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Integral Euler systems and Main Conjectures

By

Florian E. Ito Sprung \ovalbox{\tt\small REJECT}

Abstract

We give a strategy for proving the Iwasawa Main Conjecture for weight two modular forms
at primes of slope  >0.

§1. Introduction

Iwasawa theory is a connection between analytic and algebraic objects. When one

wants to shed light on an object defined over a base number field  K , Iwasawa theory

provides a way of viewing it as a member of a family of objects over  K_{n} , where  K_{n} is an
extension of  K in a tower of number fields, constructed so that  Ga1(K_{n}/K)  \sim=\mathbb{Z}/p^{n}\mathbb{Z}
and  \varliminf_{arrow n}Ga1(K_{n}/K)\sim=\mathbb{Z}_{p} . In the context of an elliptic curveE defined over  \mathbb{Q} and in

which the base field is also  K=\mathbb{Q} , we are interested in the following conjecture:

Conjecture 1.1 (Birch and Swinnerton-Dyer Conjecture).
I. We have  ord_{s=1}L(E, s)=r.
II. For the leading Taylor coefficient in the power series expansion about  s=1 , we have

  \frac{L^{(r)}(E,1)}{r!}=\#X(E/\mathbb{Q})\cdot\frac{Reg(E/\mathbb{Q})c_{l}}{\#
E(\mathbb{Q})_{tor}^{2}}.
Here,  L(E, s) is the Hasse-Weil L-function of  E,  ord_{s=1} denotes the order of van-

ishing at  s  =  1,  L^{(r)} is the r-th derivative, and Ω the real period. On the algebraic
side,  r denotes the Mordell–Weil rank of  E(\mathbb{Q}) , and  Reg(E/\mathbb{Q}) ,  E(\mathbb{Q})_{tor} , and  c_{l} denote

the regulator, torsion subgroup, and Tamagawa factor at  l respectively. The most im-

portant term is the Šafarevič–Tate group  X(E/\mathbb{Q}) , whose order is not known to be
finite.
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The merit of Iwasawa Theory is that it equips us with a strategy for proving (II)
prime by prime when part (I) is known. For part (I), the current status is that under
mild assumptions, we have for  m\in\{0 , 1  \} that

“  ord_{s=1}L(E, s)=m ” if and only if  r=m and X  (E/\mathbb{Q}) is finite”

via works of Coates–Wiles, Kolyvagin, Gross–Zagier, Rubin, Kato, Skinner–Urban, and

Skinner–Zhang.

One consequence of the Iwasawa main conjecture is the p-primary part of (II) in
the above conjecture, i.e. the equality:

 | \frac{L(E,1)}{}|_{p}= |\#X(E/\mathbb{Q})c_{l}|_{p}
in the rank  0 case, and

 | \frac{L'(E,1)}{Reg(E/\mathbb{Q})}|p   =| \frac{\#X(E/\mathbb{Q})c_{l}}{\# 
E(\mathbb{Q})_{tor}^{2}}|_{p}
in the rank 1 case.

As for the status of the main conjecture, it is known when  p is of good reduction,

and  E has complex multiplication. In fact, Rubin [Ru91] proved this for ordinary primes,
i.e. those primes for whichp is coprime to  ap=p+1-\# E(\mathbb{F}_{p}) , and in the supersingular

case  (p|a_{p}) , it was proved by Pollack and Rubin [PR04]. For the non-CM case, Kato
constructed an Euler system to prove one inclusion. The reverse inclusion was proved by

Skinner and Urban in the ordinary case. These theorems come with small assumptions.

Recently, Wan in [W] has posted a proof of the main conjecture for elliptic curves in
the case  a_{p}  =0 , a subcase of the supersingular case. For elliptic curves, we note that

 a_{p}=0 and  p supersingular are equivalent as long as  p ⩾ 5. The purpose of this paper

is to sketch a strategy that works for the general supersingular case, in which  p is odd,

cf. [S].

§2. Main Conjectures in the weight two case

We describe the form of the main conjecture in the case of ordinary reduction,

before moving on to the formulation in the supersingular case.

