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Sonin’s argument, the shape of solitons,
and the most stably singular matrix

By
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Abstract

We present two adaptations of an argument of Sonin, which is known to be a powerful
tool for obtaining both qualitative and quantitative information about special functions; see
[12]. Our particular applications are as follows:

(i) We give a rigorous formulation and proof of the following assertion about focusing
NLS in any dimension: The spatial envelope of aspherically symmetric soliton in arepulsive
potential is a non‐increasing function of the radius.

(ii) Driven by the question of determining the most stably singular matrix, we determine
the location of the maximal eigenvalue density of an  n\cross n GUE matrix. Strikingly, in even
dimensions, this maximum is not at zero.

§1. Introduction

We consider two questions in this paper: one taken from the study of dispersive

PDE, the other from random matrix theory. The common feature is that both will be

tackled by adapting an elegant argument of Sonin [11].
We learned of Sonin’s argument from Szego˝’s book [12], where it forms the subject

of Section 7.31 (see also the prefatory remarks to Chapter VII). We quote here verbatim
the statement of Theorem 7.31.1 from [12]:

Theorem 1.1. Let  y=y(x) satisfy the differential equation

 y"+\phi(x)y=0,
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where  \phi(x) is a positive function having a continuous derivative of a constant sign in
 x_{0}<x<X_{0} . Then the successive relative maxima of  |y| , as  x increases from  x_{0} to  X_{0},

form an increasing or decreasing sequence according as  \phi(x) decreases or increases.

The proof is ingeniously simple: The function

 f(x)=y(x)^{2}+ \frac{1}{\phi(x)}y'(x)^{2} satisfies  f'(x)=- \frac{\phi'(x)}{\phi(x)^{2}}y'(x)^{2}
and so has opposite monotonicity to that of  \phi . On the other hand,  f(x)  =  y(x)^{2} at

each local extremum of  y(x) . Thus, the theorem is proved.

Theorem 1.1 provides a powerful tool for understanding the overall shape of the

classical special functions as can be seen already from the applications detailed in [12].
Indeed, it is worthy of note that this is the argument of choice, despite the fact that the

classical special functions admit a wealth of series and integral representations.

In Section 2 we apply a similar argument to describe (at least qualitatively) the
spatial envelope of solitons for NLS. In Section 3, we determine the point of highest

density in the eigenvalues of a GUE matrix. In particular, we will see that this point

is non‐zero in even dimensions, which shows that zero is not the most stably singular

matrix. These two sections may be read independently of one another. With this in

mind, we leave more precise formulations, together with the necessary preliminaries, to

the individual sections. In closing, however, we would like to present an application

of Theorem 1.1 that requires no prerequisites, namely, to rigorously demonstrate the

well‐known decaying envelope overlaying the oscillatory behaviour of Bessel functions.
The Bessel function  J_{0}(x) is defined as the unique solution to

(1.1)  x^{2}y"(x)+xy'(x)+x^{2}y(x)=0 with  y(0)=1.

This ODE has a regular singular point at  x=0 ; any solution linearly independent of

 J_{0}(x) is unbounded near  x=0.

It is elementary to verify from (1.1) that

(1.2)  y(x)=J_{0}(e^{x}) solves  y"(x)+e^{2x}y(x)=0

and that

(1.3)  y(x)=\sqrt{}xJ_{0}(x) solves  y"(x)+(1+ \frac{1}{4x^{2}})y(x)=0 forx  >0.

Applying the Sturm comparison theorem (cf. [4, Ch. 8]) to either (1.2) or (1.3)
shows that the Bessel function changes sign infinitely many times on the positive axis.

On the other hand, applying Theorem 1.1 to (1.2), we see that these oscillations are
decaying in magnitude, as measured, for example, by the size of extrema between suc‐

cessive zeros. As acounter point, however, we see by applying Theorem 1.1 to (1.3),
that  J_{0}(x) is not  o(x^{-1/2}) as  xarrow\infty.
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§2. The shape of solitons

Fix  p>0 . Solutions of the form  \psi(t, x)=u(x)e^{i\omega t} to

(2.1)   i\partial_{t}\psi=-\Delta\psi+V\psi-|\psi|^{p}\psi

are commonly termed solitons, at least when  u(x) decays appropriately at infinity. In

this paper, we follow the widely adopted practice of requiring that  u\in H^{1}(\mathbb{R}^{d})\leqq L^{\infty}(\mathbb{R}^{d}) .

