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Abstract
In the spectral and scattering theory for a Schrödinger operator with a

time-periodic potentialH(t) = p2/2 + V (t, x), the Floquet Hamiltonian
K = −i∂t +H(t) associated withH(t) plays an important role frequently,
by virtue of the Howland-Yajima method. In this paper, we introduce a new
conjugate operator forK in the standard Mourre theory, that is different from
the one due to Yokoyama, in order to relax a certain smoothness condition
onV .

1 Introduction

In this paper, we consider the following time-dependent Schrödinger equation

i∂tu(t) = H(t)u(t), t ∈ R, (1.1)

H(t) = H0 + V (t), H0 =
1

2
p2 onH := L2(Rd), (1.2)

wherep = −i∇x, andV (t) is the multiplication operator by the real-valued func-
tion V (t, x) onR×Rd which is periodic int with a periodT > 0:

V (t+ T, x) = V (t, x), (t, x) ∈ R×Rd. (1.3)

1



Under some suitable conditions onV , the existence and uniqueness of the unitary
propagatorU(t, s) generated byH(t) can be guaranteed (see e.g. Yajima [23]).
In the study of the asymptotic behavior ofU(t, s)ϕ, ϕ ∈ H , ast → ±∞, we
will frequently utilize the so-called Floquet HamiltonianK associated withH(t):
Let T = R/(TZ) be the torus. SetK := L2(T ;H ) ∼= L2(T ) ⊗ L2(Rd), and
introduce a strongly continuous one-parameter unitary group{Û(σ)}σ∈R on K
given by

(Û(σ)Φ)(t) = U(t, t− σ)Φ(t− σ) (1.4)

for Φ ∈ K . By virtue of Stone’s theorem,̂U(σ) is written as

Û(σ) = e−iσK (1.5)

with a unique self-adjoint operatorK onK . K is called the Floquet Hamiltonian
associated withH(t), and is equal to the natural self-adjoint realization of−i∂t +
H(t). Here we denote byDt the operator−i∂t with domainAC(T ), which is
the space of absolutely continuous functions onT with their derivatives being
square integrable (following the notation in Reed-Simon [17]). As is well-known,
Dt is self-adjoint onL2(T ), and its spectrumσ(Dt) is equal toT := ωZ with
ω := 2π/T . HenceR \ T ⊂ ρ(Dt) can be decomposed as

R \ T =
∪
n∈Z

In, In := (nω, (n+ 1)ω),

whereρ(Dt) = C \ σ(Dt) is the resolvent set ofDt.
In [24], Yokoyama introduced the self-adjoint operator

Ã1 =
1

2
{x · p(1 + p2)−1 + (1 + p2)−1p · x} (1.6)

on K as a conjugate operator forK. Roughly speaking,̃A1 is defined by multi-
plying the generator of dilations

Â0 =
1

2
(x · p+ p · x) (1.7)

and the resolvent(1 + p2)−1 = ⟨p⟩−2 of p2. He established the following Mourre
estimate under some suitable conditions onV : Let λ0 ∈ R \ T and0 < δ <
dist(λ0,T ). Put d1(λ) := dist(λ,T ∩ (−∞, λ]). Then, for any real-valued
fδ ∈ C∞

0 (R) supported in[−δ, δ], the Mourre estimate

fδ(K−λ0)i[K, Ã1]fδ(K−λ0) ≥
2(d1(λ0)− δ)

1 + 2(d1(λ0)− δ)
fδ(K−λ0)

2+C1,λ0,fδ (1.8)
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holds with some compact operatorC1,λ0,fδ on K . (1.8) which we have given
above is slightly better than the estimate obtained in [24]

fδ(K −λ0)i[K, Ã1]fδ(K −λ0) ≥
2(dist(λ0,T )− δ)

1 + 2(dist(λ0,T )− δ)
fδ(K −λ0)

2+C ′
1,λ0,fδ

with some compact operatorC ′
1,λ0,fδ

on K , sincedist(λ0,T ) is less than or
equal tod1(λ0). Then the standard Mourre theory (see e.g. Cycon-Froese-Kirsch-
Simon [6], Amrein-Boutet de Monvel-Georgescu [5] and so on) yields the fol-
lowing spectral properties ofK which are important in the scattering theory: The
eigenvalues ofK in R \ T are of finite multiplicity, and can accumulate only at
T . T ∪σpp(K) is a countable closed set. Moreover, the limiting absorption prin-
ciple forK holds: Lets > 1/2, andI be a compact interval inR\ (T ∪σpp(K)).
Then, for instance, one has

sup
Re z∈I
Im z ̸=0

∥⟨Ã1⟩−s(K − z)−1⟨Ã1⟩−s∥B(K ) < ∞. (1.9)

Here⟨x⟩ =
√
1 + |x|2.