§2.1. The classical form of a Main Conjecture

Classically, a main conjecture has the following form: Let  M be a compact  \mathbb{Z}p-
module with a continuous action of the Galois group  Ga1(\mathbb{Q}_{\infty}/\mathbb{Q}) , where  \mathbb{Q}_{\infty} denotes
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the cyclotomic  \mathbb{Z}p-extension of  \mathbb{Q} . We can regard  M as a  \mathbb{Z}_{p}[[Ga1(\mathbb{Q}_{\infty}/\mathbb{Q})]]  \sim=  \mathbb{Z}p[[X]]-
module. The ring  \mathbb{Z}_{p}[[X]] is convenient since it is also the ring of special p-adically

analytic functions consisting of power series with bounded coefficients. Assume that  M

is finitely generated torsion as a  \mathbb{Z}p[[X]]-module. An Iwasawa Main Conjecture asks
if the ideal generated in  \mathbb{Z}_{p}[[X]] by an analytic object, a p-adic L-function  L_{p}(X)  \in

 \mathbb{Z}_{p}[[X]] , is equal to the characteristic ideal (the  \mathbb{Z}p[[X]]-module theoretic analogue of
size) of the algebraic object  M :

(analytic) (algebraic)

 \mathbb{Z}_{p}[[X]]\subset \mathbb{Z}_{p}[[X]]\subset
 (L_{p}(X)) =?Char_{\mathbb{Z}_{p}[[X]]}(M)

§2.2. Iwasawa Theory for elliptic curves: The Ordinary Case

On the analytic side, Mazur and Swinnerton-Dyer defined in [MSD] a p-adic L-
function so that we should have  L_{p}(E, X)  \in \mathbb{Z}_{p}[[X]] . Here, the ordinary assumption is

needed to ensure that  L_{p}(E, X) has coefficients in  \mathbb{Z}_{p} , i.e. p-adically bounded by 1. (If
one follows their choice of normalization, or “period,” we only know that  L_{p}(E, X)  \in

 \mathbb{Q}\otimes \mathbb{Z}_{p}[[X]] . This means we can find an integer  m so that all coefficients are in the

p-adically bounded set   \mathbb{Z}_{p}\otimes \mathbb{Z}[\frac{1}{m}] , and is not a major issue. We shall not discuss this

point further, since one can always renormalize so that the bound is 1.) From the
boundedness of the coefficients, we conclude that  L_{p}(E, X) has finitely many zeros.

On the algebraic side, we have the Selmer group which fits into an exact sequence

(see e.g. [Sil]):

 0arrow E(\mathbb{Q}_{n})\otimes \mathbb{Q}/\mathbb{Z}arrow Se1(E/\mathbb{Q}_{n}
)arrow X(E/\mathbb{Q}_{n})arrow 0,

where  \mathbb{Q}_{n} denotes the nth layer in the cyclotomic  \mathbb{Z}p-extension  \mathbb{Q}_{\infty} . It is really the
p-primary part of this sequence that we consider. We now consider the limit of the

duals of the p-primary Selmer groups:

 \mathcal{X}  := lim Hom(Selp  (E/\mathbb{Q}_{n}),  \mathbb{Q}_{p}/\mathbb{Z}_{p} ).
 n

This construction of  \mathcal{X} so far works whether  p is ordinary or not, but only in the

ordinary case does  \mathcal{X} become a finitely generated torsion  \mathbb{Z}p[[X]]-module, by results of
Rubin and Kato. Consequently, we can define Char  \mathbb{Z}_{p}[[X]] when  p is ordinary. Mazur’s

Main Conjecture asks whether  (L_{p}(E, X))= Char  \mathbb{Z}_{p}[[X]]^{\mathcal{X}}.

§2.3. Iwasawa Theory for elliptic curves: The Supersingular Case

On the analytic side, there are two p-adic L-functions  L_{\alpha}(E, X) and  L_{\beta}(E, X)
([AV75], [Vi76], [MTT]) for each choice of root  \alpha and  \beta of the Hecke polynomial  Y^{2}-
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 a_{p}Y+p , which generalize that of Mazur and Swinnerton-Dyer. The problem is that they

are not elements of  \mathbb{Z}_{p}[[X]] , but of  \mathbb{Q}_{p}(\alpha)[[X]]^{1} This causes  L_{\alpha}(E, X) and  L_{\beta}(E, X) to

have infinitely many zeros.

