold energy,: Let \g € R\ 7. Then there exists a uniqug,, € Z such
that)\, € In,,- Taked as0 < 0 < dist(Ag, 7). Sincelg — 4§ € Loy, it is obvious
that\o—d € R\.7 C p(D;). Then, for the sake of obtaining the Mourre estimate
for K at )y, we introduce the self-adjoint operator

Args = (Mo — 0 — D)t ® A (1.10)

on.? =~ [2(T)® L*(R?), by multiplying A4, and the resolverit\,— 4 — D,) ! of
D, instead of(p) ~2. Here we note th&t\o—d— D;) ! is bounded and self-adjoint.
One of the basic properties df,, ; is that

Z'[I(Oa A)\o,(ﬂ - (AO - 6 - Dt)_1p2
=(Xo— 06— D) H2(Ky — D)}, (1.112)
i[i[K(% A)\o,ts]’ A>\075} = (/\0 —0— Dt)_2{4(K0 - Dt)}
hold, whereK, = D, + H, is the free Floquet Hamiltonian. This yields the fact

that
Z'[K'O’ A)\o,é] <K0>717 i[i[K07 A)\o,é]? AA075] <K0>71

are bounded.
Next we impose the following conditiofi”) on V' under consideration:

(V) V(t, ) is a real-valued function of? x R?, is T-periodic int, and is de-
composed into the sum &f*"&(¢, ) andV™¢(¢, z), which are als@ -periodic in

3



t. If d < 3, thenVs¢ = 0. If d > 3, thenV*"¢(¢, .) belongs taC (R, L% (R"))
with someg, > d, andsupp V(¢ -)’s are included in a common compact sub-
set of R, (9,V*™¢)(t,-) and|(VV*"8)(t, -)| belong toC(R, L* (R")) with some

¢ > d/2, whereifd = 3, then we define, by 1/¢; = 1/(2¢o)+1/2. On the other
hand,V™&(t, z) belongs taC?(R x R?), and satisfies the decaying conditions

sup [(OFO2V™8) (¢, 2)| < C(x)P~kHal k4 |a] <2 (1.12)
teR

with somep > 0.

As for the singular part/*"é(¢, z) of V(¢,z), we mainly suppose that it has a
local singularity like|z| = with v > 0, as in e.g. Adachi-Kimura-Shimizu [4]. If
d > 3, then the local singularity likér|~'™ with 0 < ¢ < 1 can be permitted
by (V). Unfortunately the Coulomb singularity like/|=* cannot be dealt with
in our analysis. Under the conditigfy'), the existence and uniqueness of the
unitary propagatob/ (¢, s) generated by (¢) can be guaranteed by the results of
Yajima [23]. It can be also guaranteed that

<K0>_1/2i[v7 A>\O76] <K0>_1’ <K0>_1i[i[v7 A>\075]7 AA0,5] <K0>_1
are bounded. In fact, as for the regular gart¢ of V, it follows from
i[vree, Ay, 5]
= —(N—0—Dy) ((z-V)V"¥)
— (Mo — 0 — D) Lo V™E) (Ng — 6 — Dt)‘lflo,
i[i[vreg> Ako,ﬁ]? A>\075]
= (X — 06— D) ((x- V)?*V™®)
+2(Ng — 0 — D) 2y(z - V)V™8)(N\g — 6 — Dy) LA,
+ (Ao — 6 — D) 2(82V™e8) (\g — & — D;) 2 A2
that
i[vrega A>\075] <K0>_17 i[i[vreg7 A>\075]7 A>\075] <K0>_1
are bounded. Here we used the fact that

(D)™ (p) (Ko) ™", (Da) ™ (p)* (Fo) ™

are bounded, which can be shown in the same way as in the case of Stark Hamil-
tonians (see e.g. Simon [19]). Moreover, we see thad —i[V5, Ay, 5] (Ko) ™!

