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One visualization of Shimura’s complex
multiplication theorem via hypergeometric modular

functions

By

Hironori Shiga* and Atsuhira Nagano  **

Abstract

This article is a sketch of our research work on the subject given by the above title. In
the work “Construction of class fields and zeta functions of algebraic curves ”(1967) by Goro
Shimura (cf.  [SmrA],  [SmrB] ), it was proved that there exists a modular function (that is called
canonical model) that enables to obtain a certain class field (the Shimura class field) of some
kind of CM field. In this article we show that for the case of the CM field embedded into the

quaternion albebra coming from a co‐compact arithmetic triangle group we can determine the
canonical model as a hypergeometric modular function in an explicit way. Moreover we give
several examples of Hilbert class fields of such kind of CM fields coming from the triangle group
 \Delta(3,3,5) . For our work, we use Shimura’sreciplocity law and the existense of the canonical
model together with the result by K. Takeuchi (1977) (see [Tku1],[Tku2]). To construct explicit
examples we use the modular function for genus 4 pentagonal curves discovered by K. Koike
([Kik]). The first author has written the same subject in the book [Shg] (chapter 8). There he
made a detailed explanation of the modular function for  \Delta(3,3,5) . In contract, here we tried
to explain the back ground of our research work. By both of two explanations he expects that
the readers will have a nicer perspective of the story. For the full argument with exact proofs
refer the paper [N‐S].
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§1. Around the Hilbert class field, classical theory

1. The Hilbert class field Let  K be a number field, and let  L be a Galois extension

of  K which is also a number field. The following conditions are equivalent.

(I)  L/K is an unranified abelian extension and it holds  Gal(L/K)\cong C(K) , where
 C(K) is the ideal class group of  K.

(II)  L/K is a maximal unramified abelian extension over  K.

(III) Let  \mathcal{O}_{K} be the ring of integers of  K , and let  p be a prime ideal of  \mathcal{O}_{K}

that is unramified in L.  p : principal  \Leftarrow\Rightarrow  p  =  p_{1}\cdots p_{g},  g  =  [L : K] (complete
decomposition)  \Leftarrow\Rightarrow The minimal polynomial of the generating element  \xi\in L over  K

has a solution in  \mathcal{O}_{K}/p.

Remark 1.1. Such a  L exists and is unique up to isomorphism.

Definition 1.2. The above  L is called the Hilbert class field (or absolute class
field) of  K and is denoted by  C_{K} or  C(K) .

For the meaning of (III), see [Cox] p. 110 –p.115.

2. The elliptic  \lambda function and the  j function We consider a non‐Euclidean

triangle  \nabla(p, q, r) in the upper half complex plane  H with angles   \frac{\pi}{p},   \frac{\pi}{q} and   \frac{\pi}{r} respec‐

tively, where we suppose  p,  q,  r  \in  N\geq\{\infty\} . We set  \nabla  =  \nabla(\infty, \infty, \infty) with ver‐

tices  z_{1}  =  i\infty,  z_{2}  =  0 and  z_{3}  =  -1 . We make aconformal map  \Phi :  H_{-}  arrow  \nabla with

 \Phi(0)=i\infty,  \Phi(1)=0 and  \Phi(\infty)=-1 , as Fig. 1.1.

Fig. 1.1 : Triangle Map  \Phi

By making the analytic continuation of this mapping through the interval  (0,1) we

get the image of  \nabla'  =  H in Fig.1.2. We can make other continuations to obtain the

other images in Fig. 1.2. Finaly they constitutes atesselation of  H . As the inverse
mapping of this multivalued map, we obtain a modular function  \lambda(\tau) that is invariant

under the action of ⟨  (\begin{array}{ll}
1   2
0   1
\end{array}) ,  (\begin{array}{ll}
10   
2   1
\end{array}) ,  (\begin{array}{ll}
-1   0
0-1   
\end{array})  \ovalbox{\tt\small REJECT}=\Gamma(2) .
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Fig.1.2 : Triangle Map,analytic continuation

Setting

  \vartheta_{00}=\vartheta_{00}(\tau)=1+2\sum_{n=1}^{\infty}\tilde{q}^{n^{2}}, 
\vartheta_{01}=\vartheta_{01}(\tau)=1+2\sum_{n=1}^{\infty}(-1)^{n}\tilde{q}
^{n^{2}}, \tilde{q}=e^{\pi i\tau},
we have

(1.1)   \lambda(\tau)=1-\frac{\vartheta_{01}^{4}}{\vartheta_{00}^{4}}.

 \ovalbox{\tt\small REJECT} Then it holds  C(k)=k(j(\xi)) .

The elliptic modular function  j(\tau) is defined by

(1.2)  j( \tau)=2^{8}\frac{(1-\lambda+\lambda^{2})^{2}}{\lambda^{2}(1-\lambda)^{2}}.
3. The classical complex multiplication theorem For precise argument of this

subject, see [Kwd], [Hss].

Theorem 1.3 (Hasse, (together with the class field theory by Takagi and Weber)).
Let  k=Q(\sqrt{D})  (D<0) be an imaginary quadratic field, and let  \mathcal{O}_{k}=Z+Z\xi be its ring

of integers,  \xi=  \{\begin{array}{l}
\sqrt{D}ifD\equiv 2,3(mod4)
(1+\sqrt{D})/2ifD\equiv 1(mod 4)
\end{array}
4. One Example By using (1.1), (1.2) we have the following approximate calcula‐

tion.

Example 1.4. For the case  k=Q(\sqrt{-6}) , we have the class numberh  =2 . And

representatives of ideal classes  J_{1}=[1, \sqrt{-6}],  J_{2}=  [2, \sqrt{-6}] . We have

 \{\begin{array}{l}
r_{1}=j(\sqrt{-6})=(4.83190790335133974539736629805\cdots)\cross 10^{6}
r_{2}=j(\frac{\sqrt{-6}}{2})=3036.09664866025460263370195085\cdots
\end{array}
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So, it holds

 \{\begin{array}{l}
r_{1}+r_{2}= (4.83494400000000000000000000000\cdots ) \cross 10^{6},
r_{1}r_{2}= (1.46701393920000000000000000000 \cdots ) \cross 10^{10},
\end{array}
 D=(r_{1}+r_{2})^{2}-4r_{1}r_{2}=(2.33180029255680000000000000000\cdots) \cross 
10^{13}
 =23318002925568=2^{18}3^{6}13^{2}19^{2}\cross 2.

