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Affinoids in the Lubin‐Tate perfectoid space and
special cases of the local Langlands correspondence

in positive characteristic (announcement)

By

Kazuki Tokimoto *

Abstract

This is a research announcement of [To16], where, following the work of Weinstein,
Boyarchenko‐Weinstein and Imai‐Tsushima, we construct a family of affinoids in the Lubin‐
Tate perfectoid space and formal models such that the  \ell‐adic cohomology groups of the re‐
ductions of the formal models realize the local Langlands correspondence for  GL(n) and the
local Jacquet‐Langlands correspondence for certain representations related to totally tamely
ramified extensions of the base field of degree  n . Unlike the preceding work, the base field is
assumed to be of positive characteristic in [To16].

Introduction

This is a research announcement of [To16] and is based on the author’s talk Affi‐
noids in the Lubin‐Tate perfectoid space and some cases of the local Langlands corre‐

spondence at the RIMS Workshop Algebraic Number Theory and Related Topics 2015.

Let  K be a non‐archimedean local field with finite residue field  k . (For now, we
make no assumption on the characteristic of  K. ) Let nbeapositive integer. Denote
by  D the central division algebra over  K of invariant  1/n and by  W_{K} the Weil group

of  K . A projective system of  p‐adic analytic spaces, called the Lubin‐Tate spaces,

admits a natural action of (a large subgroup  G^{0} of)  G  =  GL_{n}(K)  \cross  D^{\cross}  \cross  W_{K} and
therefore (the induction of) the inductive limit of the  \ell‐adic cohomology groups of the
Lubin‐Tate spaces affords a representation of  G . The non‐abelian Lubin‐Tate theory
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asserts that the decomposition of this representation is described by the local Langlands

correspondence for  GL_{n}(K) and the local Jacquet‐Langlands correspondence. This is

often simply expressed as “the  \ell‐adic cohomology of the Lubin‐Tate tower realizes the

local Langlands correspondence and the local Jacquet‐Langlands correspondence.”

However, the known proofs of the non‐abelian Lubin‐Tate theory, due to [Bo99]
and [HT01], are of global nature, and thus the geometry of the Lubin‐Tate spaces and
its relation to representations are not yet fully understood. The main result of[To16] is
concerned with a question related to detailed studies of the geometry of the Lubin‐Tate
spaces.

A result [Yo10] of Yoshida is an example of such studies. There he constructed a
semistable model of a Lubin‐Tate space and showed that an open subscheme of the re‐

duction is isomorphic to a Deligne‐Lusztig variety of  GL_{n}(k) . Since the  \ell‐adic cohomol‐

ogy group of the Deligne‐Lusztig variety produces irreducible cuspidal representations

of  GL_{n}(k) (the Deligne‐Lusztig theory) and irreducible supercuspidal representations of
 GL_{n}(K) of depth zero are, in turn, known to be constructed from such representations of

 GL_{n}(k) via a representation‐theoretic procedure (a special case of the theory of types),
this result can be seen as revealing a relation between the geometry of the Lubin‐Tate

tower and the representation theory, for representations of  GL_{n}(K) of depth zero.

While the main theorem deals with a similar subject for more complicated repre‐

sentations, the setting is different from that of Yoshida in two ways.

One is that we construct affinoids (and formal models) instead of semistable mod‐
els. In fact, the Deligne‐Lusztig variety studied in [Yo10] can also be obtained as the
reduction of (the canonical formal model of) an affinoid subspace of the Lubin‐Tate
space. It is often easier to construct affinoids with interesting smooth reductions than

constructing a semistable model of the whole space. See [We10],  [IT17a],  [IT17b] for
such studies of Lubin‐Tate spaces in various different settings.1

The other difference is the use of the Lubin‐Tate perfectoid space, which is a certain

limit space of the Lubin‐Tate tower. In this limit the defining equation simplifies and

the group actions can be made more explicit.

Thus, in rough terms, the main theorem of [To16] asserts the existence of a family
of affinoids2 in the Lubin‐Tate perfectoid space and formal models such that the  \ell‐adic
cohomology groups of the reductions of the formal models realize the local Langlands

and Jacquet‐Langlands correspondences for certain representations related to totally

tamely ramified extensions of  K of degree  n . For some technical reason, the author had

to assume, unlike preceding work [We16], [BW16], [IT15, IT16], that  K is of positive

1Note, however, that (under the assumption that  n  =  2 ) Imai and Tsushima construct not only
affinoids, but also a stable model in  [IT17a] , using the theory of semistable coverings.