The corresponding problem on the algebraic side is that  \mathcal{X} is not torsion as a

 \mathbb{Z}_{p} [[X]]-module.
These obstacles did not stop Perrin-Riou and Kato from formulating Main Conjec-

tures in this setting! However, the objects involved are more complicated, and it had
been more desirable to formulate an easier main conjecture, but it seemed for a long

time that such an easier main conjecture didn’t exist. The essential insight is about the

number of main conjectures: The  ♯/\flat philosophy sketched below gives rise toapair of
main conjectures.

In the case  a_{p}=0 , Kobayashi constructed a pair of maps

 \varliminf_{n}H^{1}(\mathbb{Q}_{n},{}_{p}T)-\ovalbox{\tt\small REJECT}\ovalbox{
\tt\small REJECT}\ovalbox{\tt\small REJECT}arrow \mathbb{Z}_{p}[[X]]^{\oplus 2}
arrow'(Co1^{♯},Co1^{\flat}),
in [Ko03], where  T is the Tate module and  \mathbb{Q}_{n,p} is the completion of  \mathbb{Q}_{n} . For the general
supersingular case, see [S12]. These maps are elliptic curve analogues ofa classical map
given by Coleman in [Co79], and send an Euler system, Kato’s zeta element2, to a pair
of p-adic L-functions  (L_{p}^{♯}(E, X), L_{p}^{\flat}(E, X))  \in \mathbb{Z}_{p}[[X]]^{\oplus 2} . When  a_{p}  =  0 , this pair has

been constructed by Pollack and by the author in the general case. It satisfies

 (L_{\alpha}(E, X), L_{\beta}(E, X))=  (L_{p}^{♯}(E, X), L_{p}^{\flat}(E, X))\mathcal{L}og_{a_{p}} , where

 \mathcal{L}og_{a_{p}}  :=   \lim_{narrow\infty}  (\begin{array}{l}
1a_{p}
\Phi_{p}(1+X)0
\end{array})  (\begin{array}{l}
1a_{p}
\Phi_{p^{2}}(1+X)0
\end{array}) . . .  (\begin{array}{l}
1a_{p}
\Phi_{p^{n}}(1+X)0
\end{array})  (\begin{array}{ll}
a_{p}   1
-p   0
\end{array})  (\begin{array}{ll}
-1   -1
\beta   \alpha
\end{array})
We note that  \mathcal{L}og_{a_{p}} is a  2  \cross 2 matrix whose entries are p-adic analytic functions

converging on the open unit disk. Here,  \Phi_{n} denotes the nth cyclotomic polynomial.

The matrix  \mathcal{L}og_{a_{p}} is responsible for the infinitely many zeros of  L_{\alpha} and  L_{\beta} , but once we

divide the vector  (L_{\alpha}, L_{\beta}) by  \mathcal{L}og_{a_{p}} , a vector (  L♯,  L_{\flat} ) with finitely many zeros appears.
Intuitively, dividing the vector  (L_{\alpha}, L_{\beta}) by  \mathcal{L}og_{a_{p}} is like multiplying the Riemann zeta

function  \zeta(s) by the Gamma function  \Gamma(s) . The vector  (L_{\alpha}, L_{\beta}) has infinitely many

uninteresting zeros, just like  \zeta(s) has infinitely many trivial zeros.  \Gamma(s) and  \mathcal{L}og_{a_{p}} factor

out the non-interesting zeros, until only the interesting zeros remain.

The  ♯/\flat theory is much easier when  a_{p}=0 . For example, we can explicitly describe

the entries of  \mathcal{L}og_{a_{p}} , since all but one of the matrices involved in its definition are

anti-diagonal.

1In fact, they can be considered as elements of a smaller subring  \mathcal{H}^{\frac{1}{2}}(X) consisting of analytic

functions converging on the p-adic unit disk whose power series coefficients grow like  \log^{\frac{1}{p^{2}}}(1+X) ,
where  \log_{p}(1+X) is the p-adic logarithm.