Because  j( \frac{\sqrt{-6}}{2}) gives the conjugate ofj  (\sqrt{-6}) in  C(k) ,

 K=k(j(\sqrt{-6}))=k(\sqrt{D})=k(\sqrt{2})=k(\omega) (\omega^{3}=1)

is the Hilbert class field of  k.

Note that by putting  G  =  (\begin{array}{ll}
0-6   
1   0
\end{array}) it holds  G^{2}  +6  =  0 (so  Q(G)  \cong  k ) and

 G(\sqrt{-6})=\sqrt{-6} (fixed point). In the Shimura complex multiplication we use the same
procedure.

§2. The hypergeometric modular function

Let us consider the Gauss hypergeometric differential equation

(2.1)  E(a, b, c) :  \lambda(1-\lambda)f"+(c-(a+b+1)\lambda)f'-abf  =0

with real parameters  a,  b,  c . It has regular singular points at  \lambda=0 , 1,  \infty . The exponents

at singularities are given by the Riemann scheme

(2.2)  \{\begin{array}{llll}
0      1   \infty
 0      0   a
1-   c   c-a-b   b
\end{array}\}
We always assume the condition

(2.3)  (*)  \{\begin{array}{l}
|1-c|+|c-a-b|+|a-b|<1
p=1/|1-c|, q=1/|c-a-b|, r=1/|a-b| \in N\geq\{\infty\}.
\end{array}
Set  \{\eta_{1}(\lambda), \eta_{2}(\lambda)\} be a basis of the space of solutions of (2.1). The ratio  \eta_{2}/\eta_{1}

determines a single valued analytic function on the lower complex half plane  H_{-} . Ac‐

cording to the condition  (* ) , by choosing adequate basis the image can be considred to

be a hyperbolic triangle  \nabla(p, q, r) on the upper half plane  H with angles   \frac{\pi}{p},   \frac{\pi}{q},   \frac{\pi}{r} .
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The multivalued analytic map  \mathcal{F} obtained as the analytic continuation of the map

 \eta_{2}/\eta_{1} on  H_{-} is called the Schwarz map of (2.1). The image of  \mathcal{F} is obtained by
the iteration of reflection procedure of  \nabla  =  \nabla(p, q, r) . Due to the condition  (* ) , the

reflection images of  \nabla makes a tessellation of  H . In other words, the monodromy group

of (2.1) is given as the totality of the iteration of the reflection procedures of even times.
We call this group a triangle group  \Delta  =\Delta(p, q, r) . Note that the fundamental region

of this monodromy group  \Delta is composed of  \nabla and its reflection  \nabla' with respect to one

side of  \nabla (see Fig.2.1).
The inverse map  \phi(z) of  \mathcal{F} becomes to be a modular function defined on  H with

respect to the triangle group  \Delta(p, q, r) . Let  z_{1},  z_{2},  z_{3} be the verteces of  \nabla obtained as

 \mathcal{F}(0) ,  \mathcal{F}(1) ,  \mathcal{F}(\infty) , respectively.

Fig. 2.1 : Triangle  \nabla(5,5,5) and its reflections

Definition2.1. Let (2.1) be a Gauss hypergeometric differential equation with
the condition  (* ) . We call the inverse  \phi(z) of the above Schwarz mapa normalized

hypergeometric modular function. Note that its values at the verteces are fixed in
the form :  \phi(z_{1})=0,  \phi(z_{2})=1,  \phi(z_{3})=\infty.

§3. Quaternion algebra over a totally real field

For general introduction of the quaternion algebra, see  [VgtL] . LetF beatotally

real number field. Let  a,  b be elements of  F satisfying the condition

 (Cd) :  \{\begin{array}{l}
a, b\in F: a<0, b>0
all their conjugates other than a, b are negative.
\end{array}
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By them we set a quaternion algebra  B  =   F+F\alpha+F\beta+F\alpha\beta ,  \beta\alpha  =  -\alpha\beta,  \alpha^{2}  =

 a,  \beta^{2}  =b . We denote it by  ( \frac{a,b}{F}) . Forx  =x_{1}+x_{2}\alpha+x_{3}\beta+x_{4}\alpha\beta\in B , we define its

conjugate  \overline{x}=x_{1}-x_{2}\alpha-x_{3}\beta-x_{4}\alpha\beta.

The reduced trace and the reduced norm of  x  \in  B are defined by  Trd(x)  =  x+

 x,  Nrd(x)=xx, respectively.

Setting

 M_{1}= (\begin{array}{ll}
1   0
0   1
\end{array}), M_{x}= (\begin{array}{ll}
0   a
10   
\end{array}), M_{y}= (_{0-\sqrt{b}}^{\sqrt{b}0}), M_{z}=M_{x}M_{y},
we have an isomorphism

 B=\sim FM_{1}+FM_{x}+FM_{y}+FM_{z}.

of noncommutative  F algebras. In this way  B is embedded in  M_{2}(\overline{Q}) . We identify B

with the subalgebra  FM_{1}+FM_{x}+FM_{y}+FM_{z}  \subset M_{2}(R) by this embedding. So

we have  Trd(x)=Tr(x) ,  Nrd(x)=\det(x) .

Set  B^{+}  =  \{x \in B : \det(x) \gg 0\} , wherex  \gg  0 means  x is totally positive as an
element of  F.

Let  \mathcal{O}_{F} stand for the ring of integers of  F . We denote the group of units in  \mathcal{O}_{F} by
 E_{1} . And set  E_{0}  =\{g\in E_{1} :\det(g) \gg 0\} . If it holds Tr (  \gamma )  \in  \mathcal{O}_{F},  \det(\gamma)  \in  \mathcal{O}_{F} for an
element  \gamma\in B , we say it is an integral element of  B.

