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One visualization of Shimura’s complex
multiplication theorem via hypergeometric modular
functions

By

Hironori SHIGA™ and Atsuhira NAGANO™*

Abstract

This article is a sketch of our research work on the subject given by the above title. In
the work “ Construction of class fields and zeta functions of algebraic curves ” (1967) by Goro
Shimura (cf. [SmrA], [SmrB]), it was proved that there exists a modular function (that is called
canonical model) that enables to obtain a certain class field (the Shimura class field) of some
kind of CM field. In this article we show that for the case of the CM field embedded into the
quaternion albebra coming from a co-compact arithmetic triangle group we can determine the
canonical model as a hypergeometric modular function in an explicit way. Moreover we give
several examples of Hilbert class fields of such kind of CM fields coming from the triangle group
A(3,3,5). For our work, we use Shimura’s reciplocity law and the existense of the canonical
model together with the result by K. Takeuchi (1977) (see [Tkul],[Tku2]). To construct explicit
examples we use the modular function for genus 4 pentagonal curves discovered by K. Koike
([Kik]). The first author has written the same subject in the book [Shg] (chapter 8). There he
made a detailed explanation of the modular function for A(3,3,5). In contract, here we tried
to explain the back ground of our research work. By both of two explanations he expects that
the readers will have a nicer perspective of the story. For the full argument with exact proofs
refer the paper [N-S].
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§1. Around the Hilbert class field, classical theory

1. The Hilbert class field Let K be a number field, and let L be a Galois extension
of K which is also a number field. The following conditions are equivalent.

(I) L/K is an unranified abelian extension and it holds Gal(L/K) = C(K), where
C(K) is the ideal class group of K.

(IT) L/K is a maximal unramified abelian extension over K.

(IIT) Let Ok be the ring of integers of K, and let p be a prime ideal of Ok
that is unramified in L. p : principal <= p = Py - Py, 9 = [L : K] (complete
decomposition) <= The minimal polynomial of the generating element ¢ € L over K

has a solution in Ok /p.
Remark 1.1. Such a L exists and is unique up to isomorphism.

Definition 1.2.  The above L is called the Hilbert class field (or absolute class
field) of K and is denoted by Ck or C(K).

For the meaning of (III), see [Cox] p. 110 — p.115.

2. The elliptic A\ function and the j; function We consider a non-Euclidean

triangle V(p, ¢,r) in the upper half complex plane H with angles %, % and 7 respec-
tively, where we suppose p,q,7 € N U {occ}. We set V = V(00,00,00) with ver-
tices z1 = 100,29 = 0 and z3 = —1. We make a conformal map ® : H_ — V with

®(0) = ioo, P(1) = 0 and P(c0) = —1, as Fig. 1.1.

®(0)=ico

P(o0)=—1 Re

®(1)=0
Fig.1.1 : Triangle Map &

By making the analytic continuation of this mapping through the interval (0, 1) we
get the image of V' = H in Fig.1.2. We can make other continuations to obtain the
other images in Fig. 1.2. Finaly they constitutes a tesselation of H. As the inverse
mapping of this multivalued map, we obtain a modular function A(7) that is invariant

12 1 —1
under the action of ( : 0 , 0 ) =T1(2).
01 21 0 -1
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P(0)=ico Im

(D(oo)=—1 Re
OM=0 4 4 2

Fig.1.2 : Triangle Map ,analytic continuation

Setting
Yoo = Doo(r) = 1 + 2 i i o1 =o1(1) =142 i(-1>n~n2,q = i,
n=1 n=1
we have
(1.1) Ar)=1- Z—él.
00

The elliptic modular function j(7) is defined by

1—X+22)2
1.2 (1) = 28(—
(12) i) =2
3. The classical complex multiplication theorem For precise argument of this
subject, see [Kwd], [Hss].

Theorem 1.3 (Hasse, (together with the class field theory by Takagi and Weber)).

Letk = Q(v/D) (D < 0) be an imaginary quadratic field, and let O = Z+ZE be its ring
DifD=23 d4
of integers, £ = VD if (‘mod 4) . Then it holds C(k) = k(j()).
(1+vD)/2 if D=1 ( mod 4)

4. One Example By using (1.1), (1.2) we have the following approximate calcula-

tion.

Example 1.4.  For the case k = Q(v/—6), we have the class number h = 2. And
representatives of ideal classes J; = [1,1/—6], Jo = [2,/—6]. We have

r1 = j(v/—6) = (4.83190790335133974539736629805 - - - ) x 106,

ro = j(@) = 3036.09664866025460263370195085 - - - .
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So, it holds

71 + 79 = (4.83494400000000000000000000000 - - - ) x 106,
r17re = (1.46701393920000000000000000000 - - - ) x 1019,

D = (ry 4+ 12)% — 4r1ry = (2.33180029255680000000000000000 - - - ) x 10'3
= 23318002925568 = 21836132192 x 2.