2or more exactly, its local image
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The kernels of each of the maps Col♯ and  Co1^{\flat} give rise to new local conditions,
producing a pair of Selmer group duals  \mathcal{X} ♯ and  \mathcal{X}^{\flat} which are finitely generated torsion
 \mathbb{Z}_{p} [[X]]-modules. More precisely,  \mathcal{X}  ♯/\flat is the Pontryagin dual of the♯/  \flat-Selmer group.
Recall that a Selmer group of a GalK-representation  R of a number field  K is a kernel:

 Se1(K, R)=ker(H^{1}arrow\ovalbox{\tt\small REJECT} vH_{v}^{1}/S_{v}) ,

where  H^{1} is the global cohomology group  H^{1}(K, R) and  H_{v}^{1} its local counterpart3
 H^{1}(K_{v}, R) for a place  v of  K . For example, for the Selmer group  Se1(E/\mathbb{Q}_{n}) , we

have  K=\mathbb{Q}_{n},  R=W , where  V  :=T\otimes \mathbb{Q}_{p},  W=V/T , and  S_{v}=E(\mathbb{Q}_{n,v})\otimes \mathbb{Q}_{p}/\mathbb{Z}_{p}.
When  p|a_{p} , the local condition  S_{p} causes  \mathcal{X}=Hom(\varliminf_{arrow n}Se1(\mathbb{Q}_{n}, W), \mathbb{Q}_{p}
/\mathbb{Z}_{p}) , the

Pontryagin dual, to be not  \mathbb{Z}p[[X]]-torsion. To define the Selmer group Sel♯  /\flat(\mathbb{Q}_{\infty}, W) ,
we replace  S_{p} by finer submodules  S_{p}^{♯/\flat}  \subset  S_{p}  \subset  H^{1}(\mathbb{Q}_{\infty,p}, W) . The modules  S_{p}^{♯/\flat} are

defined to be the exact annihilators of  ker Col♯  /\flat under the Tate pairing   H^{1}(\mathbb{Q}_{\infty},{}_{p}T)\cross
 H^{1}(\mathbb{Q}_{\infty,p}, W)arrow \mathbb{Q}_{p}/\mathbb{Z}_{p} . The resulting Pontryagin duals  \mathcal{X}  ♯/\flat are then  \mathbb{Z}p[[X]]-torsion,
and we can formulate a pair of main conjectures, equivalent to main conjectures of Kato

[Ka05] and Perrin-Riou [PR]:

Conjecture 2.1 ([Ko03] for  a_{p}=0 , [S12] for  p|a_{p} ).

 (L_{p}^{♯}(E, X))  = Char  \mathbb{Z}_{p}[[x]]\mathcal{X} ♯,and  (L_{p}^{\flat}(E, X))  = Char  \mathbb{Z}_{p}[[x]]\mathcal{X}^{\flat}

A consequence of a theorem of Kato [Ka05, Theorem 12.5], proved via constructing
an integral Euler system, is that

 (L_{p}^{♯}(E, X))\subset Char  \mathbb{Z}_{p}[[x]]\mathcal{X} ♯ and  (L_{p}^{\flat}(E, X))\subset Char  \mathbb{Z}_{p}[[x]]\mathcal{X}^{\flat}

(under the same hypotheses of the image of the residual Galois representation as in
[Ka05, Theorem 12.5]).

§2.4. Sketch of strategy for proving the main conjecture

We now sketch the strategy for proving the main conjecture in the case of elliptic

curves. This generalizes ideas of Wan in the case  a_{p}  =  0 . The main difficulty when

 a_{p}  \neq  0 is that many of the ♯/  \flat-objects can not be handled separately. Note that we
carry out this strategy in [S] in the case of elliptic curves, which is why in this paper
the notation is for elliptic curves. However, the general strategy outlined here should be

applicable to the general weight two modular forms case. The main missing ingredient

at the moment is a ♯/  \flat-theory.

3which is required to be the unramified classes for almost all  v
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The most important idea is to formulate equivalent main conjectures - this can be

achieved once we work over an auxiliary quadratic field  K . One isamain conjecture

involving four  ♯/\flat objects, and another one is a main conjecture in terms of a Greenberg-

type Selmer group and a Greenberg-type p-adic L-function. The Greenberg-type main

conjecture is amenable to a  GU (3, 1)-Eisenstein series argument which Wan carried out
to prove one inclusion. Assuming equivalence of main conjectures, this inclusion then

implies an inclusion in each of the four ♯/  \flat-main conjectures. (This resulting inclusion is
in the reverse direction of the one that appears in Kato’s work, but Kato’s work is over

 \mathbb{Q} . If we could generalize Kato’swork to K, we would be done.) Ideally, this inclusion
would then directly specialize to the  ♯/\flat main conjectures over  \mathbb{Q} , giving a converse to

the results in the previous section. However, there is an issue when specializing down to
 \mathbb{Q} (we have to take into account quadratic twists by  K), but this issue can be overcome.

