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Bernoulli-Carlitz and Cauchy-Carlitz numbers with
Stirling-Carlitz numbers
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Abstract

Recently, the Cauchy-Carlitz number was defined as the counterpart of the Bernoulli-
Carlitz number. Both numbers can be expressed explicitly in terms of so-called Stirling-Carlitz
numbers. In this paper, we study the second analogue of Stirling-Carlitz numbers and give
some general formulae, including Bernoulli and Cauchy numbers in formal power series with
complex coefficients, and Bernoulli-Carlitz and Cauchy-Carlitz numbers in function fields. We
also give some applications of Hasse-Teichmiiller derivative to hypergeometric Bernoulli and
Cauchy numbers in terms of associated Stirling numbers.

§1. The second analogue of Stirling-Carlitz numbers

The (unsigned) Stirling numbers of the first kind [Z] and the Stirling numbers of
the second kind {Z} are defined by the generating functions

k 00 n e — - ny 2"
(—10g(;!_$)) :Z[Z]% and (k—,l)k:Z{k}m’

n=0 n=0

respectively. Based upon these generating functions, in [13] we introduced Stirling-
n

Carlitz numbers [ k] o and {Z} o Using these C-Stirling-Carlitz numbers, Bernoulli-
Carlitz numbers BC), (1.1) and Cauchy-Carlitz numbers CC,, (1.2) can be expressed
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explicitly. Notice that Bernoulli-Carlitz numbers BC,, ([1, 2, 3, 5]) are given by

o0

z BC,
(1.1) o = Z )

n=0

and Cauchy-Carlitz numbers CC,, ([13]) are give by

(1.2) =Y
n=0

logo(z)

cc,
II(

n)Z .

The (unsigned) Stirling numbers of the first kind [Z] appear in the falling factorial

n

p(z—1)-(@-nt+1) = (~1)"" m o

k=0

and the Stirling numbers of the second kind {Z} may be defined by

(1.3) x":ix(a:—l)~~(a:—k—|—l){2}.

k=0

Based upon such relations, we can introduce different type Stirling-Carlitz numbers
[#]4and {3},

Throughout this paper, let F, be the field with r elements and A = F,.[T] (resp.
F,.(T)) the ring of polynomials (resp. the field of rational functions) in one variable
over F,. According to the notations used in [5], set [i] := T" =T € A (i > 1),
D; = [{[i —1]"---[1]""" (i > 1) with Do = 1, and L; := [i][i — 1] ---[1] (i > 1) with
Ly = 1. Then, The Carlitz exponential ec(x) is defined by

’I’i

=35

1=0

and the Carlitz logarithm log.(x) is defined by

[e%e] il'ri
loge(a) = _(~1)'
i=0 v

The Carlitz factorial I1(7) is defined by

(i) = || DY
j=0

for a non-negative integer ¢ with r-ary expansion:

m
i:chrj (0<¢;<r).
j=0
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Denote the d-dimensional F,-vector space of polynomials of degree< d by A(d) := {«a €
Aldeg(a) < d}. As

P log(1+t) _ (1 + t)a; _ Z (I) m
n

n=0

with

as an analogous version, set

ec(zlogo(a) = 3 Bu(2)a””
n=0
where
E(2) = e”D(j)

([5, Corollary 3.5.3]). In addition, we have

(1.4) en(z)= J[ G+a)= [ z—a)= [”]Az

achA(n) a€A(n) =0
where
n . D
1.5 H — (=)t
(1.5 =0

([5, Theorem 3.1.5]).
As an analogue of the Stirling numbers of the second kind in (1.3), it is natural to
define {7} 4 by

(1.6) iek(z){Z}A _

Then, similarly to the C-Stirling-Carlitz numbers [} ] o and {7} o ([13, Theorem 5]),
A-Stirling-Carlitz numbers [} ] 4 and {7} 4 satisfy the orthogonal identities.

Theorem 1.1. Fori <n,
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Proof. Since

3

B i [kz] {n} i
i=0 k=i AVRLEF
by comparing the coefficients of 2 (1=0,1,...,n), we get (1.7). Since
en(z) = [n} 2"
—lila
S (1], e
= [ en(2) { }
im0 A0 k) a
LA ) 1
PR HRH X!
k=0 i=k A
by comparing the coefficients of ex(z) (k =n,n—1,...,1,0), we have (1.8). O

A-Stirling-Carlitz numbers of the second kind have an explicit expression as those
of the first kind in (1.5).

Theorem 1.2. For 0 < j <n, we have
Ut oo
ila DDy

Proof. 'We prove the theorem by induction on j. If j = n, then

tnda =

by (1.7). Next, we consider the case of j = n — i with ¢ > 0. Using the inductive
hypothesis and (1.7), we get

R ol R
— (-1)"""D, 4 D,

n—1i n—d
Dy L") Dyn_4Dr

i—1 _1\i—d
(1.9) :—D"‘Z ),

. rn—1 rn—d
D d=0 Lz‘—d Dd

= o

a
I
o
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Note for any [ > 0 that
(—1)" = 1.

