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Remarks on the probabilistic well-posedness
for quadratic nonlinear Schrodinger equations

By

Mamoru OKAMOTO*

Abstract

We consider the Cauchy problem for the quadratic nonlinear Schrodinger equation without
gauge invariance: i0;u + Au = |u|?. First, we show the probabilistic well-posedness in H*(R?)
for d > 5 and %sc < s < S¢, where s. := % — 2 is the scaling critical regularity. Second,
as in the paper of Bényi et al., by performing a fixed point argument around the higher order

expansion, we improve the regularity threshold for almost sure local well-posedness, i.e. d=3

» d—25¢

is replaced by %sc.

§1. Introduction

We consider the following Cauchy problem for the nonlinear Schrédinger equation:
(1.1) i0pu 4+ Au = |ul?,  u(0,2) = ¢(x)

where u = u(t,z) : R x R¢ — C is an unknown function, ¢ is a given initial datum.
The equation (1.1) is invariant under the following scaling transformation:

u(t, r) — u(t, ) == N2u(\’t, \z)

for A > 0. Hence, the scaling critical Sobolev regularity is s. := %l — 2.

Well-posedness for (1.1) has been extensively studied. In particular, Tsutsumi [18]
and Cazenave and Weissler [5] showed that (1.1) is locally well-posed in H*(R%) for
s > max(s.,0). Moreover, local well-posedness in H~17¢(R%) was proved by Kenig et
al. [10], Colliander et al. [6], and Tao [16] for d = 1, 2, and 3, respectively. In one
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dimension, Kishimoto and Tsugawa [12] proved that (1.1) is locally well-posed in H*(R)
if and only if s > —%. For d = 2,3, the exponent —%l is sharp up to epsilons. Namely,
Iwabuchi and Uriya [9] and Kishimoto [11] proved that (1.1) is ill-posed in H*(RY) if
d=2,3 and s < —% (see also [15]).

Recently, Tkeda and Inui [8] showed nonexistence of solutions of (1.1) with initial
data in H*(RY) satisfying a certain condition when d > 3 and s < s.. Oh and Pocovnicu
with the author [14] proved probabilistic well-posedness of (1.1) for d = 6, which is
a corollary of the well-posedness result for the energy-critical nonlinear Schrodinger
equation. To handle non-algebraic nonlinearities, they avoid thorough case-by-case
analysis. In this paper, by using the case-by-case analysis, we consider the probabilistic
well-posedness for (1.1) with low regularity data. As in [14], thanks to randomizing the
initial data, we can avoid these initial data in [8] for which no solution exists.

Following the papers [19, 13, 1, 2, 7, 4], we define the randomization. Let ¢ € S(R?)
satisfy

supp ¢ C [—1,1]¢ and Z Y(E—n)=1 forany &£ € R

neza

Then, given a function ¢ on R?, we have

¢=Y_ ¢(D-n)g.
neza

This replaces the role of the Fourier series expansion on compact domains. We then

define the Wiener randomization of ¢ by

(1.2) ¢ =Y gn(w)(D —n)o,

nezd

where {g,,} is a sequence of independent mean zero complex-valued random variables on
a probability space (€2, F, P). In the following, we assume that the real and imaginary
parts of g, are independent and endowed with probability distributions ,uq(zl) and ug),

satisfying the following exponential moment bound:

R

forallk e R, neZ¢ j=1,2.
The randomization has no smoothing in terms of differentiability. However, it
improves the integrability (see for example Lemma 2.3 in [1]).

The following is our main result.