is compact, by virtue of the local compactness properti @fOn the other hand,

as for the singular pafit®"s of 1/, by using the fact that

)" (@ - V)VED) )~ ()T O VTE) ()
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are bounded ir.?(R%), one can show firstly thati<y) ~/2i[Vs"8, Ay, s](Ko) ™!
is bounded. Moreover, we see tHaf,) ~'i[V¢, Ay s](K,) " is compact. And,
by identifying:[i[Vs"e, Ay, 5], Ax,.s) With

WiV Ay 5] Ang.s — Anosi[VIE, Ayy sl }

one can show thatKy)~ti[i[Vs"e, Ay, 5], Ax,5](Ko) ™! is also bounded. Here
we note that in [24], it was assumed tHals ¢ C°(R x R"), because the
pseudodifferential calculus was needed. Our conjugate opefaigrcan relax
the smoothness condition &fi°¢ considerably.

Then some of the main results of this paper are as follows:

Theorem 1.1. Assumé/ satisfies(V'). LetA\g € R\ 7. Taked as0 < § <
dist(Ag, 7). DefineA,, s by (1.10) Then:
(1) For any real-valuedf; € C5°(R) supported in—d, ],

Fs(K — Xo)i[K, Ay 5] fs(K — Xo) > 2f5(K — Xo)? + Chy 1, (1.13)

holds with some compact operaitdy, s, on.#". It follows from this that,,,(K)N

[Ao —0/2, Ao + /2] is finite, and the eigenvalues &fin [\ — /2, Ao + /2] are

of finite multiplicity.

(2) In addition, assume, ¢ o,,(K). Let0 < ¢ < 2. Taked > 0 so small that
Ao — 20, A0 +26] C R\ (J Uoy(K)) and

fas (K — No)i[K, Axg 25] f2s (K — Ao) > (2 — &) fos (K — Xo)? (1.14)
holds. Suppose > 1/2. Then

sup  [[(Axg20) (K = 2) 7 (Axg26) " llBoar) < (1.15)
RezE[)\o—ibko-‘r(S]
Im z

holds. Moreover{ Ay, 25) (K — 2) ' (Ax,25) * is @ B(¢)-valuedd(s)-Holder
continuous function oa € S, 5.+, where

0(8) — 'HlIIl{S— 1/2ap} ’
min{s — 1/2,p} + 1
Srost ={C€C |ReC €[Xg—0,X+ 0], 0<+Im( < 1},

And, there exist the norm limits

(Ang,26) (K —(A£i0)) " (Axg20) ™ = GEIEOMAO,%YS(K—(/\iie))_1<14xo,25>_5

in B(¢) forany\ € [A\g — 8, Ao + 0. (Ax,05) (K — (A £1i0)) "1 (Ay,25) * are
alsod(s)-Holder continuous in\.



Corollary 1.2. Assumé/ satisfiegV'). Then:
(1) The eigenvalues of in R\ .7 can accumulate only a#. Moreover,.7 U
opp(K) is a countable closed set.
(2) Let I be a compact interval iR \ (7 U o,,,(K)). Supposd /2 < s < 1.
Then

sup [[{z) (K — 2)"1z)~* | ) < o0 (1.16)

Rezel
Im 2540

holds. Moreover{z)~*(K — z)~!(z)~* is a B(.¥")-valuedd(s)-Holder continu-
ous function orx € Sy ., where

Sie={¢eC|ReCel, 0<£lm( <1}
And, there exist the norm limits

()™ (K — (A £40) " (2)™ = lim (2) (K — (A £i€)) ™ ) "
in B(o¢)for \ € I. (x)7*(K — (A+i0))~*{z)~* are alsod(s)-Holder continuous
inA.