The most important technical ingredient in [S] is thus to prove the equivalence of
the four  ♯/\flat main conjectures and the (one) Greenberg-type main conjecture. To do
this, we prove that both are equivalent to a pair of main conjectures phrased in terms of

a pair of integral Euler systems. These Euler systems are integral versions of the Euler

systems of Beilinson–Flach elements, constructed by Kings, Loeffler, and Zerbes.

Thus, there are three equivalent formulations of the main conjecture, which we now

explain in the three following subsections, in the context of elliptic curves. Denote by
 K an auxiliary imaginary quadratic field in which the prime  p splits as pq. Denote by
 K_{\infty} the maximal p-unramified  \mathbb{Z}p-extension of  K . This isa  \mathbb{Z}p2-extension which can be
realized as the compositum of the towers of ray class fields  K(p^{n}) and  K(q^{n}) . As in the

case for  \mathbb{Q} , we can define an Iwasawa algebra with variablesX and  Y corresponding

each to  p and  q . Denote this Iwasawa algebra by  \Lambda_{K}  :=\mathbb{Z}_{p}[[X, Y]].

§2.5. The Greenberg-type main conjecture

On the analytic side, there is an element  L_{p}^{\forall 0}  \in  \Lambda_{K}\otimes \mathbb{Q} . The precise definition

won’t be used, so we just record that it comes from a Rankin-Selberg convolution of
the elliptic curve and a CM form constructed from characters associated to  K . Abit

more precisely, this function interpolates twists of the L-function of the automorphic

representation  \pi_{E} associated to  E by Hecke characters. (It interpolates values of the
form  L  (K,  \pi_{E}, \xi, \frac{\kappa}{2}-\frac{1}{2} ) , where  \xi runs over Hecke characters of  \mathbb{A}_{K}^{\cross}/K^{\cross} of infinity type

 (  \frac{\kappa}{2} , \frac{-\kappa}{2} ) for  \kappa ⩾ 6 associated to elements of  {\rm Spec}\Lambda_{K} . The interested reader is referred

to [W2], which discusses  L_{p}^{\forall 0}. )
The corresponding algebraic object should be an object which is finitely generated

torsion as a  \LambdaK-module. We can produce such an object by making the local condition

at one of the primes, say  q , as fine/strict as possible. In fact, this allows to loosen the
condition at the other prime  p completely. Thus, let us consider the following“coarse
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at  p but fine at  q Selmer group4. We put  T:=T\otimes\Lambda_{K}(\Psi^{-1}) . The character  \Psi is the

character  Ga1(\overline{K}/K)  arrow Ga1(K_{\infty}/K)  arrow\Lambda_{K}^{\cross} , where  K_{\infty} is the  \mathbb{Z}p2-extension of  K . We
also put  \mathcal{W}  :=Hom_{\mathbb{Z}_{p}}(\Lambda_{K}, \mathbb{Q}_{p}/\mathbb{Z}_{p})\otimes 
\mathcal{T}.

Definition 2.1.

 Se1_{\forall 0}(K, \mathcal{W}):=ker (H^{1}(K, \mathcal{W})arrow H^{1}v\nmid 
p(I_{v}, \mathcal{W}) \cross H^{1}(K_{q}, \mathcal{W}))
We then put  \mathcal{X}_{\forall 0}  :=Hom(Se1_{\forall 0}(K, \mathcal{W}), \mathbb{Q}_{p}/\mathbb{Z}_{p}) . This is finitely generated torsion as a
 \LambdaK-module, so that we can define its characteristic ideal Char  (\mathcal{X}_{\forall 0}) .

The reason for tensoring with  \Lambda_{K}(\Psi^{-1}) is that by Shapiro’s lemma,  Se1_{\forall 0}(K, \mathcal{W})=

  \lim_{arrow K\subseteq K\subseteq K_{\infty}},Se1_{\forall 0}(K', W) , cf. [SU12, Proposition3.4 and Section 3.1.3]. (The Selmer
groups  Se1_{\forall 0}(K', W) are defined as above with  K' instead ofKandT instead of  \mathcal{W}. )

The main conjecture is full equality in the following theorem of Wan  [W , Theorem

2.13]:

Theorem 2.2. Let  E have square-free conductor  N that has at least one prime

divisor  l|N not split in  K , and suppose that  E[p]|_{G_{K}} is absolutely irreducible, where

 p\nmid N is odd and satisfies  p|a_{p} . Then as(fractional) ideals of  \Lambda_{K}\otimes \mathbb{Q} , we have

Char  (\mathcal{X}_{\forall 0})  \subseteqq  (L_{p}^{\forall 0}) .