Theorem 1.1. Let d > 5 and let %sc < 5 < s.. Given ¢ € H*(R?), let ¢*
be its Wiener randomization defined in (1.2). Then, the Cauchy problem (1.1) with
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u(0) = ¢* is almost surely locally well-posed in H*(R?). Moreover, the solution u lies

in the class:
S()¢” + C([=T, T); H** (RY)) C C([-T, T]; H*(R))
for T = T(¢,w) > 0 almost surely, where S(t) := ™A,

Let z(t) = 2¢(t) := S(t)¢“ denote the random linear solution with ¢“ as initial
data. If u is a solution to (1.1), then the residual term v := u — z satisfies the following
perturbed nonlinear Schrédinger equation:

10w + Av = v + 2|2
(1.3) ! | |

’U’t:() = 0
We use the contraction mapping theorem to find a solution to (1.3) (or the corresponding
integral equation).
By performing a fixed point argument around the second order expansion, Bényi et
al. [3] improved the regularity threshold for almost sure local well-posedness from their

previous work [2]. Following their approach, we obtain the improved well-posedness
result. Set z1(t) := z(t) and

t
2o(t, x) == —i/ St —t) |z (¢, x)|?dt .
0

Theorem 1.2. Let d > 5 and let dg%%sc <5< s.. Given ¢ € H*(R?), let

¢¥ be its Wiener randomization defined in (1.2). Then, the Cauchy problem (1.1) with
u(0) = ¢“ is almost surely locally well-posed in H*(RY). Moreover, the solution u lies
in the class:

21 + 20 + O([=T,T); H**(RY)) ¢ C([-T,T); H*(RY))
for T =T(¢,w) > 0 almost surely.

As in [3], we can also consider the (unbalanced) higher order expansion. Set (i :=

21, G2 := 22, and .
Cult) = —2i / S(t — )R GT)(¢)de

for kK > 3. Then, we have

d2—5d+7

G(t) € HIF (R, (3(t) € H @97 °(RY)

for 0 < s < s.. In general, Lemma 2.5 below shows that ¢, € C([-T,T]; H**~(R%))
for 0 < s < s, where
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2
Then, we have as = 3 g, Qg = d(d__‘r’g;j, and s = —ﬁ:i.

Theorem 1.3.  Let d > 6 and let 4= d=2s. < s < sc. Given ¢ € H*(R?), let ¢~
be its Wiener randomization defined in (1.2). Then, the Cauchy problem (1.1) with
u(0) = qu‘*’ is almost surely locally well-posed in H*(R?). Moreover, by letting k € N

such that - <s < SC , the solution u lies in the class:
G+ G4+ G+ C(-T,T; H*"(RY) C C([-T, T}; H*(R?))
for T =T(¢,w) > 0 almost surely.

The upper bound s < 2« 1mp11es that the expansion is meaningful. Indeed, because
Ce(t) € Ho=T(RY) for s > SC , the solution u lies in the class

4G+ + Gt + C([-T, T); H*H(RY) € C([-T,T7; H*(RY))

provided that ;—Z < s < Se.

Because the regularity of |(2|? is not large enough when d = 5 (see Remark 3

below), we need to modify the expansion for d = 5. Set ny := (i for k =1,2,3 and

t t
N = 44—2'/0 St —t)|GE)Pdt, = —2z'/0 St —t")YR(m7_,)(t')dt’

for k > 5. Since the regularity of (;(3 is worse than that of |(3|?

regularity as that of (g, i.e., n € C([-T,T]; H**~(R®)).

, Mk has the same

Theorem 1.4. Let % < s < s.. Given ¢ € H*(R®), let ¢* be its Wiener
randomization defined in (1.2). Then, the Cauchy problem (1.1) with uw(0) = ¢“ is
almost surely locally well-posed in H*(R>).

s < SC , the solution u lies in the class:
m+me+ -+ + C(=T,T); H*H(R%)) C C([-T,T); H*(R?))

for T =T(¢,w) > 0 almost surely.

§1.1. Notation

We summarize the notation used throughout this paper. We set Ny := N U {0}.
We denote the space of all rapidly decaying functions on R by S(R9).

In estimates, we use C' to denote a positive constant that can change from line
to line. If C is absolute or depends only on parameters that are considered fixed,
then we often write X < Y, which means X < CY. We define X ~ Y to mean
cCly <X <cov.
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L if ¢ <1,

Let 6 be a smooth even function with 0 < 6 < 1 and 6(¢) =
0, if g > 2.

For

any R > 0, we set

b<n(€) =0 (5, ) Or(E) = 0n(6) ~ 05 ©)

For any N € 280, we define
Pyf:=F 'on]].