2The Lubin‐Tate perfectoid space is an adic space and accordingly we work with adic spaces. Here
and in the rest of the paper, by “an affinoid” we mean “an open affinoid adic subspace.” (See [Hu94,
2 Definition.] for the definition of affinoid adic spaces.)
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characteristic. So far , he has not been able to extend the result to include mixed‐
characteristic cases.

In Section 1 we briefly review some facts on the Lubin‐Tate perfectoid space and

formulate the question with which the main theorem is concerned. In Section 2 we state

the main theorem and also compare it with the preceding results [BW16], [IT15, IT16],
[We16]. In Section3we give some remarks on the (largely computational) proof.

Notation and convention As in the introduction above, we fix a non‐archimedean

local field  K with finite residue field  k^{3} We denote by  p the characteristic of  k and take

a prime number  \ell\neq p . In the following, we simply write “cohomology”to mean  \ell‐adic

cohomology. Also, we fix an isomorphism  \overline{\mathbb{Q}}\ell  \simeq \mathbb{C} and always identify representations
over  \overline{\mathbb{Q}}\ell with those over  \mathbb{C} via this isomorphism.

Let  L be a non‐archimedean local field. We denote by  \mathcal{O}_{L} the ring of integers of  L

and by  p_{L}\subset \mathcal{O}_{L} the maximal ideal. We put  UL=U_{L}^{0}=\mathcal{O}_{L}^{\cross} and  U_{L}^{i}=1+p_{L}^{i} for  i\geq 1.

The Weil group of  L is denoted by  W_{L} . The Artin reciprocity map ArtL:L
 \cross  arrow\sim W_{L}^{ab} is

normalized so that uniformizers are sent to geometric Frobenius elements. We abusively

denote by  Art_{L}^{-1} the composite of the natural surjection  W_{L}  arrow W_{L}^{ab} with the inverse

map of  Art_{L}.

More generally, for a non‐archimedean valuation field  L , we denote by  \mathcal{O}_{L} the

valuation ring of  L.

For a finite abelian group  A , we write  A^{\vee}  =Hom  (A, \overline{\mathbb{Q}}_{\ell}^{\cross} ) for the character group.

For a closed subgroup  H' ofa locally profinite group  H anda smooth representation
 \sigma of  H',  Ind_{H}^{H},  \sigma (resp.  c-Ind_{H}^{H},  \sigma ) denotes the smooth induction (resp. the compact
induction) of  \sigma from  H' to H. (See [BH06, 2.4, 2.5] for the definitions of these two sorts
of inductions.)

§1. Formulation of the question

Lubin‐Tate perfectoid space Here we briefly review some facts on the Lubin‐Tate

perfectoid space. The author learneda great deal from the exposition in [IT15] as well
as that in [We16].

We denote the cardinality of  k by  q . Take a uniformizer  \varpi\in K . We fix an algebraic
closure  \overline{K} of  K and denote by  \overline{k} the residue field of  \overline{K} . We also fix the completion  C

of  \overline{K}.

Let  n be a positive integer. Let  \Sigma_{0} beaone‐dimensional formal  \mathcal{O}_{K} ‐module over
 k of height  n , which is unique up to isomorphism. Let  K^{ur}  \subset  \overline{K} be the maximal

3To remark on the preceding work, we allow  K to be of any characteristic in our general setting. In
the discussion of a simple expression of  \delta after Theorem 1.1, in Theorem 2.2 and in Section 3, we
assume  K to be of positive characteristic.
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unramified extension of  K and  \hat{K}^{ur}\subset C its completion.

We denote by  \mathcal{C} the category of complete Noetherian local  \mathcal{O}_{\hat{K}^{ur}} ‐algebras with

residue field  \overline{k} . Let  R\in \mathcal{C} . Fora formal  \mathcal{O}_{K} ‐module  \Sigma over  R and an integer  m  \geq  0,

we mean by “a Drinfeld level  \varpi^{m}‐structure on  \Sigma what is called “a structure of level
 m on  \Sigma in [Dr74, p.572 Definition]. We define a functor  \mathcal{C}  arrow Sets by associating
to  R  \in  \mathcal{C} the set of isomorphism classes of triples  (\Sigma, \iota, \phi) in which  \Sigma is a formal

 \mathcal{O}_{K} ‐module over  R,  \iota :  \Sigma 0  arrow  \Sigma\otimes_{R}\overline{k} is an isomorphism of formal  \mathcal{O}_{K}‐modules over  \overline{k}

and  \phi :  (\varpi^{-m}\mathcal{O}_{K}/\mathcal{O}_{K})^{n}  arrow  \Sigma[\varpi^{m}](R) is a Drinfeld level  \varpi^{m}‐structure on  \Sigma . Then it

is shown in [Dr74, Propositions 4.2, 4.3.] that this functor is representable by an n‐
dimensional regular local ring  R_{m} . These rings Rm naturally form an inductive system

{Rm}. We write R  \infty=(\lim_{arrow}R_{m})^{\wedge} for the completion of the inductive limit with respect
to the ideal generated by the maximal ideal of  R_{0}.