For ease of exposition, we shall assume throughout that  V\in C^{\infty}(\mathbb{R}^{d}) .

The goal of this section is to show that if  u(x) (and so also  V(x) ) is spherically
symmetric and  V(x) is repulsive, in the sense that  x\cdot\nabla V(x)  \leq 0 , then the envelope of

 u(x) is a decreasing function of radius.

Due to the assumption of spherical symmetry, the claim just made reduces to a

result about ordinary differential equations. Concretely, if  \psi(t, x)  =  e^{i\omega t}y(|x|) is a

solution to (2.1) then  y is a  C^{2} solution to

(2.2)  -y"(r)- \frac{d-1}{r}y'(r)+V(r)y(r)-|y(r)|^{p}y(r)=-\omega y(r) with  y'(0)=0,

where we agree to write  V(x)  =  V(|x|) , in line with the fact that  V is spherically

symmetric. The fact that  V is repulsive may now be written as  V'(r)  \leq 0 for  r\geq 0.

While  u and so  y may be complex‐valued, in principle, let us now observe that we

may always reduce matters to the real‐valued case. Multiplying (2.2) by  r^{d-1}\overline{y}(r) and
then taking imaginary parts yields

  \frac{d}{dr}{\rm Im}\{r^{d-1}\overline{y}(r)y'(r)\}=0.

On the other hand, as  u  \in  H^{1}(\mathbb{R}^{d}) , we know that  {\rm Im}\{r^{d-1}\overline{y}(r)y'(r)\}  arrow  0 as  r  arrow  \infty

(at least along some subsequence). Thus Im  \{\overline{y}(r)y'(r)\}  \equiv 0 . This then implies that y
can be written as a real‐valued function multiplied by a uni‐modular complex number.

(We use here that  y and y’cannot vanish simultaneously without forcingy  \equiv 0. ) This
complex number can then be factored out of (2.2) leaving us to consider only real‐valued
solutions to (2.2).

The main result of this section is the following (we also discuss two further appli‐
cations at the end of the section):

Theorem 2.1. Let  y :  [0, \infty )  arrow \mathbb{R} be a solution to (2.2) with  V repulsive. Then
the successive local maxima of  |y(r)| form a non‐increasing sequence as  r increases over

the interval  [0, \infty ).

Proof. Let  r_{k} denote the locations of the successive local maxima of  |y(r)| , which

we enumerate consecutively outward from the origin. As extrema, we have

 y'(r_{k})=0 and  y(r_{k})y"(r_{k})\leq 0.
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Plugging this information into (2.2) we deduce that

(2.3)  |y(r_{k})|^{p+2}\geq[V(r_{k})+\omega]y(r_{k})^{2}

Consider now

 f(r) :=  \frac{1}{2}[y'(r)]^{2}-\frac{1}{2}V(r)y(r)^{2}+\frac{1}{p+2}|y(r)|^{p+
2}-\frac{\omega}{2}y(r)^{2},
which obeys

 f'(r)=- \frac{d-1}{r}[y'(r)]^{2}-\frac{1}{2}V'(r)y(r)^{2}
Assuming, toward a contradiction, that  y(r_{k+1})^{2}\geq y(r_{k})^{2} , we obtain

 f(r_{k+1})-f(r_{k}) \leq\int_{r_{k}}^{r_{k+1}}-\frac{1}{2}V'(r)y(r)^{2}dr\leq 
\frac{1}{2}[V(r_{k})-V(r_{k+1})]y(r_{k+1})^{2},
which may then be rearranged to reveal

(2.4)  g_{k}(y(r_{k}))  \geq g_{k}(y(r_{k+1})) where  g_{k}(y)  :=   \frac{1}{p+2}|y|^{p+2}-\frac{1}{2}[V(r_{k})+\omega]y^{2}
In order to reach a contradiction and so complete the proof, it remains to show that

 g_{k}(y) is an increasing function over the interval  [|y(r_{k})|, \infty ), which contains  |y(r_{k+1})|
due to our contradiction hypothesis. This is easily achieved using (2.3):

 y\partial_{y}g_{k}(y)= |y|^{p+2}- [V(r_{k})+\omega]y^{2}

  \geq \frac{y^{2}}{y(r_{k})^{2}}[|y(r_{k})|^{p+2}-[V(r_{k})+\omega]y(r_{k})^{2}
] \geq 0,
whenever  |y|  \geq  |y(r_{k})|.  \square 

Thus far, our discussion has focused on spherically symmetric solutions. As we will

now explain, Theorem 2.1 can also be applied to a wider class of solutions in dimensions

one and two (where there are non‐trivial spherical harmonics of constant modulus). We
retain the requirements that  V be symmetric and repulsive.

