Clinical Neurophysiology

Human way of thinking to overcome electrically induced cortical hyperexcitability --Manuscript Draft--

Manuscript Number:	
Article Type:	Editorial
Section/Category:	Epilepsy
Keywords:	
Corresponding Author:	Masako Kinoshita, MD, PhD Utano National Hospital Kyoto, JAPAN
First Author:	Kiyohide Usami
Order of Authors:	Kiyohide Usami
	Masako Kinoshita, MD, PhD

1	Human way of thinking to a	overcome electrically induced cortical
2	hyperexcitability	
3		
4	Kiyohide Usami ^a and Masako Kin	oshita ^{b,*}
5	^a Department of Epilepsy, Moveme	ent Disorders and Physiology, Kyoto University Graduate
6	School of Medicine, 54 Kawahara	-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
7	ukiyo@kuhp.kyoto-u.ac.jp	
8	^b Department of Neurology, Nation	al Hospital Organization Utano National Hospital, 8
9	Ondoyama-cho, Narutaki, Ukyo-k	u, Kyoto, 616-8255, Japan. <u>machak@kuhp.kyoto-u.ac.jp</u>
10		
11	*To whom correspondence should	be addressed.
12	Masako Kinoshita, MD, I	PhD
13	Department of Neurology	v, National Hospital Organization Utano National Hospital, 8
14	Ondoyama-cho, Narutaki	, Ukyo-ku, Kyoto, Japan, 616-8255
15	Phone number:	+81-75-461-5121
16	Fax number:	+81-75-464-0027
17	E-mail:	machak@kuhp.kyoto-u.ac.jp
18		
19	Conflict of Interest	
20	The Department of Epilepsy, Mov	ement Disorders and Physiology, which KU belongs to, is an
21	Industry-Academia Collaboration	Course supported by a grant from Eisai Company, NIHON
22	KOHDEN CORPORATION, Otsu	ka Pharmaceutical Co., and UCB Japan Co., Ltd. MK has
23	nothing to disclose.	
24		
25		
26		
27		

1	Human beings are thinking reeds, and as such suffer from epileptic seizures induced by abstract
2	thinking (Geschwind and Sherwin, 1967, Senanayake, 1989). Meanwhile, more than half a
3	century has passed since Penfield and Jasper shed light on the role of mental task in modulating
4	epileptiform activity (Penfield and Jasper, 1954). In this issue of Clinical Neurophysiology,
5	Lesser et al. demonstrated that cognitive activation, i.e., arithmetic or spelling task (AST), result
6	in diffuse brain changes which can lead to termination or modification of epileptiform activities
7	called as afterdischarges (ADs) induced by electrical cortical stimulation (Lesser et al., 2019).
8	Functional brain mapping by electrical cortical stimulation plays a cardinal part in
9	presurgical invasive evaluation using chronic subdural electrodes for epilepsy surgery. It is often
10	preceded by recording multiple seizures to identify seizure onset zone. Typically, the cortex is
11	stimulated electrically via a pair of adjacently placed electrodes at a frequency of 50 Hz in a few
12	seconds to intervene the function related to the cortex beneath the electrodes (Ritaccio et al.,
13	2018). Summary data serve as blueprint for decision-making in epilepsy surgery team – whether
14	they could or should resect the area, balancing between the resultant likelihood of the seizure
15	improvement and the risk of residual neurological deficit. The advent of cortical stimulation
16	technique has brought about AD, epileptiform activity which occurs during or after the offset of
17	stimulation. ADs are in every occasion unwanted and stressful for all people who are engaged in
18	the testing room, including electrophysiological technologists and doctors in charge, not to

