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Abstract

This study considers the stability of time domain BEMs for the wave equation
in 2D. We show that the question of stability of time domain BEMs is reduced
to a nonlinear eigenvalue problem related to frequency domain integral equa-
tions. We propose to solve this non-linear eigenvalue problem numerically
with the Sakurai-Sugiura method. After validating this approach numeri-
cally in the exterior Dirichlet problem, we proceed to transmission problems
in which we find that some time domain counterparts of “resonance-free”
integral equations in frequency domain lead to instability. We finally show
that the proposed stability analysis helps to reformulate these equations to
obtain stable numerical schemes.

Keywords: stability, time domain, BEM, transmission problems, eigenvalue
problems

1. Introduction

Among various numerical methods for partial differential equations such
as finite difference methods or finite element methods, etc., boundary ele-
ment methods (BEMs) are often said to be advantageous in wave problems
because they can be applied to scattering problems easily. It is certainly5

true that BEMs in frequency domain are easy to use, but the same does not
necessarily apply to time domain methods. As a matter of fact, BEMs for
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the wave equation in time domain have a long standing stability problem
and there have been many efforts to stabilise BEMs for wave equations. For
example, Ha Duong and his colleagues (e.g., [1]) showed the stability of some10

time domain BEMs in 3D based on space-time variational (Galerkin) formu-
lations. Their argument depends on the energy conservation which is why
their variational formulation includes time derivatives (e.g., the time deriva-
tive of single layer potential). Aimi et al. presented some numerical results
in 2D using time or space differentiated integral equations and a space-time15

variational approach. Abboud et al.[3] considered a coupling of space-time
variational BEMs with discontinuous Galerkin methods. Unfortunately, how-
ever, implementing computational codes for the full space-time variational
formulation is not very easy. Coding becomes easier if one uses variational
approaches only spatially and use collocation in time. Van ’t Wout et al.[4]20

have shown a way to find a stable time-collocated variational approach based
on space-time variational methods. In spite of these efforts, the standard
collocation approaches remain the preferred choice in engineering, although
known mathematical stability results in collocation are rather limited (see
Davies and Dancan[5] for example. We remark that this reference[5] is the25

only paper cited as an example of known stability results for time domain
collocation BEM for hyperbolic problems in the related chapter in Encyclo-
pedia of Computational Mechanics[6] indicating how little we know about
this issue). Various numerical stabilisation techniques for collocation have
been proposed, from which we cite just a few relatively new ones. Parot et al.30

discussed the removal of a non-oscillatory instability in a hypersingular inte-
gral equation[7] as well as the stabilisation of oscillatory ones by scaling[8].
Jang and Ih proposed to use the time domain version of CHIEF method and
a filtering technique to stabilise BEMs for exterior problems[9]. They also
consider stabilisation for interior problems using a filtering technique[10].35

Pak and Bai[11] proposed a variable-weight multi-step collocation scheme
with time projection in their regularised BEM for elastodynamics, which
is combined with an eigenvalue analysis[12]. These numerical stabilisation
techniques have been shown to be effective via numerical examples, although
they require numerical solutions of large eigenvalue problems. For further40

literatures on numerical stabilisation techniques, we refer the reader to the
lists of references of above mentioned papers. Some other investigations
take viewpoints similar to ours in that they seek stabilisation based on the
choices of integral equations. For example, the use of time differentiated
integral equations has been advocated by several authors[13, 14]. Ergin et45
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al.[15] proposed to use the Burton-Miller (BM) integral equation to achieve
stability guided by an observation that the instability of BEMs for scattering
problems is related to fictitious eigenfrequencies (internal resonance). Chap-
pell et al.[16, 17] gave further insight as well as the implementation details of
the BM formulation. This formulation has been utilised recently in practical50

applications[18]. These approaches based on the choices of integral equations
are of interest because they are directly related to the cause of instability
thus providing intuition for the stabilisation strategies, albeit qualitatively.
Finally we mention recent developments of CQM by Lubich[19, 20, 21] which
is a stable method of computing convolutions. CQM has been applied suc-55

cessfully to engineering applications (e.g., Schanz et al. [22]). However, im-
plementing CQM is still not as simple as the standard collocation methods,
which is the reason we consider the conventional approach in this paper.

The above brief review of the works on the stability of time domain BEMs
for the wave equation covers just a small part of what have been done so far.60

Indeed, the cause of the instability is now fairly well understood in con-
nection with the spectra of the integral operators and the error introduced
by discretisation (e.g., [15, 16, 23]), particularly in exterior problems. In
spite of these efforts by predecessors, however, there seem to exist no def-
inite and simple criteria of stability for the collocation methods. One still65

needs to carry out a quantitative assessment numerically in order to see if
a particular scheme is stable or not. A standard method to check the sta-
bility of collocation BEMs in time domain is to compute characteristic roots
by solving a polynomial eigenvalue problem (see (11)) after reducing it to
an equivalent linear eigenvalue problem for the companion matrix (See, e.g.,70

Walker et al.[24]). This method is effective in 3D where the fundamental
solution has a finite “tail” (i.e., it vanishes after a finite time). However, this
approach needs linear eigensolvers for sparse, but large, matrices. One may
possibly solve polynomial eigenvalue problems directly to reduce the size of
the matrix, but this will lead to a non-linear eigenvalue problem. Fortunately,75

recent developments of eigensolvers based on contour integrals such as the
Sakurai-Sugiura method (SSM) [25] made the solution of non-linear eigen-
value problems feasible. In 2D problems, however, the same approach is not
very practical because the fundamental solution in 2D is very slow to decay
in time. In this paper we propose to resolve this difficulty by carrying out80

the required stability analysis in frequency domain. Namely, we convert the
stability analysis for BEMs in two dimensional wave equation to a non-linear
eigenvalue problem similar to those for the Helmholtz equation and solve it
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with SSM using techniques proposed in Misawa et al.[26, 27]. The bene-
fit of this approach is twofold. Firstly, this method provides an alternative85

to the standard stability analysis in time domain. The proposed approach
is applicable to 2D problems without ambiguity and remains valid in 3D
problems as well. In contrast to this the standard time domain approach
is not applicable to 2D problems in an unequivocal manner. Secondly, the
proposed approach has an additional benefit of providing new intuition into90

the subject. Specifically, it is useful in selecting stable and highly accurate
integral equations in various problems. Indeed, we shall use the proposed
method to investigate the stability of various time domain integral equations
for transmission problems, which have not been investigated very much so
far.95