Because j <@> gives the conjugate of j (\/—6) in C(k),

is the Hilbert class field of k.
Note that by putting G = <(1) _06> it holds G®> +6 = 0 (so Q(G) = k) and

G(v/—6) = v/—6 (fixed point). In the Shimura complex multiplication we use the same

procedure.

§2. The hypergeometric modular function

Let us consider the Gauss hypergeometric differential equation
(2.1) E(a,b,c) : X1 =N f"+(c—(a+b+DN)f —abf =0

with real parameters a, b, c. It has regular singular points at A = 0, 1, oo. The exponents
at singularities are given by the Riemann scheme

0 1 00
(2.2) 0 0 a
l—cc—a—-bbd

We always assume the condition

1 —c|+|c—a—=bl+]a—0b <1
(2.3) (%)
p=1/|1—-c|,q=1/lc—a—0b|,r=1/|a — bl € NU {c0}.

Set {n1(N\),m2(\)} be a basis of the space of solutions of (2.1). The ratio ne/m
determines a single valued analytic function on the lower complex half plane H_. Ac-

cording to the condition (x ), by choosing adequate basis the image can be considred to
s

be a hyperbolic triangle V(p, ¢,r) on the upper half plane H with angles o g,

us
p
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The multivalued analytic map F obtained as the analytic continuation of the map
n2/m on H_ is called the Schwarz map of (2.1). The image of F is obtained by
the iteration of reflection procedure of V = V(p,¢,r). Due to the condition (x ), the
reflection images of V makes a tessellation of H. In other words, the monodromy group
of (2.1) is given as the totality of the iteration of the reflection procedures of even times.
We call this group a triangle group A = A(p,q,7). Note that the fundamental region
of this monodromy group A is composed of V and its reflection V' with respect to one
side of V (see Fig.2.1).

The inverse map ¢(z) of F becomes to be a modular function defined on H with
respect to the triangle group A(p,q,r). Let 21, 22, z3 be the verteces of V obtained as
F(0),F(1), F(co) , respectively.

Z3 Z2

Fig. 2.1 : Triangle V(5,5,5) and its reflections

Definition 2.1.  Let (2.1) be a Gauss hypergeometric differential equation with
the condition (x ). We call the inverse ¢(z) of the above Schwarz map a normalized
hypergeometric modular function. Note that its values at the verteces are fixed in
the form : ¢(z1) = 0, ¢(22) = 1, p(z3) = 0.

§ 3. Quaternion algebra over a totally real field

For general introduction of the quaternion algebra, see [VgtL]. Let F' be a totally
real number field. Let a, b be elements of F' satisfying the condition

a,beF:a<0,b>0
(Cd) :

all their conjugates other than a, b are negative.
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By them we set a quaternion algebra B = F + Fa + F3 + Faf3 ,Ba = —afB,a? =
a,3?> = b. We denote it by (%b) For x = z1 4+ xoa + 2308 + 408 € B, we define its
conjugate T = 1 — xoa — w383 — 4003,

The reduced trace and the reduced norm of z € B are defined by Trd(x) = x +
Z,Nrd(x) = a7, respectively.

Setting

10 0 a Vb 0
M, = M, = M, = M, = M,M,,
! (o 1)’ <1 0) v (0 —\/5) v

we have an isomorphism

B=F M +F M, +F M,+ F M,.

of noncommutative F' algebras. In this way B is embedded in M5(Q). We identify B
with the subalgebra F* My + F M, + F M, + F M, C M>(R) by this embedding. So
we have Trd(z) = Tr(z), Nrd(x) = det(x).

Set Bt = {z € B : det(z) > 0}, where z > 0 means z is totally positive as an
element of F'.

Let O stand for the ring of integers of F'. We denote the group of units in Op by
Eq. And set Ey = {g € E; : det(g) > 0}. If it holds Tr(v) € Op,det(y) € O for an
element v € B, we say it is an integral element of B.

If an O -module of rank 4 is a subring in B, we say it is an order of B. Note that
any element of an order is an integral element. Under the condition (Cd) the quaternion
algebra B has the unique maximal order up to isomorphism of F-algebras. We fix it
and denote it by O = Op.

Definition 3.1.  According to Takeuchi [Tku2] (left) and Shimura [SmrB] (right)
we use the following notation:

(3.1) rY(B,0)=T(0) = {y € O : det(y) = 1},
(3.2) ['t(B,0)=T(0,1) = {y € O :det(y) € Eo},
(3.3) r)(B,0)=T*(0) = {y € BT : 70 = O~}.

These groups are called conventionally as the norm 1 group, the unit group and
the normalizer group, respectively. Note that the norm 1 group is a subgroup of the
unit group of finite index, and the unit group is a subgroup of the normalizer group of

finite index. Under the condition (Cd), these groups acts on H as discrete groups.