In this paper, we will propose an alternative conjugate operator forK at a non-
threshold energyλ0: Let λ0 ∈ R \ T . Then there exists a uniquenλ0 ∈ Z such
thatλ0 ∈ Inλ0

. Takeδ as0 < δ < dist(λ0,T ). Sinceλ0 − δ ∈ Inλ0
, it is obvious

thatλ0−δ ∈ R\T ⊂ ρ(Dt). Then, for the sake of obtaining the Mourre estimate
for K atλ0, we introduce the self-adjoint operator

Aλ0,δ = (λ0 − δ −Dt)
−1 ⊗ Â0 (1.10)

onK ∼= L2(T )⊗L2(Rd), by multiplyingÂ0 and the resolvent(λ0−δ−Dt)
−1 of

Dt instead of⟨p⟩−2. Here we note that(λ0−δ−Dt)
−1 is bounded and self-adjoint.

One of the basic properties ofAλ0,δ is that

i[K0, Aλ0,δ] = (λ0 − δ −Dt)
−1p2

= (λ0 − δ −Dt)
−1{2(K0 −Dt)},

i[i[K0, Aλ0,δ], Aλ0,δ] = (λ0 − δ −Dt)
−2{4(K0 −Dt)}

(1.11)

hold, whereK0 = Dt +H0 is the free Floquet Hamiltonian. This yields the fact
that

i[K0, Aλ0,δ]⟨K0⟩−1, i[i[K0, Aλ0,δ], Aλ0,δ]⟨K0⟩−1

are bounded.
Next we impose the following condition(V ) onV under consideration:

(V ) V (t, x) is a real-valued function onR × Rd, is T -periodic int, and is de-
composed into the sum ofV sing(t, x) andV reg(t, x), which are alsoT -periodic in
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t. If d < 3, thenV sing = 0. If d ≥ 3, thenV sing(t, ·) belongs toC(R, Lq0(Rd))
with someq0 > d, andsuppV sing(t, ·)’s are included in a common compact sub-
set ofRd. (∂tV sing)(t, ·) and|(∇V sing)(t, ·)| belong toC(R, Lq1(Rd)) with some
q1 > d/2, where ifd = 3, then we defineq1 by 1/q1 = 1/(2q0)+1/2. On the other
hand,V reg(t, x) belongs toC2(R×Rd), and satisfies the decaying conditions

sup
t∈R

|(∂k
t ∂

α
xV

reg)(t, x)| ≤ C⟨x⟩−ρ−(k+|α|), k + |α| ≤ 2 (1.12)

with someρ > 0.

As for the singular partV sing(t, x) of V (t, x), we mainly suppose that it has a
local singularity like|x|−γ with γ > 0, as in e.g. Adachi-Kimura-Shimizu [4]. If
d ≥ 3, then the local singularity like|x|−1+ϵ with 0 < ϵ < 1 can be permitted
by (V ). Unfortunately the Coulomb singularity like|x|−1 cannot be dealt with
in our analysis. Under the condition(V ), the existence and uniqueness of the
unitary propagatorU(t, s) generated byH(t) can be guaranteed by the results of
Yajima [23]. It can be also guaranteed that

⟨K0⟩−1/2i[V,Aλ0,δ]⟨K0⟩−1, ⟨K0⟩−1i[i[V,Aλ0,δ], Aλ0,δ]⟨K0⟩−1

are bounded. In fact, as for the regular partV reg of V , it follows from

i[V reg, Aλ0,δ]

= − (λ0 − δ −Dt)
−1((x · ∇)V reg)

− (λ0 − δ −Dt)
−1(∂tV

reg)(λ0 − δ −Dt)
−1Â0,

i[i[V reg, Aλ0,δ], Aλ0,δ]

= (λ0 − δ −Dt)
−2((x · ∇)2V reg)

+ 2(λ0 − δ −Dt)
−2(∂t(x · ∇)V reg)(λ0 − δ −Dt)

−1Â0,

+ (λ0 − δ −Dt)
−2(∂2

t V
reg)(λ0 − δ −Dt)

−2Â2
0

that
i[V reg, Aλ0,δ]⟨K0⟩−1, i[i[V reg, Aλ0,δ], Aλ0,δ]⟨K0⟩−1

are bounded. Here we used the fact that

⟨Dt⟩−1/2⟨p⟩⟨K0⟩−1, ⟨Dt⟩−1⟨p⟩2⟨K0⟩−1

are bounded, which can be shown in the same way as in the case of Stark Hamil-
tonians (see e.g. Simon [19]). Moreover, we see that⟨K0⟩−1i[V reg, Aλ0,δ]⟨K0⟩−1

is compact, by virtue of the local compactness property ofK0. On the other hand,
as for the singular partV sing of V , by using the fact that