Let  K^{ab}  \subset  \overline{K} be the maximal abelian extension of  K and  \hat{K}^{ab}  \subset  C its com‐

pletion. We denote by  \mathcal{O}_{C}[[X_{1}^{q^{-\infty}}, . . . , X_{n}^{q^{-\infty}}]] the  (\varpi, X1, . . . , X_{n})‐adic completion of

  \mathcal{O}c[X_{1}^{q-\infty}, . . . , X_{n}^{q-\infty}]=\lim_{arrow X_{i}
arrow X_{i}q}\mathcal{O}_{C}[X_{1}, . . . , X_{n}] . Let Map  (U_{K}, \mathcal{O}_{C}) denote the  \mathcal{O}_{C^{-}}

algebra of continuous maps from  U_{K} to  \mathcal{O}_{C}.

Theorem 1.1.

(1) There exists a continuous  \mathcal{O}_{\hat{K}^{ur}} ‐homomorphism

(1.1)  \mathcal{O}_{\hat{K}^{ab}}arrow R_{\infty},

q‐th power projective systems  (\delta (X_{1}, . . . , X_{n})^{q^{-m}})_{m\geq 0} and  (t^{q^{-m}})_{m\geq 0} of topolog‐

ical ly nilpotent elements in  \mathcal{O}_{C}[[X_{1}^{q^{-\infty}}, . . . , X_{n}^{q^{-\infty}}]] (resp. in  \mathcal{O}_{C} ) and an isomor‐
phism

 R_{\infty}^{\wedge}\otimes_{\mathcal{O}_{K^{ab}}}\wedge \mathcal{O}_{C}\simeq 
\mathcal{O}_{C}[[X_{1}^{q-\infty}, . . . , X_{n}^{q-\infty}]]
/\overline{(\delta(X_{1},\ldots,X_{n})^{q-m}-t^{q-m})}_{m\geq 0},
where, on the left hand side,  \mathcal{O}_{\hat{K}^{ab}} ‐structure is induced by the homomorphism (1.1)
and  \overline{(\cdot)} denotes the closure.

(2) We put

 R_{\infty,\mathcal{O}_{C}} =R_{\infty}^{\wedge}\otimes_{\mathcal{O}_{K^{ab}}}
\wedge Map(U_{K}, \mathcal{O}_{C}) ,

where the right factor is considered as an  \mathcal{O}_{\hat{K}^{ab}} ‐algebra via

 \mathcal{O}_{\hat{K}^{ab}} arrow Map(U_{K}, \mathcal{O}_{C});aarrow(Art_{K}(u)
(a))_{u\in U_{K}}

Then

 \mathcal{M}_{\Sigma_{0},\infty,\overline{\eta}}^{ad}=\{|\cdot|\in 
Spa(R_{\infty,\mathcal{O}_{C}}, R_{\infty,\mathcal{O}_{C}}) | |\varpi|\neq 0\}
is a perfectoid space.
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Proof. These assertions follow from [We16, 2.3–2.10] (see also [IT15, 1.1]).  \square 

We call  \mathcal{M}_{\Sigma_{0},\infty,\overline{\eta}}^{ad} the Lubin‐Tate perfectoid space.

Remark.

 \bullet The constructions of the homomorphism (1.1) and the projective system  (t^{q^{-m}})_{m\geq 0}
depend on a choice of projective system of non‐trivial  \varpi^{m}‐torsions of the Lubin‐Tate

module (see [We16, 2.3, 2.5] for details).