Definition 3.2. If a co-compact triangle group A is commensurable with the

unit group of a certain quaternion algebra B = %) up to conjugation in SLy(R), we

say A is a (co-compact) arithmetic triangle group.
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K. Takeuchi (see [Tkul], [Tku2| ) has determined all arithmetic triangle groups.
There are 85 in total, and they are classified into 19 classes of commensurable families (it
contains one commensurable class of non-compact type, see Table App.1 in Appendix).

Moreover Takeuchi showed that the quaternion algebra B = (%) corresponding
to A = A(ey,ea,e3) (e1 < ey < e3) is given by

a = t%(t% - 4)7

b=t3t5(t] + 13 + 13 + titats — 4),

s
F = Q(13,t3, 13, t1tot3), where t; = 2cos —.
€i

Table of norm 1 groups, unit groups and normalizer groups according to K. Takeuchi
[Tku2]

class base field F discriminant T'M(B, O) r(B,0) T1%(B,0)

(I) Q (1) (273700) (2’3’00) (2’3’00)
(I1) Q (2)(3) 0;2,2,3,3)  (0;2,2,3,3) (2,4,6)
(III) Q(\/§) p2 (3a374) (37374) (273a8)
(IV) Q(V3) p2 (3,3,6) (2,3,12) (2,3,12)
(V) Q(\/g) p3 (0;2,2,2,6) (274a 12) (2a47 12)
(VD Q(ﬁ) P2 (2a 57 5) (27 5’ 5) (2’ 4’ 5)
(VH) Q(\/g) P3 (37 57 5) (37 5’ 5) (2’ 57 6)

(VIII) Q(/5) s (3,3,5) (3,3,5) (2,3,10)
(IX} Q(\/g) p2 (0;2a333a3) (3a47 6) (374a6)

(X) Q(cos(7)) (1) (2,3,7) (2,3,7) (2,3,7)

(XT) Q(cos(3)) (1) (2,3,9) (2,3,9) (2,3,9)
(XII) Q(cos(3)) paps (0;2,2,9,9)  (0;2,2,9,9)  (2,4,18)
(XIII) Q(cos(%)) P2 (3,3,8) (3,3,8) (2,3,16)
(XIV) Q(cos(5)) p2 (5,5,10) (2,5,20) (2,5,20)
(XV) Q(cos({5)) p2 (3,3,12) (2,3,24) (2,3,24)
(XVI) Q(cos(75)) Ps (5,5,15) (2,5,30) (2,5,30)

(XVII)  Q(cos(E)) s (3,3,15) (2,3,30) (2,3,30)
(XVIII)  Q(v2,V5) p2 (4,5,5) (4,5,5) (2,5,8)
(XIX)  Q(cos(%)) (1) (2,3,11) (2,3,11) (2,3,11)

Table 3.1, List by K. Takeuchi
Remark 3.3.  The class number h(F') of F' is always equal to 1.

Remark 3.4.  We are interested in the unit group I'* (B, O). In Table 3.1, there
are two cases, Class II and Class XII, where it is not a triangle group but is a quadrangle
group. We exclude these cases in the following argument.
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§4. Shimura’s complex multiplication theorem for triangle cases

Let F' be a totally real number field, and let M be a CM field over F'. Namey, M is
a totally imaginary field that is a qudratic extension of F'. Shimura made a long research
on the complex multiplication theory of CM fields ([SmrA]). We can find his main result
in [SmrB|. He showed four main theorems there. Especially we are concerned with the
first main theorem for a special case r = 1. We can restate this specialized case as the
following.

Let F be a totally real number field, and let B = (%) be a quaternion algebra
satisfying the condition (Cd). In this case B satisfies the condition r = 1 with the
terminology of Shimura.

[Shimura’s Main theorem I for the case r = 1] ([SmrB| Theorem 3.2 p.73).
Take above mentioned F, M and B. Assume an embedding f : M — B satisfying
f(Om) C Op, where Oy stands for the ring of integers of M. Then there are a
nonsingular compact complex variety V' and a modular function ¢ (z) on H with respect
to I'(O, 1) satisfying the following condition:

(1) ¥(2) induces a biholomorphic correspondence H /T'(O,1) 2V,

(2) V is defined over C'(F') (the Hilbert class field of F'),

(3) for a regular fixed point (that is explained below) zy € H of M, it holds
M(¢(z9)) - C(F) = C(M), where C(M) stands for the Hilbert class field of M.

[Regular fixed point zy € H of M]. Recall the embedding f : M — B. We can
put M = F(a),a € Opr. The linear transformation g = f(«) has unique fixed point in
H. That gives our regular fixed point.

Definition 4.1. The above pair (¢, V) is called a canonical model for H/T'(O, 1).

Remark.  The canonical model is unique up to Aute(gy(V). (see [SmrB] Theorem
3.3).

We are going to give a visualization of the above canonical model theorem for
arithmetic triangle cases.

Suppose a quaternion algebra B = (%) is corresponding to a certain arithmetic

triangle group. Moreover, assume that we have A(ey, ez, e3) = T'T(B,0)(=TI'(0,1)).
Suppose the triangle group A(ey,eq, e3) is generated by the triangle V = V(eq, ez, €3).
Let z1, 29, z3 be the corresponding verteces of V, respectively.