As a basic study in this subject, however, this paper considers only very
simple problems as examples of the use of the proposed stability analysis.
Namely, we restrict our attention mainly to exterior Dirichlet problems and
transmission problems for domains bounded by a circle. We first present
a stability analysis for the exterior Dirichlet problem using frequency do-100

main tools. The question of stability is then reduced to the computation of
the characteristic roots which are eigenvalues of a certain non-linear equa-
tion. After solving this eigenvalue problem with SSM ignoring the effect of
the spatial discretisation, we identify potentials which yield stable numerical
schemes with piecewise linear time basis functions and a particular choice105

of discretisation parameters. We then proceed to transmission problems in
which we show that even the time domain counterparts of “resonance free”
BEMs may lead to instability. To stabilise these integral equations we modify
them using potentials which have been concluded to yield stable numerical
schemes. We show that numerical schemes derived from these modified for-110

mulations do lead to stability via numerical experiments in time domain as
well as our stability analysis. After examining the influence of the spatial
discretisation on the characteristic roots, we present numerical examples of
transmission problems for non-circular domains solved with the modified in-
tegral equations, which appear to be stable.115

2. Exterior Dirichlet problems

2.1. Formulation

Let D2 ⊂ R2 be a bounded domain whose boundary Γ = ∂D2 is smooth
and let D1 be the exterior of D2, i.e., D1 = R2 \ D̄2. Also, let n be the unit
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normal vector on Γ directed towards D1. We are interested in the following120

initial- boundary value problem (Dirichlet problem):
Find u which satisfies the two dimensional wave equation in D1:

∆u− 1

c2
1

∂2u

∂t2
= 0 in D1 × (t > 0) (1)

the homogeneous Dirichlet boundary condition on Γ for u:

u = 0 on Γ× (t > 0)

the homogeneous initial conditions in D1:

usca|t=0 =
∂usca

∂t
|t=0 = 0, in D1 (2)

and the radiation condition for the scattered wave usca = u − uinc in D1,

where c1 is the wave speed in D1 which is written as c1 =
√

s1
ρ1

, s1 and ρ1

are the shear modulus and density in D1 and uinc is the incident wave which
satisfies (1) in the whole space-time, respectively.125

2.2. Boundary integral equations

The solution to the above initial- boundary value problem can be written
as

u(x, t) = uinc(x, t)− S1q(x, t) (x, t) ∈ D1 × (t > 0)

if the function q(x, t) on Γ× (t > 0) is chosen such that

0 = uinc(x, t)− S1q(x, t) (x, t) ∈ D2 × (t > 0) (3)

is satisfied, where Sν (ν = 1 or 2. ν = 1 in the present context) stands for
the single layer potential defined by

Sνq(x, t) :=

∫ t

0

∫
Γ

Gν(x− y, t− s)q(y, s) dSyds

and Gν(x, t) is the fundamental solution of the wave equation given by:

Gν(x, t) =
cν

2π
√

(cνt)2 − |x|2
+

=

{
cν

2π
√

(cνt)2−|x|2
cνt > |x|

0 otherwise.
(4)
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For later convenience, we also introduce the normal derivative of the single
layer potential DTν , the double layer potential Dν and its normal derivative
N ν defined by:

DTνq(x, t) :=

∫ t

0

∫
Γ

∂Gν

∂nx
(x− y, t− s)q(y, s) dSyds,

Dνq(x, t) :=

∫ t

0

∫
Γ

∂Gν

∂ny
(x− y, t− s)q(y, s) dSyds,

Nνq(x, t) :=

∫ t

0

∫
Γ

∂2Gν

∂nx∂ny
(x− y, t− s)q(y, s) dSyds.

By these notations for potentials we indicate functions defined in x ∈ R2 \
Γ in this paper. Their boundary traces on Γ from the exterior (interior)
are indicated by superposed + (−). When the exterior and interior traces
coincide, however, we denote them by the same letter without superposed ±.130

This applies to Sν , Ṡν and N ν , but we need to evaluate integrals in N ν in
the sense of the finite part then.

The function q(x, t) coincides with the (exterior trace of) normal deriva-
tive of u on Γ if (3) is satisfied. The condition in (3) leads to several boundary
integral equations defined on the boundary of the scatterer. Four of standard
boundary integral equations on Γ× (t > 0) are given as follows:

uinc(x, t)− S1q(x, t) = 0 (5)

u̇inc(x, t)− Ṡ1q(x, t) = 0 (6)

∂uinc

∂n
(x, t)− (DT1)−q(x, t) = 0 (7)

∂uinc

∂n
(x, t) +

1

c1

u̇inc(x, t)− (DT1)−q(x, t)− 1

c1

Ṡ1q(x, t) = 0 (8)

where ˙ stands for the time derivative. Equations of these types have been
considered by many authors for various potentials mainly in 3D. Indeed,
(5) is the ordinary BIE. The time differentiated equation in (6) has been135

considered in [13]. Bamberger and Ha Duong[1] also discussed a space-time
variational version of this equation in 3D. Equation similar to (7) for the
double layer potential in 3D has been utilised by Parot et al.[7, 8] while (8)
for the double layer potential in 3D has been considered in Ergin et al.[15]
and Chappell et al.[16] among others. The coupling constant in (8) seems140

to be the most natural choice because (8) is then derived as one imposes the
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first order approximation of the absorbing boundary condition[28] on Γ to
the RHS (right hand side) of (3), thus “exteriorising” the interior domain
D2. The discussion in Chappell and Harris[17] also seems to support this
choice. We shall, however, return to this issue later.145

2.3. Stability

We consider the following Volterra integral equation which is typically a
time domain BIE obtained by discretising (5)–(8) in the spatial direction by
using collocation:

f(t) =

∫ t

0

K(t− s)v(s) ds (9)

where K represents an N × N matrix and v and f stand for unknown and
given N -vectors, respectively. Note that K may include terms of the form
cδ(·) or its derivatives, where c is a constant and δ(·) is Dirac’s delta func-
tions. Discretising the unknown function v(s) in (9) using time interpolation

functions φm(s) as v(s) ≈
∑
m

φm(s)vm, we obtain the following algebraic

equation:

f(l∆t) =
l∑

m=1

∫ l∆t

0

K(l∆t− s)φm(s) ds vm (10)