§2.6. The four ♯/  \flat-main conjectures

In [Ki13], BD Kim generalized Kobayashi’s construction of plus /minus Coleman
maps to the two-variable case, but still assumed  a_{p}  =  0 . In [S], we generalize Kim’s
construction to the general supersingular case. Thus, we construct♯/  \flat-Coleman maps.

 Co1_{v}^{♯/\flat} :1\dot{4}^{mH^{1}(K_{v,n,m},T)}n,\overline{m}
arrow\Lambda_{K}^{2},
where  v can be  p or  q , and  K_{v,n,m} denotes the compositum of the nth layer in the

cyclotomic tower of  K_{v} and the mth layer in its unramified tower. In the case  ap=0,
both Kobayashi and Kim construct these from pairings in Galois cohomology used in

the work of Kurihara and Perrin-Riou (discussed in [Ku02, Section 3]). Their essential
insight was that  H^{1}(K_{v,n},{}_{m}T) is generated by elements  c_{n,m} which could be appro-

priately modified to construct trace-compatible elements  c_{n,m}^{\pm} By pairing with  c_{n,m}^{+}

4or “relaxed at  p but restricted  /strict at  q . We are following Coates’s treminology [CS05] for the
word “fine.” The symbol  \forall stands for “coarse” because of the absence of restrictions, while the
symbol  0 stands for “fine.”
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instead of  c_{n,m} , they were able to construct a map  Co1_{v}^{+} which has bounded image, i.e.

is in  \Lambda_{K} , and similarly they constructed a map  Co1_{v}^{-} by working with  c_{n,m}^{-} . Note that

the constructions of  Co1_{v}^{+} and  Co1_{v}^{-} were separate. In the general supersingular case,

these constructions break down, but the new insight in our works [S12,  S ] was the idea
to turn the failure of trace-compatibility of  c_{n,m} into a simultaneous construction of

 Co1_{v}^{♯},  Co1_{v}^{\flat} that generalizes the constructions of Kobayashi and Kim. The kernels of the

♯/  \flat-Coleman maps at the primes  p and  q give rise to the appropriate local conditions
for modified Selmer groups Sel♯♯,Sel♯  \flat,  Se1_{\flat} ♯,and  Se1_{\flat\flat} (giving rise to duals  \mathcal{X}♯♯,  \mathcal{X}♯  \flat etc.
which are  \LambdaK-torsion, cf. [  S , Proposition 2.23]). More precisely, here is the definition
for Sel♯  \flat :

Sel♯   \flat:=ker(Se1(E/K_{\infty})arrow\frac{\underline{1in?}_{m}\underline{1in?}
_{n}H^{1}(K_{p,n,m},W)}{E♯} \cross \frac{\underline{1in?}_{m}\underline{1in?}
_{n}H^{1}(K_{q,n,m},W)}{E\flat})
Here, the subindices each describe local conditions at the prime  p resp. the prime  q , so

that the local conditions are the exact annihilator  E ♯ under the Tate pairing as before
of  ker Col♯ at the prime  p , and  E^{\flat} is the exact annihilator of that of kerCol  \flat at the
prime  q.

Fortunately, the analytic counterparts to these objects already exist - they are

the four signed p-adic L-functions  L♯♯,  L ♯  \flat,  L_{\flat} ♯,  L_{\flat\flat} due to Antonio Lei [Lei12]. These
p-adic L-functions interpolate special values of the Hasse-Weil L-function twisted by

appropriate characters  \chi of the group  Ga1(K_{\infty}/K) . One challenge is to prove that they

live in  \Lambda_{K} rather than  \Lambda_{K}\otimes \mathbb{Q} . The  ♯/\flat main conjectures then are four (equivalent5)
statements of the following form :

Conjecture 2.2. Let ◦,  \ovalbox{\tt\small REJECT}\in\{♯, \flat\} . Then

 (L_{\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}})=Char(\mathcal{X}
_{\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}})

Note that we have four possibilities to choose ◦ and  \ovalbox{\tt\small REJECT} , which is the reason why we

have four main conjectures.

