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Characterization of generalized Besov—Morrey spaces
and Triebel-Lizorkin—Morrey spaces by differences

By

MiTsuo Izukr* and TAKAHIRO Nor**

Abstract

In this paper, we consider the characterization of generalized Besov—Morrey spaces and
generalized Triebel-Lizorkin—Morrey spaces via ball means by differences and via differences.
Since Besov spaces were originally defined by using differences. In this point, it is natural to
consider the characterization of Besov and Triebel-Lizorkin type spaces via differences. To
obtain the characterization results, we apply the boundedness of Peetre maximal function and
the characterization of these spaces by local means.
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§1. Introduction

It is well known that there are the two approaches to define the Besov spaces
B; .(R™). One uses differences (original approach) and the other uses the Fourier trans-
form. The two definitions are equivalent under the appropriate conditions on ¢, r and s.
The (generalized) Besov—Morrey spaces and the (generalized) Triebel-Lizorkin-Morrey
spaces are generalizations of Besov spaces and Triebel-Lizorkin spaces respectively, and
these spaces are studied many researchers ([5, 7, 8, 9, 11, 12, 14, 15]). These spaces
have been initially defined by the Fourier transform approach. In this paper we consider
the characterization of these spaces via ball means by differences and via differences.
Characterizations of Besov type spaces and Triebel-Lizorkin type spaces via ball means
by differences and via differences are studied by many researchers. Dispa [2] studied
the characterization by differences for Besov spaces on Lipschitz domains. Drihem [3]
studied the characterization by differences for Besov-type spaces and Triebel-Lizorkin
type spaces. Kempka and Vybiral [6] studied the characterization via ball means by dif-
ferences for two-miocrolocal Besov spaces with variable exponents. Liang, Yang, Yuan,
Sawano and Ullrich [8] studied the characterization via differences for generalized Besov
type and Triebel-Lizorkin type spaces.

§ 2. Function spaces

To define the Morrey spaces, we use cubes. By a “cube” we mean a compact
cube whose edges are parallel to the coordinate axes. If a cube has the center x and the

radius r, then we denote it by Q(x, ), that is, Q(x,r) = {y e R" : Jmax |z — yi| < r}.
<i<n

Below we denote by | F| the Lebesgue measure of a measurable set E. From the definition
of Q(x,r) we see that |Q(z,r)| = (2r)™. We additionally write Q(r) = Q(o, ), where o
denotes the origin. Conversely, given a cube @, we denote by ¢(Q) the center of @ and

by £(Q) the side-length of Q. Then we obtain £(Q) = |Q|"/". Let Q denote the set of
all cubes.
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Definition 2.1 (Generalized Morrey spaces [10]). Let 0 < ¢ < co. Denote by
G, the set of all nondecreasing functions ¢ : (0, 00) — (0, 00) such that

(2.1) Ot > @(ta)ta ™9 (0 <ty <ty < 00).

1 7
Let ¢ € G,. Then define || f||pme = sup ¢(4(Q)) (—/ |f(y)]? dy) for a measurable
‘Qeg QI Jg

function f. The space M#(R™) is the set of all measurable functions f satisfying that
the quasi-norm || f|| x4¢ is finite.

Remark 1. Let ¢ € (0,00) and ¢ € G,. Then it is easy to see that

1 q
fllme ~ sup  p(r / f(y)lidy |
[ £l aesg P (1) Blz.r) BW)\ ()l

where B(z,r) ={y € R" : |z —y| <r}.

To deal with generalized Besov—Morrey spaces and generalized Triebel-Lizorkin—
Morrey spaces, we use the following notation in the present paper:

1. Let A,B > 0. Then A < B means that there exists a constant C' > 0 such that
A < CB, where C is independent of the parameters of importance. We write A ~ B
whenever A < B and B < A hold. If we want to stress that the implicit constants
in these symbols depend on important parameters, then we add them as subscripts.
For example, A <, B means that there exists a constant C' > 0 depending only on
p such that A < CB.

2. Let a € R™ and r, t > 0. Then we define B(a,r) ={zx € R" : |[x —a| <71}, B =
B(o,1) ={x € R" : |z| < 1} and tB = {tz : = € B}, where tz = (tx1,tzs, ..., tx,)
for z = (21, 22,...,2,) € R™

3. Given an integrable function f we define the Fourier transform and its inverse by

1 .
Ff&) =—— [ fl@)e™dx (£€R)
7/ (2m)™ n
F‘lf(:c):(—)l R | f@etis @ern)
-~ V/@em)n Jen

In a standard way, we extend the definition of F and F~! to the space of all
tempered distributions S’(R™).