In order to obtain Corollary 1.2, we use the argument due to Perry-Sigal-
Simon [16], and the boundedness of

A)\O’Q(S(K — )\0 — i)_1<$>_1,

which follows from the fact thatD;) ' (K — Ay — i) ' (p)? is bounded. By virtue
of this, one can show that

Angzs(K =X — 1) Hp)(2) ™, Angas(K — Ao — ) H(Dy)*(2) ™!
are also bounded. Then one may expect that the limiting absorption principle

Sup [|{@) DK — 2) 7D 2) By < o0
e zE
Im 250

will also hold, where the unbounded ‘weigh? = (p) + (D,)'/? is equivalent
to the ‘weight 2'/2 = ({p)* + (D;)?)'/*, which was introduced in Kuwabara-
Yajima [11] for the sake of obtaining a refined limiting absorption principleffor
But we have not proved this yet, unfortunately. It is caused by the unboundedness
of

(K = Xo— )7 o)) ™, (K = Ao — )1 (D)2 ()~

Instead of the above limiting absorption principle, one can obtain

sup [[(De)™*(2)*(p)* (K — 2)"(p)*(2) (Do) ™||pw) <00 (1.17)

Rezel
Im z#£0



from (1.15) immediately. As for théV-body Floquet Hamiltonians, a refined
limiting absorption principle for<

sup (@)™ ()" (K = 2)7 )" (@) Iy < o0

Im 250
with 0 < r < 1/2 < s < 1 was obtained in Mgller-Skibsted [14]. They used
an extended Mourre theory due to Skibsted [20], and took a ‘conjugate operator’
for K in the theory asl,. However, we would like to stick to find a candidate of
a conjugate operator fak not in an extended but in the standard Mourre theory,
because it seems much easier to obtain some useful propagation estiméfes for
by applying the standard one.

The plan of this paper is as follows: §2, we will give the proof of Theorem

1.1, in particular, (1.13). 1§3, as an application of our results, we will deal with
the problem of the asymptotic completeness for the so-called AC Stark Hamilto-
nians in the short-range case, although the result was already obtained in [22] and
[24]. In §4, we will make some remarks on the extension to the many body case.
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2 Proof of Theorem 1.1

In this section, we prove Theorem 1.1. Here we will give the proof of the Mourre
estimate (1.13) only, because the other results can be shown directly by the stan-
dard Mourre theory.

As is well-known, AC(T) ® Cs°(R?) is a core fork,, andD, ® Id +1d ® H,
defined onAC(T) ® C°(R?) is essentially self-adjoint and its closure is equal
to Ky. If V satisfies the conditiofl), then K is self-adjoint with the domain
P2(Ky), andD, ® Id 4+ Id ® H(t) defined onAC(T) ® C°(R?) is essentially
self-adjoint and its closure is equal io.

Now we will show

sup || Koe' 0 (Ko + i) ™" | sy < 00 (2.1)

lo]<1

with \p € R\ 7 and0 < ¢ < dist(\g, 7). First of all, we note that the direct
integral decomposition df, + i)~ can be given by

(Ko +1)"" = @ (kw + Ho + )", (2.2)

keZ
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and thake s (K + i) ~te~.s with |o| < 1 can be represented as

eiUAAOﬁ (KO + i)_le_iUA’\O’é _ @(kzw + 6—20'/()\0—5—kw)H0 + i)_l. (23)
keZ

For the sake of estimatingkw + Hy)(kw + e~27/Go=0=k) Fo 4 ) =1 5 1), We
will introduce the function

(1 + k)?
T4 e 20/(o=0-1))2 1

770("{’ 7_) = (

on[0,00) x R. Here we note

2<T+/@){(T—F@_Qa/o\o_&_ﬂ/ﬁ)(l —20/(/\0 o—T )7__'_1}

(anna)('%ﬂ_) = {(7- + e—20/(Ao—0—T) ) -+ 1}2

Firstly we consider the case where= kw with & € Z n (0,00). Suppose
1 — e720/Go=0=kw) > (. Since(0xn, ) (k, kw) > 0 0n [0, co),

Mo (/€ kw) < lim 770(5 kw) _ 640/()\0—5—kzw) < e4/(dist(/\o,y)—6)