If an  \mathcal{O}_{F} ‐module of rank 4 is a subring in  B , we say it is an order of  B . Note that

any element of an order is an integral element. Under the condition(Cd) the quaternion
algebra  B has the unique maximal order up to isomorphism of  F‐algebras. We fix it
and denote it by  \mathcal{O}=\mathcal{O}_{B}.

Definition3.1. According to Takeuchi [Tku2] (left) and Shimura  [SmrB] (right)
we use the following notation:

(3.1)  \Gamma^{(1)}(B, \mathcal{O})=\Gamma(\mathcal{O})=\{\gamma\in \mathcal{O} : \det
(\gamma)=1\},
(3.2)  \Gamma^{+}(B, \mathcal{O})=\Gamma(\mathcal{O}, 1)=\{\gamma\in \mathcal{O} : 
\det(\gamma)\in E_{0}\},

(3.3)  \Gamma^{(*)}(B, \mathcal{O})=\Gamma^{*}(\mathcal{O})=\{\gamma\in B^{+}:\gamma 
\mathcal{O}=\mathcal{O}\gamma\}.

These groups are called conventionally as the norm 1 group, the unit group and

the normalizer group, respectively. Note that the norm 1group is asubgroup of the

unit group of finite index, and the unit group is a subgroup of the normalizer group of

finite index. Under the condition(Cd), these groups acts onHasdiscrete groups.

Definition3.2. If a co‐compact triangle group  \Delta is commensurable with the

unit group of a certain quaternion algebra  B=  ( \frac{a,b}{F}) up to conjugation in  SL_{2}(R) , we

say  \Delta is  a (co‐compact) arithmetic triangle group.
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K. Takeuchi (see [Tku1], [Tku2] ) has determined all arithmetic triangle groups.
There are 85 in total, and they are classified into 19 classes of commensurable families (it
contains one commensurable class of non‐compact type, see Table App.1 in Appendix).

Moreover Takeuchi showed that the quaternion algebra  B=  ( \frac{a,b}{F}) corresponding

to  \Delta=\Delta(e_{1}, e_{2}, e_{3})  (e_{1} \leq e_{2}\leq e_{3}) is given by

 a=t_{2}^{2}(t_{2}^{2}-4) ,

 b=t_{2}^{2}t_{3}^{2}(t_{1}^{2}+t_{2}^{2}+t_{3}^{2}+t_{1}t_{2}t_{3}-4) ,

 F=Q(t_{1}^{2}, t_{2}^{2}, t_{3}^{2}, t_{1}t_{2}t_{3}) , where  t_{i}=2 \cos\frac{\pi}{e_{i}}.
Table of norm 1 groups, unit groups and normalizer groups according to K. Takeuchi
[Tku2] :

 class(I)
basefield F

 Q

discri   \minant

 (1)  \Gamma_{(2,3,\infty)}^{(1)(B,\mathcal{O})}  \Gamma^{+}(B, \mathcal{O})(2,3, \infty)  \Gamma_{(2,3,\infty)}^{(*)(B,\mathcal{O})}
(II)  Q (2)(3) (0;2,2,3,3) (0;2,2,3,3) (2,4,6)
(III)  Q(\sqrt{2})  p_{2} (3, 3, 4) (3, 3, 4) (2, 3, 8)
(IV)  Q(\sqrt{3})  p_{2} (3, 3, 6) (2, 3, 12) (2, 3, 12)
(V)  Q(\sqrt{3})  p_{3} (0;2,2,2,6) (2,4,12) (2,4,12)
(VI)  Q(\sqrt{5})  p_{2} (2,5,5) (2,5,5) (2,4,5)
(VII)  Q(\sqrt{5})  p_{3} (3,5,5) (3,5,5) (2,5,6)
(VIII)  Q(\sqrt{5})  p_{5} (3, 3, 5) (3, 3, 5) (2, 3, 10)
(IX)  Q(\sqrt{6})  p_{2} (0;2,3,3,3) (3,4,6) (3,4,6)
(X)  Q( \cos(\frac{\pi}{7})) (1) (2,3,7) (2,3,7) (2,3,7)
(XI)  Q( \cos(\frac{\pi}{9})) (1) (2, 3, 9) (2, 3, 9) (2, 3, 9)
(XII)  Q( \cos(\frac{\pi}{9}))  p_{2}p_{3}  (0;2,2,9,9)  (0;2,2,9,9) (2, 4, 18)
(XIII)  Q( \cos(\frac{\pi}{8}))  p_{2} (3, 3, 8) (3, 3, 8) (2, 3, 16)
(XIV)  Q( \cos(\frac{\pi}{10}))  p 2 (5, 5, 10) (2, 5, 20) (2, 5, 20)
(XV)  Q( \cos(\frac{\pi}{12}))  p 2 (3, 3, 12) (2, 3, 24) (2, 3, 24)
(XVI)  Q( \cos(\frac{\pi}{15}))  p_{3} (5, 5, 15) (2, 5, 30) (2, 5, 30)
(XVII)  Q( \cos(\frac{\pi}{15}))  p_{5} (3, 3, 15) (2, 3, 30) (2, 3, 30)
(XVIII)  Q(\sqrt{2}, \sqrt{5})  p_{2} (4, 5, 5) (4, 5, 5) (2, 5, 8)
(XIX)  Q( \cos(\frac{\pi}{11})) (1) (2, 3, 11) (2, 3, 11) (2, 3, 11)

Table 3.1, List by K. Takeuchi

Remark3.3. The class number  h(F) of  F is always equal to 1.

Remark3.4. We are interested in the unit group  \Gamma^{+}(B, \mathcal{O}) . In Table 3.1, there

are two cases, Class II and Class XII, where it is not a triangle group but is a quadrangle

group. We exclude these cases in the following argument.
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§4. Shimura’s complex multiplication theorem for triangle cases

Let  F be a totally real number field, and let  M be a CM field over  F . Namey,  M is

a totally imaginary field that is a qudratic extension of  F . Shimura made a long research
on the complex multiplication theory of CM fields  ([SmrA]) . We can find his main result

in  [SmrB] . He showed four main theorems there. Especially we are concerned with the

first main theorem for a special case  r=1 . We can restate this specialized case as the

following.