Let us observe the shape of V. Due to Takeuchi’s Table 1, there are 18 commen-
surable classes for co-compact arithmetic triangle groups. As for the unit groups of the
corresponding quaternion algebras, there are 10 triangles with three different angles as
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their generating V’s and 6 V’s with a pair of equal sides that is not a regular triangle.
We call the former of scalene type unit group and the latter of isosceles type unit

group.
Proposition 4.2. Let B = (%) be quaternion algebra corresponding to an
isosceles type unit group A(ey,eq,es) (ex = ea # e3) in Table 1. The extension My =

F((.,) becomes to be a CM field over F', where (, means the primitive root of unity of
order v. Moreover, it holds Mo = F(i\/p) with the following table of p.

Generators of CM field My for isosceles types

class F ro,u My p
() QL2 AB34) F(G) 3
(VI) Q<\/g) A(57572> F(CE)) Sln(%)
(VH) Q(\/g) A(57573> F(CE)) Sin(%)
(VII) Q5  A(3,3,5) F(G) 3
(XII) — Q(cos(g)) A@B,3,8) F(¢) 3
(XVII) Q(V2,v5) A(5,5,4) F(G) sin(f)
Table 4.1.
Proof. See [N-S]. O
Theorem 4.3 (Main Theorem). Let B/F a quaternion algebra coming from a

co-compact arithmetic triangle group. Set A = A(ey,ez2,e3) =1(0g,1). Let V (21, 22, 23)
be a triangle on H with verteces z;(i = 1,2,3) which generates the triangle group
A(ey,ea,e3). Assume the order of z; is equal to e;(i = 1,2,3).

(I) The case A is a unit group of scalene type. Let p(z) be a hypergeometric modular
function with respect to A(ey,ea,es) which is normalized with the condition

(Ned) - w(z1) =1, p(22) = —1,p(23) = 0.
Then it gives the canonical model of H/T'(Og,1) together with the Riemann sphere
S = P that is the image of p(z).
(IT) The case A is a unit group of isosceles type.
Let p(z) be a hypergeometric modular function with the same condition (Ncd) in
(I). We make another function ¢(z) by using a pure imaginary number i/p , where p

is the number obtained in the previous proposition:

¢(2) = iv/p - p(2),
Then one of ¢(z) and @(z) becomes to be the canonical model together with the image
S =P
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Proof. See [N-S]. O

Remark 4.4. At this moment we don’t have a criterion to determine which of
two candidates in (IT) becomes to be the canonical model. Later, we shall show the
example that ¢(z) is the canonical model.

§ 5. An explicit form of Shimura’s canonical model for A(3,3,5)

Koike’s modular function for a family of Pentagonal curves The Schwarz
map for the Gauss hypergeometric differential equation F (%, %, g) can be identified (by
way of the integral representation of the two independent solutions) with the period

map for a family of algebraic curves of genus 4:
CA\) :y® =a2%(x —1)(xz— )

with a parameter A. The monodromy group is the triangle group A = A(5,5,5) . By
considering the inverse map we obtain the modular function A(u) with respect to A
that is defined on the period domain.

K. Koike [Kik| showed a representation of A(u) in terms of the Riemann theta
constants.

Suppose 0 < A < 1. We regard C'(\) as a 5-sheeted branched cover over the z-plane
with cut lines connecting the base point xy € H _ and critical points z = 0, \, 1, co.
Set 2,73 be two homology cycles on C(\) indicated in Fig.5.1 below, where (1) means
the analytic continuation of the real branch of ¥ on x > 1 along an arc that does not

intersect the indicated cut lines, and (2) and (3) means the branches of y given by ps5(1)
2mi/5

and p2(1), respectively, where ps = e

x-plane

Fig.5.1 : homology cycles on C(\)

By making the analytic continuation, the integrals

dx dx
mW=AFmW=%§
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give multivalued analytic functions on the A\ space. They are independent solutions of
E(%, %, g) According to Koike[Kik| , the image of the Schwarz map F(\) = Z;—E;\\g is
given by the disc in P

(5.1) D= {[n2,m3] € P" : [n2|” +wlns” < 0}, (w = (1-v5)/2).