φm(s) = φ∆t(s−m∆t)

where φ∆t(t) is a basis function which satisfies φ∆t(k∆t) = 1 (k = 0) or
φ∆t(k∆t) = 0 (k 6= 0) for k ∈ Z, ∆t is the time increment, l is the number of
time steps, respectively. Usually, an algebraic equation in the form of (10)
is solved in a time marching manner for vm (m = 1, 2, · · · ) in time domain150

BEMs.
Obviously, the stability of the resulting numerical scheme is a concern in

solving BIEs in time domain. To examine this issue, we follow the standard
argument[24] to put vm = λmv in the homogeneous version of (10) where
λ ∈ C is a number and v is an element of CN . This gives

0 =
l−1∑
m=0

∫ l∆t

0

K(s)φ∆t(m∆t− s) dsλ−mv. (11)

7



Suppose l is taken sufficiently large. A complex number λ is said to be an
eigenvalue of (11) if there exists a non-trivial v which satisfies (11). Then
our definition of the stability is the following: the scheme is stable if all
the eigenvalues of (11) satisfy |λ| ≤ 1. The scheme is unstable if there155

exists an eigenvalue of (11) s.t. |λ| > 1 holds. Eigenvalue problems of this
type in 3D have been considered by many authors after converting them
into equivalent linear eigenvalue problems for the companion matrices (e.g.,
[24, 23, 8, 10, 4, 12]). As a matter of fact, there is no ambiguity in the
choice of a sufficiently large l in 3D if the scatterer is bounded because the160

fundamental solution has a “tail” of a finite length. In 2D problems, however,
this is not the case since the tail of the fundamental solution has an infinite
length, as one sees in (4). In addition, the time decay of the fundamental
solution is slow, thus making it difficult to set an appropriate truncation
number l in (11).165

To proceed further, we put λ = e−iΩ∆t where Ω is a complex number.
The stability criterion is now rewritten as follows: Im Ω ≤ 0 (Im Ω > 0)
implies stability (instability). Also, suppose that φ∆t(s) = 0 for s < −∆t; a
condition satisfied by many choices of the basis function including a piecewise
linear one. We then let l tend to infinity in (11) to have

0 =
∞∑

m=−∞

∫ ∞
0

K(s)ψ∆t(s−m∆t)eim∆tΩ ds v, (12)

where ψ∆t(s) = φ∆t(−s), which is nothing other than the discretised Fourier
transform of K. Obviously, this expression approximates the Fourier trans-
form K̂ ofK precisely in lower frequencies, but just roughly in higher frequen-
cies. This suggests a connection between the stability of the time domain
BEM and the eigenvalues of the frequency domain BEM; an observation170

made by many authors (e.g., [15, 16]).
We now write K in terms of K̂ as

K(s) =
1

2π

∫ ∞
−∞

K̂(ω)e−iωs dω.

Using the Poisson summation formula, we rewrite (12) into

0 =
∞∑

m=−∞

1

∆t
K̂(Ωm)φ̂∆t(Ωm) v, Ωm = Ω− 2mπ

∆t
(13)
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where φ̂∆t is the Fourier transform of φ∆t which is given by

φ̂∆t(Ω) =
2

Ω2∆t
(1− cos Ω∆t)

for the particular case of the piecewise linear φ∆t. The stability issue of
the time domain BEM is thus reduced to a non-linear eigenvalue problem of
finding Ω ∈ C with which (13) has a non-trivial solution v ∈ CN . Hence, we
call these eigenvalues Ω’s as the characteristic roots of (13). We note that the175

expression on the right hand side of (13) is periodic with respect to Ω with
the period of 2π/∆t. We also note that the present formulation assumes the
use of time basis functions and a constant ∆t. Therefore, it does not apply
to formulations which do not use time elements/meshes or to variable time
steps.180

We now consider the limit of ∆t → 0 in (13) in a somewhat intuitive
manner. More rigorous arguments could be made with particular choices of
kernel and basis functions. We first note that

φ∆t(s)

∆t
→ δ(s) and

φ̂∆t

∆t
→ 1

hold as ∆t→ 0 if φ∆t can interpolate a constant function exactly. Hence, we
expect to have

∞∑
m=−∞

1

∆t
K̂(Ωm)φ̂∆t(Ωm)→ K̂(Ω) as ∆t→ 0, (14)

if K̂(Ω) → 0 as |Ω| → ∞, which is the case in 2D. From this result, we
expect that the characteristic roots of (13) are obtained as perturbations of
the eigenvalues of the corresponding frequency domain BIEs. We note that
a similar observation has been made in Chappell et al.[16, 17] qualitatively.

It is well-known that the eigenvalues of the frequency domain BIE can be185

classified into true and fictitious eigenvalues[26, 27]. In the exterior problems,
the true eigenvalues are with negative imaginary parts, while the behaviour
of the fictitious eigenvalues depend on the particular choice of integral equa-
tions. In (5)–(7) the fictitious eigenvalues of the corresponding frequency
domain BIEs are real valued, while those of (8) are with negative imaginary190

parts. It is therefore natural to expect that equations (5)–(7) are more prone
to instability than (8). However, (5)–(7) may still turn out to be stable after
discretisation depending on the choice of the time basis function because real
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eigenvalues of the frequency domain BIE may move to lower complex plane
after the time discretisation. Also, (8) may turn out to be unstable if the195

perturbation of the eigenvalues is very large.