We use a+ and a— to denote quantities a + € and a — ¢, respectively, when ¢ > 0

is arbitrarily small and implicit constants are allowed to depend on €. We also use co—

1
to denote o

8§2. Proof of Theorem 1.1

First, we collect Strichartz-type estimates. We call (g, r) admissible if ¢, r € [2, o0],
% + ‘;i = g, and (q,r,d) # (2,00,2). Then, the following Strichartz estimate holds.

Theorem 2.1.  Let (q,r) be admissible. Then, we have

1S ellLary S oLz
For the nonlinear estimates, we use the Fourier restriction norm space.

Definition 2.2. Let s,b € R. The space X*? is defined to be the closure of the
Schwartz functions S(R x R%) under the norm

ullxes = 1€ ( + I€12) Frao (. )l -

Note that X** — C(R; H*(R)) for b > 1 holds (see, for example, Tao [17, Corollary
2.10]). Moreover, the transfer principle yields the following (see, for example, Tao [17,
Lemma 2.9]): For any admissible pair (¢,r) and b > %, we have

lullgrs S llullxo.s.
Remark 1. Since |lul[zz = [lul|xo.0, for any admissible pair (¢,7) with ¢ > 2, an
interpolation shows that
ull o= < llull o1 -
When ¢ = 2, we have

ol g S el s
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The following lemma shows an improvement of the Strichartz estimates upon the
randomization of initial data (See, for example, [1]).

Lemma 2.3. Given ¢ on R?, let ¢* be its Wiener randomization defined in
(1.2). Then, given finite q,r > 2, there exist C,c > 0 such that

)\2
(21) P(IS06 gtz resn > 3) < Comp ( —e2 )
ol

for all T >0 and X > 0.
Second, we recall the following bilinear estimate by Tao [16].

Theorem 2.4. Let Ny, No, and N3 be dyadic numbers. Then, we have

d—3

[ _l+
||PN3(PN1fPN29)HX0,—%+ S Nmax Nyiy ||PN1f||X0,%+||PN29||X0,%+7
where Nmax = max(Nl, NQ, Ng) and Nmin = IIliIl(Nl, NQ, Ng)
The resonance function which corresponds our nonlinearity

h(ér, &) = €1 + &) — |G + &)

can vanish when & + & and & are orthogonal. Indeed,

h(E1 &) = 20(61 + &) - ol ~ &1 + EallGal | 5 — £(61 + €2,€2)]

where Z(&1,&2) denotes the angle between &; and &. Hence, by using the Fourier
restriction norm, we have gained N;i]h on the right hand side of the estimate in Theorem
2.4.

Third, we observe the following bilinear estimate.

Lemma 2.5. Letd > 5. Assume that

. p 1
0 < — .
<s<p, 0<m1n(s+d_3,s+2)

Then, we have
I2Fl o ge T IFZ oy S laslFll 3

where

Jellas = el oy + 109020 s,

t,x
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Proof. We only consider the estimate for zF, because FZ is similarly handled. It

suffices to show that

(22) ||PN3(PN1'ZPN2F>||XU,72+ Nr(l)q;x||Z|As FHXp I+

for N1, Ny, N3 € 2No and maX(Nl,Ng) 2 Ns.
First, we consider the case N; ~ Ny = N3. The duality, Holder’s inequality, and
Remark 1 imply that

| Pya(Pyi2PiaF) oy SNS sup

/ PNl ZPN2FPN3’wdtdZE
RxR4

Joll .1 =1
X 2
SN3  sup [Pzl agpe [PN,F acase | Prawl] 2ars)
HwHXO’%_:l Ltz Lt,l‘d Lt,md

XPV%‘F'

S Ny TPINS IV el a2 1P

tz

Hence, (2.2) follows from o < s + p.

Second, we Consider the Case Ny ~ N3 > Ns. Then, we divide the proof into two
cases: Ny < Nd 3 orN2 Nd %,

When Ny < N{ 3 , Theorem 2.4 yields that

2

—_— _|_
1Py (Prvy 2Py F)l| o34 S NY 2 7 [Py, 03+ 1PN Fll o 1+

—s—i+ o+ i34
<Ny NQ” P )2

~Y

— Ar(d—3)o—(d—3)s—p+
SNPTNSTI T DT I F e

SN el s IF Iy

XS’%+|
provided that o < s + % and 0 < s + 725.

