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The infinite base change lifting associated to an APF
extension of a p‐adic field

By
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 *

Abstract

In this paper, we construct a base change lifting for an APF extension of a mixed char‐
acteristic local field. We do this by combining Arthur‐Clozel’s base change lifting with an
operation coming from Kazhdan’s theory of close local fields and Fontaine‐Wintenberger’s the‐
ory of fields of norms. Key facts are: (1) a compatibility of Deligne’s and Kazhdan’s theories of
close local fields via the local Langlands correspondence, and (2) a coincidence of the restriction
of the Galois groups with respect to a totally ramified extension and an operation coming from
Deligne’s theory.
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§1. Introduction

Let  p be a prime number. In this paper, we shall construct a local base change

lifting for an almost pro‐p cyclic extension of infinite degree. The point is that the local

base change lifting for a totally ramified extension coincides with an operation coming

from the close local fields theory of Kazhdan under some conditions.

We state the result more precisely. In this article, the term “local field” means a

complete discrete valuation field with finite residue field of characteristic  p . Fora local

field  L , we denote by  \mathscr{A}(GL_{N}(L)) the set of isomorphism classes of irreducible smooth

representations of  GL_{N}(L) over  \mathbb{C} . We fix a separable closure  \overline{L} of  L and denote the Weil

group of  L by  W_{L} . We recall that an L‐parameter of  GL_{N}(L) is agroup homomorphism

 \phi :  W_{L}  \cross  SL_{2}(\mathbb{C})  arrow  GL_{N}(\mathbb{C}) such that  \phi|_{W_{L}} is semi‐simple and smooth and  \phi|_{SL_{2}(\mathbb{C})}
is algebraic. Let  \Phi(GL_{N}(L)) denote the set of isomorphism classes of  L‐parameters
of  GL_{N}(L) . We note that  \Phi(GL_{1}(L)) is equal to the set  Hom(L^{\cross}, \mathbb{C}^{\cross}) of smooth

characters of  L^{\cross} . We denote by LLCL the local Langlands correspondence (LLC) of
 GL_{N} over  L , whose existence was firstly proven by [9] for  L of positive characteristic
and by [6] for  L of characteristic zero. Let  F beafinite extension of  \mathbb{Q}_{p} . We fix an
algebraic closure  \overline{F} of  F . Let Ebeasubfield ofF which is an APF extension of  F,

that is, for any  u\geq-1,  Ga1(\overline{F}/E)Ga1(\overline{F}/F)^{u} is an open subgroup of  Ga1(\overline{F}/F) , where

 Ga1(\overline{F}/F)^{u} denotes the u‐th ramification group in upper numbering. In particular E
is an almost pro‐p extension over  F . Let  F_{\infty} be the field of norms associated to E  /F.
We denote by  {\rm Res}_{\infty} the restriction map  \Phi(GL_{N}(F))  arrow\Phi(GL_{N}(F_{\infty})) with respect to

the natural injection  W_{F_{\infty}}  \hookrightarrow W_{F}.

Theorem 1.1. Suppose that the extension  E/F is procyclic. Then we can con‐

struct a map  BC_{\infty} :  \mathscr{A}(GL_{N}(F))  arrow \mathscr{A}(GL_{N}(F_{\infty})) such that the following diagram is
commutative:

 \mathscr{A}(GL_{N}(F_{\infty}))^{LLC_{F\infty}}arrow\Phi(GL_{N}(F_{\infty}))

 BC_{\infty}\uparrow {\rm Res}\infty\uparrow
 \mathscr{A}(GL_{N}(F))\underline{LLC_{F}}\Phi(GL_{N}(F)) .

We shall call  BC_{\infty} the base change lifting of infinite degree. We construct  BC_{\infty} by

using Arthur and Clozel’s result [1] and close fields theory of Kazhdan [8]. Hence our
construction is basically on the representation theory of  p‐adic groups, that is to say,
the automorphic side. However, we use LLC when we prove compatibility of Arthur‐

Clozel’s base change lifting and a bijection given by Kazhdan’s theory by showing the

corresponding statement in terms of  L‐parameters, that is, the Galois side. The author

expects that in the future we will be able to avoid such arguments.
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Furthermore, we study the structure of the fibers of  BC_{\infty} . Now we recall the Lang‐

lands sum following the exposition of [6, Chapter 1]. We takea partition  (N1, . . . , N_{r})
of  N . Let  \pi_{i}\in \mathscr{A}(GL_{N_{i}}(F)) be an essentially square‐integrable representation for each
 1\leq i\leq r . Let si be the real number such that  |\cdot|^{s_{i}} is the absolute value of the central

character of  \pi_{i} . We reorder  \pi_{1} , . . . ,  \pi_{r} so that  N_{1}^{-1}s_{1}  \geq\cdots  \geq  N_{r}^{-1}s_{r} . We denote by
 P  (N_{1}, . . . , N_{r}) the standard parabolic subgroup of  GL_{N}(F) whose Levi component is

 GL_{N_{1}}(F)  \cross\cdots  \cross GL_{N_{r}}(F) . Then the normalized induction

 n-Ind_{P(N_{1},\ldots,N_{r})}^{GL_{N}(F)}(\pi_{1}\ovalbox{\tt\small REJECT}
\cdots\ovalbox{\tt\small REJECT}\pi_{r})
has a unique irreducible quotient, which we denote by  \pi_{1}\ovalbox{\tt\small REJECT}\cdots\ovalbox{\tt\small REJECT}\pi_{r} and call the Lang‐

lands sum of  \pi_{1} , . . . ,  \pi_{r} . Each  \pi\in \mathscr{A}(GL_{N}(F)) can be written as aLanglands sum and

the  \pi_{1} , . . . ,  \pi_{r} are uniquely determined up to a permutation.

We put  \Gamma  =  Ga1(E/F) and denote by  \hat{\Gamma} the group of smooth characters of  \Gamma

with valued in  \mathbb{C}^{\cross} . By local class field theory, we identify an element of  \hat{\Gamma} with a

character  F^{\cross}  arrow  \mathbb{C}^{\cross} which factors through  F^{\cross}/N_{M/F}(M^{\cross}) for some finite extension

 M/F contained in  E . For a positive integer  \mu and  (\eta_{1}, \ldots, \eta_{\mu})  \in  \hat{\Gamma}^{\mu} , we denote by
 \Gamma  (\eta_{1}, . . . , \eta_{r}) the quotient of  \hat{\Gamma}^{\mu} by the following equivalence relation: Two elements

 (\xi_{1}, . . . , \xi_{\mu}) and  (\theta_{1}, . . . , \theta_{\mu}) in  \hat{\Gamma}^{\mu} are equivalent if there exists a permutation  \sigma of

 \{ 1, . . . ,  \mu\} such that  \eta_{j}\xi_{j}=\eta_{\sigma(j)}\theta_{\sigma(j)} for each  j.

Theorem 1.2. Let the notations and assumptions be as in Theorem 1.1.  We

suppose that  (p, N)=1.

(i) Let  \pi  \in  \mathscr{A}(GL_{N}(F)) be an essential ly square‐integrable representation. We put
 \pi_{\infty}  =BC_{\infty}(\pi) . Let  \omega_{\infty} denote the central character of  \pi_{\infty} . Then  BC_{\infty}^{-1}(\pi_{\infty}) has

a natural  \hat{\Gamma} ‐torsor structure and the map

 \omega:BC_{\infty}^{-1}(\pi_{\infty})arrow BC_{\infty}^{-1}(\omega_{\infty})

which maps  \pi' to its central character  \omega_{\pi'} is bijective.

(ii) (a) Let  \pi be any element of  \mathscr{A}(GL_{N}(F)) . We suppose that  p>N. There exist a
positive integer  r , positive integers  N_{i},  \mu_{i} and an essential ly square‐integrable

representation  \pi_{i}  \in  \mathscr{A}(GL_{N_{i}}(F)) for each  i  =  1 , 2, . . . ,  r , and an element

 \eta_{i,j}  \in\hat{\Gamma} for each  1\leq i\leq r and  2\leq j\leq\mu_{i} satisfying the fol lowing conditions:

 * the equality  \mu_{1}N_{1}+\cdots+\mu_{r}N_{r}=N holds,
 * the lifts  BC_{\infty}(\pi_{1}) , . . . ,  BC_{\infty}(\pi_{r}) are all distinct, and
 * we can write

 \pi=\pi_{1}\ovalbox{\tt\small REJECT}(\pi_{1}\otimes\eta_{1,2})
\ovalbox{\tt\small REJECT}\cdots\ovalbox{\tt\small REJECT}(\pi_{1}
\otimes\eta_{1,\mu_{1}})
 \ovalbox{\tt\small REJECT}\cdots

 \ovalbox{\tt\small REJECT}\pi_{r}\ovalbox{\tt\small REJECT}(\pi_{r}\otimes\eta_
{r,2})\ovalbox{\tt\small REJECT}\cdots\ovalbox{\tt\small REJECT}(\pi_{r}
\otimes\eta_{r,\mu_{r}} ) .
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(b) Under the notation of  (a) , the group  \hat{\Gamma}(\pi)  =\hat{\Gamma}^{\mu_{1}}  \cross  \cdots  \cross\hat{\Gamma}^{\mu_{r}} transitively acts
on  BC_{\infty}^{-1}(\pi_{\infty}) . Asahomogeneous space of  \hat{\Gamma}(\pi) , this is isomorphic to

 \Gamma (1, \eta_{1,2}, . . . , \eta_{1,\mu_{1}}) \cross \cdots 
\cross\hat{\Gamma}(1, \eta_{r,2}, . . . , \eta_{r,\mu_{r}} ) .

Remark 1.3. We denote the local reciprocity map of  F by  rec_{F} :  W_{F}  arrow  F^{\cross}.

For  \phi  \in  \Phi(GL_{N}(F)) , let  \chi_{\phi} denote the determinant character of  \phi . If  p  >  N , then

Theorem 1.2 shows that, using  LLC_{F_{\infty}} , we can characterize LLCF as the unique map

which makes the diagram

 Hom(F^{\cross}, \mathbb{C}^{\cross})arrow^{\omega}\mathscr{A}(GL_{N}(F))arrow 
\mathscr{A}(GL_{N}(F_{\infty}))BC_{\infty}

 \ovalbox{\tt\small REJECT}_{rec_{F}^{*}} \downarrow LLC_{F} \downarrow 
LLC_{F\infty}
 Hom(W_{F}, \mathbb{C}^{\cross})arrow^{\chi}\Phi(GL_{N}(F))arrow\Phi(GL_{N}
(F_{\infty})){\rm Res}\infty/0

commute and has the following properties:

 \bullet a Steinberg representation  St_{m}(\sigma) maps to the outer tensor product

 LLC_{F}(\sigma)Sym^{m-1}Std,

where Std is the standard representation of  SL_{2}(\mathbb{C}) , and

 \bullet a Langlands sum maps to the corresponding direct sum.

The outline of this article is as follows: First we prepare some notations which ap‐

pear frequently in this article. In Section2we briefly review two theories of close fields.

One is on the Galois side and due to Deligne [5] and the other is on the automorphic side
and due to Kazhdan [8]. We devote§§2.1 to Deligne’stheory and§§2.2 to Kazhdan’s
theory. The two are compatible via LLC in acertain sense, which we see in §§2.3. In
Section 3 we prove key lemmas, which say that the restriction functor of Galois groups

with respect to a totally ramified extension  L/K coinsides with Deligne’s correspon‐

dence under some conditions. We devote§§3.1 to prove the lemmas for the case L /K
is finite. In §§3.2, we briefly review the theory of fields of norms due to Fontaine and

Wintenberger [12] and prove the lemmas for the case  L/K is infinite. In Section 4we
prove Theorem 1.1 as Theorem 4.3. Finally, in Section 5, we prove Theorem 1.2 as
Theorem 5.1.

Notation

 \bullet Let  p be a prime number.
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 \bullet In this article, the term “local field” means a complete discrete valuation field with
finite residue field of characteristic  p . LetK denotea local field andFalocal field

of characteristic  0 , i.e. afinite extension of  \mathbb{Q}_{p} . Aseparable closureK ofK and an

algebraic closure  \overline{F} of  F are fixed.