2.4. Simplified stability analysis for circular domains

One may use methods based on contour integrals such as the Sakurai-
Sugiura Method (SSM) in the solution of non-linear eigenvalue problem in
(13) for a general boundary Γ. Indeed, one may replace

Ĝν(x) =
i

4
H

(1)
0 (Ω|x|/cν)

in the Fourier transformed versions of BIEs in (5)–(8) by

i

4

∞∑
m=−∞

H
(1)
0 (Ωm|x|/cν)

φ̂∆t(Ωm)

∆t
(15)

to this end, where H
(1)
0 is the Hankel function of the 1st kind. In the present

paper, however, we shall pay attention to a simple special case in which Γ
is a unit circle. Also, we restrict out attention to the piecewise linear time200

basis functions for the purpose of simplicity.
We consider (13) for a unit circle Γ without spatial discretisation (the

effect of the spatial discretisation will be discussed later). In this case we can
simplify the non-linear eigenvalue problem in (13) using the Fourier series
with respect to the angular variable. Indeed, we use the well-known Graf
addition theorem[29] to have

Ĝ(x− y) =
i

4

∞∑
n=−∞

H(1)
n (k|x|)Jn(k|y|)ein(Θ−θ), (16)

x = |x|(cos Θ, sin Θ), y = |y|(cos θ, sin θ)

when |x| > |y| holds, where Jn is the Bessel function, k = Ω/c and Θ and

θ are the azimuth angles of x and y. The role of H
(1)
n and Jn in (16) is

interchanged when |x| < |y|. In (16) we have suppressed the superfix ν
for the domain in order to simplify the notation. From (13) and (16), we
see that the characteristic roots of the time discretised boundary integral
equations corresponding to (5)–(7) are obtained as zeros of the expressions
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in the following list:

S ↔
∑
m

H(1)
n (Ωm/c)Jn(Ωm/c)φ̂∆t(Ωm) (17)

Ṡ ↔ f1(Ω;n, c) = −
∑
m

iΩmH
(1)
n (Ωm/c)Jn(Ωm/c)φ̂∆t(Ωm) (18)

DT− (, D+)↔ f2(Ω;n, c) =
∑
m

Ωm/cH
(1)
n (Ωm/c)J

′
n(Ωm/c)φ̂∆t(Ωm) (19)

where n is an integer between 0 and a large number nmax. The characteristic
equation for (8) is obtained from (18) and (19) as∑

m

H(1)
n (Ωm/c)Ωm/c(J

′
n(Ωm/c)− iJn(Ωm/c)) φ̂∆t(Ωm). (20)

Note that the series on the right hand sides of eqs. (17)–(20) are absolutely
convergent.

2.5. Numerical experiments

We now carry out numerical experiments to see if the stability analysis205

given in the previous section can predict the behaviour of the time domain
BEM correctly.

To this end, we consider the problem defined in 2.1 where the boundary Γ
is the unit circle. The material constants are s1 = ρ1 = c1 = 1. The incident
wave is a plane wave given by:

uinc =

{
0 (c1t− x1 − t0 ≤ 0)
(c1t−x1−t0)2

2
(c1t− x1 − t0 > 0)

(21)

where t0 = 1+2∆t. We use piecewise constant boundary elements, piecewise
linear temporal elements and the collocation method to discretise the BIEs
in (5)–(8). All the required integrals are computed exactly. The boundary210

is discretised into 100 elements, the time increment is set as ∆t = 2π
100

and
the number of time steps is 1000. Also, the characteristic roots of (13) are
calculated with (17)–(20) and SSM.

Figs.1(a)–1(d) show the results obtained with (5)–(8), respectively. We
plot q for every 10 time steps in these figures (this applies to all subsequent215

time domain results). Also, Fig.2 gives the “exact” solution obtained numer-
ically with the frequency domain exact solution and FFT. We see that the
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standard BIE in (5) is unstable, and the time derivative BIE in (6) and the
time domain BM BIE in (8) are stable. The normal derivative BIE in (7)
does not show divergence, but deviates considerably from the “exact” solu-220

tion. The BM result is not as bad as the normal derivative one, but is seen
to drift from the exact solution by a time dependent constant. The accuracy
of the time derivative BIE appears to be satisfactory.
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Figure 1: q obtained with various integral equations vs point number. The point number
and the azimuth angle θ are related by θ = −2π/100× (point number + 1/2)

We next check the behaviour of the characteristic roots of these time
domain BIEs using SSM. We set the range for computing eigenvalues to be225

0 ≤ Re Ω ≤ 50 = π
∆t

and −2 ≤ Im Ω ≤ 2 considering the periodicity of (13)
and the fact that the characteristic roots are located symmetrically with
respect to the imaginary axis, which can be easily shown using the explicit
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exact

Figure 2: “Exact” solution of q

forms of (13). Note that the upper limit of Ω is consistent with the Nyquist
frequency associated with ∆t. Also, we took nmax to be 60 considering the230

number of boundary subdivisions and the spatial Nyquist “frequency”. In
the computation, we redefine the Hankel functions so that they have branch
cuts on the negative imaginary axis rather than on the negative real axis.
This guarantees that the expression in (13) is analytical when 0 < Re Ω < π

∆t

holds.235

Figs.3(a)–Fig.3(d) show the characteristic roots of the BIEs in (5)–(8),
respectively. We plot the eigenvalues of (13) for various BIEs (i.e., zeros of
the expressions in (17)–(20)) in green and the eigenvalues of the frequency
domain BIEs given by K̂(Ω)v = 0 (i.e., zeros of the products of Hankel and
Bessel functions obtained by setting m = 0 in (17)–(20)) in red. Note that240

the red symbols near the imaginary axis in Figs.3(a)–Fig.3(d) are the true
eigenvalues for the exterior Dirichlet problem, while those on the real axis
are fictitious ones related to the interior Dirichlet problems in Figs.3(a) and
3(b) and to the Neumann problem in Fig.3(c). The fictitious eigenvalues for
(8) are those associated with interior impedance boundary value problems.245

We note that all BIEs in (5)–(8) have characteristic roots close to the true or
fictitious eigenvalues, but other characteristic roots are scattered and quite
far from any of eigenvalues of the corresponding frequency domain BIEs,
except in the BM equation in (8).

From these figures, we see that the BIE (5) has the characteristic roots250
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Figure 3: Characteristic roots of various integral equations. ×: characteristic roots, +:
eigenvalues of frequency domain BIEs

with positive imaginary parts, but this is not the case with other BIEs. These
results are consistent with the corresponding time domain results in Fig. 1.
Also, the inaccuracy of (7) is considered to be related to the fact that Ω = 0
is an eigenvalue of (19) with n = 0. We remark that a similar case has
been reported in Parot et al.[7] where this phenomenon has been called a255

“pneumatic mode”. As a matter of fact Ω = 0 is a zero of both (18) (for all
n) and (20) (for n = 0) as well. An adverse effect of this eigenvalue on (8) is
visible in the constant shift of the solution in Fig.1(d) (compare with Fig.2),
although not as evidently as in Fig.1(c).