⟨p⟩−1((x · ∇)V sing(t))⟨p⟩−1, ⟨p⟩−1(∂tV
sing(t))⟨p⟩−1
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are bounded inL2(Rd), one can show firstly that⟨K0⟩−1/2i[V sing, Aλ0,δ]⟨K0⟩−1

is bounded. Moreover, we see that⟨K0⟩−1i[V sing, Aλ0,δ]⟨K0⟩−1 is compact. And,
by identifyingi[i[V sing, Aλ0,δ], Aλ0,δ] with

i{i[V sing, Aλ0,δ]Aλ0,δ − Aλ0,δi[V
sing, Aλ0,δ]},

one can show that⟨K0⟩−1i[i[V sing, Aλ0,δ], Aλ0,δ]⟨K0⟩−1 is also bounded. Here
we note that in [24], it was assumed thatV reg ∈ C∞(R × Rd), because the
pseudodifferential calculus was needed. Our conjugate operatorAλ0,δ can relax
the smoothness condition onV reg considerably.

Then some of the main results of this paper are as follows:

Theorem 1.1. AssumeV satisfies(V ). Let λ0 ∈ R \ T . Takeδ as 0 < δ <
dist(λ0,T ). DefineAλ0,δ by (1.10). Then:
(1) For any real-valuedfδ ∈ C∞

0 (R) supported in[−δ, δ],

fδ(K − λ0)i[K,Aλ0,δ]fδ(K − λ0) ≥ 2fδ(K − λ0)
2 + Cλ0,fδ (1.13)

holds with some compact operatorCλ0,fδ onK . It follows from this thatσpp(K)∩
[λ0 − δ/2, λ0 + δ/2] is finite, and the eigenvalues ofK in [λ0 − δ/2, λ0 + δ/2] are
of finite multiplicity.
(2) In addition, assumeλ0 ̸∈ σpp(K). Let 0 < ε < 2. Takeδ > 0 so small that
[λ0 − 2δ, λ0 + 2δ] ⊂ R \ (T ∪ σpp(K)) and

f2δ(K − λ0)i[K,Aλ0,2δ]f2δ(K − λ0) ≥ (2− ε)f2δ(K − λ0)
2 (1.14)

holds. Supposes > 1/2. Then

sup
Re z∈[λ0−δ,λ0+δ]

Im z ̸=0

∥⟨Aλ0,2δ⟩−s(K − z)−1⟨Aλ0,2δ⟩−s∥B(K ) < ∞ (1.15)

holds. Moreover,⟨Aλ0,2δ⟩−s(K − z)−1⟨Aλ0,2δ⟩−s is aB(K )-valuedθ(s)-Hölder
continuous function onz ∈ Sλ0,δ,±, where

θ(s) =
min{s− 1/2, ρ}

min{s− 1/2, ρ}+ 1
,

Sλ0,δ,± =
{
ζ ∈ C

∣∣ Re ζ ∈ [λ0 − δ, λ0 + δ], 0 < ±Im ζ ≤ 1
}
.

And, there exist the norm limits

⟨Aλ0,2δ⟩−s(K−(λ±i0))−1⟨Aλ0,2δ⟩−s = lim
ϵ→+0

⟨Aλ0,2δ⟩−s(K−(λ±iϵ))−1⟨Aλ0,2δ⟩−s

in B(K ) for anyλ ∈ [λ0 − δ, λ0 + δ]. ⟨Aλ0,2δ⟩−s(K − (λ± i0))−1⟨Aλ0,2δ⟩−s are
alsoθ(s)-Hölder continuous inλ.
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Corollary 1.2. AssumeV satisfies(V ). Then:
(1) The eigenvalues ofK in R \ T can accumulate only atT . Moreover,T ∪
σpp(K) is a countable closed set.
(2) Let I be a compact interval inR \ (T ∪ σpp(K)). Suppose1/2 < s ≤ 1.
Then

sup
Re z∈I
Im z ̸=0

∥⟨x⟩−s(K − z)−1⟨x⟩−s∥B(K ) < ∞ (1.16)

holds. Moreover,⟨x⟩−s(K − z)−1⟨x⟩−s is aB(K )-valuedθ(s)-Hölder continu-
ous function onz ∈ SI,±, where

SI,± =
{
ζ ∈ C

∣∣ Re ζ ∈ I, 0 < ±Im ζ ≤ 1
}
.

And, there exist the norm limits

⟨x⟩−s(K − (λ± i0))−1⟨x⟩−s = lim
ϵ→+0

⟨x⟩−s(K − (λ± iϵ))−1⟨x⟩−s

in B(K ) for λ ∈ I. ⟨x⟩−s(K−(λ±i0))−1⟨x⟩−s are alsoθ(s)-Hölder continuous
in λ.