Let  F be a totally real number field, and let  B  =  ( \frac{a,b}{F}) be a quaternion algebra

satisfying the condition (Cd). In this case  B satisfies the condition  r  =  1 with the
terminology of Shimura.

[Shimura’s Main theorem I for the case  r  =  1 ] (  [SmrB] Theorem 3.2 p.73).
Take above mentioned  F,  M and  B . Assume an embedding  f :  M  \hookrightarrow  B satisfying

 f(\mathcal{O}_{M})  \subset  \mathcal{O}_{B} , where  \mathcal{O}_{M} stands for the ring of integers of  M . Then there are a

nonsingular compact complex variety  V and a modular function  \psi(z) on  H with respect

to  \Gamma(\mathcal{O}, 1) satisfying the following condition:

(1)  \psi(z) induces a biholomorphic correspondence  H/\Gamma(\mathcal{O}, 1)\cong V ,
(2)  V is defined over  C(F) (the Hilbert class field of  F),
(3) for a regular fixed point (that is explained below)  z_{0}  \in  H of  M , it holds

 M(\psi(z_{0}))\cdot C(F)=C(M) , where  C(M) stands for the Hilbert class field of  M.

[Regular fixed point  z_{0}  \in  H of  M]. Recall the embedding  f :  M\hookrightarrow B . We can
put  M=F(\alpha) ,  \alpha\in \mathcal{O}_{M} . The linear transformationg  =f(\alpha) has unique fixed point in
 H . That gives our regular fixed point.

Definition 4.1. The above pair  (\psi, V ) is called a canonical model for  H/\Gamma(\mathcal{O}, 1) .

Remark. The canonical model is unique up to  Aut_{C(F)}  (V ) . (see  [SmrB] Theorem
3.3).

We are going to give a visualization of the above canonical model theorem for

arithmetic triangle cases.

Suppose a quaternion algebra  B=  ( \frac{a,b}{F}) is corresponding to a certain arithmetic

triangle group. Moreover, assume that we have  \Delta(e_{1}, e_{2}, e_{3})  =  \Gamma^{+}(B, \mathcal{O})(= \Gamma(\mathcal{O}, 1)) .

Suppose the triangle group  \Delta(e_{1}, e_{2}, e_{3}) is generated by the triangle  \nabla=\nabla(e_{1}, e_{2}, e_{3}) .

Let  z_{1},  z_{2},  z_{3} be the corresponding verteces of  \nabla , respectively.
Let us observe the shape of  \nabla . Due to Takeuchi’sTable 1, there are 18 commen‐

surable classes for co‐compact arithmetic triangle groups. As for the unit groups of the

corresponding quaternion algebras, there are 10 triangles with three different angles as
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their generating  \nabla ’s and 6  \nabla ’s with a pair of equal sides that is not a regular triangle.

We call the former of scalene type unit group and the latter of isosceles type unit

group.

Proposition4.2. Let  B  =  ( \frac{a,b}{F}) be quaternion algebra corresponding to an

isosceles type unit group  \Delta  (e_{1}, e_{1}, e3)  (e_{1} =e_{2} \neq e3) in Table 1. The extension  M_{0}  =

 F(\zeta_{e_{1}}) becomes to be a CM field over  F , where  \zeta_{\nu} means the primitive root of unity of

order  \nu . Moreover, it holds  M_{0}=F(i\sqrt{\rho}) with the fol lowing table of  \rho.

Generators of CM field  M_{0} for isosceles types

class  F  \Gamma(\mathcal{O}, 1)  M_{0}  \rho

(III)  Q(\sqrt{2})  \Delta(3,3,4)  F(\zeta_{3}) 3
(VI)  Q(\sqrt{5})  \Delta(5,5,2)  F(\zeta_{5})   \sin(\frac{\pi}{5})
(VII)  Q(\sqrt{5})  \Delta(5,5,3)  F(\zeta_{5})   \sin(\frac{\pi}{5})
(VIII)  Q(\sqrt{5})  \Delta(3,3,5)  F(\zeta_{3}) 3
(XIII)  Q( \cos(\frac{\pi}{8}))  \Delta(3,3,8)  F(\zeta_{3}) 3

(XVIII)  Q(\sqrt{2}, \sqrt{5})  \Delta(5,5,4)  F(\zeta_{5})   \sin(\frac{\pi}{5})

Table 4.1.

Proof. See [N‐S].  \square 

Theorem4.3 (Main Theorem). Let  B/F a quaternion algebra coming from a
co‐compact arithmetic triangle group. Set  \Delta=\Delta  (e_{1}, e_{2}, e3)  =\Gamma(\mathcal{O}_{B}, 1) . Let  \nabla(z_{1}, z_{2}, z_{3})
be a triangle on  H with verteces  z_{i}  (i = 1,2,3) which generates the triangle group

 \Delta(e_{1}, e_{2}, e_{3}) . Assume the order of zi is equal to  e_{i}(i=1,2,3) .

(I) The case  \Delta is a unit group of scalene type. Let  \phi(z) be a hypergeometric modular
function with respect to  \Delta  (e_{1}, e_{2}, e3) which is normalized with the condition

(Ncd):  \phi(z_{1})=1,  \phi(z_{2})=-1,  \phi(z_{3})=\infty.

Then it gives the canonical model of  H/\Gamma(\mathcal{O}_{B}, 1) together with the Riemann sphere
 S=P^{1} that is the image of  \phi(z) .