In fact, if r is even, then —1 = 1 because the characteristic of [F,. is 2. Thus,

n—1i

i—1 i i—1 i
N
— L:Z;ll Dgnfd prt Li_dDngd
-\ T pried
Di d:oLi—dDd
(1 & (e
D; L,DT",

It is well known for any [ > 0 that
l a
(=1 _

a él 0
l l)l I
a=0 l—a

(for instance, see equation (1.63) in [14]). Hence we obtain by ¢ > 1 that

i—1
1
1.10 = —,
( ) dZO Lrn 1Drn d D;’;nfz

Combining (1.9) and (1.10), we deduce that
PR
n—if, D, ;D"

Example 1.3. By using (1.4), we calculate [?]A (i =0,1,...,n) in the case of
r=3and n=1,2,3. By

e1(z) =z2(z+1)(z—1) i{}

O

we have

If n = 2, then by

e2z)=z(z+1)(z—1)(z+T)(2—1T)
X(z4+T+1)z+T-1)(z-T+1)(z—T-1)

SR

1=
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we see
2 2 2
{ ] =T+ 74+ 72 { } = —(T°+T*+7T%+1), and [ ] =1.
0 A 1 A 2 A
Moreover, by

e3(2)

=z2z4+1)z-1)(=+T)(z-1T)

X (z4T+D(z+T-1D)(z=T+1)(z-T—1)

X (z24+4TH+T*+1)+T? - D)+ T*+T) (2 +T?-T)

X (z+T*+T+D)z+T*+T-1)(z+T?*-T+1)(2+T>-T -1)
(z2=TH-T*+1)(z-T>-D)(z-T*+T)(z-T%-T)

(

X
X (z—T*+T+1D)(z-T*+T-1)(z-T*-T+1)(2—-T*>-T —1)
oHES
1=0
we obtain

|:§:| — _T42 o T40 . T38 . T36 + T34 + T32 + T30 + T28
A

4 T24 4 T22 + T20 4 T18 - T16 - T14 - T12 _ TlO

1_ :T42+T40+T38—T36—T34—T32
L-1A

—T16—T14—T12+T10+T8+T6,
-3_ __T36_T3O_T28_T24_T22_T20_T18
_2_A

—T16—T14—T12—T8—T6—1,
_3_

=1.

_3_A

§ 2. Applications to hypergeometric Bernoulli and Cauchy numbers

The Hasse-Teichmiiller derivative H™ of order n is defined by
77(n) (Z amzm> _ Z 0 (m) m—n
n
m=R m=R

for >0 _pamz™ € F((z)), where F is a field of any characteristic, R is an integer and
am € F for any m > R.
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The Hasse-Teichmiiller derivatives satisfy the product rule [20], the quotient rule
[6] and the chain rule [8]. One of the product rules is described as follows:

Lemma 2.1. For f; e F[[z]] (i=1,...,k) with k > 2 and for n > 1, we have

HO (fiefo) = 3, HO(fa) - HO(fi).

Q1,000,020
i1+ Fip=n

The quotient rules are described as follows:

Lemma 2.2.  For f € F[[z]]\{0} and n > 1, we have

n _1\k '
(2.1) H™ (%) — Z (fki)l Z H(“)(f) . ..H(w)(f)

k=1 ¢  i1,..., i >1
11+ Fip=n
" (n+ 1\ (=1)k ‘
(2.2 > (1) HO(f)- - HO(f).
L) 2
11+~~+zk=n

In [11] Bernoulli numbers and Bernoulli-Carlitz numbers are expressed explicitly
by using the Hasse-Teichmiiller derivative. In [13], Cauchy numbers and Cauchy-Carlitz
numbers are expressed explicitly as well.

In this section, by using the Hasse-Teichmiiller derivative of order n, we shall obtain

some explicit expressions of the hypergeometric Cauchy numbers cy ,, defined by

1 T
oFi(1,N; N+ 1;—z) ;CN,HH,

where o F (a, b; ¢, z) is the hypergeometric function defined by

> (n) (n) g
o F1(a,b;c, 2) Z (n) )

with ()™ =a(a+1)---(a+n—1) (n >1) and (a)®) = 1. We give a different proof
for the following result shown in [15, Theorem 1].

Theorem 2.3. Forn > 1,
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Proof. Put
hi=oF (1, N;N +1;—z) = Ni (o)
9 Y Y ]:O N+j
Note that
A SN (G G N
HO(n)| = = = .
()] o ]ZO N+ (z)x N +i
- =0

Hence, by using Lemma 2.2 (2.1), we have

O

We express the hypergeometric Cauchy numbers in terms of the binomial coeffi-
cients, too. In fact, by using Lemma 2.2 (2.2) instead of Lemma 2.2 (2.1) in the proof

of Theorem 2.3, we obtain the following:

Proposition 2.4. Forn > 1,

_ n - 7’L+1 (_N)k
e = (—1) ”!;<k+1) nz (N +i1)--- (N +ig)

Expressions of ¢y 5, in Theorem 2.3 and Proposition 2.4 are explicit but not con-
venient to calculate them. Now, using associated Stirling numbers of the first kind, we
introduce a more convenient expression of hypergeometric Cauchy numbers. Associated

Stirling numbers of the first kind [7 ] -, ([4, 16, 17, 18]) are given by

(2.3) o To(m=1),

>m N

k oo n
(—log(l —x)— Fm,l(m)) _ Z [:] x!

n=0
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where
0 (m = 0);
1

Zzlzl % (m >

When m =1, [Z] = [Z} -, Is the classical Stirling numbers of the first kind. Now, we
obtain a simple expression for hypergeometric Cauchy numbers in terms of the binomial
coefficients and incomplete Stirling numbers of the first kind.