 \bullet The projective system  (\delta (X_{1}, . . . , X_{n})^{q^{-m}})_{m\geq 0} can be made explicit (see [IT15, 1.1]

or [BW16, proof of Theorem 2.10.3], [We16, 5.3]). IfK is of equal‐characteristic,
then it is particularly simple. Putting

 \Delta(X_{1}, \ldots, X_{n})=\det(X_{i}^{q^{j-1}})_{1\leq i,j\leq n}\in \mathbb
{Z}[X_{1}, . . . , X_{n}],
we have

  \delta(X_{1}, \ldots, X_{n})=\sum_{m_{1}+\cdots+m_{n}=0}\Delta(X_{1}
^{q^{nm_{1}}}, \ldots, X_{n}^{q^{nm_{n}}}) \in \mathcal{O}_{C}[[X_{1}^{q-\infty}
, . . . , X_{n}^{q-\infty}]].
Note that  \delta  (X_{1}, . . . , X_{n})^{q^{-m}} is automatically determined by  \delta(X_{1}, . . . , X_{n}) in this
case.

We set  \mathcal{O}_{D}  = End  \Sigma_{0} and  D=\mathcal{O}_{D}\otimes_{\mathcal{O}_{K}}K . ThenD isacentral division algebra

over  K of invariant  1/n . Put  G=GL_{n}(K)  \cross D^{\cross}  \cross W_{K} . We define  N_{G} by

 N_{G}:GL_{n}(K)  \cross D^{\cross}  \cross W_{K}arrow K^{\cross} ;  (g, d, \sigma)arrow(\det g^{-1})(Nrdd)(Art_{K}^{-1}\sigma) ,

where Nrd:  D^{\cross}  arrow K^{\cross} is the reduced norm. Letv denote the normalized valuation of

 K . Then, as in the usual non‐abelian Lubin‐Tate theory,  \mathcal{M}_{\Sigma_{0},\infty,\overline{\eta}}^{ad} admits a natural
action of  G^{0}=Ker  (v ◦  N_{G}) .

Formulation of the question With the Lubin‐Tate perfectoid space introduced

above, one may ask the following question.

Question 1.2. Do there exist affinoids  \mathcal{A}  \subset  \mathcal{M}_{\Sigma_{0},\infty,\overline{\eta}}^{ad} and formal models  \mathscr{A}

with the following properties?

(1) The stabilizer  S_{\mathcal{A}} of  \mathcal{A} in  G^{0} naturally acts on the formal model  \mathscr{A} of  \mathcal{A} . In par‐
ticular,  S_{\mathcal{A}} acts on the reduction  \overline{\mathscr{A}} of  \mathscr{A} and the cohomology groups  H_{c}^{i}(\overline{\mathscr{A}}, \overline{\mathbb{Q}}_{\ell}) .

(2) For an irreducible supercuspidal representation  \pi of  GL_{n}(K) , we have an isomor‐
phism

 Hom_{GL_{n}(K)}  (c-Ind_{S_{A}}^{G}H_{c}^{n-1}(\overline{\mathscr{A}}, \overline{\mathbb{Q}}
_{\ell})((n-1)/2), \pi)  \simeq LJ(\pi)  LL  (\pi)
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of representations of  D^{\cross}  \cross W_{K} whenever the left hand side is non‐zero. Here LJ  (\pi)
(resp.  LL(\pi) ) denotes the image of  \pi under the local Jacquet‐Langlands (resp.
Langlands) correspondence.

In short, the question asks the existence of affinoids and formal models such that

the cohomology groups of the reductions realize the two correspondences for some rep‐
resentations.

Remark.

(1) There are several different normalizations for the local Langlands correspondence.
Here  LL(\pi) is the same as  rec_{K}(\pi) in [HT01, p.2]. Equivalently, if  \sigma=LL(\pi) , then
 \pi=\pi(\sigma) in the notation of [He06, 5. Theorem.]. Also,  LJ(\pi)=\pi' in the notation
of [He06, 3. Theorem2.].

(2) This question does not ask anything about the relation between the cohomology
groups of the reductions  \overline{\mathscr{A}} and the cohomology of the Lubin‐Tate tower usually
studied in the non‐abelian Lubin‐Tate theory. However, we expect that each re‐

duction  \overline{\mathscr{A}} is closely related to the special fiber of a semistable model of some

(finite‐level) Lubin‐Tate space.4

(3) In fact, in the main theorem to be stated below,  \pi can be an irreducible smooth
(rather than supercuspidal) representation. One can show that if  \pi occurs in the
compact induction then  \pi is supercuspidal.

Given an affinoid and a formal model in the main theorem (or in the preceding
results discussed below), we can state the condition for an irreducible supercuspidal
representation  \pi to occur in the compact induction in a purely representation‐theoretic

manner. In this paper, we do so in terms of LL  (\pi) instead of  \pi.

§2. Main theorem

In order to state the main theorem and also to compare the result with the preceding

ones, we introduce the following notions.