To examine the effect of this zero eigenvalue on the numerical solution of

14



(6), we consider another incident wave given by

uinc =

{
0 (c1t− x1 − t0 ≤ 0)

(c1t−x1−t0)2

c1t−x1−t0+4∆t
(c1t− x1 − t0 > 0),

(22)

which is a smoothed linear function, where t0 = 1 + 2∆t. Setting other260

parameters the same as in the previous example, we solve (6) to compute
the time history of q as plotted in Fig.4(a). Comparing this result with
the “exact” solution given in Fig.4(c) one sees that an error having a zig-
zag pattern is superimposed on the solution of (6). This is in contrast to
the BM solution given in Fig.4(b) which is smooth, but not accurate. This265

result can be explained as follows. With (6), the (spatially) high frequency
error incurred initially by the mismatch of the wavefront and mesh remains
undamped after a long time because of the existence of a zero characteristic
root with high n eigenfunctions. Since this eigenvalue is zero, this error does
not propagate, decay or amplify. In other words, it persists. This type of270

error is included also in Fig.1(b), although its magnitude is too small to be
visible. From these numerical experiments, we conclude that none of the
integral equations in (5)–(8) are satisfactory!

A possible remedy for all these problems is to use an integral equation
given by

∂uinc

∂n
(x, t) +

1

c1

u̇inc(x, t) + αuinc(x, t)

− (DT1)−q(x, t)− 1

c1

Ṡ1q(x, t)− αS1q(x, t) = 0, (23)

which is the time domain counterpart of the BM equation with a complex
(not pure imaginary) coupling constant, where α is a (real) number. It is275

easy to see that Ω = 0 is not a characteristic root of this equation. The
numerical solution q obtained with (23) and the incident wave in (22) is
given in Fig.5(a) and its characteristic roots are shown in Fig.5(b), where we
set α = 1. The high accuracy and stability of this formulation is evident from
these figures, thus showing the usefulness of the proposed stability analysis280

in the selection of integral equations. See appendix for further numerical
experiments for (23).

Epstein et al.[30] investigated time domain integral equations whose solu-
tions exhibit correct long-time behaviours. From this viewpoint, (23) seems
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Figure 4: q obtained with various integral equations

to be a better choice than other stable choices in (6)–(8), although the char-285

acteristic root of (23) whose imaginary part has the minimum magnitude is
close to one of fictitious eigenvalues (the one whose imaginary part is ap-
proximately equal to -0.8 in Fig. 5(b)) rather than a true one.

3. “Stable potentials”

Motivated by the results in the previous section, we examine the stability
of integral equations on the unit circle derived from potentials which may
appear in BIEs. These potentials include the single layer S (= S+ = S−),
traces of the normal derivatives of S denoted by DT±, the time derivative
of S denoted by Ṡ (= Ṡ+ = Ṡ−) and the traces of the double layer D±.
Although we are also interested in the normal derivative of D denoted by N ,
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Figure 5: Augmented BM integral equation

it turned out that the simplified approach presented in 2.4 using the Fourier
series expansion is not very easy to apply to N with piecewise linear time
basis functions because the series similar to (17)–(19) for N does not converge
absolutely (A similar observation applies to Ḋ± as well). Using a smoother
time basis function could be a solution. As we shall see later, however, the
time integrated normal derivative of the double layer potential defined by

Mu =

∫ t

0

∫
Γ

∂

∂nx

∂

∂ny
log

c(t− s) +
√
c2(t− s)2 − |x− y|2

+

|x− y|
u(y, s)dSyds

x ∈ R2 \ Γ, t > 0

is more useful than N as far as the stability is concerned. We therefore carry
out the stability analysis in 2.4 with M (= M+ = M−) instead of N . Since
the results for S, Ṡ and DT− = D+ have already been given in Figs.3(a)–3(c),
we present those for DT+ = D− and M in Figs.6(a)–6(b) using the same
material constants and time increment as before (i.e., s1 = ρ1 = c1 = 1,
∆t = 2π/100). They are zeros of the following expressions.

D−, DT+ ↔ f3(Ω;n, c) =
∑
m

Ωm/cH
(1)′

n (Ωm/c)Jn(Ωm/c)φ̂∆t(Ωm) (24)

M ↔ f4(Ω;n, c) =
∑
m

iΩm/c
2H(1)′

n (Ωm/c)J
′
n(Ωm/c)φ̂∆t(Ωm) (25)

290
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Figure 6: Characteristic roots of various integral operators. ×: characteristic roots, +:
eigenvalues of frequency domain integral operators

From these results, we confirm that the equations obtained by discretising
the following integral equations are numerically stable with piecewise linear
time basis functions and parameters tested: (a) the time derivative of the sin-
gle layer potential (b) the interior and exterior traces of the normal derivative
of the single layer potential (c) the interior and exterior traces of the double295

layer potential (d) the time integrated normal derivative of the double layer
potential. In the rest of this paper we call them “stable potentials” just for
the purpose of simplicity. Note, however, that we have no claim of stability
of these potentials except in the cases tested here.

In the next section, we combine these potentials to obtain numerically300

stable formulations in transmission problems.

4. Transmission problems

We are now interested in finding u which satisfies (1),

∆u− 1

c2
2

∂2u

∂t2
= 0 in D2 × (t > 0),

the transmission boundary conditions on Γ:

u+ = u−(= u), s1
∂u+

∂n
= s2

∂u−

∂n
(= q) on Γ× (t > 0)
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and the homogeneous initial conditions

u|t=0 = u̇|t=0 = 0 in D2

in addition to the homogeneous initial and radiation conditions for usca in

(2), where c2 is the wave speed in D2 given by c2 =
√

s2
ρ2

and (s2, ρ2) are the

shear modulus and density in D2, respectively. The superscript +(−) stands305

for the trace to Γ from D1 (D2), respectively.