(II) The case  \Delta is a unit group of isosceles type.
Let  \phi(z) be a hypergeometric modular function with the same condition (Ncd) in

(I). We make another function  \tilde{\phi}(z) by using a pure imaginary number  i\sqrt{\rho} , where  \rho

is the number obtained in the previous proposition:

 \tilde{\phi}(z)=i\sqrt{\rho}\cdot\phi(z) ,

Then one of  \phi(z) and  \tilde{\phi}(z) becomes to be the canonical model together with the image
 S=P^{1}
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Proof. See [N‐S].  \square 

Remark 4.4. At this moment we don’t have a criterion to determine which of

two candidates in (II) becomes to be the canonical model. Later, we shall show the
example that  \tilde{\phi}(z) is the canonical model.

§5. An explicit form of Shimura’s canonical model for  \Delta(3,3,5)

Koike’s modular function for a family of Pentagonal curves The Schwarz

map for the Gauss hypergeometric differential equation  E  ( \frac{2}{5} , \frac{3}{5} , \frac{6}{5}) can be identified (by
way of the integral representation of the two independent solutions) with the period
map for a family of algebraic curves of genus 4:

 C(\lambda):y^{5}=x^{2}(x-1)(x-\lambda)

with a parameter  \lambda . The monodromy group is the triangle group  \Delta=\Delta(5,5,5) . By

considering the inverse map we obtain the modular function  \lambda(u) with respect to  \Delta

that is defined on the period domain.

K. Koike [Kik] showed a representation of  \lambda(u) in terms of the Riemann theta
constants.

Suppose  0<\lambda<1 . We regard  C(\lambda) as a5‐sheeted branched cover over the  x‐plane

with cut lines connecting the base point  x_{0}  \in  H_{-} and critical points  x  =  0,  \lambda , 1,  \infty.

Set  \gamma_{2},  \gamma_{3} be two homology cycles on  C(\lambda) indicated in Fig.5.1 below, where (1) means
the analytic continuation of the real branch of  y on  x  >  1 along an arc that does not

intersect the indicated cut lines, and (2) and (3) means the branches of  y given by  \rho_{5}(1)
and  \rho_{5}^{2}(1) , respectively, where  \rho_{5}=e^{2\pi i/5}.

Fig.5.1 : homology cycles on C(  \lambda )

By making the analytic continuation, the integrals

  \eta_{2}(\lambda)=\int_{\gamma_{2}}\frac{dx}{y^{2}}, \eta_{3}(\lambda)=
\int_{\gamma_{3}}\frac{dx}{y^{2}}
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give multivalued analytic functions on the  \lambda space. They are independent solutions of
 E  ( \frac{2}{5}, \frac{3}{5}, \frac{6}{5} ) . According to Koike[Kik] , the image of the Schwarz map  \mathcal{F}(\lambda)  =   \frac{\eta_{2}(\lambda)}{\eta_{3}(\lambda)} is
given by the disc in  P^{1} :

(5.1)  \mathcal{D}=\{[\eta_{2}, \eta_{3}] \in P^{1} : |\eta_{2}|^{2}+\omega|\eta_{3}|^
{2}<0\}, (\omega=(1-\sqrt{5})/2) .

We have a modular embedding of  \mathcal{D} into the Siegel upper half space  S_{4}  =  \{\Omega  \in

 GL_{4}(C)  :^{t}\Omega=\Omega,  \Im\Omega>0\} by the following manner:

  \Omega(u) = \frac{1}{\eta_{2}^{2}-(1+e\frac{2\pi i}{5})e^{-\frac{4i\pi}{5}}
\eta_{3}^{2}}

 [ྌ
 + ྌ  ,

where  u  =   \frac{\eta_{2}}{\eta_{3}} . Note that the monodromy group  \Delta(5,5,5) is given asasubgroup of
 Sp_{8}(Z) that preserves  \Omega(\mathcal{D}) .

Set the Riemann theta constant on  S_{4} with a characteristic  (a, b)  \in  (Q^{4})^{2} :

  \vartheta \begin{array}{l}
a
b
\end{array} (\Omega)=\sum_{n\in Z^{4}}\exp[\pi it(n+a)\Omega(n+a)+2\pi it(n+a)b]
.
We define two following theta characteristics:

 a_{11=}  \begin{array}{l}
a
b
\end{array} =\frac{1}{10} \begin{array}{llll}
1   1   1   1
-2   -2   -1   -1
\end{array}
and

 a_{19=}  \begin{array}{l}
a
b
\end{array} =\frac{1}{10} \begin{array}{llll}
1   9   1   9
-2   -8   -1-9   
\end{array} .
We define two theta functions on  \mathcal{D} :

 \theta_{11}(u)=\vartheta[a_{11}](\Omega(u)) , \theta_{19}(u)=\vartheta[a_{19}](
\Omega(u)) .



320 Nagano‐Shiga

Theorem 5.1 (K. Koike [Kik]). The function  \lambda(u)  =  ( \frac{\theta_{11}(u)}{\theta_{19}(u)})^{5} on  \mathcal{D} gives
the inverse of the Schwarz map  \mathcal{F}(\lambda) , and it gives a holomorphic isomorphism:

 \mathcal{D}/\Delta(5,5,5)  arrow\sim  P^{1}(C) . Especially, it holds  \lambda(\omega e^{-2\pi i/5})  =  0,  \lambda(\omega)  =  \infty,  \lambda(0)  =  1,
where  \omega=   \frac{1-\sqrt{5}}{2}.

Remark. Set  (\zeta_{1}, \zeta_{2}, \zeta_{3})  =  (\omega e^{-2\pi i/5},0, \omega) . The triangle  \mathcal{F}(H_{-})  =\nabla(\zeta_{1}, \zeta_{2}, \zeta_{3})
is a generating triangle of  \Delta(5,5,5) (see Fig. 5.2).

Fig.5.2 : Koike Period disc  \mathcal{D}

§6. Examples of the Hilbert class fields of higer degree

The normalized hypergeometric function for the class VIII. Let us consider

the quaternion algebra  B=  ( \frac{a,b}{F}) arising in the class (VIII) in the table of Takeuchi.