 \bullet We write  \mathcal{O}_{K} for the ring of integers of  K,  p_{K} for the maximal ideal of  \mathcal{O}_{K} and  k_{K}

for the residue field of  K . We denote by vK the normalized additive valuation of
 K . We write  \mathcal{G}_{K}=Ga1(\overline{K}/K) and  W_{K} for the Weil group of  K.

 \bullet For any  u\geq-1 , let  \mathcal{G}_{K}^{u} denote the u‐th ramification group in upper numbering. Let
 L be an extension of  K contained in  \overline{K} . We put  \mathcal{G}_{L}=Ga1(\overline{K}/L) . The extension L

is called APF if  \mathcal{G}_{L}\mathcal{G}_{K}^{u} is open in  \mathcal{G}_{K} for any  u\geq-1 . If so, we put  \mathcal{G}_{L}^{0}=\mathcal{G}_{K}^{0}\leqq \mathcal{G}_{L}.
For a real number  u\geq-1 , we define

 \psi_{L/K}(u)=  \{   \int_{0}^{u}(\mathcal{G}_{K}^{0}:_{u}\mathcal{G}_{L}^{0}\mathcal{G}_{K}^{v})dv ifuorotherwise,
which is independent of the choice of  \overline{K} . This is Wintenberger’s definition [12,
1.2.1]. If  L/K is finite and Galois, then it coinsides with that of Serre [11]. We
denote by  i(L/K) the largest  i satisfying  \mathcal{G}_{L}\mathcal{G}_{K}^{i}  =  \mathcal{G}_{K} . A real number  b  \geq  -1 is

called a ramification break of  L/K if  \mathcal{G}_{L}\mathcal{G}_{K}^{b}  \supsetneq \mathcal{G}_{L}\mathcal{G}_{K}^{b+\epsilon} for any  \epsilon>0 . Note that, if

 L/K is inifinite, then the set of the ramification breaks is a countably infinite set.

Let  b_{0}<b_{1}  <b_{2}<\cdots be the ramification breaks of L /K . We put

 K_{n}=\overline{K}^{\mathcal{G}_{L}\mathcal{G}_{K}^{b_{n}}} .

Here, we recall some properties on APF extensions [12, 1.4]:

(1) For any integer  n  \geq  0,  K_{n}/K is finite. Furthermore,  K_{0}/K is unramified,
 K_{1}/K_{0} is tamely totally ramified, and if  n  \geq  1 then  K_{n+1}/K_{n} is totally

ramified of degree a power of  p.

(2) For any  n\geq 1 and any subextension  M of  L/K_{n+1} , we have

 \psi_{L/K_{n}}(b_{n})=i(L/K_{n})=i(M/K_{n})=i(K_{n+1}/K_{n}) .

(3) If  L/K is infinite, then   i(L/K_{n})arrow\infty as  narrow\infty.

 \bullet Let  L/K be an infinite APF extension. We denote by  X(L/K) or  K_{\infty} the field of

norms associated to  L/K (for the definition, see §§2.3 of this article or [12, §2]).
We put  i(K_{\infty}/K)=i(L/K) . For any integern  \geq 0 , we put i  (K_{\infty}/K_{n})=i(L/K_{n}) .
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 \bullet We denote by  \mathscr{A}(GL_{N}(K)) the set of isomorphism classes of irreducible smooth

representations of  GL_{N}(K) over  \mathbb{C} . Let  \mathbb{K}_{l}(GL_{N}(K)) , or  \mathbb{K}_{l}(K) for short, denote

the principal congruence subgroup of level  l of  GL_{N}(K) :

 \mathbb{K}_{l}(K)=\mathbb{K}_{l}(GL_{N}(K))=Ker(GL_{N}(\mathcal{O}_{K})arrow 
GL_{N}(\mathcal{O}/p_{K}^{l})) .

We denote by  \mathscr{A}_{l}(GL_{N}(K)) the subset of  \mathscr{A}(GL_{N}(K)) consisting of representations
which have a non‐trivial  \mathbb{K}_{l}(K) ‐fixed vector.

 \bullet An  L‐parameter of  GL_{N}(K) is a group homomorphism  \phi :  W_{K}\cross SL_{2}(\mathbb{C})arrow GL_{N}(\mathbb{C})
such that  \phi|_{W_{K}} is semi‐simple and smooth and  \phi|_{SL_{2}(\mathbb{C})} is algebraic. Let  \Phi(GL_{N}(K))
denote the set of isomorphism classes of  L‐parameters of  GL_{N}(K) . We write

 \Phi_{l}(GL_{N}(K))=\{\phi\in\Phi(GL_{N}(K)) |\mathcal{G}_{K}^{l}\subset 
Ker\phi\}.

 \bullet For a real number  r , we write  \lceil r\rceil for the least integer  \lambda satisfying  r\leq\lambda.

§2. Theory of close fields

We recall Deligne’s and Kazhdan’s theory of close fields. Two local fields  K(1)
and  K(2) are called  l ‐close if there exists an isomorphism of rings  \alpha :  \mathcal{O}_{K(2)}/p_{K(2)}^{l}  -arrow\sim

 \mathcal{O}_{K(1)/P_{K(1)}^{l}}.

Notation2.1. If two local fields  K(1) and  K(2) are  l‐close by  \alpha :  \mathcal{O}_{K(2)}/p_{K(2)}^{l}  -arrow\sim

 \mathcal{O}_{K(1)}/p_{K(1)}^{l} , then we fix a uniformizer  \varpi_{2} of  K(2) and choose a lift  \varpi_{1}  \in  p_{K(1)} of
 \alpha (  \varpi_{2} mod  p_{K(2)}^{l} ). We put  \beta=(\alpha, \varpi_{2}, \varpi_{1}) .

As we see below, the datum  \beta gives bijections  (\gamma_{\beta})_{l}^{*} and  A_{\beta,l}^{*} , which will appear in

Deligne’s and Kazhdan’s theory, respectively.

§2.1. Deligne’s theory

First, we briefly review Deligne’s theory ([5]). Let  R be a local ring and  m the
maximal ideal of  R . Suppose that the residue field  R/m is finite of characteristic  p.

Then  R is called a truncated discrete valuation ring, or tdvr for short, if  m is monogenic

and nilpotent. Note that  R is atdvr if and only if there existsa local field Ksuch that
 R is isomorphic to  \mathcal{O}_{K}/p_{K}^{l} for some positive integer  l . A triple in Deligne’stheory is a
triple  (R, M, \epsilon) , where  R is a tdvr,  M is a free  R‐module of rank 1, and  \epsilon :  Marrow m is a

surjection of  R‐modules. Let  ((R', m'), M', \epsilon') be another triple. A morphism of triples

 (R, M, \epsilon)  arrow  (R', M', \epsilon') is a triple  (r, \phi, \eta) , where  r  \geq  1 is an integer,  \phi :  R  arrow  R' is
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a local homomorphism and  \eta :  Marrow M^{\prime\otimes r} is an  R‐linear homomorphism which makes

the diagram

 Marrow^{\eta}M^{\prime\otimes r}

 mm\downarrow\epsilon\downarrow\epsilon_{0,r}'\underline{\phi},
commute. Here, we fix a generator  x' of  M' and define  \epsilon_{0,r}' to be the  R'‐linear homo‐

morphism given by  a_{1}'x'\otimes\cdots\otimes a_{r}'x'arrow a_{1}'\cdots a_{r}'\epsilon'(x')^{r} . The  \epsilon_{0,r}' is independent of the

choice of  x' . The integer  r is called the ramification index of the morphism  (r, \phi, \eta) .

The morphism  (r, \phi, \eta) is said to be flat if  lg(R')  =rlg(R) , where  lg(R) (resp.  lg(R') )
denotes the length of  R (resp.  R' ) as an  R‐module (resp.  R'‐module). The morphism
 (r, \phi, \eta) is said to be finite if  \phi is finite. For any tripe  T  =  (R, M, \epsilon) , we denote by

 Ext(T)^{l} the category whose objects are finite flat triples over  T which satisfy the condi‐

tion  C^{l} in [5, 1.5.4], and morphisms are  R(l) ‐equivalence classes ([5, 2.3]) of morphisms
of triples over  T.

Now take a positive integer  l'\leq l . We denote by  \overline{\epsilon} the natural surjection   M/m^{l'}Marrow
 m/m^{l} ’ induced by  \epsilon . Then  \overline{T}  =  (R/m^{l\prime}, M/m^{l'}M, \overline{\epsilon}) is a triple in Deligne’s theory,
which is called the reduction mod  m^{l'} of  T . Let  Ext(T)^{l,l'} denote the full subcategory

of Ext  (T)^{l} consisting of objects satisfying the condition  C^{l'} . The canonical functor

 Red_{T}^{l,l'} :  Ext(T)^{l,l'}arrow Ext(\overline{T})^{l} ’ which maps an objectS of Ext  (T)^{l,l'} to the reduction of
 S mod  m^{rl'} , where  r is the ramification index of  S/T , gives an equivalence of categories

[5, Corollaire 2.9].
Let  K be a local field and  l a positive integer. We denote by  Tr_{l}(K) the triple

 (\mathcal{O}_{K}/p_{K}^{l}, p_{K}/p_{K}^{l+1}, \epsilon) attached to  K , where  \epsilon is the composite of the natural maps

 p_{K}/p_{K}^{l+1}arrow p_{K}/p_{K}^{l}arrow \mathcal{O}_{K}/p_{K}^{l} . We fixaseparable closureK of K. Let  Ext(K) denote

the category of finite separable field extensions of  K contained in  \overline{K} and  Ext(K)^{l} the

full subcategory of  Ext(K) consisting of  K' such that  \mathcal{G}_{K'}  \supset \mathcal{G}_{K}^{l} . Note that the natural
morphism

 \mathcal{G}_{K}arrow  1\dot{4}_{-}^{m} Ga1(K'/K)
 K'/K:Ga1oisK'\in Ext(K)^{l}

induces an isomorphism

(2.1)  \mathcal{G}_{K}/\mathcal{G}_{K}^{l}arrow\sim 1\dot{4}_{-}^{m} Ga1(K'/K) .
 K'\in Ext(K)^{l}
 K'/K : Galois

We can construct a functor

 T_{K}^{l} :  Ext(K)^{l}arrow Ext(Tr_{l}(K))^{l}
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such that, for an object  K' of Ext  (K)^{l},  T_{K}^{l}(K') is the extension of triples  Tr_{l}(K)  arrow

 Tr_{lr}(K') attached to the field extension  K'/K , where  r is the ramification index of

 K'/K. Deligne has proved that the  T_{K}^{l} is an equivalence of categories ([5, Théorème
2.8]).

Let  K(1) and  K(2) be  l‐close local fields by  \alpha . We fixaseparable closure K(i) of
 K(i) and a datum  \beta=  (\alpha, \varpi_{2}, \varpi_{1}) as in Notation 2.1. We have an  \mathcal{O}_{K(2)}/p_{K(2)}^{l} ‐linear

isomorphism  \eta(\beta):p_{K(2)}/p_{K(2)}^{l+1}  -arrow p_{K(1)}/p_{K(1)}^{l+1}\sim by (  \varpi_{2} mod  p_{K(2)}^{l+1} )  arrow (  \varpi_{1} mod  p_{K(1)}^{l+1} ).
Then  \gamma_{\beta}  =  (1, \alpha, \eta(\beta)) define an isomorphism of triples  Tr_{l}(K(2))  -arrow\sim  Tr_{l}(K(1)) . By

mapping an extension  Tr_{l}(K(1))  arrow X to  Tr_{l}(K(1))  \underline{\gamma}_{arrow^{\beta}}Tr_{l}(K(2))  arrow X of  Tr_{l}(K(2)) ,

we obtain an equivalence of categories

 \gamma_{\beta}^{*}=(\gamma_{\beta})_{l}^{*}: Ext(Tr_{l}(K(1)))^{l}arrow Ext(Tr_
{l}(K(2)))^{l}

Now we fix a quasi‐inverse  T^{-1} of  T_{K(2)}^{l} For any object  K' of Ext  (K(1))^{l} which is

Galois over  K(1) , the composite

 Ga1(K'/K(1))--arrow Aut_{Tr_{l}(K(1))}\tau_{K\underline{(1})}^{l}(T_{K(1)}^{l}
(K'))-arrow Aut_{Tr_{l}(K(2))}\gamma_{\beta}^{*}(\gamma_{\beta}^{*}T_{K(1)}^{l}
(K'))
 arrow Ga1(T^{-1}\gamma_{\beta}^{*}T_{K(1)}^{l}\tau^{-1}(K')/K(2))

is an isomorphism. Since the set

{  T^{-1}\gamma_{\beta}^{*}T_{K(1)}^{l}(K')  |K'\in Ext(K(1))^{l} and  K'/K(1) : Galois}

is cofinal in  Ext(K(2))^{l} , the inverse of the composite and the isomorphisms (2.1) for
 K=K(1) ,  K(2) give an isomorphism

 (\gamma_{\beta})_{*}=(\gamma_{\beta})_{l,*} :  \mathcal{G}_{K(2)/\mathcal{G}_{K(2)}^{l}}  -arrow \mathcal{G}_{K(1)/\mathcal{G}_{K(1)}^{l}}\sim,

which is uniquely determined by  \beta up to inner isomorphisms. Hence we can define a

bijection

 \gamma_{\beta}^{*}=(\gamma_{\beta})_{l}^{*}: \Phi_{l}(GL_{N}(K(1)))-
arrow\Phi_{l}(GL_{N}(K(2)))\sim

by  \phi_{1}arrow\phi_{1} ◦  ((\gamma_{\beta})_{*} \cross id_{SL_{2}(\mathbb{C})}) for any  \phi_{1}  \in\Phi_{l}(GL_{N}(K(1))) .