When Ny > Nl"lf3 , the duality, Holder’s inequality, and Remark 1 imply that for
p>0

”PN3(PN1ZPN2F)HXU,—1+ SN; sSup

2

/ PN1 ZPN2 FPN3 wdtdx
RxR4

Jwll o1 =1
X 2
SNy o sup ||PN12|| a2 [|PN, F| 2taen || Prgwl] aare
HwHXO,%le tz tz tz

SNTTTING IV 2] gz (1F g
t,x

—s— P
STz g |F

tz

XP7%+'

Hence, (2.2) follows from o < s + 725.
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Third, we consider the case N1 < Ny ~ N3. The same calculation as above yields

that (2.2) is valid if s > 0 and o0 < min (p—l— 5P+ %), which is better than the

condition above. O

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1.

From a standard argument, it suffices to show that

0 e s+ 107 e+ 1201 g+ 12 sy S D002y + D2l

Here, we note that Lemma 2.3 yields that ||@<7(t)z|| 4= is bounded almost surely.

The estimate for vv is essentially the same as that for the deterministic setting.
For reader’s convenience, we give the proof. The Littlewood-Paley decomposition and
Theorem 2.4 yield that

1ol v 3 S D IPN(Pn 0P ) s g

Ni1,No,N3e2No
max(N1 ,Ng)zNg

_1 1
ST N NS Py

Nl,N27N3€2NO
Ni~N>>Ns

1 _1
+ > NN P

N15N27N3€2N0
N1 <N3~N3

—25c—%— 725+ 3+
S Y NCTTENS T Pol s g 1PN g

N17N27N3€2N0
Ni~N>> N

1 1
I -1y
+ Z Ny N, ? ||’U||X8c+,%+||v||XSc+,%+

Ni,N;,N3e2lo
N1 <N3~N3

< ol

AN

3+ 1P|

1
x93 x93+

XO,%+HPN2UHX0,%+

Sc"ﬁ%"r'

We apply Lemma 2.5 with F' = v and 0 = p = s, to estimate vz and zv. Then, the

condition %sc < s < S. appears.
The estimate for zZ is reduced to Lemma 2.5 with F' = 2, 0 = s, and p = s. Then,

we need s > %sc. O

§3. Proof of Theorem 1.2

For simplicity, we use the abbreviation || f[|za r» == || fl|Le(—1,1);Lr (R2))-
As in [3], we can estimate the L{L!-norm of zs.
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Lemma 3.1.  Let d > 4. For any finite q,r > 2, we have

Td(%—%)JrlHZl”ime when 2 <r < %,
PN,ZQ q9rr < o
IPvesligie S0 poena=-vba 2 uhenr > 2
L2L3+?
for any T > 0 and N € 2%,
Proof. We first consider the case r < d2—_d2. We use the dispersive estimate to

obtain

t
IPvsalig; < | [ IPwS(e— )t Plozar
0

L7
t

[ e= e @), e
0 xT

1

< T4 ?—%)—H”ZlHZL

S ‘

Ly
sorse
When r > d2—_d2, we apply Sobolev’s embedding Wd(%_%)_H’%_(Rd) < L"(R%) as the

following:

t
[ Pnz2lpary < H/ |1 PnS(t—t)|z1 ()| Lrdt’
0

Lt

t
/ |PxS(E— )|z (V2] o dt’
0 L=z

d

< NAG—3) -1+

t
< N1+ / [t — |y ()]
0 Li+? L
< T0+Nd(%—%)—1+||zl|’2 s
L2pd+s
which concludes the proof. Ol

We define
| £

o L P 2 TR

d—3°" oo — d72_.
t Lm

Lemmas 2.5 and 3.1 show that ||f<7(t)22]| g= is bounded almost surely for 0 < s < s..