In this case, we have the unit group  \Gamma(\mathcal{O}, 1)  =  \Delta(3,3,5) (see Table 2.1). We may
regard  \Delta(5,5,5) is a subgroup of  \Delta(3,3,5) of index 3. Set u1 be the varicentric point

of  \nabla(\zeta_{1}, \zeta_{2}, \zeta_{3}) , and set  (u_{1}, u_{2}, u3)=(u_{1}, \overline{u_{1}},0) . The triangle  \nabla(u_{1}, u_{2}, u_{3}) becomes to

be a generating triangle of  \Delta(3,3,5) (see Fig. 6.1)
By using Koike’s  \lambda function, set

  \Phi(u)= \frac{1}{3}\frac{\lambda^{3}-3\lambda+1}{\lambda(\lambda-1)}.
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Then  \phi(u)  =   \frac{2}{\sqrt{-3}}(\Phi(u)-\frac{1}{2} ) is the normalized hypergeometric modular function for

 \Delta(3,3,5) in the sense that  (\phi(u_{1}), \phi(u_{2}), \phi(u_{3}))  =  (1, -1, \infty) . So,  \tilde{\phi}(u)  =  \Phi(u)-   \frac{1}{2}
gives the modular function of the same symbol in the main theorem 4.3.

Fig.6.1. : Relation between  \Delta(5,5,5) and  \Delta(3,3,5)

Set

 BG_{1}=M_{1},

 BG_{2}=M_{1}+( \frac{1}{2}\omega)M_{y}+\frac{1}{2}M_{z},
 BG_{3}=( \frac{1}{2}-\frac{1}{2}\omega)M_{1}+(\frac{1}{2}\omega)M_{x},
 BG_{4}=M_{1}+ \omega M_{y}, (\omega=\frac{1-\sqrt{5}}{2}) .

They give a system of basis of the maximal order  \mathcal{O}_{B} as a  F‐module.

Remark 6.1. Set

 M_{mc}= (^{\sqrt{\sqrt{}5\omega}0}01), M_{mr}= (\begin{array}{ll}
i   i\sqrt{-\omega}
-1   \sqrt{-\omega}
\end{array}) .

The composition  M_{hd}  =  M_{mc}M_{mr} induces an isomorphism  \mathcal{D}  arrow\sim  H . For a linear

transformation  h acting on  \mathcal{D} , we obtain a transformation  \tilde{h}=  M_{hd} ◦  h ◦  M_{hd}^{-1} acting

on  H . This shifting procedure induces an identification of the triangle group  \Delta(3,3,5)
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and the unit group  \Gamma(\mathcal{O}, 1) . So, we identify the modular function onHwith that on  \mathcal{D}

through this correspondence.

Examples

Example 6.1 Fora CM field  M=Q(\sqrt{5}, \sqrt{-7}) over  F=Q(\sqrt{5}) , we have h(M)  =  1,  (h(M) is
the class number of  M). By taking

 G0=(-3+2\omega)BG1+2\omega BG2+(4-2\omega)BG_{3}+(-2\omega)BG_{4},

it holds  Tr(Go)  =0,  \det(Go)  =7 . So  G_{0}^{2}+7E=0 . By the correspondence  \sqrt{-7}arrow Go , we realize an
embedding of  M into  B . We have unique fixed point of G0 in  \mathcal{D} :

 u_{0}= (‐0.205396  \cdots )  -(0.0667372\cdots)i.

By an approximate calculation, we see  \tilde{\phi}(uo)  = (8.3782124850378702032551165531909913589 )  i.

It holds  \tilde{\phi}(uo)^{2}  =  - \frac{2527}{36}  =  -2^{-2}3^{-2}19^{2}  \cross  7 . Then,  \tilde{\phi}(uo)  \equiv\sqrt{-7}  ( mod Q^{*})  \in  M=C(M) .

It means that  \tilde{\phi}(u) is the modular function that gives the canonical model of

 H/\Gamma(\mathcal{O}_{B}, 1) for the class VIII, and that the normalized modular function  \phi(u) does

not bring the canonical model.

Example 6.2 We find in[HHRWH] that a CM field  M=Q(\sqrt{-(5+\sqrt{}5)}) has  h(M)  =2 . Setting

 G0=(3-3\omega)BG1+BG2+(-4+2\omega)BG_{3}+(-1+\omega)BG_{4},
we obtain

 G_{0}^{2}+5+\sqrt{5}=0.
So  M=F(Go) in  B . We have the unique fixed point of G0 :

 u_{0}=-0.164894-0.119803I\in \mathcal{D}.

We have

 \phi(u_{0})^{2}=-165.3749999999584=-3^{3}7^{2}/2^{3}

(Note that  \tilde{\phi}(u)  =\sqrt{-3}\phi(u) ).
So we obtain the Hilbert class field  C(M)=M(\sqrt{2}) .

Example 6.3 Set  M=Q(\sqrt{-(65-26\sqrt{}5)}) . Due to [HHRWH]  h(M)  =2 . Take

 G0=(1-2\omega)BG1+2BG2+(-8-2\omega)BG3+(-2\omega)BG4.
Then

 G_{0}^{2}+65-26\sqrt{5}=0.
Hence G0 is a generator of  M in  B . We have a fixed point u0 of G0:

 uo= (‐0.2884031937082062430429292960544310724595352385781433875628704276940  \cdots )

 +(0.2095371854415799547791501532228242020959121464954639149713389790753\cdots)i
\in \mathcal{D}

Hence,
 \phi(uo)^{2}=-0.16717727965490681624739779831313980904\cdots .

By the expansion into a continued fraction

 -\phi(uo)^{2} = [0, 5, 1, 53, 1, 1, 3, 4, 1, 12, 7, 74, 2, 2, 
41105985538320721741, \cdots ]
Hence,

 \phi(u_{0})^{2}=-13\cdot 29^{2}\cdot 79^{2}\cdot 2^{-8}\cdot 3^{-13}

As a consequence we have the Hilbert class field  C(M)=M(\sqrt{13}) .
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Example 6.4 The caseM  =Q(\sqrt{5}, \sqrt{-23}) . It holds h(M)  =3 (note that  h(Q(\sqrt{-23}))  =3 also).
We may choose two different generators of  M in  \mathcal{O}_{B} :

 21(M_{1}+(-3+\omega)M_{x}+(1-\omega)M_{y}-3\omega M_{z})
 =-2BG1+3\omega BG2+(4-3\omega)BG_{3}+(-1-\omega)BG_{4}

 21(M_{1}+(1-3\omega)M_{x}+(1-\omega)M_{y}-\omega M_{z})
 =(4-3\omega)BG1+\omega BG2+(-4+\omega)BG_{3} —BG4.