Now we take a positive integer  l'  \leq  l . There exists a unique ring isomorphism
 \alpha' :  \mathcal{O}_{K(2)}/p_{K(2)}^{l'}  -\simarrow \mathcal{O}_{K(1)}/p_{K(1)}^{l'} which makes the diagram

 \mathcal{O}_{K(2)/P_{K(2)}^{l}}arrow^{\alpha}\mathcal{O}_{K(1)/P_{K(1)}^{l}}

 \Downarrow  \Downarrow
 \mathcal{O}_{K(2)/P_{K(2)}^{l'}}arrow^{\alpha'}\mathcal{O}_{K(1)/P_{K(1)}^{l'}}
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commute, where the vertical arrows are the natural surjections. Thus the datum  \beta

induces an isomorphism of triples  Tr_{l'}(K(2))  arrow Tr_{l'}(K(1)) , which induces an equiva‐

lence of categories  (\gamma_{\beta})_{l}^{*}, :  Ext(Tr_{l'}(K(1)))^{l\prime}arrow Ext(Tr_{l'}(K(2)))^{l\prime} . Fori  =  1 , 2, we put

 Red_{K(i)}^{l,l'}  =Red_{Tr_{l}(K(i))}^{l,l'} . There existsa canonical isomorphism

 Red_{K(i)}^{l,l'}Tr_{l}(K(i))-arrow Tr_{l'}\sim(K(i)) .

For any   K'\in  Ext(K(1))^{l} ’ the triple Tl (1)  (K') satisfies the condition  C^{l'} , and thus is
an object of  Ext(Tr_{l}(K(1)))^{l,l'} We have natural isomorphisms

 Red_{K(1)}^{l,l'}T_{K(1)}^{l}(K')-arrow T_{K(1)}^{l}\sim'(K') and  Red_{K(2)}^{l,l'}(\gamma_{\beta})_{l}^{*}T_{K(1)}^{l}(K')-
arrow\sim(\gamma_{\beta})_{l}^{*},T_{K(1)}^{l'}(K') .

Via these isomorphisms, we identify the left‐hand sides with the corresponding right‐
hand sides. We take a quasi‐inverse  \lambda :  Ext(Tr_{l'}(K(2)))^{l'}  -arrow\sim  Ext(Tr_{l}(K(2)))^{l,l'} of

 Red_{K(2)}^{l,l'} For any object  S(2) of  Ext(Tr_{l}(K(2)))^{l,l'} ,  T^{-1}(S(2)) is in  Ext(K(2))^{l} ’ and
 T^{-1} ◦  \lambda is aquasi‐inverse of  T_{K(2)}^{l'} By using the quasi‐inverse, we can construct a group

isomorphism  (\gamma_{\beta})_{l',*} :  \mathcal{G}_{K(2)}/\mathcal{G}_{K(2)}^{l'}  -arrow\sim  \mathcal{G}_{K(1)}/\mathcal{G}_{K(1)}^{l'} by the similar method to that of

 (\gamma_{\beta})_{l,*} . For any object  K' of Ext  (K(1))^{l} ’ which is Galois over K(1), the diagrams

 Ga1(K'/K(1))arrow Aut_{Tr_{l}(K(1))}T_{K(1)}^{l}(T_{K(1)}^{l}(K'))
  \downarrow Red_{K(1)}^{l,l'}

 Aut_{Tr_{l'}(K(1))}(T_{K(1)}^{l'}(K')) ,

 Aut_{Tr_{l}(K(1))}(T_{K(1)}^{l}(K'))\underline{(\gamma_{\beta})_{l}^{*}}
Aut_{Tr_{l}(K(2))}((\gamma_{\beta})_{l}^{*}T_{K(1)}^{l}(K'))

 \downarrow Red_{K(1)}^{l,l'} \downarrow Red_{K(2)}^{l,l'}
 (\gamma\beta)_{l'}^{*}

 Aut_{Tr_{l},(K(1))}(T_{K(1)}^{l'}(K'))arrow Aut_{Tr_{l},(K(2))}((\gamma_{\beta}
)_{l}^{*},T_{K(1)}^{l'}(K')) ,

and

 Aut_{Tr_{l}(K(2))}((\gamma_{\beta})_{l}^{*}T_{K(1)}^{l}(K'))Ga1(T^{-1}(\gamma_{
\beta})_{l}^{*}T_{K(1)}^{l}\underline{\tau^{-1}}(K')/K(2))

 \downarrow Red_{K(2)}^{l,l'} \downarrow(\dagger)
 Aut_{Tr_{l},(K(2))}((\gamma_{\beta})_{l}^{*},T_{K(1)}^{l'}(K'))arrow Ga1(T^{-1}
\lambda(\gamma_{\beta})_{l}^{*},T_{K(1)}^{l'}\tau^{-1}\lambda(K')/K(2))

commute, where the arrow (  \dagger ) is the isomorphism induced by a natural isomorphism

 id_{Ext(Tr_{l}(K(2)))^{l,l'}}  arrow\sim\lambda ◦  Red_{K(2)}^{l,l'} . Hence the isomorphism  \mathcal{G}_{K(2)}/\mathcal{G}_{K(2)}^{l'}  -\simarrow \mathcal{G}_{K(1)}/\mathcal{G}_{K(1)}^{l'}
induced by  (\gamma_{\beta})_{l,*} coincides with  (\gamma_{\beta})_{l',*} up to inner isomorphisms.

Therefore we have the following:
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Lemma2.2. Let  l be a positive integer and  K(1) and  K(2)  l ‐close local fields.

We fix a datum  \beta as in Notation 2.1. Then, for any positive integer  l'  \leq  l , we can

construct a bijection  (\gamma_{\beta})_{l}^{*}, :  \Phi_{l'}(GL_{N}(K(1)))  -arrow\sim\Phi_{l'}(GL_{N}(K(2))) . The bijection  (\gamma_{\beta})_{l}^{*},
coincides with the restriction of  (\gamma_{\beta})_{l}^{*} on  \Phi_{l'}(GL_{N}(K(1))) .

§2.2. Kazhdan’s theory

To review Kazhdan’s theory of close local fields [8], we first recall an equivalence
of  Rep_{l}(GL_{N}(L)) and the category of representations of some Hecke algebra, where  L

is a local field.

We put  \mathbb{K}_{l}(L)  =  Ker(GL_{N}(\mathcal{O}_{L}) arrow GL_{N}(\mathcal{O}/p_{L}^{l})) . We denote by Rep  (GL_{N}(L))
the category of admissible smooth representations of  GL_{N}(L) and by  Rep_{l}(GL_{N}(L))
the full subcategory of Rep  (GL_{N}(L)) consisting of representations generated by their

 \mathbb{K}_{l}(L) ‐fixed vectors. We denote by  \mathscr{A}_{l}(GL_{N}(L)) the subset of  \mathscr{A}(GL_{N}(L)) consisting of
representations which have a non‐trivial  \mathbb{K}_{l}(L) ‐fixed vector. We denote by  \mathscr{H}_{l}(GL_{N}(L))
the algebra of compactly supported  \mathbb{K}_{l}(L)-bi‐invariant functions on  GL_{N}(L) with values
in  \mathbb{C} whose product is the convolution  *l with respect to the Haar measure  \mu_{GL_{N}(L),l}

on  GL_{N}(L) normalized by

 \mu_{GL_{N}(L),l}(\mathbb{K}_{l}(L))=1.

The characteristic function  e_{\mathbb{K}_{l}(L)} of  \mathbb{K}_{l}(L) is the unity of  \mathscr{H}_{l}(GL_{N}(L)) . The category

of left  \mathscr{H}_{l}(GL_{N}(L)) ‐modules is denoted by Mod  (\mathscr{H}_{l}(GL_{N}(L))) .

Lemma 2.3  ( [4, Corollaire 3.9 (ii)]  ) . The functor  Varrow V^{\mathbb{K}_{l}(L)} gives an equiva‐
lence of categories

 Rep_{l}(GL_{N}(L))arrow Mod(\mathscr{H}_{l}(GL_{N}(L))) .

By using this, we can prove the following:

Lemma2.4. For  l\leq l' , the functor

Mod  (\mathscr{H}_{l}(GL_{N}(L)))arrow Mod(\mathscr{H}_{l'}(GL_{N}(L)))

 Warrow(\mathscr{H}_{l'}(GL_{N}(L))*e) \otimes W
 \mathscr{H}_{l}(GL_{N}(L))

makes the diagram

 Rep_{l}(GL_{N}(L))arrow Rep_{l},(GL_{N}(L))

Mod  (\mathscr{H}_{l}(GL_{N}(L)))\downarrowarrow Mod(\mathscr{H}_{l'}(GL_{N}(L)))
\downarrow
commute up to natural equivalences, where the two vertical arrows are the equivalences

in Lemma 2.3 and the top horizontal arrow is the natural injection.
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Proof. The following proof is similar to that of [4, Corollaire 3.9 (ii)]. Throughout
this proof, we put  G=  GL_{N}(L) ,  K_{l}  =\mathbb{K}_{l}(L) ,  \mathscr{H}_{l}  =  \mathscr{H}_{l}(G) and  e_{l}  =  e_{K_{l}} . Note that

the  \mathbb{C}‐vector space  \mathscr{H}_{l'}*e has an  \mathscr{H}_{l'}-\mathscr{H}_{l}‐bimodule structure via  (h_{l'} , h_{l}', *e, h_{l})arrow
 h_{l'}*l'h_{l}',  *h for any  h_{l'} ,  h_{l}',  \in \mathscr{H}_{l'} and  hl\in \mathscr{H}_{l} . Let  (\pi, V) be any object of Repl (G) .
The map

 ( \mathscr{H}_{l'*l'}e_{l})\bigotimes_{\mathscr{H}_{l}}V^{K_{l}} arrow V^{K_{l}
}
’

defined by

 (h*l^{\prime e_{l})\otimes v} arrow\int_{G}(he)(g)\pi(g)vd\mu_{G,l'}(g)
is a well‐defined left  \mathscr{H}_{l'} ‐module homomorphism. It suffices to show that this is an

isomorphism. This is surjective since  \pi is an object of  Rep_{l}(G) . We denote by  \mathcal{N} the

kernel of the above homomorphism. Now let Modl  (\mathscr{H}_{l'} ) denote the full subcategory of

Mod  (\mathscr{H}_{l'} ) consisting of objects  W which are generated by  e_{l}*W . Then the equivalence

of categories of Lemma 2.3 induces that of  Rep_{l}(G) and  Mod_{l}(\mathscr{H}_{l'} ) . This equivalence
and Lemma 2.3 imply that the latter is equivalent to Mod  (\mathscr{H}_{l}) and stable by sub‐

quotient. Since  \mathscr{H}_{l'}*e and  V^{K_{l'}} are object of Modl  (\mathscr{H}_{l'} ) , so is  \mathcal{N} . In addition, there

is no non‐trivial vectors on  \mathcal{N} which is fixed by the left action of  e_{l} . Therefore  \mathcal{N}=0

and the above homomorphism is an isomorphism.  \square 

Next we recall Kazhdan’s theory. Let  K(1) and  K(2) be  l‐close local fields. We fix

a datum  \beta=(\alpha, \varpi_{2}, \varpi_{1}) as in Notation 2.1. By the Cartan decomposition, this gives a
 \mathbb{C}‐linear isomorphism

 \beta^{*}: \mathscr{H}_{l}(GL_{N}(K(1)))-arrow \mathscr{H}_{l}(GL_{N}(K(2)))
\sim

(see [8]). In Kazhdan’soriginal paper, he showed that if  K(1) and  K(2) are sufficiently
close then  \beta^{*} is compatible with the convolution products. Lemaire showed a more

precise result for  GL_{N} :

Lemma2.5 ([10, Proposition3.1.1]). If  K(1) and  K(2) are  l ‐close, the isomor‐
phism  \beta^{*} is compatible with the convolution products. Hence it is a  \mathbb{C} ‐algebra isomor‐

phism.