Let us first consider the case  d=  1 and let  y :  \mathbb{R}arrow \mathbb{R} be an odd solution to (2.2).
Evidently,  r  =  0 is not a local maximum of  y . Let  r_{0}  >  0 denote the first such local

maximum. Then we may apply Theorem 2.1 to the function  \tilde{y}(r)  =  y(r+r_{0}) with

attendant potential  V(r+r_{0}) and so discover that the successive local maxima of  |y(r)|
remain a non‐increasing function of radius (over the whole range  r  \geq 0 ) in the case of
odd solutions on the line.

Turning now to  d  =  2 , we adopt polar co‐ordinates:  x  = (rcos(  \theta ) , rsin (  \theta )) and
consider solutions to (2.1) of the form  \psi(t, x)  =  y(r)e^{i\ell\theta+i\omega t} where  \ell  \in  \mathbb{Z} . Simple
computations show that for such a function to be a solution to (2.1), one must have

 -y"(r)- \frac{d-1}{r}y'(r)+ [V(r)+\frac{\ell 2}{r^{2}}+\omega]y(r)-|y(r)|^{p}
y(r)=0.
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Moreover, unless  \ell=0 (which was treated already), we must have  y(r)arrow 0 as  r\downarrow 0 . In
this way, we find ourselves in the setting of the previous paragraph: we choose  r_{0}>0 as
the radius of the first local maximum of  |y(r)| and apply Theorem 2.1 to  \tilde{y}(r)=y(r+r_{0}) .

Once again, we find that the envelope of such solutions is a decreasing function of radius,
for all  r>0.

§3. The most stably singular matrix

There can be little argument that the zero matrix is the ‘most singular’ of all

symmetric matrices. In this section, we discuss how this can fail under the addition of
Gaussian noise.

The most natural notion of Gaussian noise is that adopted in random matrix theory,

which we will now describe. See [10] for an alternate introduction and further discussion.
The sets of  n\cross n real‐symmetric matrices, complex hermitian matrices, and quater‐

nion self‐dual matrices, are all vector spaces over  \mathbb{R} and all admit a natural inner prod‐
uct:

⟨A,  B\ovalbox{\tt\small REJECT}={\rm Re} tr  (A^{\dagger}B) ,

where  \dagger denote the transpose, the hermitian conjugate, or the quaternionic dual, as

appropriate. Having fixed a base field and a size  n , let  \{E_{j}\} denote an orthonormal

basis (over  \mathbb{R} ) for the associated space and then define

 X= \sum_{j}Z_{j}E_{j}
where  Z_{j}\sim N(0,1) denote independent standard Gaussian random variables. The law
of this random matrix  X is said to be GOE when the base is  \mathbb{R} . It is called GUE and

GSE when the base field is  \mathbb{C} and  \mathbb{H} , respectively.

We may now be more precise about the question we wish to tackle in this section:
For what deterministic matrix  A is

(3.1)  M=A+X

most likely to be singular? It is natural to place a constant in front of  X to represent
the size of the noise; however, this can always be scaled away.

Of course,  A+X has zero probability of being singular because the set of singular
matrices

 \mathcal{S}=\{B : \det B=0\}

is a variety of co‐dimension one. (For the theory of determinants over  \mathbb{H} , see [6].) Cor‐
respondingly, we interpret the likelihood of being singular through the Radon–Nikodym

derivative; see (3.3) below.
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As in [10], the one‐point function, or density of eigenvalues, of the random matrix
 M will be denoted  R^{(1)}(x) . It is uniquely determined by the relation

  \int_{\mathbb{R}}p(x)R^{(1)}(x)dx=\mathbb{E}tr\{p(M)\} , for all polynomials  p.

Note that   \int R^{(1)}(x)dx=n , the number of eigenvalues.

Lemma 3.1.