Lemma 3.2. Let d > 6. Assume that

2d -7
3d—T7

§> S —
Then, we have

Bs

HZ26HX55+,7%+ + HU5HXSC+,—%+ S [l22] U‘|XSC+,%+-
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Proof. We only consider the estimate for zov, because vz3 is similarly handled. It
suffices to show that

(31) ||PN3(PN122PNQU)HX 1 <N0ax”z2‘

sct, —§+ ~

Bs ||XsC+,%+

for N1, Ny, N3 € 2No and maX(Nl, Ng) > N3.
First, we consider the case Ny ~ Ny 2 N3. Since (2, d2_—d2) is admissible, we use

~Y

Holder’s inequality and Sobolev’s embedding Wf_?”d%( d) < [2(R%), and Remark 1
to obtain

| P, (PN122PN2U)HXSC+,—%+

~ N3t sup

/ P, 29 PN, v PN, wdtdx
RxRd

lwll o1 =1
X 2
SNt sup [Py, 2| 4. || Py 20 ||[Pnyw| | 24 _
MU e B T A A0 % 7
X 2
SN THENSF (V) 2 VI ]| N
t x

Thus, (3.1) is valud if s > s. — 1.
Second, we consider the case N1 < Ny ~ N3. Theorem 2.4 shows

- =i+
1PNy (P, 22 Py ) ooe 140 S N7 N |\PN122H 0 b+ 1PNl o1
: S+d 3
SN Y TNy Pyl SR |V % ]| N

X d=3

On the other hand, since (2, dQTd2) is admissible, we use Holder’s inequality and Sobolev’s

embedding Wedds (RY) < L% (R?) to obtain

HPN3 (PN122PN2U)HXSC+;_%+

~ N3t sup

/ P, 2o PN, v PN, wdtdx
RxRd

lwll 4 1_=1
x%2
<NSC+ su Py, 2 4. || Pn,v _2d Pn.w 2d
ST 0711):1” A 2|IL§O,L§+I| 2 ||L? . [Py i
x%2
SNfHSc*HNgﬂl(WSZzHL 20 ol oor1o-

t x

We apply the first estimate only to the (0+)-power of the factor in || P, ( Py, 22 Pn,v) HXsC,, 14
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Then, we have

1

3 1PN (P 22 P, )1 et i

SRR L/ T Y S

t T

1Py (PN, 22PNy V)] oo 34

< ||Pn, (P, 22 Pn,v)| gj

5 N1_8+sc—1+Ng_ (HZQHXg

Hence, (3.1) follows from this bound and s > s, — 1
N3. We divide the proof into two: Ny <

Third, we consider the case Ny < N;

2d—7 2d—7
NP7 or Ny > N7
2d—7
We apply Theorem 2.4 to obtain

Subcase 1. Ny < N7
c— x4 a-3
NG Pzl oy Pt oy

1PNy (P, 22 PRy 0) | o -3+ S Ny
NS TN o) aa ol g
<N 42,40 22(%Sd7)14)+|\22|| iz ol p
3)(3d_14) _ o _ %.

which shows (3.1) prov1ded that s > = 5(3d—7)
7
N 3= : Holder’s inequality yields that for p > 0

Subcase 2. Noy >

[P (P, Z2PN2U)||XSC+,—%+
/ P, 2 PN, vPy,wdtdx
RxR4

~ N3t sup

w =1
.

a1l gl

x

) is admissible, we use Sobolev’s embedding Wz ~%7-2 (RY) —

For d > 6, since (27 )

L2 (R%) to show that
~1
SN, +||UHXSC+,%+-

d2+N

HPN2UII L4 SN P, o

¢ 1
pe SNTTENTHY g ol

||PN3(PN1Z2PN2U)||XS +i=5+ ~
—5+8s.— 391+
NPT @ )l
L L,

We therefore have

N|=
+

Hence, (3.1) holds provided that s > s. — %, which concludes the proof.
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Lemma 3.3. Letd > 6. If s> max { (d_g()c(l?idz;l?))v (d—29(,2))513i1;)14) }, we have