Hence we can define an equivalence of categories

Mod  (\mathscr{H}_{l}(GL_{N}(K(1))))-\simarrow Mod(\mathscr{H}_{l}(GL_{N}(K(2))))

by base change via  \beta^{*}:  \mathscr{H}_{l}(GL_{N}(K(1)))  -arrow \mathscr{H}_{l}(GL_{N}(K(2)))\sim . By Lemma 2.3, we obtain

an equivalence of categories

 A_{\beta,l} :  Rep_{l}(GL_{N}(K(1)))-arrow Rep_{l}(GL_{N}(K(2)))\sim.
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This induces a bijection  \mathscr{A}_{l}(GL_{N}(K(1)))  -arrow \mathscr{A}_{l}(GL_{N}(K(2)))\sim , which we also denote by

 A_{\beta,l}.

§2.3. Compatibility of Deligne’s and Kazhdan’s theories via LLC

Let  K be a local field. Let LLCK:  \mathscr{A}(GL_{N}(K))  -arrow\sim\Phi(GL_{N}(K)) denote the local

Langlands correspondence of  GL_{N} over  K . We will see a result of Aubert, Baum,

Plymen and Solleveld in [2] as Theorem 2.8, which is a compatibility of  (\gamma_{\beta})_{l}^{*} and
 A_{\beta,l} via the local Langlands correspondence. Before that, we shall prove the following
lemma:

Lemma2.6. Let  K be a local field and  l a positive integer. Then we have

 LLC_{K}(\mathscr{A}_{l}(GL_{N}(K)))=\Phi_{l}(GL_{N}(K)) .

To prove it, we need Lemma 2.7 as below. We prepare some notations. Let

 N_{1} , . . . ,  N_{r} be positive integers satisfying  N_{1}+\cdots+N_{r}=N . We denote by  P(N_{1}, . . . , N_{r})
the standard parabolic subgroup of  GL_{N}(K) whose Levi component is  GL_{N_{1}}(K)\cross\cdots\cross
 GL_{N_{r}}(K) . We put  \mathbb{K}_{l}(N)=\mathbb{K}_{l}(GL_{N}(K)) .

Lemma2.7. For each  i=1 , . . . ,  r , we take any  \pi_{i}\in \mathscr{A}(GL_{N_{i}}(K)) . Then

 (n-Ind_{P(N_{1},..,N_{r})}^{GL_{N}(K.)}(\pi_{1}\ovalbox{\tt\small REJECT}\cdots
\ovalbox{\tt\small REJECT}\pi_{r}))^{\mathbb{K}_{l}(N)}=0
holds if and only if there exists an  i=1 , . . . ,  r such that  \pi_{i}^{\mathbb{K}_{l}(N_{i})}  =0.

Proof. We put  P=P  (N_{1}, . . . , N_{r}) . By the Iwasawa decomposition of GLN (K) ,
we can choose a complete set of representatives  \Omega of  P\backslash GL_{N}(K) contained in  GL_{N}(\mathcal{O}_{K}) .

Since  \mathbb{K}_{l}(N) is a normal subgroup of  GL_{N}(\mathcal{O}_{K}) , we have  g\mathbb{K}_{l}(N)g^{-1}  =\mathbb{K}_{l}(N) for any

  g\in\Omega and the map

 ( n-Ind_{P}^{GL_{N}(K)}(\pi_{1}\ovalbox{\tt\small REJECT}
\cdots\ovalbox{\tt\small REJECT}\pi_{r}))^{\mathbb{K}_{l}(N)}
arrow\bigoplus_{g\in\Omega}(\pi_{1}\ovalbox{\tt\small REJECT}
\cdots\ovalbox{\tt\small REJECT}\pi_{r})^{P\leqq \mathbb{K}_{l}(N)}
given by  farrow(f(g))_{g\in\Omega} is a well‐defined  \mathbb{C}‐linear isomorphism. Thus the left‐hand side

is zero if and only if  (\pi_{1}\ovalbox{\tt\small REJECT}\cdots\ovalbox{\tt\small REJECT}\pi_{r})
^{P\leqq \mathbb{K}_{l}(N)}  =0 . Since the action of  P on  \pi_{1}\ovalbox{\tt\small REJECT}\cdots\ovalbox{\tt\small REJECT}\pi_{r}

factors through the natural surjection  Parrow GL_{N_{1}}(K)  \cross  \cdots  \cross GL_{N_{r}}(K) and the image

of  P\leqq \mathbb{K}_{l}(N) under the surjection is  \mathbb{K}_{l}(N_{1})\cross\cdots\cross \mathbb{K}_{l} (Nr), the equality is equivalent to
 (\pi_{1}\ovalbox{\tt\small REJECT}\cdots\ovalbox{\tt\small REJECT}\pi_{r})
^{\mathbb{K}_{l}(N_{1})\cross\cdots\cross \mathbb{K}_{l}(N_{r})}  =0 . The left‐hand side is isomorphic to  \pi_{1}^{\mathbb{K}_{l}(N_{1})}\ovalbox{\tt\small REJECT}
\cdots\ovalbox{\tt\small REJECT}

 \pi_{r}^{\mathbb{K}_{l}(N_{r})} . This completes our proof.  \square 

Proof of Lemma 2.6. Take any  \pi  \in  \mathscr{A}(GL_{N}(K)) . We put  \phi=LLC_{K}(\pi) . First

assume that  \pi is supercuspidal. Let  d(\pi) be the depth of  \pi defined by the equation (32)
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in [2, §4] and  d(\phi) the unique rational number such that

 \phi\not\in\Phi_{d(\phi)}(GL_{N}(K)) and  \phi\in\Phi_{l'}(GL_{N}(K)) for any  l'>d(\phi) .

By [2, Lemma 4.3], the statement  \pi\in \mathscr{A}_{l}(GL_{N}(K)) is equivalent to  d(\pi)  \leq l-1 . Since
 d(\pi)  =d(\phi) (  [2 , Proposition 4.2]), the inequality is equivalent to  d(\phi)  \leq l-1 . By the
characterization of  d(\phi) , this is equivalent to  \phi\in\Phi_{l}(GL_{N}(K)) , and we have proved the

case  \pi is supercuspidal.

We assume  \pi is essentially square‐integrable. Then there exist a unique divisor
 m of  N and a unique supercuspidal representation  \sigma  \in  \mathscr{A}(GL_{N/m}(K)) such that  \pi is

equivalent to the unique irreducible quotient  St_{m}(\sigma) of

 n-Ind_{P(N/m,\ldots,N/m)}^{GL_{N}(K)}(\sigma\otimes|\det|(1-m)
/2\ldots\sigma\otimes|\det|^{(m-1)/2})
([13, Theorem 9.3]). By the characterization of  \pi , we have  \pi^{\mathbb{K}_{l}(N)}  =0 if and only if

 n-Ind_{P(N/m,\ldots,N/m)}^{GL_{N}(K)}(\sigma\otimes|\det|^{(1-m)/2}\ovalbox{\tt
\small REJECT}\cdots\ovalbox{\tt\small REJECT}\sigma\otimes|\det|^{(m-1)/2})
^{\mathbb{K}_{l}(N)} =0,
which is equivalent to  \sigma^{\mathbb{K}_{l}(N/m)}  =  0 by Lemma 2.7. We put  \phi(\sigma)  =  LLC_{K}(\sigma) . Note

that  \phi|_{\mathcal{G}_{K}^{l}}  =\phi(\sigma)^{\oplus m}|_{\mathcal{G}_{K}^{l}} . Since  \sigma is supercuspidal, we have  \sigma^{\mathbb{K}_{l}(N/m)}  =0 if and only if

 \phi(\sigma)|_{\mathcal{G}_{K}^{l}} is non‐trivial, which is equivalent to saying that  \phi(\sigma)^{\oplus m}|_{\mathcal{G}_{K}^{l}} is non‐trivial. This

completes the proof for the case  \pi is essentially square‐integrable.

The same argument shows the general case since any  \pi\in \mathscr{A}(GL_{N}(K)) is uniquely

written by a Langlands sum of several essentially square‐integrable representations and
 LLC_{K} maps it to the direct sum of the corresponding  L‐parameters.  \square 

Let  K(1) and  K(2) be local fields which are  l‐close. We choose a datum  \beta  =

 (\alpha, \varpi_{2}, \varpi_{1}) as in Notation 2.1. We have obtained Deligne’sbijection

 (\gamma_{\beta})^{*}=(\gamma_{\beta})_{l}^{*}: \Phi_{l}(GL_{N}(K(2)))-\simarrow
\Phi_{l}(GL_{N}(K(1)))

in §§2.1 and Kazhdan’s bijection

 A_{\beta,l} :  \mathscr{A}_{l}(GL_{N}(K(1)))-arrow \mathscr{A}_{l}(GL_{N}(K(2)))\sim

in §§2.2. Then we have the following compatibility:

Theorem 2.8 ([2, Theorem6.1]). Let  l' be any integer which satisfies the in‐
equality  0<l'<2^{-N+1}l . Then the following diagram is commutative:

 \mathscr{A}_{l'}(GL_{N}(K(1))) A_{\beta,l'}  \mathscr{A}_{l'}(GL_{N}(K(2)))

 \downarrow LLC_{K(1)} \downarrow LLC_{K(2)} (\gamma\beta)_{l'}^{*}
 \Phi_{l'}(GL_{N}(K(1)))arrow\Phi_{l'}(GL_{N}(K(2))) .
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Remark2.9. In [2, Theorem 6.1], the bottom part of the above square is

 \Phi_{l}(GL_{N}(K(1)))-\ovalbox{\tt\small REJECT}\betaarrow\Phi_{l}(GL_{N}(K(2)
))(\gamma)_{l}^{*}.

Since we have Lemma 2.2 and Lemma 2.6, we can replace  l by  l'.

§3. Key lemmas

In this section, we prove important lemmas, which show some compatibility of the

restriction functor of Galois groups with respect to a totally ramified extension and

Deligne’s theory.

§3.1. The case  L/K is finite

In this subsection, we show the key lemmas for finite totally ramified extensions.

Let  K be a local field,  \overline{K} a separable closure of  K , and  L\subset\overline{K} a finite totally ramified

extension of  K of degree a power of  p . We have

(3.1)  \mathcal{G}_{L}\leqq \mathcal{G}_{K}^{u}=W_{L}\leqq \mathcal{G}_{K}^{u}=
\mathcal{G}_{L}^{\psi_{L/K}(u)}

[12, 1.1.2]. For any separable subextension  M of  \overline{K}/K , we denote by  i(M/K) the
largest  i satisfying  \mathcal{G}_{M}\mathcal{G}_{K}^{i}  =  \mathcal{G}_{K} . Then for any integer  l  \leq  \lceil p^{-1}  (p- 1)i(L/K)\rceil , the

norm map  N_{L/K} induces an isomorphism of rings  \alpha_{L/K} :  \mathcal{O}_{L}/\mathfrak{p}_{L}^{l}  -arrow\sim  \mathcal{O}_{K}/\mathfrak{p}_{K}^{l} (see [12,
Proposition 2.2.1]). In particular,  K and Lare  l‐close. We takea uniformizer  \varpi_{L} of  L.