1	mention the patient. ADs cause further testing to be postponed and even evolve to epileptic
2	seizures regardless of stimulus sites.
3	Although the underlying physiology of ADs remains elusive, ADs are considered as
4	artificially-induced localized epileptic seizures associated with the mechanism of seizure
5	generation. Two decades ago brief pulse stimulation (BPS) was discovered to be an effective
6	method in terminating ADs (Lesser et al., 1999), which led successive epileptologists to explore
7	for methodology to suppress interictal/ictal activity by electrical cortical stimulation (Kinoshita
8	et al., 2005, Yamamoto et al., 2006). This line of research bore clinical application of electric
9	stimulation devices for the tratment of epilepsy, i.e., responsive neurostimulation currently in
10	practical use in the United States (Geller et al., 2017, Morrell and Group, 2011).
11	At the dawn of the corticogram and electric cortical stimulation in epilepsy surgery,
12	there was a patient whose continuous slow spike-and-slow discharges were completely
13	suppressed by solving arithmetical problem (Penfield and Jasper, 1954). Since then, mental
14	activation by AST or simple questions has been commonly used to arrest ADs in clinical practice.
15	Hitherto, however, their mechanisms have been unproved while their robust proof has remained
16	scarce. Lesser et al. analyzed the electrocorticography before and after the cognitive tasks during
17	functional brain mapping in patients with subdural electrodes (Lesser et al., 2019). Then the
18	authors investigated whether the brain states relate with abortion rates of ADs using wavelet

1	cross-coherence analysis. The main observations include that, regardless of the areas where ADs
2	were induced, mean coherence in theta-to-beta frequency ranges significantly decreased
3	throughout the brain when ADs were terminated. Functional MRI during taken after resective
4	surgery revealed that the similar tasks activated wide regions in the brain, indicating their
5	participation in controlling mental effort. In the trials when ADs stopped, the low frequency
6	bands around delta-to-theta also showed significantly higher coherence during baseline
7	compared to those when ADs sustained. Additionally, the abortion rates of ADs by AST were
8	comparable with that by BPS (57% vs. 59%). The present data should be an important beacon for
9	managing the vexing ADs. The caveats are impossibility to assess the direct effect of AST on
10	ADs because control data without therapeutic intervention (AST or BPS) were unavailable, and
11	possible contamination of the raw electrocorticography by AD-related activities that can affect
12	coherence.
13	The present study by Lesser et al. has raised three major issues to be revealed. Firstly,
14	what kind of cognitive task is the most effective to influence a certain area where ADs are
15	generated? Elucidation of mechanisms for emergence, evolution, and extinction of ADs needs to
16	keep pace with the knowledge of network employed in each kind of tasks. Then it is necessary to
17	optimize and tailor the list of efficient cognitive tasks for each patient. Secondly, who are at risk
18	of unfavorable effects on ADs by cognitive tasks? Contrary to the intention to suppress ADs and

1	hopefully spontaneous epileptic seizures, it is assumable that a kind of cognitive task can incite
2	ADs to overgrow, considering similarity of ADs to interictal or ictal discharges. There are
3	various types of reflex epilepsies, whose seizures are induced by more complicated cognitive and
4	praxis tasks than simple visual or tactile stimuli. Examples are calculation by abacus (Yamamoto
5	et al., 1991), mahjong playing (Fukuma et al., 2016), and Lego® construction (Zylicz et al.,
6	2013). Thirdly, how can we prove the role of subcortical structures on occurrence and
7	suppression of ADs? Stereotactic electrocorticography, which a growing number of institutes use
8	in clinical practice, may expand our horizons on understanding the role of deep brain structure
9	(Chassoux et al., 2018). Especially, the thalamus has been thought to orchestrate the alpha/beta
10	frequency oscillations in the human cortex (Hawasli et al., 2016, Lopes da Silva et al., 1980,
11	Steriade et al., 1987). The cortical response to input from the other areas may be reduced in some
12	cortical areas when the power of the low frequency bands is diminished in the background
13	(Usami et al., 2019) possibly under the control of the deep brain structure, constructing a vital
14	part of engaged network hubs. Based on this proposed brain physiology, it would be effective to
15	prohibit spread of detrimental input like ADs or interictal discharges by approaching the
16	supposed hubs and transiently separating them from the normal network.
17	Cognitive task, which requires patients' cooperation and efforts, was equivalent to BPS,
18	which uses mechanical and technological devices, in terminating ADs. It is very interesting such

1	a "human" way has attracted attention again in this era. Given that human brain is the last to be
2	deciphered, myriad seeds of the method should still lie hidden in the highly complicated matrix
3	of the gray and white matter inside us. The principle of BPS was succeeded in production of the
4	new technique of neuromodulation. Likewise, the principle of mental activation would achieve
5	development of intrinsic neuromodulation therapy for epilepsy – by thinking through the human
6	way of thinking to overcome electrically induced cortical hyperexcitability and spontaneous
7	epileptic seizures in the near future.
8	
9	
10	Acknowledgement
11	This work is partially supported by JSPS KAKENHI 19K21210 to KU. We thank Dr. Kentaro
12	Tamura, Department of Neurosurgery, Nara Medical University, for his kind assistance for
13	literature search.
14	
15	References:

- 16 Chassoux F, Navarro V, Catenoix H, Valton L, Vignal JP. Planning and management of SEEG. Neurophysiol Clin
- 17 2018;48(1):25-37.
- 18 Fukuma K, Ihara M, Miyashita K, Motoyama R, Tanaka T, Kajimoto K, et al. Right parietal source in
- 19 Mahjong-induced seizure: a system epilepsy of focal origin. Clinical case reports 2016;4(10):948-51.
- 20 Geller EB, Skarpaas TL, Gross RE, Goodman RR, Barkley GL, Bazil CW, et al. Brain-responsive neurostimulation
- 21 in patients with medically intractable mesial temporal lobe epilepsy. Epilepsia 2017;58(6):994-1004.

- 1 Geschwind N, Sherwin I. Language-induced epilepsy. Arch Neurol 1967;16(1):25-31.
- 2 Hawasli AH, Kim D, Ledbetter NM, Dahiya S, Barbour DL, Leuthardt EC. Influence of White and Gray Matter
- 3 Connections on Endogenous Human Cortical Oscillations. Front Hum Neurosci 2016;10:330.
- 4 Kinoshita M, Ikeda A, Matsuhashi M, Matsumoto R, Hitomi T, Begum T, et al. Electric cortical stimulation
- 5 suppresses epileptic and background activities in neocortical epilepsy and mesial temporal lobe epilepsy. Clin
- 6 Neurophysiol 2005;116(6):1291-9.
- 7 Lesser R, Webber W, Miglioretti D L, Pillai J, J., Agarwal S, Mori S, et al. Cognitive effort decreases beta, alpha,
- 8 and theta coherence and ends afterdischarges in human brain. Clin Neurophysiol 2019.
- 9 Lesser RP, Kim SH, Beyderman L, Miglioretti DL, Webber WR, Bare M, et al. Brief bursts of pulse stimulation
- 10 terminate afterdischarges caused by cortical stimulation. Neurology 1999;53(9):2073-81.
- 11 Lopes da Silva FH, Vos JE, Mooibroek J, Van Rotterdam A. Relative contributions of intracortical and
- 12 thalamo-cortical processes in the generation of alpha rhythms, revealed by partial coherence analysis.
- 13 Electroencephalogr Clin Neurophysiol 1980;50(5-6):449-56.
- 14 Morrell MJ, Group RNSSiES. Responsive cortical stimulation for the treatment of medically intractable partial
- 15 epilepsy. Neurology 2011;77(13):1295-304.
- 16 Penfield W, Jasper H. Epilepsy and the functional anatomy of the human brain. Boston: Little Brown and Co., 1954.
- 17 Ritaccio AL, Brunner P, Schalk G. Electrical Stimulation Mapping of the Brain: Basic Principles and Emerging
- 18 Alternatives. J Clin Neurophysiol 2018;35(2):86-97.
- 19 Senanayake N. Epilepsia arithmetices revisited. Epilepsy Res 1989;3(2):167-73.
- 20 Steriade M, Domich L, Oakson G, Deschenes M. The deafferented reticular thalamic nucleus generates spindle
- 21 rhythmicity. J Neurophysiol 1987;57(1):260-73.
- 22 Usami K, Milsap GW, Korzeniewska A, Collard MJ, Wang Y, Lesser RP, et al. Cortical Responses to Input From
- 23 Distant Areas are Modulated by Local Spontaneous Alpha/Beta Oscillations. Cereb Cortex 2019;29(2):777-87.
- 24 Yamamoto J, Egawa I, Yamamoto S, Shimizu A. Reflex epilepsy induced by calculation using a "Soroban," a
- 25 Japanese traditional calculator. Epilepsia 1991;32(1):39-43.
- 26 Yamamoto J, Ikeda A, Kinoshita M, Matsumoto R, Satow T, Takeshita K, et al. Low-frequency electric cortical
- stimulation decreases interictal and ictal activity in human epilepsy. Seizure 2006;15(7):520-7.
- 28 Zylicz SA, Schippers HM, Tromp SC. Lego-induced seizures: from an exceptional case towards the building blocks
- 29 of generalised epilepsy. Seizure 2013;22(4):326-7.
- 30