§2.7. The pair of main conjectures using integral Euler systems

The Beilinson-Flach elements  \ovalbox{\tt\small REJECT}_{\alpha} and  \ovalbox{\tt\small REJECT}_{\beta} constructed in [KLZ] by Kings, Loeffler,
and Zerbes are Euler systems which incarnate Rankin-Selberg convolutions of modular
forms. Under an appropriate exponential map, one can recover the special values of

the Hasse-Weil L-function at 1, twisted by characters of  Ga1(K_{\infty}/K) . Their natural

habitat is  a (Galois) cohomology group  H^{1}(K, \mathcal{T})\otimes_{\Lambda_{K}}\mathcal{H}_{K}(Ga1(K_{\infty}/K)) .
 H^{1}(K, \mathcal{T}) isarank two  \LambdaK-module (see e.g. [S, Proof of Proposition2.42]), while

 \mathcal{H}_{K}(Ga1(K_{\infty}/K)) is the distribution algebra on  Ga1(K_{\infty}/K) with coefficients in  K.

5they are equivalent to each other when the p-adic L-functions are not zero
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(  \mathcal{H}_{K}(Ga1(K_{\infty}/K)) can be replaced by asubring with more precise growth conditions.)
There is a map  \log_{p} (the Bloch-Kato logarithm) that connects  \ovalbox{\tt\small REJECT}_{\alpha/\beta} and  L_{p}^{\forall 0} . A bit

more precisely, we can say that for  \xi  =  \alpha or  =  \beta , “logp  (\ovalbox{\tt\small REJECT}_{\xi}) at  \phi"=  L_{p}^{\forall 0}  \cross\xi^{-f_{\phi}} at
 \phi , where  \phi corresponds to a character of the Galois group of a finite extension of  \mathcal{K}_{p}
and  f_{\phi} is its conductor. (For the precise statement of the above sentence in quotation
marks, see [ W , Proposition 7.6] and [KLZ, Theorems 7.1.4/5].)

However, what we desire is a map that sends an Euler system to the p-adic L-

function directly, rather than a collection of special values. To accomplish this, we

construct integral Euler systems (explained below) and a pair of integral versions of

logp, the Wan maps explained in the next subsection. For the integral Euler system,
one can factor the matrix  \mathcal{L}og_{a_{p}} out of the pair of Euler systems of Kings, Loeffler, and

Zerbes, in analogy to the case of p-adic L-functions:

Theorem 2.3 ([S], generalizing [W] which assumes  a_{p}=0). There are elements
 \ovalbox{\tt\small REJECT} ♯ and  \ovalbox{\tt\small REJECT}_{\flat} which are in  H^{1}(K, \mathcal{T}) so that we have

 h\cross(\ovalbox{\tt\small REJECT}_{\alpha}, \ovalbox{\tt\small REJECT}_{\beta}
)=(\ovalbox{\tt\small REJECT}_{♯}, \ovalbox{\tt\small REJECT}_{\flat})
\mathcal{L}og_{a_{p}}

(The matrix  \mathcal{L}og_{a_{p}} is formally the same as before, but the meaning of the variable
 X is different - in subsection 2.3, it corresponded to  p , while here it correponds to  p.

The constant  h is an element of  \Lambda_{K}. )

To formulate the main conjecture, we then need to define Selmer groups Selˆ♯  \forall (resp.
Selˆ  \forall) . Here is the definition:

Selˆ♯  \forall:=ker  (H^{1}(K, T) arrow H^{1}(I_{v}, T)v\nmid p \cross \frac{H^{1}(K_{p},T)}{kerCo1_
{p}^{♯}})
To prepare for the relation with the Greenberg-type main conjecture, we must

also define a Selmer group  \mathcal{X}♯  0 (resp.  \mathcal{X}_{\flat 0} ) whose local condition is empty everywhere
except at the prime  p , where it is the dual of  ker Col♯ (resp.  kerCo1_{\flat} ). The Greenberg-
type Selmer group has as its local conditions the empty condition everywhere except at

 p , where the local conditions is everything. Thus, our  \mathcal{X}♯  0 is just the Greenberg-type
Selmer group with the local condition modified at  p , just like Kobayashi’s Selmer groups

were the usual Selmer groups with the local conditions modified at  p :