By the assumption  L/K is totally ramified,  N_{L/K}(\varpi_{L}) is a uniformizer of  K . Hence,

as we have seen in §§2.1, the datum  \beta=(\alpha_{L/K}, \varpi_{L}, N_{L/K}(\varpi_{L})) gives an isomorphism
of triples  \gamma_{\beta} :  Tr_{l}(L)  -\simarrow Tr_{l}(K) . We can show that the  \gamma_{\beta} is independent of the choice

of  \varpi_{L} . We put  \mathfrak{N}_{L/K}=\gamma_{\beta} . We have an equivalence of categories

 \mathfrak{N}_{L/K}^{*}=\gamma_{\beta}^{*}: Ext(Tr_{l}(K))^{l}-arrow Ext(Tr_{l}
(L))^{l}\sim.

On the other hand, we have a functor  \rho :  Ext(K)  arrow Ext(L) which maps an extension
 K' of Ktothe composite  K'L . If  K' is an object of  Ext(K)^{l} , then by the equalities

(3.1), we have

 \mathcal{G}_{K'L}=\mathcal{G}_{K'}\leqq \mathcal{G}_{L}\supset \mathcal{G}_{K}^
{l}\leqq \mathcal{G}_{L}=\mathcal{G}_{L}^{\psi_{L/K}(l)}=\mathcal{G}_{L}^{l}.
(We use the assumption  l  \leq  \lceil p^{-1}(p- 1)i(L/K)\rceil when we prove the last equality
 \mathcal{G}_{L}^{\psi_{L/K}(l)}  =  \mathcal{G}_{L}^{l}.) Thus  K'L is in  Ext(L)^{l} and we obtain the functor  \rho^{l} :  Ext(K)^{l}  arrow

 Ext(L)^{l} induced by  \rho.

Now we can prove the following lemma:
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Lemma3.1. Let  K be a local field,  L\subset\overline{K} a finite totally ramified extension of
 K of degree a power of  p . Letl be apositive integer satisfying

  l \leq \lceil\frac{p-1}{2p}i(L/K)\rceil .

Then we have the commutative diagram (up to natural equivalences)

 Ext(K)^{l\underline{\rho^{l}}}Ext(L)^{l}

 \downarrow T_{K}^{l} \downarrow T_{L}^{l}
 Ext(Tr_{l}(K))^{l}Ext(Tr_{l}(L))^{l}\underline{\mathfrak{N}_{L/K}^{*}}.

Therefore the group isomorphism

 (\mathfrak{N}_{L/K})_{*} :  \mathcal{G}_{L}/\mathcal{G}_{L}^{l}arrow \mathcal{G}_{K}/\mathcal{G}_{K}^{l}

induced by  \mathfrak{N}_{L/K} coincides with the homomorphism which comes from the natural in‐

jection  \mathcal{G}_{L}\hookrightarrow \mathcal{G}_{K}.

Proof. We take a Galois object  K' of Ext  (K)^{l} . We put  L'  =  K'L . We shall

construct an isomorphism

 \mathfrak{N}':T_{L}^{l}(L')-\simarrow \mathfrak{N}_{L/K}^{*}T_{K}^{l}(K')

in  Ext(Tr_{l}(L))^{l} such that the following diagram is commutative:

 Ga1(L'/L)\underline{\cdot|_{K'}}Ga1(K'/K)

 \downarrow T_{L}^{l} \downarrow T_{K}^{l}
(3.2)  Aut_{Tr_{l}(L)}(T_{L}^{l}(L')) Aut_{Tr_{l}(K)}(T_{K}^{l}(K'))

  \Vert
 Aut_{Tr_{l}(L)}(\mathfrak{N}_{L/K}^{*}T_{K}^{l}(K')) ,

where we define  ad(\mathfrak{N}') by  ad(\mathfrak{N}')(\sigma)  =  \mathfrak{N}' ◦  \sigma ◦  \mathfrak{N}^{\prime-1} for any  \sigma  \in  Aut_{Tr_{l}(L)}(T_{L}^{l}(L')) .
Let  r denote the ramification index of  K'/K . We havel  \leq 2^{-1}i(L/K) and

 \mathcal{G}_{K'} \supset \mathcal{G}_{K}^{l}\supset \mathcal{G}_{K}^{2^{-1}
i(L/K)}.

Hence we obtain inequalities

  \psi_{K/K}^{-1}(\frac{1}{2}i(L/K)r) \leq \frac{1}{2}i(L/K)+\frac{r-1}{r}
\cdot\frac{1}{2}i(L/K)\leq i(L/K) .
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Taking account of  \mathcal{G}_{L}\mathcal{G}_{K}^{i(L/K)}  =\mathcal{G}_{K} , we have

 \mathcal{G}_{L'}\mathcal{G}_{K'}^{2^{-1}i(L/K)r}=\mathcal{G}_{L'}(\mathcal{G}
_{K}^{\psi_{K'/K}^{-1}(2^{-1}i(L/K)r)}\leqq \mathcal{G}_{K'})
 \supset \mathcal{G}_{L'}(\mathcal{G}_{K}^{i(L/K)}\leqq \mathcal{G}_{K'})
 =\mathcal{G}_{L'}\mathcal{G}_{K}^{i(L/K)}
 =\mathcal{G}_{K'}\leqq(\mathcal{G}_{K}^{i(L/K)}\mathcal{G}_{L})
 =\mathcal{G}_{K'} .

Hence we obtain  \mathcal{G}_{L'}\mathcal{G}_{K}^{2^{-1}i(L/K)r}=\mathcal{G}_{K'} . Thus we have  2^{-1}i(L/K)r\leq i(L'/K') and the

norm map  N_{L'/K'} provides an isomorphism  \mathfrak{N}_{L'/K'} :  Tr_{lr}(L')  -arrow Tr_{lr}(K')\sim , which makes

the diagram

 Tr_{l}(L)arrow Tr_{lr}(L')

 \downarrow \mathfrak{N}_{L/K} \downarrow \mathfrak{N}_{L'/K'}
 Tr_{l}(K)arrow Tr_{lr}(K')

commute. Thus  \mathfrak{N}_{L'/K'} is in fact an isomorphism in  Ext(Tr_{l}(L))^{l} . We put  \mathfrak{N}'=\mathfrak{N}_{L'/K'} .

The commutativity of the diagram (3.2) follows from the equality  N_{L'/K'} ◦  \sigma  =

 \sigma ◦  N_{L'/K'} for any  \sigma\in Ga1(L'/L) . Lemma3.1 follows from the diagram (3.2).  \square 

For any real number  l\geq 0 , we define

 \Phi_{l}(GL_{N}(K))=\{\phi\in\Phi(GL_{N}(K)) |\mathcal{G}_{K}^{l}\subset 
Ker\phi\}.

By Lemma 3.1, we obtain the following lemma:

Lemma3.2. Let  K be a local field,  L\subset\overline{K} a finite totally ramified extension of
 K of degree a power of  p . Letl be apositive integer satisfying

  l \leq \lceil\frac{p-1}{2p}i(L/K)\rceil .

Then the restriction of  L‐parameters

 \Phi_{l}(GL_{N}(K))arrow\Phi_{l}(GL_{N}(L))
 \phiarrow\phi|_{W_{L}\cross SL_{2}(\mathbb{C})}

coincides with the map

 (\mathfrak{N}_{L/K})_{l}^{*}: \Phi_{l}(GL_{N}(K))arrow\Phi_{l}(GL_{N}(L))
 \phiarrow\phi ◦  ((\mathfrak{N}_{L/K})_{*} \cross id_{SL_{2}(\mathbb{C})}) .
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§3.2. The case  L/K is infinite: fields of norms

Similar results to Lemma 3.1 and Lemma 3.2 also hold if  L/K is an APF extension

of infinite degree. To explain this, we recall the theory of fields of norms by Fontaine‐

Wintenberger [12]. LetK bealocal field,  \overline{K} aseparable closure of  K , andL an infinite
APF extension of  K contained in  \overline{K} . Let b 0<b_{1}  <b_{2}<\cdots be the ramification breaks

of  L/K . We put

 K_{n}=\overline{K}^{\mathcal{G}_{L}\mathcal{G}_{K}^{b_{n}}}

For any integer  m\geq n\geq 0 , we denote by  N_{m/n} (resp.  N_{n} ) the norm map from  K_{m}^{\cross} to
 K_{n}^{\cross} (resp. from  K_{n}^{\cross} to  K^{\cross} ). Let  \mathscr{E}_{L/K} be the filtered ordered set consisting of finite
extensions  M/K contained in  L . We put

 X(L/K)^{\cross} =1\dot{4}_{-}^{mM^{\cross}}M\in \mathscr{E}_{L/K} ’

whose transitive maps are the norm maps. Since  \{K_{n}\}_{n=1}^{\infty} is cofinal in  \mathscr{E}_{L/K} , the natural

map

 X(L/K)^{\cross} =1\dot{4}_{-}^{mM^{\cross}}M\in \mathscr{E}_{L/K} arrow 
n\overline{\geq}11\dot{4}^{mK_{n}^{\cross}}
gives an isomorphism. By adding the zero element to  X(L/K)^{\cross} , we obtain a field

 X(L/K) , which we call the field of norms associated to  L/K . Here, its addition is

defined as follows. We take  x=(x_{n})_{n=1}^{\infty} and  y=(y_{n})_{n=1}^{\infty} in  X(L/K)^{\cross} , where  x_{n},   y_{n}\in

 K_{n}^{\cross} . If there exists an integer  m_{0}  \geq  1 such that for any integer  m  \geq  m_{0} we have
 x_{m}+y_{m}\neq 0 , then we define  x+y as

 (x+y)_{n}= \lim_{marrow\infty}N_{K_{m}/K_{n}}(x_{m}+y_{m}) .

Otherwise, we put  x+y=0 . The characteristic of X  (L/K) is pand  X(L/K) becomes

a local field by being endowed with the additive valuation defined by  v_{X(L/K)}(x)  =

 v_{K_{n}}(x_{n}) for some /any  n  \geq  1 (the right‐hand side is independent of the choice of  n).
We also write  K_{\infty} for the local field  X(L/K) . For anyM  \in \mathscr{E}_{L/K} , we put  i(K_{\infty}/M)=
 i(L/M) . The natural projection  K_{\infty}^{\cross}  arrow  K^{\cross} (resp.  K_{\infty}^{\cross}  arrow  K_{n}^{\cross} ) is denoted by  N_{\infty}

(resp.  N_{\infty/n} ). We extend N \infty (resp.  N_{\infty/n} ) to all of K \infty by setting N \infty(0)=0 (resp.

 N_{\infty/n}(0)  =0) . Now we can prove similar statements to [12, Proposition2.2.1]:

Lemma3.3. We use the above notation. Suppose i  (K_{\infty}/K)  >0.

(i) For any  x_{\infty} and y  \infty in  \mathcal{O}_{K_{\infty}} , we have

 v_{K}(N_{\infty}(x_{\infty}+y_{\infty})-N_{\infty}(x_{\infty})-N_{\infty}
(y_{\infty}))  \geq\frac{p-1}{p}i(K_{\infty}/K) .
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(ii) For any  x\in \mathcal{O}_{K} , there exists  x_{\infty}  \in \mathcal{O}_{K_{\infty}} such that

 v_{K}(N_{\infty}(x_{\infty})-x) \geq\frac{p-1}{p}i(K_{\infty}/K) .

Proof. First, we remark that, by assumption and  [ 12, 1.  4.1  (b)] , we have  K  =

 K_{0}=K_{1} and the extension  K_{m}/K is totally ramified of degree a power of  p.

(i) Let  x_{\infty}  =  (x_{n})_{n=1}^{\infty} and  y_{\infty}  =  (y_{n})_{n=1}^{\infty} with  x_{n},  y_{n}  \in  K_{n} . By the definition of
 N_{\infty} , we have

 N_{\infty}(x_{\infty}+y_{\infty})= \lim_{marrow\infty}N_{K_{m}/K}(x_{m}+y_{m}) ,

 N_{\infty}(x_{\infty})=N_{K_{m}/K} (xm), and  N_{\infty}(y_{\infty})=N_{K_{m}/K}(y_{m}) .

By [12, Proposition 2.2.1 (i)], the inequality

 v_{K}(N_{K_{m}/K}(x_{m}+y_{m})-N_{K_{m}/K}(x_{m})-N_{m}(y_{m})) \geq\frac{p-1}
{p}i(K_{m}/K)
holds for any  m\geq 1 . Since i  (K_{m}/K)  \geq i(K_{\infty}/K) , we have

 v_{K}(N_{K_{m}/K}(x_{m}+y_{m})-N_{K_{m}/K}(x_{m})-N_{m}(y_{m})) \geq \frac{p-1}
{p}i(K_{\infty}/K)
for any   m\geq  1 . By taking the limit of the above inequality asm  arrow\infty , we obtain the

required inequality.