4. For € S(R™) and f € S'(R") we write 0(D)f = F1[0Ff], or equivalently we
define (D) f(x) = (f, F710(x —)).

(2m)"
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5. Denote by BUC(R™) the Banach space consisting of all bounded uniformly contin-
uous functions. We additionally define ||f||suc = ||f||~ for f € BUC(R™).

6. For any {f;}32, C M¥(R") and r € (0, 00), we often use the following notation:

3=

P

i 52oller gy = | Do Wil | and {320 lmg ey = ||| Do 15l
j=0 =0

We also use || - [|geo a2y and || - || pgg gy With an easy modification.

1 1
7. Forq,r € (0,00), we define o, =n (m — 1) and oy, =n (m — 1),

Now let us introduce generalized Besov-Morrey spaces and generalized Triebel-
Lizorkin-Morrey spaces defined by [11, Definition 1.3].

Definition 2.2. Let0<g¢<o0,0<r <oo,scRandy €y, Letmand T be
compactly supported functions satisfying

0 ¢supp(r), 70(§) >0 if £€Q2), 7(§)>0if £ Q(2)\Q(1).
Define 71,(€) = 7(27%¢) for ¢ € R™ and k € N.

L. The (nonhomogeneous) generalized Besov-Morrey space N3  (R™) is the set of all
f € 8'(R™) for which the quasi-norm

£, , = {2 (D)0

(MG
is finite.

2. Assume that there exist constants €, C' > 0 such that

(2.2) < (t > u)

when r < oo. The (nonhomogeneous) generalized Triebel-Lizorkin—Morrey space

e (R™) is the set of all f € S'(R™) for which the quasi-norm

I.f]

ene, = {21 (D)0l age ory
is finite.

3. The space A%« .(R™) denotes either N7 . (R™) or 3 o, (R™).

MG,

Remark 2. There exist some examples of functions ¢ € G, satisfying (2.2):
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1. Let 0 < ¢ < p < co. Then ¢(t) =t € G, satisfies (2.2) when 0 < € < 2.

n (A (0 <t< 1) X
2. Let 0 < 8 <a< —. Then ¢(t) = belongs to G, and satisfies
q th (1<t< o)

(2.2) when 0 < e < 5.

The quasi-norm of A% . (R") can be also defined by the following partition of
unity {6;}52,.

Definition 2.3.  Let O(R") be the collection of all systems {6;}52, C S(R")
satisfying (i), (ii) and (iii):
(i) suppfy C {x € R" : |z| <2} and suppf; C {z e R" : 2771 < |z| <291} if j > 1.

(ii) For every multi-index o there exists a positive constant c,, such that 27111926, (z)| <
co holds for all j =0,1,... and all x € R"”

(iii) Z 6;(z) = 1 holds for every x € R™.
j=0

Remark 3. It is well known that ©(R™) is not empty. In fact, there do exist
0y, 0 € S(R™) such that

0p(x)] >0 on {xeR":|z| <1},
0(z)] >0 on {reR"™:1/2<]z|<2}

and {0;}52, € ©(R") hold, where 0;(z) = 0(277x) for j € N. See [16, Remark 1, p45].

Nakamura, Noi and Sawano [11, Theorem 2.19] proved a boundedness of Fourier
multiplier. Using the result, we can replace compactly supported functions {7;}52,
the definition of the quasi-norm of A} i, (R") by {0;}32, € ©(R"). We omit the proof

q>

because it is similar to the one of [16, Proposition 1, p46].

in

Theorem 2.4. Let 0 < g <00, 0 <r <o0,s€R, ¢ €G,and {0;}32, €
O(R™).

(i) For f € NL?,T(RTL>7 we have

(2.3) 1wz, ~ 1{27°16; (D) f1}520

er(MF) "
(ii) Assume that ¢ satisfies (2.2) when r < oco. For f € 5j\/[g’r(R”), we have

(2.4) 7l ~ {2 105,(D) Yo pgg oy
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In this paper, we use (2.3) and (2.4) when we consider the quasi norm of Af\Ag,r(Rn)‘

At the rest of this section, we mention the two reason why the spaces Aj\/tg,r(Rn)
are important.