R—00
holds. Supposg — e~20/(Go=0-k) < (_|f a zero

e20/Go—b=kw) {1 _ (¢=20/Go=d—kw) _ 1)(Jyy)2}

(6720/()\07671%.1) _ 1)]6&1

Koo (kw) =

of (0.1,)(k, kw) belongs td0, co), then

No (K, kw) < Ne (Koo (kw), kw)
{620/()\0—5—1%.)) 4 <€20/(/\0—5—kw) +€—20’/()\0—5—kw _ 2)(kw)2}2
1+ (e 27000 F) — 12 (k)2
_ 40/()\0—5—]“0){1_{_( —20/(Ao—0—kw) _ ) (kW) }
— oo/ (o—b—kw) | 4 20/(No—b—kw) Slnh2(o'/()\0 — 6 — kw))(kw)?
< Y/ [ist(20,7)=8) 4 402/ (dist(0,7 smh2(1/()\o -0 — kw))(kw)z
< e4/(dlst(/\0 T)— + 4M1 Nosd 2/(dist(Ao,7)—9)

with
M s = sup{sinh2(1/(/\0 — - k:w))(k:w)2} < Q.
keZ
Here we used
lim sinh?(1/(\g — 6 — kw))(kw)? =

k—+too



On the other hand, i, ,(kw) does not belong t{, co), then

(hw)?

4/(dist(Xo, 7)—)
(kw)? +1

Mo (K, kw) < 0y (0, kw) = <l<e

holds. The case where= kw with k € Z N (—o0, 0] can be also dealt with quite
similarly. Finally we have

o (5, kw) < e/ @t 00T)=0) 4 417, 2/ (dist00,)=0) M227A075’ k€ [0,00),
foranyk € Z, which yields

sup || (kw + Hy) (hw + €2/ Com0 =k F10 1 3) 7| 50ey < Moy s- (2.4)
keZ

This implies (2.1) because of
o [ Koe'™ o (Ko + 1) "] o)
o<1
- Sl|1p [ Koe' o (Ko + i)~ e 08| 5) < My g 50
o<1

Thus we also have

sup || K e 08 (K + 1) 7| ) < 0. (2.5)
lof<1
By including the relations betweeld and A,, s mentioned ing1, eventually we
have completed checking the required conditionsli@p; as a conjugate operator
for K in the standard Mourre theory.

Now we will show Theorem 1.1, in particular, the Mourre estimate (1.13).
Take a uniquer,, € Z such that\, € I, . Let fs € C5°(R) be real-valued,
and be supported ip-4, 6]. Under the conditiotV'), fs(K — Xo) — fs(Ko — Ao)
is compact. Sincg Ky, Ay, s](Ko) ' is bounded, andKy) ~'i[V, Ay, 5] (Ko) ' is
compact as mentioned {1, we have

Js(K = Xo)i[K, Axg 6] fs(K — o)
= fs(IK — Xo)i[Ko, Axg 5] fs(K — o)
+ fs(K — Xo)i[V, Axg.sl fs (K — Xo)
= [5(Ko — Xo)i[Ko, Axys] [s(Ko — Ao) + Cg\o,fa

with some compact operat6r;, , on.z". fs(Ko — Ao)i[Ko, Axys)fs(Ko — Xo)
can be decomposed into the direct integral

(2.6)

@ M#_mHofé(Ho — (Ao — kw))?

keZ



Suppose\y — kw < 0, thatis,k > n,, + 1. Thenfs(Hy — (Ao — kw)) = 0 holds
because off, = p?/2. Suppose\, — kw > 0, that is,k < n,,. Then one can
obtain

Hgf(;(HO - (/\0 - k:w))2 Z ()\0 — kw — 5)f5(H0 — ()\0 — k(A)))z
easily. Thus we have
Js (Ko — Ao)i[Ko, Axgs] f5(EKo — Ao)
2
= @ )\()—(S——lngOf(S(HO — (AQ — k?(x)))2

k<nx,

> P 2fs(Ho — (Mo — kw))? = 2f5(Ko — Xo)”.

k<nx,

By combining this and (2.6), and using thgf X' — \y) — fs(Ky — A¢) is compact
again, we obtain the Mourre estimate (1.13)

Fs(I = No)i[E, Axg ] f5 (I — No) > 2f5(K — Xo)? + Chg s

with some compact operatof,, r, on .z .