(ii) The following proof is similar to that of [12, Proposition 2.2.1 (ii)]. We choose
a uniformizer  \varpi_{\infty}  \in \mathcal{O}_{K_{\infty}} and put  \varpi=N_{\infty}(\varpi_{\infty}) . Then  \varpi is auniformizer of  K . For

any  \overline{x}  \in  k_{K} , let  [\overline{x}] denote the multiplicative representative of  \overline{x} in  \mathcal{O}_{K} . Then there

exist  x(0) ,  x(1) ,  x(2) , . . .  \in k_{K} such that

 x= \sum_{j=0}^{\infty}[x(j)]\varpi^{j}.
For any integer  j\geq 0 , we put  x_{\infty}(j)=([x(j)^{1/[K_{n}:K]}])_{n=1}^{\infty} , which is an element of  K_{\infty}.
We now define  x_{\infty}  \in \mathcal{O}_{K_{\infty}} as

 x_{\infty}= \sum_{j=0}^{\infty}x_{\infty}(j)\varpi_{\infty}^{j} .

Then by (i) we have

 v_{K}(N_{\infty}(x_{\infty})-x) \geq \frac{p-1}{p}i(K_{\infty}/K) .

Therefore the  x_{\infty} satisfies the required inequality.  \square 
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By Lemma 3.3, we find that, for any positive integer   l\leq  \lceil p^{-1}(p-1)i(L/K)\rceil , the

map  N_{\infty} gives an isomorphism

 \alpha_{K_{\infty}/K} :  \mathcal{O}_{K_{\infty}}/\mathfrak{p}_{K_{\infty}}^{l}  arrow \mathcal{O}_{K}/\mathfrak{p}_{K}^{l}.

Hence we can define an isomorphism

 \mathfrak{N}_{K_{\infty}/K}:Tr_{l}(K_{\infty})-arrow Tr_{l}(K)\sim

and an equivalence of categories

 \mathfrak{N}_{K_{\infty}/K}^{*}=(\mathfrak{N}_{K_{\infty}/K})_{l}^{*}: 
Ext(Tr_{l}(K))^{l}arrow Ext(Tr_{l}(K_{\infty}))^{l}

in the same way as  L/K is finite.

Now suppose we have an extension  L'/K of infinite degree and there exists a finite

separable morphism  \tau :  L  arrow  L' of  K‐algebras. Note that  L'/K is also APF by [12,
Proposition 1.2.3 (ii)]. Let  \mathscr{E}_{\tau}' denote the set of  M'  \in  \mathscr{E}_{L'/K} such that the canonical
morphism

 M'\otimes_{M'\leqq\tau(L)}\tau(L)arrow L
’

is an isomorphism, which is cofinal in  \mathscr{E}_{L'/K} . Then we can definea homomorphism

 X_{K}(\tau):X(L/K)arrow X(L'/K)

by

 (X_{K}(\tau)(x_{\infty}))_{M'\in \mathscr{E}_{\tau}'} =\tau(x_{\tau-1(M')})

for any  x_{\infty}=(x_{M})_{M\in \mathscr{E}_{L/K}}  \in X(L/K) . We can show XK  (\tau) is also finite and separable

[12, Théorème 3.1.2]. Nowa functor  XL/K from the category of separable extensions of
 L to that of  K_{\infty} is defined as follows. For aseparable extension  L'/L , we put

 X_{L/K}(L') = \underline{1in?} X(L"/K) ,

 L"/L : finite,  L"\subset L'

where the transition map is given by  X_{K}(\tau) :  X(L_{1}"/K)arrow X(L_{2}"/K) for any homomor‐

phism  \tau :  L_{1}"arrow L_{2}" of finite separable extensions of  L contained in  L' . If  L'/L is finite,

then  X_{L/K}(L') is canonically isomorphic to  X_{K}(L') . For separable extensions  L_{1}' and

 L_{2}' of  L , the map from  Hom_{L}(L_{1}', L_{2}') to  Hom_{K_{\infty}}(X_{L/K}(L_{1}'), X_{L/K}(L_{2}')) is also given

by  X_{K} . Then the functor  XL/K gives an equivalence of categories [12, Théorème3.2.2]
and  X_{L/K}(\overline{K}) is a separable closure of  K_{\infty} [  12 , Corollaire3.2.3], which we denote by
 K_{\infty} . We put  \mathcal{G}_{K_{\infty}}  =Ga1(\overline{K}_{\infty}/K_{\infty}) and identify  \mathcal{G}_{K_{\infty}} with the subgroup  \mathcal{G}_{L} of  \mathcal{G}_{K} via

 X_{L/K} . By [12, Corollaire3.3.6], we have

 \mathcal{G}_{K_{\infty}} \leqq \mathcal{G}_{K}^{u} = W_{K_{\infty}} \leqq 
\mathcal{G}_{K}^{u} = \mathcal{G}_{K_{\infty}}^{\psi_{L/K}(u)},
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which is similar to the equality (3.1). By using this, we can show that the functor
 \rho^{l} :  Ext(K)^{l}arrow Ext(K_{\infty})^{l} defined by  K'arrow X_{L/K}(K'L) is well‐defined in the same way

as §§3.1. Now we can state the following lemma similar to Lemma3.1:

Lemma3.4. Let  K be a local field,  L  \subset  \overline{K} an infinite APF extension of  K

satisfying  i(L/K)  >0 , and  l a positive integer satisfying

  l \leq \lceil\frac{p-1}{2p}i(L/K)\rceil .

Then we have the commutative diagram (up to natural equivalences)

 Ext(K)^{l\underline{\rho^{l}}}Ext(K_{\infty})^{l}

 \downarrow T_{K}^{l} \downarrow T_{K\infty}^{l}
 Ext(Tr_{l}(K))^{l}Ext(Tr_{l}(K_{\infty}))^{l}\underline{\mathfrak{N}
_{K\infty/K}^{*}}.

Hence the group isomorphism

 (\mathfrak{N}_{K_{\infty}/K})_{*} :  \mathcal{G}_{K_{\infty}}/\mathcal{G}_{K_{\infty}}^{l}  arrow \mathcal{G}_{K}/\mathcal{G}_{K}^{l}

induced by  \mathfrak{N}_{K_{\infty}/K} coincides with the homomorphism which comes from the natural

injection  \mathcal{G}_{K_{\infty}}  \hookrightarrow \mathcal{G}_{K}.

Proof. Take a finite Galois extension  K'/K with  Ga1(K'/K)^{l}  =  \{1\} . We put
 L'  =  LK and  K_{\infty}'  =  X_{L/K}(L') . As is the case with Lemma 3.1, we can show that

 2^{-1}i(L/K)r  \leq i(K_{\infty}'/K_{\infty}) and the projection  (K_{\infty}')^{\cross}  arrow  (K')^{\cross} gives an isomorphism

of triples

 \mathfrak{N}':T_{K_{\infty}}^{l}(K_{\infty}')arrow \mathfrak{N}_{K_{\infty}}
^{*}{}_{/K}T_{K}(K')
over  Tr_{l}(K_{\infty}) , which makes the diagram

 Ga1(K_{\infty}'/K_{\infty})\underline{x_{K}}Ga1(L'/L)arrow Ga1(K'/K)

  T_{K\infty}^{l}\downarrow T_{K}^{l}\downarrow
 Aut_{Tr_{l}(K_{\infty})}  (T_{K_{\infty}}^{l} (K_{\infty}'))  Aut_{Tr_{l}(K)}(T_{K}^{l}(K'))

 ad(\mathfrak{N}') \ovalbox{\tt\small REJECT} =
 Aut_{Tr_{l}(K_{\infty})}(\mathfrak{N}_{K_{\infty}/K}^{*}T_{K}(K'))

commute. This completes our proof.  \square 

By Lemma 3.4, a statement similar to Lemma 3.2 follows:
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Lemma3.5. Let  K be a local field,  L  \subset  \overline{K} an infinite APF extension of  K

satisfying  i(L/K)  >0 , and  l a positive integer satisfying

  l \leq \lceil\frac{p-1}{2p}i(L/K)\rceil .

Then the restriction of  L‐parameters

 \Phi_{l}(GL_{N}(K))arrow\Phi_{l}(GL_{N}(K_{\infty}))

 \phiarrow\phi|_{W_{K_{\infty}}\cross SL_{2}(\mathbb{C})}

coincides with the map

 (\mathfrak{N}_{K_{\infty}/K})_{l}^{*}: \Phi_{l}(GL_{N}(K))arrow\Phi_{l}(GL_{N}
(K_{\infty}))
 \phiarrow\phi ◦  ((\mathfrak{N}_{K_{\infty}/K})_{*} \cross id_{SL_{2}(\mathbb{C})}) .

§4. Proof of Theorem 1.1

In this section, we shall prove the main theorem of this article (Theorem 1.1) as
Theorem 4.3.

Let  F be a finite extension of  \mathbb{Q}_{p} and  E/F an APF extension of infinite degree.

We fix an algebraic closure  \overline{F} of  E . Let b  0  <b_{1}  <b_{2}  <\cdots be the ramification breaks

of  E/F . For an integerr  \geq 0 , we put  F_{r}=\overline{F}^{\mathcal{G}_{E}\mathcal{G}_{F}^{b_{r}}} . Let  F_{\infty} denote the field of norms

associated to  E/F . Letn andm be positive integers or  \infty satisfying  n\leq m . First we

give a bijection from a subset of  \mathscr{A}  (GL_{N} (Fn)  ) to that of  \mathscr{A}(GL_{N} (Fm)  ) as follows:

Theorem4.1. We take a non‐decreasing sequence  \{l_{n}\}_{n=0}^{\infty} of non‐negative in‐

tegers such that   l_{n}arrow\infty  (narrow\infty) and   l_{n}\leq  \lceil p^{-1}(p-1)i(E/F_{n})\rceil.

(i) For any indices   1\leq n\leq m\leq\infty , there exists a natural equivalence of categories

 A_{m/n,l_{n}} :  Rep_{l_{n}}(GL_{N}(F_{n}))-arrow Rep_{l_{n}}\sim(GL_{N}(F_{m})) .

This  \{A_{m/n,l_{n}} | 1\leq n\leq m\leq\infty\} makes the diagram

 A_{m/n,l_{n}\downarrow}
(4.1)

 Rep_{l_{n}}(GL_{N}(F_{n}))(GL_{N}(F_{m'}))\underline{Am'n,l_{n}}

 Rep_{l_{n}}(GL(F_{m}))r^{N}
 Rep_{l_{m}}  (GL_{N} (  Fm )  )  \overline{A_{m/m,l_{m}}}Rep_{l_{m}}(GL_{N}(F_{m'}))
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commute (up to natural equivalences) for   anyn\leq  m  \leq  m' . We also denote by
 A_{m/n,l_{n}} the bijection  \mathscr{A}_{l_{n}}(GL_{N}(F_{n}))  -arrow \mathscr{A}_{l_{n}}\sim(GL_{N}(F_{m})) induced by the equivalence

 A_{m/n,l_{n}}.

(ii) If we take another sequence  \{l_{n}'\}_{n=1}^{\infty} satisfying the same condition on {ln}, then the
restrictions of  A_{m/n,l_{n}} and  A_{m/n,l_{n}'} to  \mathscr{A}_{l_{n}}  (GL_{N} (Fn)  )  \leqq \mathscr{A}_{l_{n}'}(GL_{N} (Fn)  ) coincide.

(iii) We can take the direct limit of  \{A_{\infty/n,l_{n}}\}_{n} :

  \lim_{n}A_{\infty/n,l_{n}:}arrow \lim_{n}\mathscr{A}_{l_{n}}(GL_{N}(F_{n}))
arrow arrow\sim \mathscr{A}(GL_{N}(F_{\infty})) ,

which is also bijective.