[ I £ %

Proof. From the Littlewood-Paley decomposition, it suffices to show that

coor-be SNy [zl

(3.2) | Pns (P, 22PN, 22) ||

for Nl,NQ,Ng S 2No with N1 < Ns.
When N; ~ Ny 2 N3, we use the duality argument, the fact that (2, %) is

admissible, Sobolev’s embedding W %2 (RY) < L% (R%), and Remark 1 to obtain

HPNs (PleQPN222>||XSC+,—%+

< N§C+ sup

/ PN1 ZQPN2 ZQPNdetdI
RxR4

lwll o1 =1
X2

<Nt su Py, z Py, z Pn,w

SN 013_:1” N 2HL$+L§+|| N 22| fo_L;fde | %

< TP stse— Se+ s

<Ny NE el gy 9V Pzl

t x

Thus, (3.2) follows from s > % which is better than s > % for d > 6.

Next we focus on the case N1 < Ny ~ N3. We d1v1dfz the proof into two cases:
N; < N2 or Ny > N2 First, we consider the case Ny < N7. Theorem 2.4 yields that

- da—3 _l_|_
||PN3(PleQPN222)||XSC+v_%+ 5 Nl ? NSC ? ||PN12’2||X0 1+||PI\722"2||X0,%—4—
_d=2 ., d—
SJNl a—35t 3" 2 N d 3S+SC ||22||2 s )
xd=3°"27T
_3d=24,8d-13 0 5
SN Ny ||Z2||X§%§S,,%+

provided that s > (d;(?g—g;@. Hence, (3.2) follows from s > —(d_g() C(l?f;ls)

1
Second, we focus on the case Ny > N5 . By the duality argument, we have

HPN?’(PleszQZ2)HXSC+,—%+ < N330+ sup
||wHXO,%_:1

/ ., PNIZQPNQZQPN3wdtdx .
RxR

We use the fact that (2, dQng) is admissible and Sobolev’s embedding Wi (R%) —
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L2 (R%) to show that

/ Pn, 2o PN, 2o Pnywdtdx
RxR4

S 1P, 22| 2+L2+HPN2Z2H LdZ_cg_HPNstLQLdL_dQ_

t T t—T

2544
<N, St N2 S+|IZQHX5§ . §+||< )’ PNzZZHLOO,LdZEQ—”waov%—'

+ x

Hence, we obtain that

s—|—2

Nz_s+sc+||z2| Be.

||PN3(PN1Z2PN2Z2)||XSC+,—%+ §N d :

Then, (3.2) holds provided that s > % and s > %. O

Remark 2. Although the lower bound of the regularity in the assumption in
Lemma 3.3 is not sharp, it is enough to prove our results. Indeed, the value is smaller

- d—3)*2
than %Sc << (ichi)_F?S )
For d = 5, we need the following bit more general estimate.

Lemma 3.4. Let s € (0, %) Assume that real numbers a, o, and p satisfy

1 1 1
s<a<s—i—§, a < p, a<min{s+<a—s+§>p,a+§}.

Then, we have
1ZFl o ys +IFZ] oy S (I!Z||Xa,;+ T Iw)* zums_) 11 oy
Proof. As in the proof of Lemma 2.5, it suffices to show that
33 1Px(Px 2P0 F) ey S Vo (120 ey +100°21 ) I
for N1, Na, N3 € 280 and max(Ny, Na) 2> Ns.

First, we consider the case N1 ~ Ny 2 N3. Since (2, %) and ( , 2) are admissible,

the duality argument, Holder’s inequality, and Remark 1 imply that

||PNS(P]\rlzPZ\IQIT)||XU77%Jr 5 Ng sup / PlePNQFPNswdtdx
RXR5

lwll o1 =1
X2
SNy s P2 e IPwE ) s llPvswl
||’LU|| 071_:1 L CE Lth
X 2
—s—p+
SNUTUNGIVYZ) L a0 (F e

4L3
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Hence, (3.3) follows from o < s + p.
Second, we consider the case Ny ~ N3 > Ny. We also divide the proof into two

il _erl
cases: Ny < Nf 2 or Ny > Nf sta
_erd
When N, < Nla s+2, Theorem 2.4 yields that