Definition2.1. Let  F/K be a tamely ramified extension of degree  n and  \chi  a

smooth character of  F^{\cross}.

Let  i\geq 0 be an integer. The character  \chi is said to be minimal with the jump at  i

if the following hold:

 \bullet  \chi|_{U_{F}^{i+1}} factors through the norm map  NF/K:F^{\cross}  arrow K^{\cross},

4Results related to this remark are obtained in recent preprints [Mi16], [Ts16] of Mieda and Tsushima.
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 \bullet  \chi|_{U_{F}^{i}} does not factor through  NF/E for any subextensions  K\subset E\subsetneq F , and

 \bullet if  i=0 , then  F/K is unramified.

We say that  \chi is minimal if it is minimal with the jump at  i for some  i\geq 0.

Remark.

(1) If  \xi is a minimal character of  F^{\cross} , then the induced representation  Ind_{F/K}\xi  =

 Ind_{W_{F}}^{W_{K}}  (\xi \ovalbox{\tt\small REJECT} Art_{F}^{-1}) is irreducible. (This is essentially an application of Mackey’s
criterion. See [ BH05a , A.2. Proposition] for aproof.)

More generally, in the work [ BH05a,  BH05b , BH10] of Bushnell‐Henniart, an n‐
dimensional irreducible smooth representation of  W_{K} is said to be essential ly tame

if it is induced from a character of  F^{\cross} for some tamely ramified extension  F/K of

degree  n . In loc. cit., essentially tame representations of  W_{K} are parametrized by the
 K‐isomorphism classes of admissible pairs  (F/K, \xi) and minimal admissible pairs

are discussed as particularly simple examples of admissible pairs. Our definition of

minimal characters is a straightforward adaptation.

(2) If  \xi is a minimal character of  F^{\cross} with the jump at  i , then the ramification in‐
dex  e of  F/K is coprime to  i . (To see this, one may assume that  F/K is to‐
tally ramified and  i  \geq  1 . If  d=  gcd(e, i) and  F/E isasubextension of degree d,

then  \xi|_{U_{F}^{i}} necessarily factors through  NF/E because  N_{F/E} induces an isomorphism

 U_{F}^{i}/U_{F}^{i+1}  -arrow\sim  U_{E}^{i/d}/U_{E}^{(i/d)+1} by the tameness assumption. This shows that  d=  1.

See [BH10, (8.2.3)] for a more general statement.)

The main theorem of [To16] is the following.

Theorem 2.2. Suppose that  K is of equal‐characteristic and thatp does not

divide  n . Let  \nu  >  0 be apositive integer. Let  L/K be a totally ramified extension of

degree  n . Then there exists an affinoid  \mathcal{Z}_{\nu} in  \mathcal{M}_{\Sigma_{0},\infty,\overline{\eta}}^{ad} and aformal model  \mathscr{Z}_{\nu} of  \mathcal{Z}_{\nu}

such that the fol lowing hold.

(1) The stabilizer  Stab_{\nu} of  \mathcal{Z}_{\nu} in  G^{0} naturally acts on  \mathscr{Z}_{\nu}.

(2) For  \nu coprime to  n and an irreducible smooth representation  \pi of  GL_{n}(K) , we have

 Hom_{GL_{n}(K)} (c-Ind_{Stab_{\nu}}^{G}H_{c}^{n-1}(\overline{\mathscr{Z}}_{\nu}
, \overline{\mathbb{Q}}_{\ell})((n-1)/2), \pi)

 \simeq  \{\begin{array}{l}
LJ(\pi)\ovalbox{\tt\small REJECT} LL(\pi) if LL(\pi) is induced from a minimal 
character of L^{\cross}
with the jump at \nu
 0 otherwise.
\end{array}
Here,  ((n- 1)/2) denotes the twist by the unramified character of  W_{K} sending

geometric Frobenius elements to  q^{(1-n)/2}\in \mathbb{C}^{\cross}  \simeq\overline{\mathbb{Q}}_{\ell}^{\cross}.



154 Kazuki Tokimoto

Remark. There are several preceding results concerning Question 1.2;

 \bullet In [BW16, Theorem 3.6.1], an affinoid in the Lubin‐Tate perfectoid space and a
formal model are constructed for each positive integer (denoted by  m in loc. cit.).
If  L/K is the unramified extension of degree  n , then they give an answer to Question
1.2 for representations of  W_{K} induced froma minimal character of  L^{\cross} with the jump
at  \nu=m.