Let  \tilde{\phi}4,  \tilde{\phi}11 be the values of   \tilde{\phi}=\Phi(u)-\frac{1}{2} at the regular fixed point respectively. We have approximate
values

 \tilde{\phi}4=0.41467884460813106945405483718570037432931049417786518217

 -0.99585830192876518343449922550065726567619225232766421487i,

 \tilde{\phi}11 =13.719509519930672493059974467190630795700234699440610387i.

According to our main theorem any of  \tilde{\phi}4,  \overline{\tilde{\phi}4},  \tilde{\phi}11 can be a generator of  C(M) over  F . Because

 [C(M) : M]  =3 , also any of  \tilde{\phi}_{4}^{2},  \overline{\tilde{\phi}4}^{2} ,  \tilde{\phi}_{11}^{2} be a generator of  C(M) . We have approximate values

 \check{r}_{1} =- (2_{\tilde{\phi}_{4}^{2}}^{8}+2^{8_{\overline{\tilde{\phi}4}
^{2}}}+2^{8_{\tilde{\phi}}2} )= \underline{298002375630573376},11
 6131066257801

 \check{r}_{2}=2_{\tilde{\phi}_{11}^{2}}^{8}(2_{\tilde{\phi}_{4}^{2}}^{8}+2^{8_{
\overline{\tilde{\phi}4}^{2}}})+2^{16_{\tilde{\phi}_{4}^{2}
\overline{\tilde{\phi}4}^{2}}}= \underline{27944558699379372032},
 1375668606321

 r3=-2^{24_{\tilde{\phi}}2} \tilde{\phi}_{4}^{2}\overline{\tilde{\phi}4}^{2} = 
\underline{146663661576709210112}.11
 34296447249

Hence, we obtain a cubic equation for  2^{8}\tilde{\phi}_{4}^{2},  2^{8}\overline{\tilde{\phi}4}^{2} ,  2^{8}\tilde{\phi}11 with rational coefficients:

(6.1)  t^{3}+\check{r}_{1}t^{2}+\check{r}_{2}t+\check{r}_{3}=0,

where  t  =  2^{8_{\tilde{\phi}}2} . The above (6.1) is a defining equation of the Hilbert class field of  M . Putting
 Y=  11^{3}2^{8}5^{4_{\tilde{\phi}}-1} , we have integral defining equation

(6.2)  Y^{3}+19268Y^{2}+12444768657Y+6131066257801=0.

Setting  Y^{3}+r_{1}Y^{2}+r_{2}Y+r_{3}  =0 for it,

 r3=19^{10},
 r_{2}=3^{2}1382752073,
 r_{1} =2^{2}4817,
the discriminant dsc  =-19^{4}61^{2}79^{2}89^{2}109^{2}149^{2}229^{2}  \cross 23.

So we see directly (6.2) defines a Galois extension over  M=F(\sqrt{-23}) and non‐Galois
over  Q.

§7. Appendix

In this section, we put several background data for our study. Some of them are

not complete list, but it will help to understand the sistuation about what we are doing.
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Appendix 1: The Takeuchi list Total list of arithmetic triangle groups by K.
Takeuchi ([Tku1]) :

Table App.1: Total list of arithmetic triangle group

Remark7.1. Recently, K. Koike obtained a modular function for the class (X)
(see [Kik2]).

Appendix 2. Biquadratic CM fields We perform a calculation of several class

numbers for biquadratic fields of type  Q(\sqrt{5}, \sqrt{-\ell}) .

Let  k/Q be a totally imaginary abelian field ,  k^{+} be its maximal real field.Let
 h,  h^{+} be the class numbers of  k,  k^{+} , resp. It is known  h^{+}|h.  h^{-}  =   \frac{h}{h+} is called the

relative class number of  k . We havea formula for h
 -

. To state it we need the following

terminology:

 (\cdot)  w(k) : the number of roots of unity in k,

 (\cdot)  W=\ovalbox{\tt\small REJECT}\zeta\ovalbox{\tt\small REJECT} : the cyclic group of roots of unity in k,

 (\cdot)  E,  E^{+} : the group of units in k,  k^{+} , resp.

 (\cdot) Let  \chi be a Dirichlet character for the field  k with the conductor  f . The gener‐



One visualization of Shimura CM 325

alized Bernoulli number  B_{n,\chi} is determined by

  \sum_{a=1}^{f}\frac{\chi(a)t\exp(at)}{\exp(ft)-1}=\sum_{n=0}^{\infty}B_{n,\chi
\frac{t^{n}}{n!}}.
 (\cdot) The symbol  X(k) stands for the collection of all Dilichlet characters for  k . ADirich‐

let character  \chi for  k is said to be even (odd), if it holds  \chi(-1)  =  1,  \chi(-1)  =  -1,

respectively. The symbol  X^{-}(k) stands for the collection of odd Dilichlet characters for
 k.

 (\cdot) By  \overline{\chi} denote the complex conjugate of a Dilichlet character  \chi.

 (\cdot)  Q(k)=1 or 2, and   Q(k)=2\Leftrightarrow\epsilon/\overline{\epsilon}=\zeta for some  \epsilon\in E .

Theorem 7.2 ([Kmr] p.19, Thm. 4.11).

 h^{-}=w(k)Q(k) \prod_{\chi\in X-(k)}(-\frac{1}{2}B_{1,\overline{\chi}})
Let us observe the case  k=Q(\sqrt{5}, \sqrt{-\ell}) . It holds X  (k)=X(k^{+})  \cross X(Q(\sqrt{-\ell})) .