In order to obtain Corollary 1.2, we use the argument due to Perry-Sigal-
Simon [16], and the boundedness of

Aλ0,2δ(K − λ0 − i)−1⟨x⟩−1,

which follows from the fact that⟨Dt⟩−1(K −λ0 − i)−1⟨p⟩2 is bounded. By virtue
of this, one can show that

Aλ0,2δ(K − λ0 − i)−1⟨p⟩⟨x⟩−1, Aλ0,2δ(K − λ0 − i)−1⟨Dt⟩1/2⟨x⟩−1

are also bounded. Then one may expect that the limiting absorption principle

sup
Re z∈I
Im z ̸=0

∥⟨x⟩−sDs(K − z)−1Ds⟨x⟩−s∥B(K ) < ∞

will also hold, where the unbounded ‘weight’D = ⟨p⟩ + ⟨Dt⟩1/2 is equivalent
to the ‘weight’ D1/2 = (⟨p⟩4 + ⟨Dt⟩2)1/4, which was introduced in Kuwabara-
Yajima [11] for the sake of obtaining a refined limiting absorption principle forK.
But we have not proved this yet, unfortunately. It is caused by the unboundedness
of

(K − λ0 − i)−1⟨p⟩⟨x⟩−1, (K − λ0 − i)−1⟨Dt⟩1/2⟨x⟩−1.

Instead of the above limiting absorption principle, one can obtain

sup
Re z∈I
Im z ̸=0

∥⟨Dt⟩−s/2⟨x⟩−s⟨p⟩s(K − z)−1⟨p⟩s⟨x⟩−s⟨Dt⟩−s/2∥B(K ) < ∞ (1.17)
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from (1.15) immediately. As for theN -body Floquet Hamiltonians, a refined
limiting absorption principle forK

sup
Re z∈I
Im z ̸=0

∥⟨x⟩−s⟨p⟩r(K − z)−1⟨p⟩r⟨x⟩−s∥B(K ) < ∞

with 0 ≤ r < 1/2 < s ≤ 1 was obtained in Møller-Skibsted [14]. They used
an extended Mourre theory due to Skibsted [20], and took a ‘conjugate operator’
for K in the theory aŝA0. However, we would like to stick to find a candidate of
a conjugate operator forK not in an extended but in the standard Mourre theory,
because it seems much easier to obtain some useful propagation estimates forK
by applying the standard one.

The plan of this paper is as follows: In§2, we will give the proof of Theorem
1.1, in particular, (1.13). In§3, as an application of our results, we will deal with
the problem of the asymptotic completeness for the so-called AC Stark Hamilto-
nians in the short-range case, although the result was already obtained in [22] and
[24]. In §4, we will make some remarks on the extension to the many body case.

Acknowledgement
The first author is partially supported by the Grant-in-Aid for Scientific Re-

search (C) #17K05319 from JSPS. The authors are grateful to the referees for
many valuable comments and suggestions.

2 Proof of Theorem 1.1

In this section, we prove Theorem 1.1. Here we will give the proof of the Mourre
estimate (1.13) only, because the other results can be shown directly by the stan-
dard Mourre theory.

As is well-known,AC(T )⊗C∞
0 (Rd) is a core forK0, andDt⊗ Id+ Id⊗H0

defined onAC(T ) ⊗ C∞
0 (Rd) is essentially self-adjoint and its closure is equal

to K0. If V satisfies the condition(V ), thenK is self-adjoint with the domain
D(K0), andDt ⊗ Id + Id ⊗ H(t) defined onAC(T ) ⊗ C∞

0 (Rd) is essentially
self-adjoint and its closure is equal toK.

Now we will show

sup
|σ|≤1

∥K0e
iσAλ0,δ(K0 + i)−1∥B(K ) < ∞ (2.1)

with λ0 ∈ R \ T and0 < δ < dist(λ0,T ). First of all, we note that the direct
integral decomposition of(K0 + i)−1 can be given by

(K0 + i)−1 =
⊕
k∈Z

(kω +H0 + i)−1, (2.2)
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and thateiσAλ0,δ(K0 + i)−1e−iσAλ0,δ with |σ| ≤ 1 can be represented as

eiσAλ0,δ(K0 + i)−1e−iσAλ0,δ =
⊕
k∈Z

(kω + e−2σ/(λ0−δ−kω)H0 + i)−1. (2.3)

For the sake of estimating∥(kω +H0)(kω + e−2σ/(λ0−δ−kω)H0 + i)−1∥B(H ), we
will introduce the function

ησ(κ, τ) =
(τ + κ)2

(τ + e−2σ/(λ0−δ−τ)κ)2 + 1

on [0,∞)×R. Here we note

(∂κησ)(κ, τ) =
2(τ + κ){(τ + e−2σ/(λ0−δ−τ)κ)(1− e−2σ/(λ0−δ−τ))τ + 1}

{(τ + e−2σ/(λ0−δ−τ)κ)2 + 1}2
.