 \bullet Similarly, if  L/K is a totally tamely ramified extension of degree  n as in Theorem

2.2, then the affinoid and the formal model in [IT15, Theorem] give an answer to
Question 1.2 for representations of  W_{K} induced froma minimal character of  L^{\cross} with

the jump at one. (Under the assumption thatp  \nmid n, ) such representations can be
characterized as character twists of representations of exponential Swan conductor

one, which they call essential ly simple epipelagic representations in loc. cit.

The work [IT16] settles Question 1.2 for essentially simple epipelagic representations
in the remaining case, i.e. when  p divides  n . In this case, essentially simple epipelagic

representations are never essentially tame.

 \bullet The affinoids (and natural formal models) constructed in [We16] in the course of
proving the main theorem give an answer to Question 1.2 in the case where  p\neq 2

and  n=2 . (See [We16, Theorem4.11, Theorem5.2 and Remark 5.3.].) Note that in
this case every relevant representation of  W_{K} is induced from a minimal character
of  L^{\cross} for some quadratic extension  L/K.

In all of the above results ,  K may be of mixed‐characteristic or equal‐characteristic.

Thus, Theorem 2.2 is a “totally ramified version” of [BW16], and generalizes [IT15]
and the “totally ramified part” of [We16], under the assumption that  K is of equal‐
characteristic.

§3. Some remarks on the proof

The proof of Theorem 2.2 naturally consists of the following three steps:

(i) constructing affinoids and formal models,

(ii) computing the reduction and the cohomology and

(iii) comparing the resulting representation with the local Langlands and Jacquet‐Langlands
correspondences.
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Step (i) The construction of affinoids and formal models involves an explicit com‐
putation, building on the defining equation  \delta of (the formal model of) the Lubin‐Tate
perfectoid space. It is modeled on the constructions in [We16] and [IT15];the affinoids
are centered at a point  \xi of  \mathcal{M}_{\Sigma_{0},\infty,\overline{\eta}}^{ad} with CM by  L exactly as in loc. cit. and the

coordinate around  \xi used to define the affinoids is obtained by closely comparing the

coordinates in [We16] and [IT15].

Step (ii) The computation of the reduction  \overline{\mathscr{Z}}_{\nu} as well as the stabilizer  Stab_{\nu} and
its action is done through a detailed analysis of  \delta under the change of coordinate.

Here we only indicate some aspects of the argument that are particularly easy to
state.

Proposition3.1. Suppose that   n\nmid\nu . We denote the Artin‐Schreier polynomial
with respect to q‐th power by  \wp(x)=x^{q}-x\in k[x].

Then each connected component of  \overline{\mathscr{Z}}_{\nu} is isomorphic to the perfection of a smooth

affine algebraic variety  Z_{\nu} defined in  \mathbb{A}_{\frac{n}{k}}+1={\rm Spec}\overline{k}[z, y_{1}, . . . , y_{n}] by

 \{\begin{array}{l}
y_{1}+\cdots+y_{n}=0
\wp(z)=P_{\nu}(y_{1},. . . y_{n}) ,
\end{array}
where  P_{\nu}\in k[y_{1}, . . . , y_{n}] depends only on  \nu  mod 2n , and for odd  \nu=2\mu+1

 P_{\nu}  (y_{1}, . . . y_{n})=  \{   \sum_{n-\mu\leq j-i\leq\mu^{y_{i}y_{j}}}^{\mu<j-i<n-\mu}\sum y_{i}y_{j} if n <\nu<2nif0<\nu<n,
and for even  \nu=2\mu

 P_{\nu}  (y_{1}, . . . y_{n})=  \{  jj-i=n- \mu\sum_{n^{-i<}}\wp(y_{i})\wp(y_{j})+\sum_{-i=}\wp(y_{i})y_{j}^{q}+
\sum_{+_{j-i}\wp(y_{i})\wp(y_{j})+_{j-}}y_{i}^{q}\wp(y_{j})\sum_{<j-i<\mu}^{n-
\mu}\sum_{i=\mu}^{\mu}\wp(y_{i})y_{j}\sum_{=n-\mu}^{\mu<j_{-\mu}}y_{i}\wp(y_{j})if  0<\nu<n

if  n<\nu<2n.

The cohomology group of  \overline{\mathscr{Z}}_{\nu} is closely related to that of  Z_{\nu} and the computation
is reduced to the latter.