We have a modular embedding of D into the Siegel upper half space &4 = {Q €
GL4(C) ' Q=Q,30Q > 0} by the following manner:

(<14 ) (8 +3) (1= ¢ ) mams 00
4im 4im 2 4im 2
(1—e5>772773 <—1+e5> Ny — e 5773> 00
[ _4dim 2im 2 2 _ 4dir
e 3 <<1+65>772+?73> (1—6 5 ) m2n3 00
24T _4dim 24T 4im 2 _4dirm 4im 2
(e o (1) (- (14%) )

_ 4dim 2im 2 24T _4dir
00e 75 <<1+€5>772+?73> <—65 +e 5)772773
_4dim 2im 4im 2 _4dim 4im 2
00 (1—6 5 ) mams (65 +65>(772—e 5 (1+e5)773)
+ 4im 2 2im 2 _ 2im 2im )
00—e’s <n—<1+65>n3> <e 5 —e5>n2n3
_ 2im 2i7 _4dim _ 2im 2
00 <e 5 —65)’1727’]3 —e 75 (772—<1+6 5)773)

where u = Z—i Note that the monodromy group A(5,5,5) is given as a subgroup of
Sps(Z) that preserves Q(D).
Set the Riemann theta constant on &4 with a characteristic (a,b) € (Q*)*:

Q) = Y explri’(n+a)Qn+ a)+ 2w’ (n+ a)b].
n€Z4

We define two following theta characteristics:

B [ U R B
=0yl ~ 10 |—2-2-1-1

a 1 1 91 9
a9 = =75 .
b 10 | -2 -8 —-1-9

We define two theta functions on D:

and

011 (u) = D0an](Q(u)), O10(u) = Jaro] (2(w)).
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5
Theorem 5.1 (K. Koike [Kik]).  The function A(u) = (gi;gg;) on D gives

the inverse of the Schwarz map F(N), and it gives a holomorphic isomorphism:
D/A(5,5,5) = PY(C). Especially, it holds Awe2™/%) = 0, A(w) = o0, A(0) = 1,
1

S

where w =

2

Remark.  Set ((1,C2,(3) = (we™2™/5,0,w). The triangle F(H_) = V((1, (2, (3)
is a generating triangle of A(5,5,5) (see Fig. 5.2).

Fig.5.2 : Koike Period disc D

§ 6. Examples of the Hilbert class fields of higer degree

The normalized hypergeometric function for the class VIII. Let us consider
b
the quaternion algebra B = %) arising in the class (VIII) in the table of Takeuchi.

In this case, we have the unit group I'(O,1) = A(3,3,5) (see Table 2.1). We may
regard A(5,5,5) is a subgroup of A(3,3,5) of index 3. Set uj be the varicentric point
of V((1,(2,(3), and set (u1,us,u3) = (u1,ur,0). The triangle V(uy,us,us) becomes to
be a generating triangle of A(3,3,5) (see Fig. 6.1)

By using Koike’s A function, set

1A -3a+1

) =350 -1
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Then p(u) = \/% (®(u) — %) is the normalized hypergeometric modular function for
A(3,3,5) in the sense that (p(u1), ¢(u2), ¢(us)) = (1,—1,00). So, G(u) = (u) — 3

gives the modular function of the same symbol in the main theorem 4.3.

Ch01 Ch02
7 : VC»
1 qon
] 0
\ -w
% $3=U3
uz

Fig.6.1. : Relation between A(5,5,5) and A(3,3,5)

Set
BG, = My,
1 1
BG2 = M1 —+ (§W)My + §MZ7
1 1
1—+/5
BG4:M1 —|—wMy, (w: \/_)

They give a system of basis of the maximal order O g as a F-module.

Remark 6.1.  Set

(Vw0 i iVw
Mmc_( 0 1)’Mm”_<—1\/—_w>'

The composition My, = M,,.M,,, induces an isomorphism D =y H. For a linear
transformation h acting on D, we obtain a transformation h = Mg 0 h o M he dl acting
on H. This shifting procedure induces an identification of the triangle group A(3,3,5)



322 NAGANO-SHIGA

and the unit group I'(O, 1). So, we identify the modular function on H with that on D
through this correspondence.

Examples

Example 6.1 For a CM field M = Q(\/5,v/—7) over F = Q(\/5), we have h(M) = 1, (h(M) is
the class number of M). By taking

Go = (—3 + 2w)BG1 + 2wBGo + (4 — 2w)BG3 + (—QW)BG4,

it holds Tr(Go) = 0,det(Go) = 7. So G2 4+ 7E = 0. By the correspondence /=7 — Gy, we realize an
embedding of M into B. We have unique fixed point of Gg in D:

uo = (—0.205396 - - - ) — (0.0667372 - - )i.

By an approximate calculation, we see @(ug) = (8.3782124850378702032551165531909913589 - - - )i.
It holds ¢(uo)? = —222T = —272372192 x 7. Then, $(uo) = /=7 ( mod Q*) € M = C(M).

It means that ¢(u) is the modular function that gives the canonical model of
H/T(Opg,1) for the class VIII, and that the normalized modular function ¢(u) does

not bring the canonical model.

Example 6.2 We find in [HHRWH] that a CM field M = Q(v/—(5 + v/5)) has h(M) = 2. Setting
Go = (83—3w)BG1 + BG2 + (—4 4+ 2w)BG3 + (—1 + w) BG4,
we obtain
Gg+5+V5=0.
So M = F(Gop) in B. We have the unique fixed point of Gy :
up = —0.164894 — 0.1198031 € D.
We have
o(ug)? = —165.3749999999584 = —3372 /23

(Note that @(u) = v/=3p(u)).