3 Application

As an application of our results, we consider a scattering problem for the so-called
AC Stark Hamiltonians.

We consider a system of one particle moving in a given time-periodic electric
field E(t) € R®. Suppose thaE(t) belongs taC°( R; R?), andT-periodic, that
is, E(t +T) = E(t) foranyt € R. Moreover, the meat,, of E(¢) in time is
zero, that is,

1 T
E, == E(t)dt = 0.
T/O (0

A typical example of sucli(t)’s is E, cos(wt) with non-zeroE, € R* andw =
2m /T, which was considered in Kitada-Yajima [9]. As for the case whgre# 0,
see Mgller [13] and Adachi-Kimura-Shimizu [4]. Then the Hamiltonka(t) for
the system is given by
H(t) = Ho(t) + V(x), Ho(t) = 5192 —E(t) -

on L*(R"). Hy(t) is called the free AC Stark Hamiltonian, ahf{t) is called an
AC Stark Hamiltonian. We denote iy, (¢, s) andU (¢, s) the unitary propagators
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generated by, (¢) and H (t), respectively. Now, as in [13], we defife-valued
T-periodic functiongy(t), b(t) andc(t) on R by

bo(t) is an auxiliary one for the sake of making) 7T-periodic. Here we introduce
the time-dependent Hamiltonian

H(t)=Hy+V(z+c(t), Ho= %pQ

on . = L*(R%). We denote byU(t, s) the unitary propagator generated by
H(t). As is well-known, the following Avron-Herbst formula holds:

A~

Dolt,s) = Z(0e M7 ()7, Ult ) = TOUE )T (3)
with .
F(t) = OO0t = [ o) ds.
0

This formula withE(t) = E, cos(wt) was first proved in [9]. Now we will con-
sider the problem of the asymptotic completeness of the wave operators

W* = s-lim U(t, 0)*Uy(t, 0) (3.2)

t—o0
for short-rangé/. The asymptotic completenessiéf* is formulated as
Ran (W) = L2(U(T,0)), (3.3)

vyhereLg(U(T, 0)) is the continuous spectral subspace of the Floquet operator
U(T,0). We impose the following short-range conditigri)sg onV:

(V)sr V(z) is a real-valued function oR?, and is decomposed into the sum of
Veing(z) and VSR(z). If d < 3, thenVs"s = (. If d > 3, thenV*"¢ belongs
to L (R) with someg, > d, and is compactly supported(VV*"¢)| belongs
to L4 (R%) with someq, > d/2, where ifd = 3, then we defing, by 1/¢; =
1/(2q0) + 1/2. VSR(z) belongs taC%(R?), and satisfies the decaying conditions

(02 VER) (@)] < Clz)7renlel o] <2 (3.4)

with somepsg > 1.
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Here we note that the singular paft of V' satisfies the same condition posed

in [4], but the short-range paitS® of V has to satisfy the condition which is
stronger than the one posed in [13] and [4]. It is caused by that the mean of
E(t) in time is not non-zero but zero. Under the conditi®fsg, V (z + ¢(t)) =
Veing (2 + (1)) + VSR (x + ¢(t)) satisfies the conditiofi) with p = psg — 1 > 0.

Here we note

Oi(V(z + (1)) = b(t) - (VV)(z + ¢(t)),
(VS (@ + e(1) = E(t) - (VV) (2 + c(t)) + b()(V2V) (@ + c()b(t)",

whereb(t)T stands for the transpose bft). Now we also introduce the wave
operators .
W =slimU(t,0)* e o, (3.5)

t—o00

Then it is obvious that the relation betweBfit andW*
Wt = Z0)W*7(0)"

holds. We note7 (0) = e~®omz Thus the problem of the asymptotic complete-
ness ofi’* can be reduced to that &f *

Ran (W¥) = J£(U(T,0)), (3.6)

where 7. (U(T,0)) is the continuous spectral subspace of the Floquet operator
U(T,0). Here we used

because7 (0).7 (T)* = e"T) is a scalar.