4.1. Boundary integral equations

There exist various possibilities of integral equation for transmission prob-
lems on Γ, of which we consider the following four [26, 27]:

PMCHWT(
−(D1 +D2) 1

s1
S1 + 1

s2
S2

−(s1N
1 + s2N

2) DT1 +DT2

)(
u
q

)
=

(
uinc

s1
∂uinc

∂n

)
(26)

Müller(
s1+s2

2
− (s1D

1 − s2D
2) S1 − S2

−(N1 −N2) s1+s2
2s1s2

+ 1
s1
DT1 − 1

s2
DT2

)(
u
q

)
=

(
s1u

inc

∂uinc

∂n

)
(27)

Burton-Miller(
1

2c1
∂
∂t
− (N1 + 1

c1
Ḋ1) 1

2s1
+ 1

s1
DT1 + 1

c1s1
Ṡ1

−1
2
−D2 1

s2
S2

)(
u
q

)
=

(
∂uinc

∂n
+ 1

c1
∂uinc

∂t

0

)
(28)

standard ( 1
2
−D1 1

s1
S1

1
2

+D2 − 1
s2
S2

)(
u
q

)
=

(
uinc

0

)
(29)

In these equations we write Dν for (Dν+ +Dν−)/2 etc. in order to show the310

non-integral terms explicitly at the cost of an abuse of notation. We note that
there exist several versions of Müller’s formulations for the wave equation.
We here use the one in which the singularities of single layer potentials cancel.
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4.2. Stable formulations

The boundary integral equations shown in the previous section can be315

rewritten easily in terms of “stable potentials” presented in section 3 with
the help of time differentiation and integration by parts. Here are the results:

modified PMCHWT(
−(D1 +D2) 1

s1
Ṡ1 + 1

s2
Ṡ2

−(s1M
1 + s2M

2) DT1 +DT2

)(
u̇
q

)
=

(
u̇inc

s1
∂uinc

∂n

)
(30)

modified Müller(
s1+s2

2
− (s1D

1 − s2D
2) Ṡ1 − Ṡ2

−(M1 −M2) s1+s2
2s1s2

+ 1
s1
DT1 − 1

s2
DT2

)(
u̇
q

)
=

(
s1u̇

inc

∂uinc

∂n

)
(31)

modified Burton-Miller(
1

2c1
− (M1 + 1

c1
D1) 1

2s1
+ 1

s1
DT1 + 1

c1s1
Ṡ1

−1
2
−D2 1

s2
Ṡ2

)(
u̇
q

)
=

(
∂uinc

∂n
+ 1

c1
∂uinc

∂t

0

)
(32)

modified standard(
1
2
−D1 1

s1
Ṡ1

1
2

+D2 − 1
s2
Ṡ2

)(
u̇
q

)
=

(
u̇inc

0

)
(33)

where Mν is the time integral of Nν .
The PMCHWT, Müller and BM formulations are known not to have

real fictitious eigenfrequencies in the frequency domain, while the standard320

formulation does have real fictitious eigenfrequencies[26, 27]. It is therefore
expected that the standard formulation is more prone to instability.

We remark that the time differentiated standard integral equation in the
modified standard equation (33) has appeared in the paper by Panagiotopou-
los and Manolis[14] in the context of elastodynamics in 3D. Also, the com-325

bined use of D, Ṡ, M and DT in (30), (31) and (32) has been proposed
by Abboud et al.[3] and Banjai et al.[21] in different contexts in 3D. Their
choices of unknowns are different from ours. To the best of our knowledge,
however, these potentials have not been utilised in forms given in (30), (31)
and (32) in transmission problems for the wave equation in 2D.330
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4.3. Numerical experiments

Setting s1 = 1, ρ1 = 1, s2 = 0.2 and ρ2 = 0.37, we solve the time
domain BIEs in (26)–(33). The incident wave is the quadratic one in (21)
and the number of boundary subdivisions, the number of time steps and the
time increments are the same as in 2.5. We use piecewise linear time basis335

functions for (u, q) in the ordinary formulations and for (u̇, q) in the modified
formulations.

Fig.7 and Fig.8 show the results of q obtained with the ordinary and
modified integral equations respectively. We see that the ordinary formula-
tions give unstable results except for the Müller formulation, whereas all the
modified formulations provide stable results. Fig.9 shows the distribution
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Figure 7: q obtained with ordinary integral equations for transmission problems

of characteristic roots for those formulations which do not include N or Ḋ.
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Figure 8: q obtained with modified integral equations for transmission problems

In the modified PMCHWT, for example, they are obtained as the non linear
eigenvalues (Ω’s) of the following matrix for one of n = 0, · · · , nmax. See
(18)–(25):

K̃(Ω;n)PMCHWT =(
−(f3(Ω;n, c1) + f2(Ω;n, c2)) 1

s1
f1(Ω;n, c1) + 1

s2
f1(Ω;n, c2)

−(s1f4(Ω;n, c1) + s2f4(Ω;n, c2)) f2(Ω;n, c1) + f3(Ω;n, c2)

)
(34)

The distribution of characteristic roots shown in Fig.9 is seen to be consis-
tent with the time domain results in Figs.7 and 8. These results also suggest
that the use of standard BIEs may not be recommended even after the mod-340

ification since this formulation has many characteristic roots near the real
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Figure 9: Characteristic roots of various integral equations for transmission problems. ×:
characteristic roots, +: eigenvalues of frequency domain BIEs
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axis.
Among other three formulations the Müller formulation appears to be

better in terms of stability since it gives stable results even without modifi-
cation, as one sees in Figs.7 and 8. Another reason to prefer Müller is the
behaviour of the characteristic equations (34), etc., near Ω = 0. As a matter
of fact, we can show that Ω = 0 is a characteristic root of BM for n = 0, but
other two do not suffer from this problem. However, the characteristic equa-
tion (34) for the modified PMCHWT has the following asymptotic behaviour
near Ω = 0:

K̃(Ω;n)PMCHWT =

(
o(Ω) O(Ω)

O(1/Ω) o(Ω)

)
n ≥ 1 (35)

while K̃(Ω; 0)PMCHWT = O(1). This means that the vector (0, 1)T behaves
asymptotically like an eigenvector of (35) for Ω ≈ 0. This suggests that an
arbitrary error of q having a zero spatial mean may persist in the solution of
the modified PMCHWT. For the modified Müller equation, however, there
is no problem of this kind since we have

K̃(Ω;n)Müller =

(
O(1) o(1)
o(1) O(1)

)
.