So we obtain the Hilbert class field C(M) = M (v/2).

Example 6.3 Set M = Q(1/—(65 — 26v/5)). Due to [HHRWH] h(M) = 2. Take
Go = (1 — 2w)BG1 + 2BG2 + (—8 — 2w) BG3 + (—2w) BG4.

Then
G2 +65 —26v5 =0.

Hence Gy is a generator of M in B. We have a fixed point ug of Go:
up = (—0.2884031937082062430429292960544310724595352385781433875628704276940 - - - )
+(0.2095371854415799547791501532228242020959121464954639149713389790753 - - - )i € D

Hence,
go(uo)2 = —0.16717727965490681624739779831313980904 - - - .

By the expansion into a continued fraction
—o(ug)? =10,5,1,53,1,1,3,4,1,12,7,74,2,2, 41105985538320721741, - - - ]

Hence,
@(up)? = —13-29%.79%.278.3713

As a consequence we have the Hilbert class field C(M) = M (v/13).
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Example 6.4 The case M = Q(v/5,1/—23). It holds h(M) = 3 (note that h(Q(v/—23)) = 3 also).
We may choose two different generators of M in Op:

1

§(M1 + (=3 +w)Mz + (1 —w)My — 3whl>)

= —2BG1 + 3wBGa + (4 — 3w)BG3 + (—1 — w)BG4
1

§(M1 + (1 —3w)Mz 4+ (1 —w)My — whM>)

= (4 — 3w)BG1 + wBG9y + (—4 + w)BGg — BGy.

Let B4, P11 be the values of ¢ = ®(u) — % at the regular fixed point respectively. We have approximate
values

P4 = 0.41467884460813106945405483718570037432931049417786518217
—0.995858301928765183434499225500657265676192252327664214871,
P11 = 13.71950951993067249305997446719063079570023469944061038 7.

According to our main theorem any of (B4, @4, P11 can be a generator of C(M) over F. Because
[C(M) : M] = 3, also any of QBZ,EQ, $%, be a generator of C(M). We have approximate values

298002375630573376
6131066257801
_ — 5 27944558699379372032
vo — 9832 (9832 1 985,2) 4 916325, 2 —
"2 P1(2°P1+27047) + 2700104 1375668606321
e oz _ 146663661576709210112

Pr1¥aps = 34206447249

v ~ -2 ~
i1 == (2507 +2%04" +2%¢%,) =

)

)

73
Hence, we obtain a cubic equation for 28@21, 2852, 28511 with rational coefficients:
(6.1) t3 + 71t% + ot + 73 = 0,

where t = 2832 . The above (6.1) is a defining equation of the Hilbert class field of M. Putting
Y =113285%%~1, we have integral defining equation

(6.2) Y3 +19268Y2 + 12444768657Y + 6131066257801 = 0.

Setting Y3 +71Y2 + 1Y 4+ r3 =0 for it,

r3 = 19107
ro = 321382752073,
r1 = 224817,

the discriminant dsc = —19%612792892109214922292 x 23.

So we see directly (6.2) defines a Galois extension over M = F'(1/—23) and non-Galois
over Q.

§7. Appendix

In this section, we put several background data for our study. Some of them are
not complete list, but it will help to understand the sistuation about what we are doing.
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Appendix 1: The Takeuchi list Total list of arithmetic triangle groups by K.
Takeuchi ([Tkul]) :

Class (e1,e2,e3) Base field F’ Discriminant
I (2,3,00),(2,4, ), (2,6,00), (2, 00,00), (3,3,0), Q (1)
(3, 00,00), (4,4, ), (6,6, 00), (0, , 00, 00)
I (2,4,6),(2,6,6), (3,4,4), (3,6,6) Q 2)(3)
111 (2,3,8),(2,4,8),(2,6,8),(2,8,8), (3,3,4) Q(+V2) P2
(3,8,8),(4,4,4),(4,6,6), (4,8,8)
v (2,3,12),(2,6,12), (3,3, 6) Q(V3) p2
(3,4,12), (3,12,12), (6,6, 6)
v (2,4,12),(2,12,12), (4,4,6), (6,12, 12) Q(V3) p3
VI (2,4,5), (2, 4,10), (2,5,5) Q(V5) p2
(2,10,10), (4,4, 5), (5, 10, 10)
VII (27576)7 (37575) Q(\/g) p3
VIII (2,3,10), (2,5, 10), (3,3,5), (5,5,5) Q(V5) ps
IX (3,4,6) Q(V6) p2
X (2,3,7),(2,3,14), (2,4,7), (2,7,7) Q(cos(7/7)) 1)
(2,7,14), (3,3,7),(7,7,7)
XI (2,3,9), (2,3,18), (2,9, 18) Q(cos(7/9)) )
(3,3,9), (3,6,18),(9,9,9)
XII (2,4,18), (2,18,18), (4,4,9), (9, 18, 18) Q(cos(7/9)) p2ps3
X111 (2,3,16), (2,8, 16), (3, 3,8), (4, 16, 16), (8, 8, 8) Q(cos(/8)) P2
XIV (2,5, 20), (5,5, 10) Q(cos(w/10)) P2
XV (2,3,24), (2,12,24), (3,3, 12) Q(cos(w/12)) P2
(3,8,24), (6,24,24), (12,12, 12)
XVI (2,5, 30), (5,5, 15) Q(cos(7/15)) P3
XVII  (2,3,30), (2,15,30), (3,3, 15), (3, 10, 30), (15,15, 15)  Q(cos(x/15)) s
XVIII (2,5,8), (4,5,5) Q(v2,V5) P2
XIX (2,3,11) Q(cos(mw/11)) (1)