Proof. (i) If  m  <  \infty , we put  N_{m/n}  =  N_{F_{m}/F_{n}} . Otherwise, let  N_{m/n}  =  N_{\infty/n}
denote the natural projection  F_{\infty}^{\cross}  arrow F_{n}^{\cross} as in§§3.2. We have seen in §3 that, by the
assumption   l_{n}\leq  \lceil p^{-1}(p-1)i(E/F_{n})\rceil , the map  N_{m/n} induces an isomorphism of rings

 \alpha_{m/n:} \mathcal{O}_{F_{m}}/\mathfrak{p}_{F_{m}}^{l_{n}} arrow\sim 
\mathcal{O}_{F_{n}}/\mathfrak{p}_{F_{n}}^{l_{n}}.

We fix a uniformizer  \varpi_{m} of  F_{m} . As we have seen in §§2.2, from the datum  \beta_{m/n}  =

 (\alpha_{m/n}, \varpi_{m}, N_{m/n}(\varpi_{m})) , we can construct an isomorphism of  \mathbb{C}‐algebras

 \beta_{m/n}^{*}=(\alpha_{m/n}, \varpi_{m}, N_{m/n}(\varpi_{m}))^{*}:\mathscr{H}
_{l_{n}}(GL_{N} (  Fn )  )-arrow \mathscr{H}_{l_{n}}\sim(GL_{N} (  Fm )  ) ,

which induces an equivalence of categories

 A_{\beta_{m/n},l_{n}} :  Rep_{l_{n}}(GL_{N}(F_{n}))-arrow Rep_{l_{n}}\sim(GL_{N}(F_{m})) .

We remark that  \beta_{m/n}^{*} and  A_{\beta_{m/n},l_{n}} are independent of the choice of  \varpi_{m} . We put

 A_{m/n,l_{n}}  =A_{\beta_{m/n},l_{n}} . Now we shall show the commutativity of the diagram (4.1). We
take a uniformizer  \varpi_{m'} of  F_{m'} . Since  \beta_{m/n}^{*},  \beta_{m/n}^{*} and  \beta_{m/m}^{*} are independent of the

choice of uniformizers, we have

 \beta_{m/n}^{*}=(\alpha_{m/n}, N_{m'/m}(\varpi_{m'}), N_{m'/n}(\varpi_{m'}))
^{*},

 \beta_{m/n}^{*}=  (\alpha_{m'/n}, \varpi_{m'} , N_{m'/n}(\varpi_{m'}))^{*} and

 \beta_{m'/m}^{*}=(\alpha_{m'/m}, \varpi_{m'}, N_{m'/m}(\varpi_{m'}))^{*}

Then we can show that the diagram

 \mathscr{H}_{l_{n}}(GL_{N}(F_{n}))arrow^{\beta_{m/n}^{*}}\mathscr{H}_{l_{n}}
(GL_{N} (  Fm )  )

  \downarrow\beta_{m'/m}^{*}
 \mathscr{H}_{l_{n}} (GL_{N} (F_{m'} )) .
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is commutative. This and Lemma 2.4 show the commutativity of the diagram (4.1).
(ii) We put  l=l_{n} and  l'  =l_{n}' . For anys and t, we put  \mathscr{H}_{s}(F_{t})  =\mathscr{H}_{s}(GL_{N}(F_{t})) .

We may assume  l  \leq  l' . Let  e_{t} denote the unit element of  \mathscr{H}_{l}(F_{t}) . By Lemma2.4, it

suffices to show the diagram

Mod  (\mathscr{H}_{l}(F_{n}))arrow Mod (  \mathscr{H}_{l'} (Fn))

 \beta_{m/n,l\downarrow}^{*} \beta_{m/n,l'\downarrow}^{*}
Mod  (\mathscr{H}_{l}(F_{m}))arrow Mod (  \mathscr{H}_{l'} (Fm))

is commutative up to natural equivalences, where the horizontal arrows are the functors

given in Lemma 2.4. This follows from the isomorphism

 \mathscr{H}_{l'}(F_{m})\otimes_{\mathscr{H}_{l'}(F_{n})} (l'
 arrow\sim(\mathscr{H}_{l'}(F_{m})*l'e_{m})\otimes_{\mathscr{H}_{l}(F_{m})} 
(\mathscr{H}_{l}(F_{m})\otimes_{\mathscr{H}_{l}(F_{n})}W_{n})

given by

 h_{l',m}\otimes((h_{l',n}*e)\otimes x)arrow(h_{l',m}*l'\beta_{m/n,l}^{*},
(h_{l',n})*e)\otimes(e_{m}\otimes x)

for any left  \mathscr{H}_{l}(F_{n}) ‐module  W_{n},  h_{l',m}\in \mathscr{H}_{l'} (Fm),  h_{l',n}\in \mathscr{H}_{l'} (Fn), and  x\in W_{n}.

(iii) The map  \underline{1in?}_{n}A_{\infty/n,l_{n}} is clearly injective. Since  l_{n}  arrow\infty as   narrow\infty , we have
the equality  \mathscr{A}(F_{\infty})=\geq_{n}\mathscr{A}_{l_{n}}(F_{\infty}) . Thus  \underline{1in?}_{n}A_{\infty/n,l_{n}} is surjective.

 \square 

Now let  E/F be a procyclic APF extension of infinite degree. For a cyclic extension

 F'/F of prime degree, let

 BC_{F'/F} :  \mathscr{A}(GL_{N}(F))arrow \mathscr{A}(GL_{N}(F'))

be the base change lifting in the sense of [1, Chapter 1, Section 6]. Fora general cyclic
extension  F'/F of finite degree, we define  BC_{F'/F} as the composite of the base changes

attached to intermediate extensions of  F'/F of prime degree. We write  BC_{F_{m}/F_{n}}  =

 BC_{m/n} and  BC_{n}=BC_{F_{n}/F}.

Theorem4.2. We take a sequence  \{l_{n}\}_{n=0}^{\infty} satisfying the condition in Theorem

4.1. urther assume that there exists a positive integer  n_{0} such that, for any  n\geq n_{0},

  l_{n}<  \frac{1}{2^{N-1}} \lceil\frac{p-1}{p}i(E/F_{n})\rceil .

(i) For any indices   n_{0}\leq n\leq m<\infty , the bijection

 A_{m/n,l_{n}} :  \mathscr{A}_{l_{n}}  (GL_{N} (  Fn )  )  -arrow \mathscr{A}_{l_{n}}\sim(GL_{N} (  Fm )  )

coincides with the restriction of  BC_{m/n} to  \mathscr{A}_{l_{n}}  (GL_{N} (Fn)  ) .
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(ii) For any  \pi\in \mathscr{A}(GL_{N}(F)) , there exists an integer  n\geq 1 such that

 BC_{n}(\pi)\in \mathscr{A}_{l_{n}}(GL_{N}(F_{n})) .

Proof. (i) The case  N=1 follows by the definition of  A_{m/n,l_{n}} . We assume  N\geq 2.

Take a uniformizer  \varpi_{\infty} of  F_{\infty} . Note that , the maps  A_{m/n,l_{n}} in Theorem 4.1 and

 (\mathfrak{N}_{F_{m}/F_{n}})_{l_{n}}^{*} in §§3.1 are induced by the same datum

 \beta_{m/n}=(\alpha_{m/n}, N_{\infty/m}(\varpi_{\infty}), N_{\infty/n}(\varpi_{
\infty})) ,

where  \alpha_{m/n} is the same as in the proof of Theorem 4.1 (i). By applying Theorem2.8
to

 (K(1), K(2), l, l', \beta)=(F_{n}, F_{m}, \lceil p^{-1}(p-1)i(E/F_{n})\rceil, 
l_{n}, \beta_{m/n}) ,

we see that  A_{m/n,l_{n}}^{*} is compatible with  (\mathfrak{N}_{F_{m}/F_{n}})_{l_{n}}^{*} via LLC. Now we have inequalities

  l_{n}<2^{-N+1}\lceil p^{-1}(p-1)i(E/F_{n})\rceil  \leq  \lceil(2p)^{-1}(p-1)i(E/F_{n})\rceil . Hence, by Lemma 3.2, the

map  (\mathfrak{N}_{F_{m}/F_{n}})_{l_{n}}^{*} coincides with the map induced by the restriction  W_{F_{m}}  \hookrightarrow W_{F_{n}} . Since

the latter map is compatible with  BC_{m/n} via LLC, we have completed the proof.

(ii) By Lemma 2.6, this is also reduced to showing the corresponding assertion
on Galois representations. Thus we shall show that for any  \phi  \in  \Phi(GL_{N}(F)) there

exists  n such that  \phi|_{W_{F_{n}}}  \in  \Phi_{l_{n}}(GL_{N}(F_{n})) . Take any  \phi\in  \Phi(GL_{N}(F)) . Then we have

 \phi\in\Phi_{l}(GL_{N}(F)) for some  l . By the equality (3.1) in Section3, we have

 W_{F_{n}}\leqq \mathcal{G}_{F}^{l}=\mathcal{G}_{F_{n}}^{\psi_{F_{n}/F(l)}}
for any  n . Since  \psi_{F_{n}/F}(l)  \leq\psi_{E/F_{n}}(\psi_{F_{n}/F}(l))=\psi_{E/F}(l) , we have

 \mathcal{G}_{F_{n}}^{\psi_{F_{n}/F(l)}} \supset \mathcal{G}_{F_{n}}^{\psi_{E/F}
(l)}
Hence we obtain

 W_{F_{n}}\leqq \mathcal{G}_{F}^{l}\supset \mathcal{G}_{F_{n}}^{\psi_{E/F}(l)}
Since   l_{n}arrow\infty as   narrow\infty , there exists an integer  n such that  \psi_{E/F}(l)  \leq l_{n} . Thus  \phi|_{W_{F_{n}}}
is trivial on  \mathcal{G}_{F_{n}}^{l_{n}} i.e.  \phi|_{W_{F_{n}}\cross SL_{2}(\mathbb{C})}  \in\Phi_{l_{n}}(GL_{N}(F_{n})) , as claimed.  \square 

Now we prove the following main theorem:

Theorem4.3. Let  F be a finite extension of  \mathbb{Q}_{p} and  E/F a procyclic APF

extension. Then we can construct a map  BC_{\infty} :  \mathscr{A}(GL_{N}(F))  arrow  \mathscr{A}(GL_{N}(F_{\infty})) such

that the following diagram is commutative:

(4.2)  \mathscr{A}(GL_{N}(F_{\infty}))^{LLC_{F\infty}}arrow\Phi(GL_{N}(F_{\infty}))

 BC_{\infty}\uparrow {\rm Res}\infty\uparrow
 \mathscr{A}(GL_{N}(F))\underline{LLC_{F}}\Phi(GL_{N}(F)) .
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Proof. First assume  N\geq 2 . We take  \{l_{n}\} as in Theorem 4.2. We define

BC  \infty:\mathscr{A}(GL_{N}(F))arrow \mathscr{A}(GL_{N}(F_{\infty}))

by mapping  \pi to  A_{\infty/n,l_{n}}(BC_{n}(\pi)) , where then is as in Theorem4.2 (ii). By Theorem
4.2 (i),  BC_{\infty}(\pi) is independent of the choice of n.

We shall show  BC_{\infty} is also independent of the choice of {ln}. We take another
sequence  \{l_{n}'\}_{n=0}^{\infty} which satisfies the conditions in Theorem 4.2. Then there exists an

positive integer  n such that  BC_{n}(\pi)  \in  \mathscr{A}_{l_{n}}(GL_{N}(F_{n}))\leqq \mathscr{A}_{l_{n}'}(GL_{N}(F_{n})) . By Theorem

4.1 (ii), we have  A_{\infty/n,l_{n}} ◦  BC_{n}(\pi)  =  A_{\infty/n,l_{n}'} ◦  BC_{n}(\pi) . As a consequence, we have
proved that  BC_{\infty}(\pi)=A_{\infty/n,l_{n}}(BC_{n}(\pi)) is independent both ofn and{ln}.

We shall prove the commutativity of the diagram (4.2). Let  F' be a finite ex‐
tension of  F contained in  \overline{F} . We define  {\rm Res}_{F'/F} :  \Phi(GL_{N}(F))  arrow  \Phi(GL_{N}(F')) by

 {\rm Res}_{F'/F}(\phi)  =  \phi|_{W_{F},\cross SL_{2}(\mathbb{C})} for any  \phi  \in  \Phi(GL_{N}(F)) . If  F' is contained in  E , we

define  {\rm Res}_{F_{\infty}/F'} :  \Phi(GL_{N}(F'))  arrow\Phi(GL_{N}(F_{\infty})) by  {\rm Res}_{F_{\infty}/F'}(\phi')  =\phi'|_{W_{F_{\infty}}\cross SL_{2}(\mathbb{C})} for

any  \phi'\in\Phi(GL_{N}(F')) .