Firstly we consider the case whereτ = kω with k ∈ Z ∩ (0,∞). Suppose
1− e−2σ/(λ0−δ−kω) ≥ 0. Since(∂κησ)(κ, kω) > 0 on [0,∞),

ησ(κ, kω) ≤ lim
κ̃→∞

ησ(κ̃, kω) = e4σ/(λ0−δ−kω) ≤ e4/(dist(λ0,T )−δ)

holds. Suppose1− e−2σ/(λ0−δ−kω) < 0. If a zero

κ0,σ(kω) =
e2σ/(λ0−δ−kω){1− (e−2σ/(λ0−δ−kω) − 1)(kω)2}

(e−2σ/(λ0−δ−kω) − 1)kω

of (∂κησ)(κ, kω) belongs to[0,∞), then

ησ(κ, kω) ≤ ησ(κ0,σ(kω), kω)

=
{e2σ/(λ0−δ−kω) + (e2σ/(λ0−δ−kω) + e−2σ/(λ0−δ−kω) − 2)(kω)2}2

1 + (e−2σ/(λ0−δ−kω) − 1)2(kω)2

= e4σ/(λ0−δ−kω){1 + (e−2σ/(λ0−δ−kω) − 1)2(kω)2}
= e4σ/(λ0−δ−kω) + 4e2σ/(λ0−δ−kω) sinh2(σ/(λ0 − δ − kω))(kω)2

≤ e4/(dist(λ0,T )−δ) + 4e2/(dist(λ0,T )−δ) sinh2(1/(λ0 − δ − kω))(kω)2

≤ e4/(dist(λ0,T )−δ) + 4M1,λ0,δe
2/(dist(λ0,T )−δ)

with
M1,λ0,δ = sup

k∈Z
{sinh2(1/(λ0 − δ − kω))(kω)2} < ∞.

Here we used
lim

k→±∞
sinh2(1/(λ0 − δ − kω))(kω)2 = 1.
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On the other hand, ifκ0,σ(kω) does not belong to[0,∞), then

ησ(κ, kω) ≤ ησ(0, kω) =
(kω)2

(kω)2 + 1
< 1 < e4/(dist(λ0,T )−δ)

holds. The case whereτ = kω with k ∈ Z ∩ (−∞, 0] can be also dealt with quite
similarly. Finally we have

ησ(κ, kω) ≤ e4/(dist(λ0,T )−δ) + 4M1,λ0,δe
2/(dist(λ0,T )−δ) =: M2

2,λ0,δ
, κ ∈ [0,∞),

for anyk ∈ Z, which yields

sup
k∈Z

∥(kω +H0)(kω + e−2σ/(λ0−δ−kω)H0 + i)−1∥B(H ) ≤ M2,λ0,δ. (2.4)

This implies (2.1) because of

sup
|σ|≤1

∥K0e
iσAλ0,δ(K0 + i)−1∥B(K )

= sup
|σ|≤1

∥K0e
iσAλ0,δ(K0 + i)−1e−iσAλ0,δ∥B(K ) ≤ M2,λ0,δ.

Thus we also have

sup
|σ|≤1

∥KeiσAλ0,δ(K + i)−1∥B(K ) < ∞. (2.5)

By including the relations betweenK andAλ0,δ mentioned in§1, eventually we
have completed checking the required conditions onAλ0,δ as a conjugate operator
for K in the standard Mourre theory.

Now we will show Theorem 1.1, in particular, the Mourre estimate (1.13).
Take a uniquenλ0 ∈ Z such thatλ0 ∈ Inλ0

. Let fδ ∈ C∞
0 (R) be real-valued,

and be supported in[−δ, δ]. Under the condition(V ), fδ(K − λ0)− fδ(K0 − λ0)
is compact. Sincei[K0, Aλ0,δ]⟨K0⟩−1 is bounded, and⟨K0⟩−1i[V,Aλ0,δ]⟨K0⟩−1 is
compact as mentioned in§1, we have

fδ(K − λ0)i[K,Aλ0,δ]fδ(K − λ0)

= fδ(K − λ0)i[K0, Aλ0,δ]fδ(K − λ0)

+ fδ(K − λ0)i[V,Aλ0,δ]fδ(K − λ0)

= fδ(K0 − λ0)i[K0, Aλ0,δ]fδ(K0 − λ0) + C ′
λ0,fδ

(2.6)

with some compact operatorC ′
λ0,fδ

on K . fδ(K0 − λ0)i[K0, Aλ0,δ]fδ(K0 − λ0)
can be decomposed into the direct integral⊕

k∈Z

2

λ0 − δ − kω
H0fδ(H0 − (λ0 − kω))2.
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Supposeλ0 − kω < 0, that is,k ≥ nλ0 + 1. Thenfδ(H0 − (λ0 − kω)) = 0 holds
because ofH0 = p2/2. Supposeλ0 − kω > 0, that is,k ≤ nλ0 . Then one can
obtain

H0fδ(H0 − (λ0 − kω))2 ≥ (λ0 − kω − δ)fδ(H0 − (λ0 − kω))2

easily. Thus we have

fδ(K0 − λ0)i[K0, Aλ0,δ]fδ(K0 − λ0)

=
⊕
k≤nλ0

2

λ0 − δ − kω
H0fδ(H0 − (λ0 − kω))2

≥
⊕
k≤nλ0

2fδ(H0 − (λ0 − kω))2 = 2fδ(K0 − λ0)
2.