We thus conclude that the modified Müller equation is a better choice than
the other two in the cases tested.

To confirm this conclusion, we use the modified PMCHWT and Müller345

equations to solve the same transmission problem as in Figs.7 and 8 after
replacing the incident wave by the quasi-linear one in (22). As has been
expected, the modified PMCHWT result includes persistent noise, while the
modified Müller result is smooth as shown in Fig.10. Further details of this
subject will be presented elsewhere.350

5. Effects of space discretisation

So far, we have neglected the effect of spatial discretisation in the discus-
sion of stability. This section discusses how the distribution of the eigenvalues
is influenced by the space discretisation. We restrict our attention to the cir-
cular scatterer case using the Fourier series expansion in order to keep the355

discussion as analytical as possible so that we can obtain insights.
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Figure 10: q obtained with modified PMCHWT and Müller formulations

5.1. Formulation

We consider a circular boundary having a radius of 1 with N piecewise
constant arc elements whose endpoints (angles) are given as θ = θ1, · · · , θN
(θN+1 = θ1). We consider an integral operator K(Ω) which maps a function v
on the boundary to another function on the boundary. The function v is then
approximated with the piecewise constant basis function on each element as
follows:

v(θ) ≈
N∑
p=1

vpNp(θ), Np(θ) =

{
1 θ ∈ [θp, θp+1]
0 otherwise

where θ is the angular coordinate of the position on the boundary. This
is considered to be a reasonable approximation of the discretisation with
straight line boundary elements. The basis function is now expanded into
the Fourier series given by:

Np(θ) ≈
M∑

l=−M

V p
l e

ilψ

where M is the truncation number of the infinite Fourier series and V p
l is the

coefficient of the Fourier series given as follows:

V p
l =

1

2π

∫ 2π

0

e−ilψNp dψ =
1

2π

∫ θp+1

θp

e−ilψ dψ.
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Suppose that K is an integral operator for layer potentials such as Ŝ, M̂ ,
etc., in frequency domain. Then the value of Kv at a collocation point
Θn = (θn + θn+1)/2 is given as

Kv|Θn,n=1,··· ,N =
N∑
p=1

M∑
l=−M

eilΘn{HJ}lV p
l vp. (36)

where {HJ}l stands for the product of Hankel and Bessel functions (or their
derivatives) with appropriate coefficients. The {HJ}’s for the integral oper-
ators used in this paper are given as follows:

Sν ↔ H(1)
n (kν)Jn(kν)

Ṡν ↔ −iΩH(1)
n (kν)Jn(kν)

Dν−, DTν+ ↔ kνH
(1)′

n (kν)Jn(kν)

Dν+, DTν− ↔ kνH
(1)
n (kν)J

′
n(kν)

Mν ↔ −k2
νH

(1)′

n (kν)J
′
n(kν)/i/Ω

The question of stability of the discretised integral operators in time domain
is now reduced to the nonlinear eigenvalue problem for Ω for the following
matrix:

U

 D−M 0
. . .

0 DM

V (37)

where V (U) is a (2M + 1)×N (N × (2M + 1)) matrix whose (l, p) ((n, l))
components are given by

Vlp = V p
l (Unl = eilΘn)

and

Dl =
∞∑

m=−∞

{HJ}l
(

Ω− 2mπ

∆t

)
φ̂∆t

(
Ω− 2mπ

∆t

)
The corresponding matrix for the boundary integral equations for transmis-
sion problems can be obtained similarly. We can now solve the non-linear
eigenvalue problem given by

K(Ω)v = 0

with the standard SSM. These eigenvalues are called characteristic roots to
be consistent with previous sections.
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5.2. Numerical experiments360

We now show results of some numerical experiments. We consider various
integral operators on the unit circle, setting ρ = 1, s = 1 and ∆t = 2π/100,
respectively. The mesh on the boundary is uniform with θp = 2πp/N, p =
1, 2, · · · , N + 1. The number of boundary subdivision N is set to be either
N = 100 or N = 200. Accordingly, the truncation number of the Fourier365

series M is set to be M = 10N + N/2. Also, the infinite series
∑

m{HJ}m
in (37) and similar ones for transmission problems are truncated with 100
terms since results obtained with 1000 terms were almost identical. We note
that it is not very easy to calculate Bessel and Hankel functions of high order
with large arguments included in this calculation. This problem is handled370

with the help of Exflib, a well-known multiple-precision library[31].
Figs. 11 show the characteristic roots of various discretised integral opera-

tors considered in section 3. The results with N = 100 (N = 200) are shown
in triangular (circular) symbols and those without space discretisation (i.e.,
the characteristic roots given in previous sections, which we call “no space375

discretisation” in the rest of this paper) are given in cross symbols. It is seen
that the property of distributions of characteristic roots does not change
very much regardless of the space discretisations. Namely, stable potentials
seem to remain stable for reasonable spatial divisions. We also see that the
N = 200 results are closer to the no space discretisation results than those380

obtained with N = 100. These observations justify the use of the no space
discretisation method in the discussion of the stability of the time domain
BEMs.

We next consider transmission problems. Figs. 12 show the characteristic
roots of the modified boundary integral equations for transmission problems,385

i.e., modified PMCHWT (30), Müller (31), BM (32) and standard equations
(33). We set ρ1 = 1, ρ2 = 0.37, s1 = 1, s2 = 0.2, and ∆t = 2π/100, re-
spectively as in 4.3. Once again, the number of the spatial subdivision N
does not seem to change the distribution of the characteristic roots qualita-
tively. We therefore conclude that the stability of these formulations can be390

inferred from the no space discretisation results. Also, the finer the spatial
discretisation the better approximation the no discretisation results become.
We thus expect that further spatial discretisation is not likely to affect the
stability of the modified boundary integral equations.
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Figure 11: Characteristic roots of integral operators. ×: no space discretisation, 4:
N = 100, ◦: N = 200

6. Non circular boundary395

Finally, we test if the modified formulations remain stable for boundaries
other than circle. We consider transmission problems for a “star” (Fig.13(a))
given by

(x1, x2) = ((1 + 0.3 cos 5θ) cos θ/1.3, (1 + 0.3 cos 5θ) sin θ/1.3)

and a “kite” (Fig.13(b)) given by

(x1, x2) = (0.18(cos θ + 2(cos 2θ − 1)), 0.72 sin θ).
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Figure 12: Characteristic roots of the modified integral equations for transmission prob-
lems. ×: no space discretisation, 4: N = 100, ◦: N = 200

The incident wave is the quadratic one in (21) and parameters such as ma-
terial constants, number of boundary subdivision, ∆t etc. are the same as
those in the transmission problems considered in section 4. The boundary
subdivision is uniform with respect to θ.