As is well-known, in the proof of the asymptotic completenes$iof, the
so-called Howland-Yajima method plays an important role: Introduce the Floquet
HamiltoniansK, and K associated witti, and H (t), respectively, and the wave
operators

WE(K, Ky) = s-lim e e~750, (3.7)

o—Foo

After the existence of¥/* has been guaranteed, the asymptotic completeness
of #*(K, K,) yields that of W*. This is the essence of the Howland-Yajima
method.

If Vsinge = (), then we have only to use the limiting absorption principle (1.16)
in order to show the asymptotic completeness#f (K, K,). In fact, (1.16)
yields the localK-smoothness ofz) ~* with s > 1/2:

| laee (K el do < Clol. (38)

o0
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Since the locak-smoothness ofx) ~* with s > 1/2 can be also obtained, these
propagation estimates yield the existence#f (K, K,) and the adjoint wave
operators

W*E(Ky, K) = Us;hir?o el7oe K p (K) (3.9
immediately, where’.(K) is the spectral projection onto the continuous spectral
subspace¥,(K) of K. Thus one can obtain the asymptotic completene s of
as is well-known. If/si"s £ 0, then we have to avoid the matter caused by its
singularity in the proof of the existence of both* (K, K,) and# *(K,, K). To
this end, we will use the so-called minimal velocity estimate like

|z| > do

[ |7 (B < va@ma =) e i - xn| 2 <clor
1 o x 7
(3.10)
with somec, > 0 and sufficiently smalt > 0, which follows from
[e’e) A ‘ 2
/ HF (2 — e < 0B 29 25) e 7K fos (K — Xo)® o C|®3, .
1 o x 7
(3.11)

These propagation estimates can be proved in the same way as in Sigal-Soffer [18],
by virtue of the Mourre estimate (1.14). Heféx € Q) denotes the characteristic
function of the set of2, and

do(N) = dist(A, T U opp(K)).
If dy(No) in (3.10) could be replaced by
dist( Ao, (T U opp(K)) N (—00, Ag)),

then (3.10) would become more natural and refined.

In the long-range case, it seems necessary to obtain some refined propagation
estimates fof/ (¢, s) or U(t, s). Unfortunately, we have not done it yet. The result
on the asymptotic completeness was already obtained in Kitada-Yajima [9] via the
Enss method. As for the case whéfg +# 0, see Adachi [2] and Adachi-Kimura-
Shimizu [4].

4 Concluding remarks

Although we consider the one body case only in this paper, here we will make
some remarks on the many body case.
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We consider a system o¥ particles moving in a givefl-periodic electric
field in R”. In the center-of-mass frame, the total Hamiltonid(t) is given as

()= 505~ (EO.2)+V, V= 3 Vil

1<j<k<N

on L?(X), whereX is the configuration space for the system under consideration
in the center-of-mass frame with a certain suitable métri¢, = € X, Ay is the
Laplace-Beltrami operator oi, £(t) € C°(R; X) is T-periodic, andV;;'s are
pair interactions. IV = 2, thenH (¢) is essentially the same as tha® Hence
we supposeV > 3. We denote by/(¢, s) the propagator generated B¥(t), and
put

1

T
E, = T/o E(s)ds € X.

As in Mgller [13] and Adachi [1], we defin& -valuedT-periodic functiong(t),
b(t) andc(t) on R by

t 1 T
bo(t) ::/ (E(s) — Ew)ds, by := —/ bo(s) ds,
0 T 0
t
b(t) :=bo(t) — bom, c(t) ::/ b(s)ds,
0
and introduce the time-dependent Hamiltonian
H(t) :HO—FV(Q?—FC@)), HOI ——Ax— <Em,$>

on L*(X). If E,, # 0, thenH, is called the freeV-body Stark Hamiltonian. We
denote byU(t, s) the unitary propagator generated Hyt). As is well-known,
the following Avron-Herbst formula holds:

Up(t,s) = T (t)e o g (s Ult,s) = Tt)U(,s)T (s)* 4.1)
with

t
7(0) = Oz a(t) = [ (L6 - (Bnscls)) ) ds,
0

where|b(s)|> = (b(s), b(s)).
WhenE,, # 0, in[1] and [2], Adachi already obtained the result of the asymp-
totic completeness for the system under consideration, both in the short-range and

14



the long-range cases, by introducing the Floquet Hamiltohiaassociated with

E
A: m _.
<|Em|’ NX>

H(t). As for this K,

is a conjugate operator fdt in the standard Mourre theory, whereV x is the
velocity operator onX. Here we emphasize that in the case whEre- 2, in [13],
Mgller proposed this operator as a conjugate operatokfoefore [1]. Roughly
speaking, the conjugate operator due to Mgller possesses its natural extension to
N-body systems. On the other hand, whep = 0, any candidates of a conjugate
operator forK in the standard Mourre theory have not been found yet, except in
the case wher& = 2. As mentioned above, in the case whéfe= 2, Yokoyama
proposed a conjugate operatbr for K in [24]. Unfortunately,A; seems not have

any natural extension ty-body systems. It is caused by the ‘fact¢t’+ p?)—!

of A, (see [14] for the detail). Hence, in [14], Mgller and Skibsted tdgkas a
conjugate operator fdk in an extended Mourre theory, as mentionegilinAs for

the study of the asymptotic completeness for three-body AC Stark Hamiltonians
via the Faddeev method, see Korotyaev [10] and Nakamura [15].

Our aim of this paper is to replace the facfar+ p*)~! by some other ap-
propriate one in order to let a conjugate operator possess its extensichady
systems. However, we have not accomplished this aim yet, unfortunately. We
have to deal with the term like

—(A0 =8 = D) THB(E), (VxV)(x + e(t)) (Ao = 8 = D) Ay (4.2)

ini[V(z+c(t)), Ay, 5] Skillfully, in the proof of the Mourre estimate fdt, where

Ay is the generator of dilations ofi. It is caused by thal(VxV)(z + ¢(t))|
does not vanish ag:| — oo, if N > 3. These are the issues in the future.
Finally we note that i/ (x +¢(t)) is time-independent, one can obtain the Mourre
estimate fork” by taking(\g —(S—Dt)—lflo as a conjugate operator in the standard
Mourre theory, even ifV > 3. Hence we have a faint expectation that the factor
(Ao — 6 — D;)~* will overcome the matter mentioned above.

Now we add a remark which may let this paper have a value. Very recently,
the first author [3] has constructed a conjugate operéatofor K in the standard
Mourre theory whenV = 3, and obtained the Mourre estimate far. Ay is
defined as

AR =) JarAjor; Aa= Ak + Ay,
acd

AaAK — (3&)/2 - Dt)_l ® <xa7pa> _g <pa7$a>’ (43)

(T Pa(W/4 + (Pa)*/2)71) + (W/4 + (Pa)*/2) " Pa; )
5 ,

AY,a =
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where o7 is the set of all cluster decompositions, afyd r }.c.» is a Graf type
partition of unity of X with sufficiently largeR. Roughly speaking, our type con-
jugate operatoAy is recognized as a conjugate operator for the Floquet Hamil-
tonian K* associated with the subsystem Hamiltonféfy(¢), and the Yokoyama
type conjugate operatoty , can be recognized as a conjugate operator for the in-
tercluster free Hamiltonia(p,)?/2. Here we note that if = a,,;,,, thenAy, . is
recognized as a conjugate operator also for the free Floquet HamiltApian=

Dy + (pa,,,)?/2. HenceA, can be recognized as a conjugate operator for the Flo-
quet Hamiltoniank', associated with the cluster Hamiltoni#f, (). Ar can be
constructed by gluingl,’s together with{ j, r}.c.s. Therefore both [24] and this
paper yield the first step of the above construction of a conjugate operatir for
with N = 3.
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