Now take a uniformizer  \varpi_{\infty} of  F_{\infty} . Note that, the maps  A_{\infty/n,l_{n}} in Theorem

4.1 and  (\mathfrak{N}_{F_{\infty}/F_{n}})_{l_{n}}^{*} in §§3.2 are induced by the same datum  (\alpha_{\infty/n}, \varpi_{\infty}, N_{\infty/n}(\varpi_{\infty})) ,

which we denote by  \beta_{\infty/n} , where  \alpha_{\infty/n} is the same as in the proof of Theorem4.1 (i).
By applying Theorem 2.8 to

 (K(1), K(2), l, l', \beta)=(F_{n}, F_{\infty}, \lceil p^{-1}(p-1)i(E/F_{n})
\rceil, l_{n}, \beta_{\infty/n}) ,

we have

 LLC_{F_{\infty}}(BC_{\infty}(\pi))=LLC_{F_{\infty}}(A_{\infty/n,l_{n}}(BC_{n}
(\pi)))

 =(\mathfrak{N}_{F_{\infty}/F_{n}})_{l_{n}}^{*}(LLC_{F_{n}}(BC_{n}(\pi))) .

Since  (\mathfrak{N}_{F_{\infty}/F_{n}})_{l_{n}}^{*} and ResF \infty/F_{n} coincide on  \Phi_{l_{n}}(GL_{N}(F_{n})) by Lemma 3.5, we have

 (\mathfrak{N}_{F_{\infty}/F_{n}})_{l_{n}}^{*}(LLC_{F_{n}}(BC_{n}(\pi)))={\rm 
Res}_{F_{\infty}/F_{n}}(LLC_{F_{n}}(BC_{n}(\pi)))

 ={\rm Res}_{F_{\infty}/F_{n}} ◦  {\rm Res}_{F_{n}/F}(LLC_{F}(\pi))

 ={\rm Res}_{F_{\infty}/F}(LLC_{F}(\pi)) .

Hence we obtain  LLC_{F_{\infty}}(BC_{\infty}(\pi))  ={\rm Res}_{F_{\infty}/F}(LLC_{F}(\pi)) , which shows the commuta‐

tivity of the diagram (4.2).
The case  N=1 is similar to the above, except that we must choose  \{l_{n}\}_{n=0}^{\infty} satis‐

fying the conditions in Theorem 4.1 and  l_{n}<  \lceil(p-1)(2p)^{-1}i(E/F_{n})\rceil for all sufficiently

large  n in order to apply Lemma 3.5.  \square 

Remark4.4. As we have noted after Theorem 1.1, the proof of the indepen‐

dence of the choice of  n relies on LLC. However, that of  \{l_{n}\} does not need LLC.
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§5. Proof of Theorem 1.2

Finally, we prove Theorem 1.2. We recall some notation. For aprocyclic group
 \Gamma , we denote by  \hat{\Gamma} the group of smooth characters of  \Gamma with valued in  \mathbb{C}^{\cross} . For a

positive integer  \mu and  (\eta_{1}, . . . , \eta_{\mu})  \in\hat{\Gamma}^{\mu} , we denote by  \hat{\Gamma}(\eta_{1}, . . . , \eta_{r}) the quotient of  \hat{\Gamma}^{\mu}

by the following equivalence relation: Two elements  (\xi_{1}, \ldots, \xi_{\mu}) and  (\theta_{1}, \ldots, \theta_{\mu}) in  \hat{\Gamma}^{\mu}

are equivalent if there exists a permutation  \sigma of  \{ 1, . . . ,  \mu\} such that  \eta_{j}\xi_{j}  =\eta_{\sigma(j)}\theta_{\sigma(j)}
for each  j . Now we recall the statement of Theorem1.2 as follows:

Theorem 5.1. Let  F be a finite extension of  \mathbb{Q}_{p} and  E/F a procyclic APF

extension of infinite degree with the Galois group  \Gamma . We suppose that  (p, N)=1.

(i) Let  \pi  \in  \mathscr{A}(GL_{N}(F)) be an essential ly square‐integrable representation. We put
 \pi_{\infty}  =BC_{\infty}(\pi) . Let  \omega_{\infty} denote the central character of  \pi_{\infty} . Then  BC_{\infty}^{-1}(\pi_{\infty}) has

a natural  \hat{\Gamma} ‐torsor structure and the map

 \omega:BC_{\infty}^{-1}(\pi_{\infty})arrow BC_{\infty}^{-1}(\omega_{\infty})

which maps  \pi' to its central character  \omega_{\pi'} is bijective.

(ii) (a) Let  \pi be any element of  \mathscr{A}(GL_{N}(F)) . We suppose that  p>N. There exist a
positive integer  r , positive integers  N_{i},  \mu_{i} and an essential ly square‐integrable

representation  \pi_{i}  \in  \mathscr{A}(GL_{N_{i}}(F)) for each  i  =  1 , 2, . . . ,  r , and an element

 \eta_{i,j}  \in\hat{\Gamma} for each  1\leq i\leq r and  2\leq j\leq\mu_{i} satisfying the fol lowing conditions:

 * the equality  \mu_{1}N_{1}+\cdots+\mu_{r}N_{r}=N holds,
 * the lifts  BC_{\infty}(\pi_{1}) , . . . ,  BC_{\infty}(\pi_{r}) are all distinct, and
 * we can write

 \pi=\pi_{1}\ovalbox{\tt\small REJECT}(\pi_{1}\otimes\eta_{1,2})
\ovalbox{\tt\small REJECT}\cdots\ovalbox{\tt\small REJECT}(\pi_{1}
\otimes\eta_{1,\mu_{1}})
 \ovalbox{\tt\small REJECT}\cdots

 \ovalbox{\tt\small REJECT}\pi_{r}\ovalbox{\tt\small REJECT}(\pi_{r}\otimes\eta_
{r,2})\ovalbox{\tt\small REJECT}\cdots\ovalbox{\tt\small REJECT}(\pi_{r}
\otimes\eta_{r,\mu_{r}} ) .

(b) Under the notation of  (a) , the group  \hat{\Gamma}(\pi)  =\hat{\Gamma}^{\mu_{1}}  \cross  \cdots  \cross\hat{\Gamma}^{\mu_{r}} transitively acts
on  BC_{\infty}^{-1}(\pi_{\infty}) . Asahomogeneous space of  \hat{\Gamma}(\pi) , this is isomorphic to

 \Gamma (1, \eta_{1,2}, . . . , \eta_{1,\mu_{1}}) \cross \cdots 
\cross\hat{\Gamma}(1, \eta_{r,2}, . . . , \eta_{r,\mu_{r}} ) .

Proof. We take  \{l_{n}\}_{n=1}^{\infty} as in Theorem 4.2. First, we show (i) for asupercuspidal
 \pi . We put  \pi_{\infty}  =  BC_{\infty}(\pi) . The fiber  BC_{\infty}^{-1}(\pi_{\infty}) has a  \hat{\Gamma}‐set structure via  \pi'  arrow

 \pi'\otimes\eta , where  \pi'  \in  BC_{\infty}^{-1}(\pi_{\infty}) and  \eta  \in  \hat{\Gamma} . We shall show that this action is simply

transitive. The assumption  (p, N)  =  1 shows that the  \hat{\Gamma}‐action is simple. Let us prove
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the transitivity. We take any  \pi'  \in  BC_{\infty}^{-1}(\pi_{\infty}) . By Theorem 4.2 (ii), we can take
an integer  n such that both  BC_{n}(\pi) and  BC_{n}(\pi') belong to  \mathscr{A}_{l_{n}}(GL_{N}(F_{n})) . Since
 BC_{\infty}  =  A_{\infty/n,l_{n}} ◦  BC_{n} and  A_{\infty/n,l_{n}} is injective, we have  BC_{n}(\pi)  =  BC_{n}(\pi') . It

suffices to show that there exists a smooth character  \eta:F^{\cross}  arrow \mathbb{C}^{\cross} which factors through

 F^{\cross}/N_{F_{n}/F}  (F_{n}^{\cross} ) such that  \pi'\simeq\pi\otimes\eta . We show this by induction on n. The case  n=1

is [1, Chapter 1, Proposition 6.7]. We assume that the assertion holds for  n-1 . By
the case  n=1 , we can find a smooth character  \eta_{1} :  F_{n-1}^{\cross}  arrow \mathbb{C}^{\cross} which factors through

 F_{n-1}^{\cross}/N_{F_{n}/F_{n-1}}  (F_{n}^{\cross} ) and satisfies  BC_{n-1}(\pi')  \simeq  BC_{n-1}(\pi)\otimes\eta_{1} . Let  \omega_{\pi} (resp.  \omega_{\pi'} )
denote the central character of  \pi (resp.  \pi' ). Then we have

 \omega_{\pi'} ◦  N_{F_{n-1}/F}=  (\omega_{\pi} ◦  N_{F_{n-1}/F})\eta iN .

Thus we obtain

 \eta_{1=}^{N}(\omega_{\pi'}\omega_{\pi}^{-1}) ◦  N_{F_{n-1}/F}.

By the assumption that  (p, N)=1 , we find a character  \eta_{1}' on  F^{\cross} such that

 \eta_{1}=\eta_{1}' ◦  N_{F_{n-1}/F}.

Hence we have  BC_{n-1}(\pi')  \simeq  BC_{n-1}(\pi\otimes\eta_{1}') and by the induction hypothesis there
exists a smooth character  \eta_{n-1} on  F^{\cross} which is trivial on  N_{F_{n-1}/F}(F_{n-1}^{\cross}) and satisfies

 \pi'\simeq\pi\otimes(\eta_{1}'\eta_{n-1}) . Then  \eta=\eta_{1}'\eta_{n-1} is the requested character.

We define a map  BC_{\infty}^{-1}(\pi_{\infty})  arrow BC_{\infty}^{-1}(\omega_{\infty}) by taking the central character. This
maps  \pi\otimes\eta to  \omega_{\pi}\eta^{N} . By the assumption  (p, N)=1 , it is bijective.

Now we show (i) for any essentially square‐integrable  \pi . Then there exista unique
divisor  m of  N and a unique supercuspidal representation  \sigma\in \mathscr{A}(GL_{N/m}(F)) such that
 \pi is equivalent to the unique irreducible quotient  St_{m}(\sigma) of

 n-Ind_{P(N/m,\ldots,N/m)}^{GL_{N}(F)}(\sigma\otimes|\det|(1-m)
/2\ldots\sigma\otimes|\det|^{(m-1)/2})
([13, Theorem 9.3]). We put  \sigma_{\infty}=BC_{\infty}(\sigma) . Let us show that the map

 BC_{\infty}^{-1}(\sigma_{\infty})arrow BC_{\infty}^{-1}(\pi_{\infty})
 \sigma'arrow St_{m}(\sigma')

is bijective. Its well‐definedness follows from [1, Lemma6.12], [3, Théorème 2.17  (c) ]
and [7, Proposition A.4.1]. Its injectivity follows from the uniqueness of the expression
 St_{m}(\sigma') . We show its surjectivity. Take any  \pi'  \in  BC_{\infty}^{-1}(\pi_{\infty}) . Then by [3, Théorème
2.17  (c)] and [7, Proposition A.4.1], we have  BC_{n}(\pi')=St_{m}(BC_{n}(\sigma)) for some  n . Since
 \pi' is essentially square‐integrable, there exists adivisor  m' of  N anda supercuspidal

representation  \sigma'\in \mathscr{A}(GL_{N/m'}(F)) such that  \pi'=St_{m'}(\sigma') . The assumption  (p, N)  =
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1 and [1, Lemma 6.12] show that  BC_{n}(\pi')  =  St_{m'}(BC_{n}(\sigma')) . Hence we have  m'=m

and  \sigma'\in BC_{n}^{-1}(BC_{n}(\sigma))  \subset BC_{\infty}^{-1}(\sigma_{\infty}) . Therefore the surjectivity follows, as claimed.

The statement (ii) follows from the uniqueness of the Langlands sum and the fact
that the functor A  \infty/n,l_{n} preserves the Langlands sum ([7, Proposition A.4.1]).  \square 
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