Fig.14 and Fig.15 show the distribution of q on the boundary obtained400

with various formulations. Ordinary formulations except for Müller turn out
to be unstable while modified formulations appear to be stable. Also, the
results obtained with modified formulations basically agree with each other
except for details. These comments apply as well to other cases which are
not shown in the paper.405

7. Concluding remarks

This paper revisited stability issues for BEMs for the two dimensional
wave equation in time domain. We presented a stability analysis based on
integral equations in frequency domain and showed its validity and useful-
ness in simple exterior or transmission problems for circular domains. The410
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Figure 13: Domains

resulting non-linear eigenvalue problems for the characteristic roots have been
solved numerically with SSM. We identified layer potentials which lead to sta-
ble integral equations with linear time interpolation for our particular choices
of parameters. Combining these potentials, we could formulate stable inte-
gral equations for transmission problems which include the velocity and the415

normal flux of the solution on the boundary as unknowns. Among integral
equations considered the Müller formulation was concluded to be a better
choice in cases tested. All these modified formulations with similar discreti-
sation conditions were shown to remain stable in transmission problems for
star and kite shaped boundaries.420

We remark that we have no intention to claim that the combination of
particular potentials always leads to stability or that the Müller formulation
is always the best choice in transmission problems. What we showed in this
paper is the fact that the proposed method of stability analysis in frequency
domain is useful in investigating the stability and the accuracy of a time425

domain BEM for the wave equation in 2D, given particular integral equations
and discretisation methods. To be consistent with the purpose of this paper,
we have restricted our attention to simple problems where we can utilise
analytical tools as much as possible. Also, the numerical examples presented
have been limited to small number of cases.430

As future directions, we can mention the following:

1. Apply the stability analysis in frequency domain to problems with
non-circular boundaries and carry out more extensive numerical ex-
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Figure 14: Transmission problems for “star”

periments.

2. Investigate the stability of modified time domain formulations for ex-435

terior and transmission problems in 3D.

3. Consider the stability of interior problems in which true eigenvalues
may cause instability[10].

4. Study the robustness of the algorithms for the time domain integral
equations.440

The first item will include numerical treatment of (13) in which one considers
integral equations having the function in (15) as the kernel instead of the
fundamental solution in BIEs on general boundaries. As regards the 2nd
item, we have already started investigations which so far seem to tell that
conclusions similar to those in this paper hold in 3D as well. Notice, however,445
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Figure 15: Transmission problems for “kite”

that the use of the time domain stability analysis based on linear eigenvalue
problems and (11) may be simpler than the frequency domain approach in 3D
(and, indeed, have already been utilised by many authors including Walker
et al.[24], etc., as have been mentioned) because of the finite “tail” of the
fundamental solution. We remark, however, that the direct application of450

SSM to (12) and the use of proposed frequency-domain stability analysis in
(13) in 3D are still worth trying. Concerning the 4th item, we have carefully
avoided this issue in the present investigation. In real world applications,
however, the robustness of the algorithm is very important since one may
have to use numerical integrations, truncated time steps, fast methods etc.,455

which will inevitably introduce errors.
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Appendix A. Further numerical studies of (23)

Although the purpose of this paper is not to recommend particular time460

domain integral equations, it might be of interest to carry out further numer-
ical experiments on the behaviour of (23) which may not be standard but
appears to be promising among integral equations tested in 2.5. We consider
the same exterior Dirichlet problem for a unit circle as has been considered in
2.5 with the same material constants, initial condition and boundary condi-465

tion. The incident wave is the quasi-linear one given in (22). The boundary is
discretised with piecewise constant boundary elements. The time basis func-
tion is piecewise linear and the time increment is ∆t = π/50 unless stated
otherwise. The coupling constant α in (23) is 1.

We first remark that the conditioning of the matrix equations to be solved470

in ordinary time domain BEMs for the wave equation is not a big concern
since these equations are usually sparse and can easily be inverted with direct
solvers. We have checked if this remains true in (23) which is a combined
equation. To this end, we have computed the condition numbers (with re-
spect to 1 norm) of the discretised equations corresponding to (5), (6), (7),475

(8) and (23). The obtained condition numbers of these equations are 1.2629,
1.9821, 1.0087, 1.3227 and 1.3217, respectively, showing that the combined
integral equation in (23) gives an equally well-conditioned algebraic equation
as in other standard integral equations.

We next examine the effect of refined spatial meshes keeping the time
increment unchanged. In these cases the distribution of the characteristic
roots shown in Fig. 5(b) remains applicable, indicating that the stability
of the numerical schemes is expected. To check this conclusion, we solved
(23) numerically with spatial divisions increased to N = 200, 300 and 400.
All these computations gave stable results as have been expected. We here
show the result for N = 400 in Fig. A.16. To check the accuracy, we have
computed the error ε(t) defined by

ε(t) =
‖q(t)− qexact(t)‖
‖qexact(t)‖

where ‖ ·‖ stands for the L2 norm on the boundary and t is taken larger than480

the arrival time of the incident wave. The result is shown in Fig. A.17(a).
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elementsN . ForN = 200 we have also solved (23) with ∆t = π/100 (but with
the incident wave unchanged) for 2000 time steps, and the result is marked
as Nx200,Nt2000 in Fig. A.17(a). Fig. A.17(b) shows the corresponding485

distribution of characteristic roots for ∆t = π/100.
Fig. A.17(a) shows that the error decreases steadily as t or N increases.

Also, the accuracy of solutions seems to depend on ∆t only when t is small
with N = 200. The result in Fig. A.17(b) is consistent with the stability of
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the time domain computation with ∆t = π/100 and N = 200.490

We remark that the effect of the value of α on the accuracy, stability
etc. of the solutions has not been examined so far. Selecting an optimum α
remains as a future subject.
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