By combining this and (2.6), and using thatfδ(K−λ0)− fδ(K0−λ0) is compact
again, we obtain the Mourre estimate (1.13)

fδ(K − λ0)i[K,Aλ0,δ]fδ(K − λ0) ≥ 2fδ(K − λ0)
2 + Cλ0,fδ

with some compact operatorCλ0,fδ onK .

3 Application

As an application of our results, we consider a scattering problem for the so-called
AC Stark Hamiltonians.

We consider a system of one particle moving in a given time-periodic electric
field E(t) ∈ Rd. Suppose thatE(t) belongs toC0(R;Rd), andT -periodic, that
is, E(t + T ) = E(t) for any t ∈ R. Moreover, the meanEm of E(t) in time is
zero, that is,

Em :=
1

T

∫ T

0

E(t) dt = 0.

A typical example of suchE(t)’s is E0 cos(ωt) with non-zeroE0 ∈ Rd andω =
2π/T , which was considered in Kitada-Yajima [9]. As for the case whereEm ̸= 0,
see Møller [13] and Adachi-Kimura-Shimizu [4]. Then the HamiltonianĤ(t) for
the system is given by

Ĥ(t) = Ĥ0(t) + V (x), Ĥ0(t) =
1

2
p2 − E(t) · x

onL2(Rd). Ĥ0(t) is called the free AC Stark Hamiltonian, and̂H(t) is called an
AC Stark Hamiltonian. We denote bŷU0(t, s) andÛ(t, s) the unitary propagators
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generated bŷH0(t) andĤ(t), respectively. Now, as in [13], we defineRd-valued
T -periodic functionsb0(t), b(t) andc(t) onR by

b0(t) :=

∫ t

0

E(s) ds, b0,m :=
1

T

∫ T

0

b0(s) ds,

b(t) := b0(t)− b0,m, c(t) :=

∫ t

0

b(s) ds.

b0(t) is an auxiliary one for the sake of makingc(t) T -periodic. Here we introduce
the time-dependent Hamiltonian

H(t) = H0 + V (x+ c(t)), H0 =
1

2
p2

on H = L2(Rd). We denote byU(t, s) the unitary propagator generated by
H(t). As is well-known, the following Avron-Herbst formula holds:

Û0(t, s) = T (t)e−i(t−s)H0T (s)∗, Û(t, s) = T (t)U(t, s)T (s)∗ (3.1)

with

T (t) = e−ia(t)eib(t)·xe−ic(t)·p, a(t) =

∫ t

0

1

2
|b(s)|2 ds.

This formula withE(t) = E0 cos(ωt) was first proved in [9]. Now we will con-
sider the problem of the asymptotic completeness of the wave operators

Ŵ± = s-lim
t→∞

Û(t, 0)∗Û0(t, 0) (3.2)

for short-rangeV . The asymptotic completeness ofŴ± is formulated as

Ran (Ŵ±) = L2
c(Û(T, 0)), (3.3)

whereL2
c(Û(T, 0)) is the continuous spectral subspace of the Floquet operator

Û(T, 0). We impose the following short-range condition(V )SR onV :

(V )SR V (x) is a real-valued function onRd, and is decomposed into the sum of
V̂ sing(x) and V̂ SR(x). If d < 3, thenV̂ sing = 0. If d ≥ 3, thenV̂ sing belongs
to Lq0(Rd) with someq0 > d, and is compactly supported.|(∇V̂ sing)| belongs
to Lq1(Rd) with someq1 > d/2, where ifd = 3, then we defineq1 by 1/q1 =
1/(2q0) + 1/2. V̂ SR(x) belongs toC2(Rd), and satisfies the decaying conditions

|(∂α
x V̂

SR)(x)| ≤ C⟨x⟩−ρSR−|α|, |α| ≤ 2 (3.4)

with someρSR > 1.
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Here we note that the singular partV̂ sing of V satisfies the same condition posed
in [4], but the short-range part̂V SR of V has to satisfy the condition which is
stronger than the one posed in [13] and [4]. It is caused by that the mean of
E(t) in time is not non-zero but zero. Under the condition(V )SR, V (x+ c(t)) =
V̂ sing(x+ c(t))+ V̂ SR(x+ c(t)) satisfies the condition(V ) with ρ = ρSR− 1 > 0.
Here we note

∂t(V (x+ c(t))) = b(t) · (∇V )(x+ c(t)),

∂2
t (V̂

SR(x+ c(t))) = E(t) · (∇V̂ SR)(x+ c(t)) + b(t)(∇2V̂ SR)(x+ c(t))b(t)T,

whereb(t)T stands for the transpose ofb(t). Now we also introduce the wave
operators