By observing the definition of the above terminology, we can put

 w(k)= \{\begin{array}{l}
2(\ell\neq-3)
6(\ell=-3)
\end{array}
 Q(M)=1,

 B_{1,\chi}= \sum_{a=1}^{f}\chi(a) (\frac{a}{f}-\frac{1}{2})
Moreover,  k=Q(\sqrt{5}) . So it holds h +=1 and  h^{-}=h.

Remark7.3. In our case,  \chi-(k) is composed of only two elements. One is the

Dirichlet character  \chi^{2} for  Q(\sqrt{-\ell}) and another  \chi^{3} is the product of  \chi^{2} and the Dirichlet

character  \chi^{1} for  Q(\sqrt{5}) . By consulting with the classical theory of quadratic fields, we

can find explicit forms of  \chi^{2} and  \chi^{3} (for example [Tkg] p. 295) .

Dirichlet character for  F=Q(\sqrt{d}) . The conductor  f_{\chi} of the Dirichlet character

 \chi is  |d| with the discriminant  d of  F.

(i) The case  d\equiv 1( mod 4) .  \chi(a)=  ( \frac{a}{|d|})
(ii) The case  d=4m,  m\equiv 3  ( mod 4) .  \chi(a)=(-1)^{(a-1)/2}  ( \frac{a}{|m|})  |( \frac{a}{2})|
(iii) The case  d=8m',  m'\equiv 1  ( mod 4) .   \chi(a)=(-1)^{(a^{2}-1)/8}(\frac{a}{|m|})  |( \frac{a}{2})|
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(iv) The case  d  =  8m',  m'  \equiv  3  (mod 4) .   \chi(a)=(-1)^{(a^{2}-1)/8+(n-1)/2}(\frac{a}{|m|})  |( \frac{a}{2})|
The fractional bracket means the Jacobi symbol.  |( \frac{a}{2})| represents the operation to kill
the even  a.

Example 7.4. The class number of  k  =  Q(\sqrt{5}, \sqrt{-6}) ,  (k^{-} = Q(\sqrt{-6})) . Its

discriminant is  5^{2} . (‐24)2. The odd Dirichlet character for  Q(\sqrt{-6}) is given by

 \chi^{2}(a)=(-1)^{(a^{2}-1)/8}  ( \frac{3}{a})  |( \frac{2}{a})|
And we have  \chi^{3}=  ( \frac{5}{a})\chi^{2} We know their conductors are 24, 120, respectively. So we

have  h=h^{-}=2  (-  \frac{1}{2}B_{1,\chi^{2}}) .  (-  \frac{1}{2}B_{1,\chi^{3}})  =4 . Other examples are listed below.

Table App.2: Several biquadratic extensions over Q

This table tells us that it is not easy to find out such kind of CM fields with lower

class number which has an embedding into our quaternion algebra  B.

Appendix 3. Examples of CM fields of degree 4 those are cyclic over  Q

According to [HHRWH], [H‐P] we have the following:
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If a CM field  M over  k  =  Q(\sqrt{D}) is cyclic over  Q , then it can be described in

the form  M=  Q(\sqrt{A(D+B\sqrt{}D)}) , where  A is a square free odd integer,  B,  C  \in  N,

 (A, D)  =1 and  D=B^{2}+C^{2} . Among them with relatively small conductor are given
by the following. Especially there are only three CM fields over  F=Q(\sqrt{5}) with class

number 2. Those are appearing in the list:

Cyclic CM field  M of degree 4 with small conductor:

Table App.3: Cyclic Extensions of degree4over Qwith small conductors

Appendix 4. Gauss HGDE on  x+y  =  1 for  F_{1} Sometimes we obtain an

arithmetic triangle group by restricting the Appell hypergeometric differential equation

 E_{1}(a, b, b', c) to the hyperplane  x+y  =  1 . For all 2‐ variables cases in the Terada

and Deligne‐Mostow table (see [Trd], [D‐M]), we have the following. Where we use the
notation:

 N-3= the number of variables,

  \frac{\mu_{1}}{d}=b,   \frac{\mu_{2}}{d}=b',   \frac{\mu_{3}}{d}=c-b-b',   \frac{\mu_{4}}{d}=a+1-c,   \frac{\mu_{5}}{d}=1-a,
 NA means non arithmetic monodromy group (no indication means to be arith‐

metic),
 \infty means non compact type monodromy group (no indication means to be of com‐

pact type),
 \Delta(p, q, r) indicates the trangle monodromy group of the hypergeometric differential

equation appering on  x+y=1 , no indication means it does not happen.

In many cases of them, we have an interpretation as families of K3 surfaces with a

fixed cyclic automorphism. For it , for example see [A‐S‐T] and [Knd].
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Table App. 4: List of hypergeometric differential equations onx  +y=1

Example of calculation [Case4]. For  F_{1}( \frac{3}{5}, \frac{2}{5}, \frac{2}{5}, \frac{6}{5})(x, y) we perform the trans‐
formation  x+y=v,  x-y=u . After that we put  v=1 . Then we have the Fuchsian
diffeential equation of order 3:

 pof  +p_{1}f"+p_{2}f'+p_{3}=

125  (-1 +u)^{2}u^{2}(1+u)^{2}f  +50(-1+u)u(1+u)(-2+15u^{2})f"+20(-5-21u^{2}+42u^{4})f'+96u^{3}f
 =0.

We have the decomposition:

 pof  +p_{1}f"+p_{2}f'+p_{3}=

 [-5(-u+u^{3})\partial-5-3u^{2}][-25(-1+u)u(1+u)\partial^{2}-20(-1+3u^{2})
\partial-12u]f.

By putting  t=u^{2} , we obtain

 [-25 (-1+u)u(1+u) \partial^{2}-20(-1+3u^{2})\partial-12u]f=E(\frac{3}{10}, 
\frac{4}{10}, \frac{9}{10};t) .
By the correspondence between  E(a,b,c) and  \Delta(p, q, r) with

 p= \frac{1}{|1-c|},  q= \frac{1}{|c-a-b|},  r= \frac{1}{|a-b|} ,
we obtain  \Delta(5,10,10) for it.
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