The algebraic variety  Z_{\nu} has several obvious automorphisms;

 \bullet For any  a\in k , the translation  zarrow z+a defines an automorphism (induced from the
Artin‐Schreier covering). We regard the additive group  k as asubgroup of  Aut(Z_{\nu})
by this action.
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 \bullet The permutation

 (_{n}^{1} 21 \ldots  n-1n-2  n-1n)
of indices of  \{y_{i}\} induces an automorphism  \gamma.

 \bullet If  \nu is odd, then

 zarrow z,  y_{i}arrow-y_{i} for  1\leq i\leq n

defines an automorphism  \iota.

 \bullet Regarding the above defining equations of  Z_{\nu} as elements of  k[z, y_{1}, . . . , y_{n}] , one
obtains a model  Z_{\nu,0} of  Z_{\nu} over  k . This induces the action of  \Omega=Ga1(\overline{k}/k) on  Z_{\nu}.

In particular the geometric Frobenius element Frobq  \in\Omega acts on  Z_{\nu}.

It can be proved that the restriction to Stab  \nu\leqq GL_{n}(K) of the natural action

of Stab  \nu on  \overline{\mathscr{Z}}_{\nu} comes from an action of Stab  \nu\leqq GL_{n}(K) on  Z_{\nu} and similarly for

Stab  \nu\leqq D^{\cross} . The following proposition is concerned with the actions of these groups.

Proposition 3.2. We continue to assume that  n  \nmid  \nu . Take  k_{n}/k to be the

field extension of degree  n . Put  S_{1,\nu}  =  {\rm Im}  (Stab_{\nu}\leqq GL_{n}(K) arrow Aut(Z_{\nu})) and  S_{2,\nu}  =

 {\rm Im}  (Stab_{\nu}\leqq D^{\cross} arrow Aut(Z_{\nu})) . Then we have the following.

(1) If  \nu is odd, then  S_{1,\nu}=S_{2,\nu}=k\subset Aut(Z_{\nu}) .

(2) Assume that  \nu is even. Then  S_{1,\nu} (resp.  S_{2,\nu} ) is a central extension of  Ker(tr :   k^{n}arrow

k)  ( resp.  Ker (  tr :  k_{n}  arrow k )  ) by  k  \subset Aut(Z_{\nu}) . Moreover, we have  S_{1,\nu}\leqq S_{2,\nu}  =k\subset

Aut  (Z_{\nu}) .

(3) Assume that  \nu is even and coprime to  n . Then the centers of  S_{1,\nu} and  S_{2,\nu} are both
 k\subset Aut(Z_{\nu}) . Moreover, for any non‐trivial character  \psi of  k , there exists aunique

irreducible representation, up to isomorphism, of  S_{i,\nu}  (i = 1,2) with the central
character  \psi.

In fact, in the situation of (2) one can explicitly describe the group structure of
 S_{i,\nu}  (i = 1,2) . The assertion (3) is proved by studying the structure of these groups
and applying the elementary representation theory of a central extension of an abelian

group (often called a Heisenberg group).

Proposition 3.3. Assume that  n and  \nu are coprime. Put  H_{c,\nu}^{n-1}  =H_{c}^{n-1}(Z_{\nu}, \overline{\mathbb{Q}}_{\ell}) .

Then we have the fol lowing decomposition

(3.1)  H_{c,\nu\simeq}^{n-1} \oplus \rho_{1,\nu},\psi\rho_{2,\nu,\psi}
 \psi\in k^{\vee}\backslash \{1\}
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as representations of  S_{1,\nu}  \cross  S_{2,\nu} , where, for  i  =  1 , 2,  \rho_{i,\nu,\psi} is the unique irreducible

representation of  S_{i,\nu} with the central character  \psi . Moreover, for any non‐trivial char‐

acter  \psi , the traces on each  \psi ‐isotypic component  H_{c,\nu,\psi}^{n-1}  \simeq  \rho_{1,\nu},\psi\rho_{2,\nu,\psi} of various
automorphisms of  Z_{\nu} are computed as fol lows:

tr  (\gamma^{j} |H_{c,\nu,\psi}^{n-1})  =(-1)^{n-1} (for  j coprime to  n),

tr  (\iota|H_{c,\nu,\psi}^{n-1})  =(-1)^{n-1} (if  \nu is odd),

(3.2) tr  (Frob_{q} |H_{c,\nu,\psi}^{n-1})  =(-1)^{n-1} \sum_{y}\psi(P_{\nu} (  y_{1},  \ldots ,  yn )  ) ,

where the summation is taken over  y=(y_{i})  \in k^{n} such that  y_{1}+\cdots+y_{n}=0.