W± = s-lim
t→∞

U(t, 0)∗e−itH0 . (3.5)

Then it is obvious that the relation betweenŴ± andW±

Ŵ± = T (0)W±T (0)∗

holds. We noteT (0) = e−ib0,m·x. Thus the problem of the asymptotic complete-
ness ofŴ± can be reduced to that ofW±

Ran (W±) = Hc(U(T, 0)), (3.6)

whereHc(U(T, 0)) is the continuous spectral subspace of the Floquet operator
U(T, 0). Here we used

L2
c(Û(T, 0)) = T (0)Hc(U(T, 0)),

becauseT (0)T (T )∗ = eia(T ) is a scalar.
As is well-known, in the proof of the asymptotic completeness ofW±, the

so-called Howland-Yajima method plays an important role: Introduce the Floquet
HamiltoniansK0 andK associated withH0 andH(t), respectively, and the wave
operators

W ±(K,K0) = s-lim
σ→±∞

eiσKe−iσK0 . (3.7)

After the existence ofW± has been guaranteed, the asymptotic completeness
of W ±(K,K0) yields that ofW±. This is the essence of the Howland-Yajima
method.

If V̂ sing = 0, then we have only to use the limiting absorption principle (1.16)
in order to show the asymptotic completeness ofW ±(K,K0). In fact, (1.16)
yields the localK-smoothness of⟨x⟩−s with s > 1/2:∫ ∞

−∞
∥⟨x⟩−se−iσKf2δ(K − λ0)Φ∥2K dσ ≤ C∥Φ∥2K . (3.8)
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Since the localK0-smoothness of⟨x⟩−s with s > 1/2 can be also obtained, these
propagation estimates yield the existence ofW ±(K,K0) and the adjoint wave
operators

W ±(K0, K) = s-lim
σ→±∞

eiσK0e−iσKPc(K) (3.9)

immediately, wherePc(K) is the spectral projection onto the continuous spectral
subspaceKc(K) of K. Thus one can obtain the asymptotic completeness ofW ±,
as is well-known. IfV̂ sing ̸= 0, then we have to avoid the matter caused by its
singularity in the proof of the existence of bothW ±(K,K0) andW ±(K0, K). To
this end, we will use the so-called minimal velocity estimate like∫ ∞

1

∥∥∥∥F (
|x|
σ

≤
√
c0(d2(λ0)− 2δ)

)
e−iσKf2δ(K − λ0)Φ

∥∥∥∥2

K

dσ

σ
≤ C∥Φ∥2K

(3.10)
with somec0 > 0 and sufficiently smallε > 0, which follows from∫ ∞

1

∥∥∥∥F (
2− 4ε ≤ Aλ0,2δ

σ
≤ 2− 2ε

)
e−iσKf2δ(K − λ0)Φ

∥∥∥∥2

K

dσ

σ
≤ C∥Φ∥2K .

(3.11)
These propagation estimates can be proved in the same way as in Sigal-Soffer [18],
by virtue of the Mourre estimate (1.14). HereF (x ∈ Ω) denotes the characteristic
function of the set ofΩ, and

d2(λ) = dist(λ,T ∪ σpp(K)).

If d2(λ0) in (3.10) could be replaced by

dist(λ0, (T ∪ σpp(K)) ∩ (−∞, λ0]),

then (3.10) would become more natural and refined.
In the long-range case, it seems necessary to obtain some refined propagation

estimates for̂U(t, s) orU(t, s). Unfortunately, we have not done it yet. The result
on the asymptotic completeness was already obtained in Kitada-Yajima [9] via the
Enss method. As for the case whereEm ̸= 0, see Adachi [2] and Adachi-Kimura-
Shimizu [4].

4 Concluding remarks

Although we consider the one body case only in this paper, here we will make
some remarks on the many body case.
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We consider a system ofN particles moving in a givenT -periodic electric
field inRd. In the center-of-mass frame, the total HamiltonianĤ(t) is given as

Ĥ(t) = −1

2
∆X − ⟨E(t), x⟩+ V, V =

∑
1≤j<k≤N

Vjk(xj − xk)

onL2(X), whereX is the configuration space for the system under consideration
in the center-of-mass frame with a certain suitable metric⟨·, ·⟩, x ∈ X, ∆X is the
Laplace-Beltrami operator onX, E(t) ∈ C0(R;X) is T -periodic, andVjk’s are
pair interactions. IfN = 2, thenĤ(t) is essentially the same as that in§3. Hence
we supposeN ≥ 3. We denote bŷU(t, s) the propagator generated bŷH(t), and
put

Em :=
1

T

∫ T

0

E(s) ds ∈ X.