(3.2)  \mathbb{P}\{ dist (  M,  \mathcal{S})\leq\epsilon\}=\mathbb{P}\{\Vert M^{-1}\Vert_{op}\geq\epsilon^{
-1}\}=\int_{-\epsilon}^{\epsilon}R^{(1)}(x)dx+o(\epsilon)
and correspondingly,

(3.3)   \lim_{\epsilonarrow 0}\frac{1}{2\epsilon}\mathbb{P}\{ dist (  M, \mathcal{S})\leq\epsilon\}=R^{(1)}(0) .

Proof. The first equality in (3.2) follows from the elementary fact that

(3.4) dist  (B,  \mathcal{S})=\inf{  |\lambda| :  \lambda is an eigenvalue of  B }.

(See also the Hoffman–Wielandt inequality [9].)
Regarding the second equality in (3.2), we first note that

(3.5)  \mathbb{P}\{ dist (  M, \mathcal{S})\leq\epsilon\}   \leq\int_{-\epsilon}^{\epsilon}R^{(1)}(x)dx,
since RHS(3.5) represents the average number of eigenvalues in the interval  [-\epsilon, \epsilon].
Moreover, we see that it suffices to control the probability that such an interval contains

two or more eigenvalues in order to obtain an inequality in the opposite direction.

The stated bound follows from the simple observation that the space of matrices with

two vanishing eigenvalues is a variety (homogeneous with respect to scaling) of higher
codimension. The exact codimension depends on the ambient field, so we settle for the
crude bound  o(\epsilon) .  \square 

The principal result of this section is the determination of the location of the

maximum of the one‐point function  R^{(1)}(x) associated to the model (3.1) when  A=0

and one is working over the complex field. Equivalently, we determine the choice of  A,

from among numerical multiples of the identity, that maximizes the probability of being

singular. As we will see, the optimum is not the zero matrix when  n is even. Indeed,
 x=0 is a local minimum of  R^{(1)}(x) . The intuitive explanation lies in the strength of

eigenvalue repulsion: the middle eigenvalues push each other away from the origin. One

expects this effect to be even stronger in the quaternionic case. The effect is weaker in
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the real‐symmetric setting and messy computations (not reproduced here) show  x=0

is a degenerate local maximum of  R^{(1)}(x) in that case.

While we are not aware of any prior works attacking precisely the question posed

in this section, the relations (3.2) and (3.5) connect this question to matters of on‐going
interest; see, for example, [2, 3, 7]. Relative to these works, what we are seeking to
achieve (in the setting of Gaussian noise) is not only the optimal power dependence on
 n , but even the optimal constant.

The explanation for working over the complex field is the fact that there is an

elegant explicit formula for the one‐point function; see [10, §5.2] and Lemma 3.2 below.
An explicit formula is also known for the one‐point function in the case  M\sim A+GUE,

see [8]; however, we are not able to handle the case of general  A at this time.

Lemma3.2. Suppose  M\sim GUE. Then the one‐point function is given by

 R^{(1)}(x)  =   \frac{1}{\sqrt{2\pi}}\sum_{k=0}^{n-1}p_{k}(x)^{2}e^{-\frac{1}{2}x^{2}}  =\sqrt{\frac{n}{2\pi}}[p_{n}'(x)p_{n-1}(x)-p_{n}(x)p_{n-1}'(x)]e^{-\frac{1}{2}
x^{2}},
where  p_{k} are rescaled Hermite polynomials,

(3.6)  p_{k}(x)  :=   \frac{(-1)^{k}}{\sqrt{k!}}e^{\frac{1}{2}x^{2}}\frac{d^{k}}{dx^{k}}e^{-\frac{1}
{2}x^{2}}  = \frac{x^{k}}{\sqrt{k!}}+ lower order.

These polynomials are orthonormal with respect to the measure  (2\pi)^{-1/2}e^{-x^{2}/2}dx.

We will need the following basic facts about the Hermite polynomials:

(3.7)  -p_{k}"(x)+xp_{k}'(x)=kp_{k}(x) and  p_{k}'(x)=\sqrt{}kp_{k-1}(x) .

These relations can be found in [1], or derived directly from (3.6). In the notation of
[1], we have  He_{k}(x)=\sqrt{}k!p_{k}(x) .

To locate the global maximum of  R^{(1)}(x) , we employ the following Sonin‐style
lemma:

Lemma3.3. Suppose  y"(x)+\phi(x)y(x)  =  0 on an interval  [a, b] with  \phi  \in  C^{1}

and strictly decreasing. Then the values of  |y'(x)| at the successive zeros of  y(x) form

a strictly decreasing sequence.