Sel♯  0  :=ker  (H^{1}(K,  \mathcal{W})arrow v\nmid p(I_{v}, \mathcal{W}) \cross \frac{H^{1}(K_
{p},\mathcal{W})}{E♯} \cross H^{1}(K_{q}, \mathcal{W}))
Recall that  \mathcal{W}=Hom_{\mathbb{Z}_{p}}(\Lambda_{K}, \mathbb{Q}_{p}/\mathbb{Z}_{p})
\otimes \mathcal{T}.
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We define  \mathcal{X}_{♯0}  :=  Hom (  Se1 ♯  0,  \mathbb{Q}_{p}/\mathbb{Z}_{p} ). Using a control theorem, the torsionness
of  \mathcal{X}♯♯ implies that  \mathcal{X}♯  0 is torsion. To formulate a main conjecture, recall that we
constructed  \ovalbox{\tt\small REJECT}  ♯/\flat so that they are elements of  H^{1}(K, \mathcal{T}) . It turns out that  \ovalbox{\tt\small REJECT} ♯ is in

the rank one  \LambdaK-submodule Selˆ♯  \forall of  H^{1}(K, \mathcal{W}) . The quotient  \LambdaK-module Selˆ♯  \forall/\ovalbox{\tt\small REJECT} ♯ is
torsion. We formulate the following main conjecture:

Conjecture 2.3.

Char(Selˆ♯  \forall/\ovalbox{\tt\small REJECT}_{♯} )  =Char(\mathcal{X}_{♯0})

The corresponding discussion also holds for  \flat-objects, so that there is a correspond-

ing conjecture for the  \flat-objects.

§2.8. Equivalence of the main conjectures

The main idea to prove equivalence of the three types of main conjectures is to

connect the analytic objects to each other by the ♯- and  \flat- Coleman maps, and by ♯-
and  \flat- Wan maps Wan  ♯/\flat :  H^{1}(K_{p}, \mathcal{W})  arrow  \Lambda_{K}\otimes \mathbb{Q} . They can be constructed by an

explicit description of  ker Col♯  /\flat , resp. are an integral version of the map logp described
before.

 (\ovalbox{\tt\small REJECT}_{♯}, \ovalbox{\tt\small REJECT}_{\flat})
 ♯/\flat Coleman maps at  q

 \ovalbox{\tt\small REJECT}\cross \mathcal{L}_{og_{a_{p}}^{-1}}♯/\flat
Wan maps

 (L_{p}^{\forall 0})atp (\begin{array}{ll}
L_{♯♯}   L_{\flat♯}
L_{♯\flat}   L_{\flat\flat}
\end{array})

 (\ovalbox{\tt\small REJECT}_{\alpha}, \ovalbox{\tt\small REJECT}_{\beta})

In the above diagram, the Euler systems are sent to p-adic L-functions: We have

Col♯  ((\ovalbox{\tt\small REJECT}_{\flat})_{q})  =  L ♯  \flat , and Wan♯(  (\ovalbox{\tt\small REJECT} ♯)p)  =  Wan_{\flat}((\ovalbox{\tt\small REJECT}_{\flat})_{p})  =  L_{p}^{\forall 0} , where  \ovalbox{\tt\small REJECT}_{v} means  \ovalbox{\tt\small REJECT} re-
stricted to  v.

To prove equivalence of the main conjectures, we use four-term sequence arguments

first found in Kurihara [Ku02]: For example, proving the equivalence between the ♯  \flat

main conjecture and the ♯ Beilinson–Flach element main conjecture can be accomplished
by the sequence

 0  arrow Selˆ♯  \forall/\ovalbox{\tt\small REJECT}  ♯arrow\Lambda_{K}/ (  L ♯  \flat )  arrow \mathcal{X}_{♯\flat}arrow \mathcal{X}_{♯0}arrow 0

obtained via the Poitou-Tate exact sequence. The exactness of characteristic ideals then

gives equivalence of the statement

Char(  \Lambda_{K}/(L ♯  \flat) )  = (  L ♯  \flat )  = Char(  \mathcal{X}♯  \flat )
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and the statement

Char(Selˆ♯  \forall/\ovalbox{\tt\small REJECT}_{♯} )  =Char(\mathcal{X}_{♯0}) .
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