As in Møller [13] and Adachi [1], we defineX-valuedT -periodic functionsb0(t),
b(t) andc(t) onR by

b0(t) :=

∫ t

0

(E(s)− Em) ds, b0,m :=
1

T

∫ T

0

b0(s) ds,

b(t) := b0(t)− b0,m, c(t) :=

∫ t

0

b(s) ds,

and introduce the time-dependent Hamiltonian

H(t) = H0 + V (x+ c(t)), H0 = −1

2
∆X − ⟨Em, x⟩

onL2(X). If Em ̸= 0, thenH0 is called the freeN -body Stark Hamiltonian. We
denote byU(t, s) the unitary propagator generated byH(t). As is well-known,
the following Avron-Herbst formula holds:

Û0(t, s) = T (t)e−i(t−s)H0T (s)∗, Û(t, s) = T (t)U(t, s)T (s)∗ (4.1)

with

T (t) = e−ia(t)eib(t)·xe−ic(t)·p, a(t) =

∫ t

0

(
1

2
|b(s)|2 − ⟨Em, c(s)⟩

)
ds,

where|b(s)|2 = ⟨b(s), b(s)⟩.
WhenEm ̸= 0, in [1] and [2], Adachi already obtained the result of the asymp-

totic completeness for the system under consideration, both in the short-range and
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the long-range cases, by introducing the Floquet HamiltonianK associated with
Ĥ(t). As for thisK,

A =

⟨
Em

|Em|
,−i∇X

⟩
is a conjugate operator forK in the standard Mourre theory, where−i∇X is the
velocity operator onX. Here we emphasize that in the case whereN = 2, in [13],
Møller proposed this operator as a conjugate operator forK before [1]. Roughly
speaking, the conjugate operator due to Møller possesses its natural extension to
N -body systems. On the other hand, whenEm = 0, any candidates of a conjugate
operator forK in the standard Mourre theory have not been found yet, except in
the case whereN = 2. As mentioned above, in the case whereN = 2, Yokoyama
proposed a conjugate operatorÃ1 for K in [24]. Unfortunately,Ã1 seems not have
any natural extension toN -body systems. It is caused by the ‘factor’(1 + p2)−1

of Ã1 (see [14] for the detail). Hence, in [14], Møller and Skibsted tookÂ0 as a
conjugate operator forK in an extended Mourre theory, as mentioned in§1. As for
the study of the asymptotic completeness for three-body AC Stark Hamiltonians
via the Faddeev method, see Korotyaev [10] and Nakamura [15].

Our aim of this paper is to replace the factor(1 + p2)−1 by some other ap-
propriate one in order to let a conjugate operator possess its extension toN -body
systems. However, we have not accomplished this aim yet, unfortunately. We
have to deal with the term like

−(λ0 − δ −Dt)
−1⟨b(t), (∇XV )(x+ c(t))⟩(λ0 − δ −Dt)

−1Â0 (4.2)

in i[V (x+c(t)), Aλ0,δ] skillfully, in the proof of the Mourre estimate forK, where
Â0 is the generator of dilations onX. It is caused by that|(∇XV )(x + c(t))|
does not vanish as|x| → ∞, if N ≥ 3. These are the issues in the future.
Finally we note that ifV (x+c(t)) is time-independent, one can obtain the Mourre
estimate forK by taking(λ0−δ−Dt)

−1Â0 as a conjugate operator in the standard
Mourre theory, even ifN ≥ 3. Hence we have a faint expectation that the factor
(λ0 − δ −Dt)

−1 will overcome the matter mentioned above.
Now we add a remark which may let this paper have a value. Very recently,

the first author [3] has constructed a conjugate operatorAR for K in the standard
Mourre theory whenN = 3, and obtained the Mourre estimate forK. AR is
defined as

AR =
∑
a∈A

ja,RAaja,R; Aa = Aa
AK + AY,a,

Aa
AK = (3ω/2−Dt)

−1 ⊗ ⟨xa, pa⟩+ ⟨pa, xa⟩
2

,

AY,a =
⟨xa, pa(ω/4 + (pa)

2/2)−1⟩+ ⟨(ω/4 + (pa)
2/2)−1pa, xa⟩

2
,

(4.3)
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whereA is the set of all cluster decompositions, and{ja,R}a∈A is a Graf type
partition of unity ofX with sufficiently largeR. Roughly speaking, our type con-
jugate operatorAa

AK is recognized as a conjugate operator for the Floquet Hamil-
tonianKa associated with the subsystem HamiltonianHa(t), and the Yokoyama
type conjugate operatorAY,a can be recognized as a conjugate operator for the in-
tercluster free Hamiltonian(pa)2/2. Here we note that ifa = amin, thenAY,amin

is
recognized as a conjugate operator also for the free Floquet HamiltonianKamin

=
Dt + (pamin

)2/2. HenceAa can be recognized as a conjugate operator for the Flo-
quet HamiltonianKa associated with the cluster HamiltonianHa(t). AR can be
constructed by gluingAa’s together with{ja,R}a∈A . Therefore both [24] and this
paper yield the first step of the above construction of a conjugate operator forK
with N = 3.
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