Table App.1: Total list of arithmetic triangle group

Remark 7.1.  Recently, K. Koike obtained a modular function for the class (X)
(see [Kik2]).

Appendix 2. Biquadratic CM fields We perform a calculation of several class
numbers for biquadratic fields of type Q(v/5, v/ —¥).

Let k/Q be a totally imaginary abelian field , k™ be its maximal real field.Let
h,h" Dbe the class numbers of k, k™, resp. It is known hT|h. h~ = ;i is called the
relative class number of k. We have a formula for A~. To state it we need the following
terminology:

(+) w(k): the number of roots of unity in k,

() W = (C) : the cyclic group of roots of unity in k,

(1) E, E* : the group of units in k, k™ | resp.

(-) Let x be a Dirichlet character for the field k£ with the conductor f. The gener-
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alized Bernoulli number B,, , is determined by

oo

X ) texp(at) Z t"

“exp(ft) — 1 Xl

a=1 n=0

(-) The symbol X (k) stands for the collection of all Dilichlet characters for k. A Dirich-
let character x for k is said to be even (odd), if it holds x(—1) = 1, x(—-1) = —1,
respectively. The symbol X ~ (k) stands for the collection of odd Dilichlet characters for
k.

(-) By X denote the complex conjugate of a Dilichlet character y.

(1) Q(k)=1or 2 and Q(k) =2 <= ¢/ = ( for some € € E .

Theorem 7.2 ([Kmr| p.19, Thm. 4.11).

—uwew T (-38s).

XEX (k)

Let us observe the case k = Q(v/5,v/—£). It holds X (k) = X (k) x X(Q(v/—Y)).
By observing the definition of the above terminology, we can put

Moreover, k = Q(+/5). So it holds ht =1 and h™ = h.

Remark 7.3. In our case, x~ (k) is Composed of only two elements. One is the
Dirichlet character x? for Q(v/—¢) and another x? is the product of x? and the Dirichlet
character x! for Q(v/5). By consulting with the classical theory of quadratic fields, we
can find explicit forms of x? and x? (for example [Tkg] p. 295) .

Dirichlet character for F = Q(v/d). The conductor f, of the Dirichlet character
X is |d| with the discriminant d of F'.

(i) The case d = 1( mod 4). y(a) = (%') .
(

(ii) The case d = 4m, m = 3 (mod 4). y(a) = (—1)(@~1/2 (ﬁ) ‘(g) ’ .

(i) The case d = 8m’,m’ = 1 (mod 4). x(a) = (1)@ ~D/8 [ 2 ‘(ﬁﬂ ,

[m’| ) 12
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(iv) The case d = 8m/,m' = 3 (mod 4). x(a) = (—1)(“2’1)/8“”’1)/2 <L> ‘(Eﬂ

/| ] 12

The fractional bracket means the Jacobi symbol. ‘( )| represents the operation to kill

a
2
the even a.

Example 7.4. The class number of k& = Q(v/5,v/—6), (k= = Q(v/—6)). Its
discriminant is 52 - (—24)2. The odd Dirichlet character for Q(1/—6) is given by

@) = e (2)](2)),

5
—) 2. We know their conductors are 24, 120, respectively. So we
a

And we have x> = (
have h=h~ =2 (_%Bl,x2) . (_%Bl,x?’) = 4. Other examples are listed below.

—¢ discriminant( k=) Embed(yes,no) h(k~) h (— % By 2 ) ( 3 BLX?’)
-2 -8 y 1 1 1 1
-3 -3 y 1 1 % 1
-6 —24 n 2 4 1 2
-7 -7 y 1 1 1 1
-11 —11 n 1 2 ; 2
-13 —52 y 2 8 1 4
-14 —56 n 4 8 2 2
-17 —68 y 4 8 2 2
-19 -19 n 1 4 1 4
-21 —84 n 4 16 2 4
-22 —88 2 12 1 6
-23 —23 y 3 3 3 1
-26 —104 6 12 3 2
-29 —~116 6 24 3 4
-31 —31 n 3 6 3 2
-33 —132 4 16 2 4
-34 —136 4 24 2 6
-37 —148 2 16 1 8
-38 —152 6 12 3 2
-39 -39 4 8 2 2
41 —164 8 32 4 4
-42 —168 4 16 2 4
-43 —43 y 1 7 i 7
-46 —184 4 40 2 10
-47 —47 y 5 5 5 1

Table App.2: Several biquadratic extensions over @

This table tells us that it is not easy to find out such kind of C'M fields with lower
class number which has an embedding into our quaternion algebra B.