Theorem 2.5. For N >1 andn > 1, we have

n'z n+1\ (=N)kk! [n+ Nk
k+1)(n+ NV ko oy

CN

Remark. When N = 1, Theorem 2.5 is reduced to
z”: (—1"* (i) {n + k}

= ) K

Cn =
which is Proposition 2 in [13].

Proof. From (2.3), we have

K
i t/ _ (—log(1—1t) — Fy(t) *
it N tNV

$n— Nk

_Zk'H n!

B i k! [n-l—Nk} i
(n+ Nk)! k SN '

——(N-1)k
Notice that
H® —log(1 — ) — Fn—1(t) _ 1 .
tN i—o t+N
Applying Lemma 2.1 with
—log(l —t) — Fn_1(t
filt) == fulry = LD B0,
we get
k! n+ Nk 1
(2.4) S - [ ] - | —
(n+ Nk)! k SN ¢1,§>o (i1 + N)--- (i + N)
i1t tig=n

Together with Proposition 2.4, we get the desired result. Ol
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32
Example 2.6. Let N =3 and n = 4. By the definition in (2.3), we get
1|7 1 1 [10 153 1 (13 _ 1751
T 1],y 77 100 2].; 14007 13! [3].5 50400
1 |16 190261
and — = — .
16! [ 4 |55 29030400
Hence,

)i [0

(
IR G

5\ 32 -3/ 13 N 5\ 3%-4! [16
4) 13! [ 3.4 5/ 16! [ 4].4

Next, we shall obtain some explicit expressions of the hypergeometric Bernoulli

numbers By, ([9, 10, 12]), defined by

ZBNTL .7

1F1(1 N+1£L’ —

where 1 Fy(a; b; z) is the confluent hypergeometric function defined by

= (a (”) 2"

1F1abz Zb(”)m

n:0

Then we have the following:

Theorem 2.7. Forn > 1,
- 1
Bnn=nlY (=NHF
N kz_:l( ) _ Z>1 (N +i)l- (N +ip)
= D] 5eens i >
i1t Fip=n
Proof. Put
. NlzJ
h:=1F(1;N + 1;z) —_.
L Z (N +7)
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Note that
j > N! AN NI
H(’L) h = —< ) J—1 — ‘
( )x:O jgo(Nﬁ-j)! i)" ) (N +1)!
Hence, by using Lemma 2.2 (2.1), we have
BN'” — g®) <l)
n h)l—o
5 (—DF - .
=2 i S HWm| e
k=1 =0 i eig>1 =0 =0

O

We express the hypergeometric Bernoulli numbers in terms of the binomial coeffi-
cients, too. In fact, by using Lemma 2.2 (2.2) instead of Lemma 2.2 (2.1) in the proof
of Theorem 2.7, we obtain the following:

Proposition 2.8. Forn > 1,

" n+1 1
By = "!Z(_N!)k(kJr 1) i 2 (N + i)t (N +ik)!

k=1

In the same way as the proof of Theorem 2.5, using associated Stirling numbers of
the second kind, we introduce a more convenient expression of hypergeometric Cauchy
numbers. Associated Stirling numbers of the second kind {Z}>m ([4, 16, 17, 18]) are
given by

T — )" > (n x"

n=0

where
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When m =1, {Z} = {Z}>1 is the classical Stirling numbers of the second kind. Now,
we obtain a simple expression for hypergeometric Bernoulli numbers in terms of the
binomial coefficients and incomplete Stirling numbers of the second kind.

Theorem 2.9. For N > 1 and n > 1, we have
" (n4+1\ (=N)Y*E! (n+ Nk
By, =n! -— )
o ”z::(kﬂ) RN U

Remark. When N = 1, Theorem 2.9 is reduced to

- E LU

k=1 k

which is a simple formula of Bernoulli numbers, appeared in [7, 19].

Proof. From (2.5), we have

k
i £ B (et —EN_l(t)>k
= (j+ N)! t
o tn—Nk
-Su(})
—~ kJ>n n!
B i k! {n+Nl<:} i
= o )
e (N —1)k (n+ Nk)! k SN
Notice that
H(,L) et - EN_]_(t) _ 1
tN i—o (1+N)!
Applying Lemma 2.1 with
€t — EN_l(t)
filt) = o = fult) =
we get
k! n+ Nk 1
2.6 —_— = .
(2:6) (n+Nk:)!{ k }ZN il,;:kzo (i1 + N)!--- (i + N)!
i1+ tig=n

Together with Proposition 2.8, we get the desired result. Ol
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