Remark.

(1) If  \nu is odd, then  \rho_{1,\nu,\psi} and  \rho_{2,\nu,\psi} are nothing other than  \psi itself. Thus, the decom‐
position of the cohomology group (3.1) amounts to a statement on the multiplicity
in this case.

(2) The key to the computation of the traces of  \gamma^{j} and  \iota on  H_{c,\nu,\psi}^{n-1} is the fixed point
formula [DL76, Theorem 3.2] of Deligne‐Lusztig. By the formula, we are reduced
to study the trace of  k  \subset  Aut(Z_{\nu}) on the cohomology of the fixed point varieties

 Z_{\nu}^{\gamma^{j}} and  Z_{\nu}^{\iota} , which are both merely discrete sets of points indexed by  k , where  j is

coprime to  n in the former case. While the traces for general  j may be more difficult

to compute, as it turned out, they are not necessary in the step (iii). (Also, even
when  \nu is even, the automorphism  \iota can be defined and the trace can be computed

in the same way. However, it is not necessary in the step (iii).)

(3) In fact, the sum on the right hand side of (3.2) can be expressed more explicitly
and it is used to prove the realization of the local Langlands and Jacquet‐Langlands

correspondences in the step (iii).

(4) One can also prove that if  n and  \nu are not coprime, then the cohomology group
vanishes in degree  n-1.

Step (iii) Denote by Stab  \nu the image of Stab  \nu under the canonical homomorphism
 G^{0}  arrow Garrow D^{\cross}  \cross W_{K} . Then, for an irreducible smooth representation  \pi of  GL_{n}(K) ,

the Frobenius reciprocity induces a natural isomorphism

 Hom_{GL_{n}(K)} (c-Ind_{Stab_{\nu}}^{G}H_{c}^{n-1} (\overline{\mathscr{Z}}
_{\nu}, \overline{\mathbb{Q}}_{\ell}) ((n- 1)/2), \pi)
(3.3)

 \simeq Ind_{\frac{D^{\cross\cross}}{Stab}H_{0}m_{Stab_{\nu}\leqq GL_{n}(K)}}
^{W_{K}}\nu (H_{c}^{n-1} (\overline{\mathscr{Z}}_{\nu}, \overline{\mathbb{Q}}
_{\ell}) ((n- 1)/2), \pi)
5Note that the action of   k\subset  Aut(Z_{\nu}) on  Z_{\nu} clearly commutes with those of  \gamma,  \iota , Frobq.
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of representations of  D^{\cross}  \cross W_{K}.

We are to examine the condition for the space of homomorphisms in the right hand

side of (3.3) to be non‐zero and prove that, if non‐zero, the induced representation yields
the desired representation of  D^{\cross}  \cross  W_{K} . This step is largely representation‐theoretic.

The main ingredients are the following.

 \bullet The theory of types (see [BK93] and [Br98]; the author found the exposition in
[ BH05b , BH11] helpful), which allows one to read off properties of an irreducible
smooth representation of  GL_{n}(K) or  D^{\cross} from the containment of a certain ir‐

reducible representation of an open subgroup, and also to express an irreducible
supercuspidal representation as a compact induction of a finite‐dimensional repre‐

sentation of an open subgroup.

 \bullet The essential ly tame local Langlands and Jacquet‐Langlands correspondences (see
[ BH05a,  BH05b , BH10, BH11]; in our case [ BH05b , BH11] are the most relevant),
which explicitly describe the local Langlands correspondence and the local Jacquet‐

Langlands correspondence for essentially tame representations, in terms of the ex‐
pression of representations as compact inductions provided by the theory of types.

The condition for  \pi to occur in  H_{c}^{n-1}(\overline{\mathscr{Z}}_{\nu}, \overline{\mathbb{Q}}_{\ell})( (n- 1)
/2) can be examined by

applying (a simple instance of) the theory of types:  \rho_{1,\nu,\psi} in Proposition 3.3 are closely
related to irreducible representations appearing in the theory.

The proof that, if non‐zero, the right hand side of (3.3) is isomorphic to  LJ(\pi)\ovalbox{\tt\small REJECT}
 LL(\pi) is more subtle and difficult to explain. We simply remark that after some argu‐

ments one only needs to study the action of a certain subgroup of Stab  \nu of finite index

and this reduces to studying the actions of  S_{1,\nu},  S_{2,\nu},  \gamma^{j} (with  j coprime to  n),  \iota (if  \nu

is odd), Frobq as in Proposition 3.3, which is relatively easy.
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