Proof. If  f(x)=[y'(x)]^{2}+\phi(x)[y(x)]^{2} , then  f'(x)=\phi'(x)[y(x)]^{2}<0.  \square 

We are now prepared to prove the main result of this section:

Theorem3.4. For  M\sim GUE, we have

  \sup_{x}R^{(1)}(X) = R^{(1)}(0) = \frac{1}{\sqrt{2\pi}} (2k+1)!2^{2k}[k!]^{2} 
= \frac{1}{\pi}\sqrt{n} \exp\{\frac{1}{4n} + o(n^{-3})\}
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when  n=2k+1 is odd. On the other hand, when  n is even,

  \sup_{x}R^{(1)}(x)=R^{(1)}(\pm x_{n})= \frac{n}{\sqrt{2\pi}}p_{n-1}(x_{n})^{2}
e^{-\frac{1}{2}x_{n}^{2}},
where  x_{n} is the smallest positive zero of  p_{n} . Moreover,  R^{(1)}(x)  <  R^{(1)}(\pm x_{n}) for  x  \neq
 \pm x_{n}.

Proof. From Lemma 3.2 and (3.7) we find

 \partial_{x}R^{(1)}(x)=-\sqrt{\frac{n}{2\pi}}p_{n}(x)p_{n-1}(x)e^{-\frac{1}{2}
x^{2}}
As the zeros of  p_{n} and  p_{n-1} interlace (cf. [12, Theorem3.3.2]) and the last critical

point of  R^{(1)}(x) must be a local maximum (since the one‐point function decays at
infinity), we see that the local maxima of  R^{(1)}(x) occur at the zeros of  p_{n} , while those
of  p_{n-1} correspond to local minima. Moreover, Lemma 3.2 and (3.7) reveal that

 R^{(1)}(x)= \frac{1}{\sqrt{2\pi}}|p_{n}'(x)e^{-x^{2}/4}|^{2} whenever  p_{n}(x)=0.

On the other hand, by (3.7),  y_{n}(x)  :=p_{n}(x)e^{-x^{2}/4} satisfies

 y_{n}"(x)+(n+ \frac{1}{2}-\frac{1}{4}x^{2})y_{n}(x)=0.

In this way, the theorem follows by applying Lemma 3.3 on the interval  [0, \infty ) and the
trivial observation that  p_{k}(-x)=(-1)^{k}p_{k}(x) .  \square 

One way to generate a matrix of the form (3.1) is to begin with the matrix  A and
allow each of the matrix entries to perform Brownian motion. Afamous calculation of

Dyson [5] determines the stochastic process followed by the eigenvalues of  M in this
setting. Concretely, the eigenvalues perform the diffusion

(3.8)  d \lambda_{j}=dB_{j}(t)+\frac{\beta}{2}\sum_{k\neq j}\frac{dt}{\lambda_{j}-
\lambda_{k}}
where  B_{1} , . . . ,  B_{n} denote independent Brownian motions. Here,  \beta  =  1 for real sym‐

metric matrices,  \beta  =  2 for hermitian matrices, and  \beta  =  4 in the quaternion case.

Nevertheless, the diffusion makes perfect sense for any  \beta\geq 0 . We define the one‐point

function  R_{\beta}^{(1)}(x) associated to such a diffusion at time  t=1 in the natural way:

(3.9)  R_{\beta}^{(1)}(x)= \mathbb{E}\sum_{j}\delta(x-\lambda_{j}(t=1)) .

Evidently, the function  R_{\beta}^{(1)} depends also on the initial data for the diffusion. In the

setting of (3.1), this is given by the eigenvalues of the matrix  A . As in the study of
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(3.1), there is no loss of generality in restricting to time  t=  1 , since other values can
then be recovered by scaling.

The results presented here, together with some further fragmentary evidence, leads

us to the following conjecture:

Conjecture3.5. Among all initial conditions for Dyson Brownian motion (3.8),
those maximizing  R^{(1)}(0) are precisely the following:

 \lambda_{1}=\cdots=\lambda_{n}=  \{  0\pm x_{n,\beta}\neq 0 if
 \beta\leq

if  \beta>11 andnisevenornisodd,.
We do not have a conjecture about the precise value of  x_{n,\beta}.
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