1Px (P ZP )| o1 S N NP 2oy PN FL o 3
—a—3i4+ 11
<NTTENT L F

2 2
0— — O— 55— s—p+
1'1 N22a 2= Femzed ||Z|| 2+||Z HXp 5+

S
SN2 s P s
provided that o < a-l—% and 0 < s+ (a—s—i—%)p.
_erl
When Ny > Nf S+2, we note that (2, %) and (4, g) are admissible. Then, the
duality and Holder’s inequality imply that for p > 0

HPJN?)(PN1ZP)NQF1)HX(,’,;Jr ,g Ng sup / PNIZPNQFPN3U)dtd.'17
RxR5

2

Joll o1 =1
x72
~ *V3 ol 5;157:1 || N1 ||L;1L11707|| No ||L%L§+|| NstL?LleO*
x93
5 Nf_5+N2—P+||<v>sZ” 7_||F||

L{L?

XP,%+'

oc—s—(a—s+3)p+ s
<N Do) Z“LgL;%|'F||

Hence, (3.3) follows from o < s+ (a — s+ 1) p.
Third, we con81der the case NV < Ny ~ N3. We also divide the proof into two

cases: N1 < Nm or Ny > Nm
When N; < N22( D , Theorem 2.4 yields that

>l o I+
1PN (P, ZPn, F)|| ooy S NNy 27 1Py 2] o34 1PN, F o
—a o— +
SNTING T Z) g I F

1 X 2
2(—a+s+l)o—s+2(a—s—1 -
§ Nl( a+s+1)o—s+2(a—s— )PN2 HZHX‘%%JFHFHXP 1y
SN2 e s I F g+

provided that o < p + m This condition follows from s < a < min(p, 1) and
a<s+(a—s+%)p.
1
When Ny > N,V we note that (2,%) and (4, 2) are admissible. Then, the
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duality and Hoélder’s inequality imply that for s > 0

1PNy (PN, ZPN, B[ o 3s S NS sup

/ PlePN2FPN3wdtdx
RXR5

lwll 1 =1
X 2
< N Py, Z Py, F P
SNp s PNl P P e
X 2
— —p+
SNTTENT Y2 a1
O P atstD) s
SN, (V) ZIIL O D SN
Hence, (3.3) follows from o < p + Farsi ) O
Remark 3.  In particular, Lemma 3.4 with a = p = s shows that
‘22|2 s—,—%-{—
for s < % Here, 35+7s > S, = % is equivalent to s > % ~ 0.257, which is better
(d—3)° — 2
than s > 5417 5S¢ s = 7 ~ 0.286.
Moreover, because 0.254 =~ % = ;—2 s < #ﬁ < Z—; s 3‘% ~ 0.258, we

need to extract the term |z3|? in the higher expansion.

Proof of Theorem 1.2. When s > d 256, the proof is reduced to that of Theorem

1.1, because O<p(t)zo € X2+, Hence, we consider the case s < 4=35..

From a standard argument, it suffices to show that

I?

v + 21+ 22f* = 21 | ocro g S M0 aer g + 22l + ll22] 5

Because
v+ 21 + 22> = [21]* = [v]® + |22)® + 2R (vZ7 + vE3 + 21%3)
’2

the estimates for |v|* and vz7 are already observed in the proof of Theorem 1.1.

By Lemma 2.5 with F' = 25, 0 = s.+, and p = d 23 we can estimate z1zs if
(d—3)°

8> Jpar7Se-
The estimates for vZ3 and |z2|? are a consequence of Lemmas 3.2, 3.3, and 3.4,

2
whose conditions are better than s > dng% O

8§4. higher order expansion

§4.1. higher dimensional cases

Lemma 4.1. Letd > 4 and let s > 0. For any k > 2 and any finite q,r > 2,
there exists 0, = 0r(q,7) > 0 such that

1_1y_ k(1—46
(4.1) 1PN Gl < max(NAGEH 71 1|2 |00 2 | 54

k k
Lkar? Lhapd
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for any T € (0,1) and N € 2o,

Proof. We prove (4.1) by induction. We first consider the case r < +%. Lemma
3.1 shows that (4.1) with k£ = 2 is valid. Suppose that (4.1) holds for k — 1. Then, the

dispersive estimate yields that

t
1Px Gl e < Hlﬁ 1P S — ) (G () e’