Appendix 3. Examples of CM fields of degree 4 those are cyclic over Q
According to [HHRWH], [H-P| we have the following:
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If a CM field M over k = Q(v/D) is cyclic over @, then it can be described in

the form M = Q(\/A(D + BV/D)), where A is a square free odd integer, B,C' € N,
(A,D) =1 and D = B?+ C?. Among them with relatively small conductor are given
by the following. Especially there are only three C M fields over F = Q(+/5) with class
number 2. Those are appearing in the list:

Cyclic CM field M of degree 4 with small conductor:

number conductor discriminantD -A B C h(M)

1 ) ) 2 1 1
6 40 ) 1 1 2 2
10 60 5 3 2 1 4
12 65 5) 13 2 1 2
18 85 5) 17 2 1 2
23 105 5) 21 2 1 4
27 120 5) 3 1 2 4
30 140 5) 7T 2 1 4
37 165 ) 33 2 1 8
41 185 ) 37 2 1 10

Table App.3: Cyclic Extensions of degree 4 over Q with small conductors

Appendix 4. Gauss HGDE on z + y = 1 for F; Sometimes we obtain an
arithmetic triangle group by restricting the Appell hypergeometric differential equation
Eq(a,b,V,c) to the hyperplane = + y = 1. For all 2- variables cases in the Terada
and Deligne-Mostow table (see [Trd], [D-M]), we have the following. Where we use the
notation:

N — 3 = the number of variables,

%:b,%:b’,%—c—b—b’,%:a—f—l—c,%:l—a,

N A means non arithmetic monodromy group (no indication means to be arith-
metic),

oo means non compact type monodromy group (no indication means to be of com-
pact type),

A(p, q,r) indicates the trangle monodromy group of the hypergeometric differential
equation appering on x + y = 1, no indication means it does not happen.

In many cases of them, we have an interpretation as families of K3 surfaces with a

fixed cyclic automorphism. For it , for example see [A-S-T] and [Knd].
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no. N d i Arith  comp (a,b,b,c) A(p, q,7)
1 5 3  2,1,1,1,1 00 (£, %5, 21) (3,6,6)
2 5 4 2,2,2,1,1 00 (%,;%,1) (0,4, 4) nc
3 5 4 3,2,1,1,1 00

4 5 5 22222 (3,.2.2,2) (510,10
5 5 6 3,3,2,2,2 oo

6 5 6  3,3,3,2,1 00

7 5 6 4,3,2,2,1 00

8 5 6 52221

9 5 8 43333 (3.3.38) (488
10 5 8 55222

11 5 8  6,3,3,3,1

12 5 9  4,4,4.4,2

13 5 10 7,4,4,4,1

14 5 12 5,5,55,4

15 5 12 6,5,5,4,4 NA (3.3.3,12)  (4,6,12) na
16 5 12 6,55,53

17 5 12 7,5,4,4,4 NA 00

18 5 12 17,6,53,3 NA 00

19 5 12 7,7,4,4,2

20 5 12 8,5,5,3,3 (3,1,4,10) (3,4,12)
21 5 12 8,5,5,5,1

22 5 12 8,7,3,3,3 NA

23 5 12 10,5,3,3,3

24 5 15 8,6,6,6,4 NA

25 5 18 11,8,8,8,1

26 5 20 14,11,5,5,5 NA

27 5 24 14,9,9,9,7 NA

Example of calculation [Case 4].

Table App. 4: List of hypergeometric differential equations on z + y =1

For Fy(

3 2
557

formation x +y = v,z — y = u . After that we put v
diffeential equation of order 3:

+p1f" +p2f +p3=
125(—1 + u)2u? (1 +u)2 " 4+ 50(—1 4+ w)u(l + u)(=2 + 15u?) f + 20(—5 — 21u? + 42u?) f’ + 96u> f
=0.
We have the decomposition :
pof" +p1f" +p2f +p3 =
[=5(—u +u®)d — 5 — 3u?][-25(—1 + w)u(l + u)d? — 20(—1 + 3u?)d — 12u]f.

u

pof

By putting t = u?, we obtain

)(z,y) we perform the trans-

2 6
5’5
= 1. Then we have the Fuchsian

9

[—25(—1 + w)u(l + u)0? — 20(—1 + 3u?)d — 12u]f = E(i, i, ).

10°107 10’

By the correspondence between F(a,b,c) and A(p, q,r) with
1 1 1

P=7—"4

|1 — ¢l

= T =
lc —a—b|’ la —b|’

we obtain A(5,10,10) for it.
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