%
t
<|| [ r- e, a

S Td(“*)“HQH

Lt

Lm+ HCk 1 HL%?LELZd

Because d > 4 and 2 <1 < =5 1mply that d < (d+§)¢2d < d. We use the interpolation
LT (R?) = [L2(RY), Ld(Rd)] 2(d—r) and the induction hypothesis to obtain
(d—2)r

1PN Crll Lo L

<| |1—?§ﬁ:2;3+| |?dd2§2f A |<k—1)<1—6k_1<2q,d%—>>| |<k—1>6k_1<2q,d2—f2—>

~ ’Z]-l quLQ ‘ |quLd ]-| L’(Ilffl)qu | 1 ’L(Y{‘«‘*l)qLd
k(1—65(q, kS

< larllyers @ el

where 0 (q,r) := (Z(dZ)?k +( )(5k 1(2q, 2% -3 2 —)-.

When r > 24 (4.1) follows from Sobolev’s embedding W%*%*H’%*(Rd) —

L"(R%) and a similar argument as above (see also the proof of Lemma 3.1). O

Proof of Theorem 1.3. By Theorem 1.2, we only consider the case £ > 3. As in
the proof of Theorem 1.2, it suffices to estimate the norm

k 2
v+ Z G| —
=1
More precisely, we need to consider the following cases:

(A) R(C1G)  (B) R(17)  (C) R(¢jyCia) (D) R(v¢y,)  (E) vo

where j1, jo can take any value in {2,3,...,k}.

k-1
G —2RY GG
=2

xSt g+

From Lemma 2. 5 with F' = (i, 0 = Sc+, and p = ais—, we can treat Case (A)
provided that s > —<—. We note that the worst interaction appears in this case.

We can use the same calculation as in the proof of Theorem 1.1 for the cases (B)
and (E).
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Lemmas 2.5 and 4.1 show that (; for £ = 3,...,k enjoys (at least) the same
regularity property as (o both in terms of differentiability and space-time integrability.
Therefore, we can simply apply Lemmas 3.3 and 3.2 for cases (C) and (D), respectively.

O

§4.2. five dimensional case

Because 5 < (dé)% < W ford=>5and r € (% 30) the same argument as in

the proof of Lemma 4.1 yields the following.

Lemma 4.2. For any k > 2 and any r € (%,oo), q € (2,00), there exists
Ok = 0k(g, ) > 0 such that

1y k(1-6
DI D

1
1PNl Lo 1y S max(NO2 e 12 1||kqud

for any T € (0,1) and N € 2Mo,

Proof of Corollary 1.4. Let k > 4. As in the proof of Theorem 1.3, it suffices to
estimate the norm

k—1

— [m[* =2l = 20> mm
1=

v Z m
More precisely, we need to consider the following cases:

(A) R(mme)  (B) R(mov)  (C) R(nz,my;) (D) R(vny,)  (E) vo
where j1, jo can take any value in {2,3,...,k} and j5 can take any value in {3,...,k}.
Lemma 2.5 and Remark 3 say that < (t)n, € X5~ S XTI st = Yous—igt
for s > %. Accordingly, O<7(t)n € Xaks_’ﬁ for % <s< sc Then, as in the proof of
. We note that the worst

X5c+7—%+

Theorem 1.3, we can treat Case (A)

interaction appears in this case.

We can use the same calculation as in the proof of Theorem 1.1 for the cases (B)
and (E).

Lemma 4.2 and the fact that O<p(t)n € X532+ show that N4 for j = 2,3 and
Il =1,...,k — j enjoys (at least) the same regularity property as 7; both in terms of
differentiability and space-time integrability. Hence, Cases (C) and (D) are reduced to
consider R(n273) and R(viz), respectively. From <7 (t)n. € X 25—3% we can simply
apply Lemmas 3.4 for Case (D). Since O<r(t)ne € X252 and O<p(t)ns € X152+,
Lemma 3.4 with a = gs— and p = s— shows that nsns € X5 it for0< s < %
We thus have 73 € Xzt -2+ prov1ded that s > % ~ 0.2398. Hence, Case (C)

can be treated for s > %. O
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