The first reason is that the spaces Aj/lg’r(R”) recover many spaces. By letting
@(t) = t™7 for t > 0, we obtain the well known fact MZ(R") = LI(R™). On the
other hand, letting 0 < ¢ < p < oo and @(t) = t"/P for t > 0, we additionally ob-
tain the fact M¥(R") = MP(R"). Therefore, the spaces Af\/t;",r(Rn) can recover very
well known classical function spaces (for example, Besov—Morrey spaces and Triebel—
Lizorkin—-Morrey spaces). Furthermore, we introduce the result obtained by Nakamura,
Noi and Sawano [11]. We refer [11, Definition 6.1, Section 6.6] for the precise definitions
of homogeneous generalized Triebel-Lizorkin-Morrey spaces & L57T(R”) and generalized
Hardy—Morrey spaces HM#(R™).

Theorem 2.5 ([11, Corollary 6.17]).  Let 0 < ¢ < oo and ¢ € G, satisfy (2.2).

1. If 0 < ¢ <1, then E°

Ve 2(R") = HME (R™) holds.

2. If1 < q < oo, then 5’%5 o(R™) = ME(R") holds.
3. If ¢ > 1, then Exqe (R™) = ME(R") holds.

The second reason is that we may improve known results. For example, Nakamura,
Noi and Sawano investigated the limiting case of the Sobolev embedding by taking
advantage of the function ¢ [11, Proposition A.3 and Remark A.4].

§ 3. Preliminaries

In this section, we summarize some preliminary facts from [11]. We first note that
the following min(1, g, r)-triangle inequality holds. We omit the proof because it follows
by a standard argument.

Lemma 3.1. Let0<g<oo,0<r<oo,s€R andp: (0,00) = (0,00) be a
function belonging to G,. Assume (2.2) in the case when A = &€ with r < co. Then we

have that for all functions f1, fa € Af\/t?,r’

(11 + Follag 007 < (L fulLag,, 000 4+ ( fallag, ™.

Lemma 3.2 ([1, Proposition 2.6, [4, Theorem 3.3|, [11, Lemma 2.5]).  Let 0 <
q < 00.

(i) If p € Gy and T € (0,q), then | fllaae < |fllpme holds for all f € MZ(R™).
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(4) If 0 <u < oo and ¢ : (0,00) = (0,00), then || |f|"[[sme = (Hf||M¢1/u) holds for
all f € MZ"(R).

§3.1. Boundedness of the Hardy-Littlewood maximal operator

In the sequel M denotes the Hardy-Littlewood mazimal operator defined by:

— o Xe(@)
(3.1) M) = sup X0 /Q £l dy

for f € L}, .(R™). Here we recall the following vector-valued inequality:
Theorem 3.3 ([11, Theorem 2.9]). Letl1l<g<oo,1<r<ooandy € G,.

1. For all measurable functions f : R™ — C we have

(3.2) Ml g S 1l aag -

In addition, for any sequence {f;}52, of M¥(R™)-functions we have

<

~

MG

(3.3)

sup M f;

JEN

sup | f;|

2. If we assume (2.2), then we have that for any sequence { f;}3, of MZ(R")-functions,

(3.4) > (ME)” S
j=1 j=1

Mg - M

§3.2. Boundedness of the Peetre maximal function

Given {fi}72, € S(R"), f € S'(R"), a > 0 and k € Ny, we define the Peetre

maximal function by

0 Prate) = sup (T OFIE =) I0(D) ()

p = sup (x € R™).
yeRn 1+ [2kyle yerr 14 |2Fyle

The following theorem is a direct corollary of [1, Theorem 5.4 and 5.5]. So we omit
the proof

Theorem 3.4 (Boundedness of Peetre maximal function). Let 0 < g < oo, 0 <
r<oo, s €R" ¢eGy {012, C SR and f € S'(R™). Also let a > 0 and (65 f)q
(k=0,1,...) be the Peetre maximal functions.
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(i) If a > ﬁ, then we have
q

< |[42F50,. (D) £12
ET(MZID)NH{ k(D) f}rzo

[ERCTN N

er(M3)-

(i7) If we assume a > and (2.2), then we have

min(q, )

[ @0, S 2D o

M (er)

§3.3. Embeddings

Next we verify the embedding properties.

Proposition 3.5. Let0< g <00, 0<r,m2 <00, s R and p € G,. Assume
(2.2) in the case when A= & with r < co.

(i) If 1y < g, then we have Af\/lﬁ,m (R™) — Ai\/lgﬂb (R™).

(ii) If € > 0, then we have ‘Aj\/l;’,n (R") — Aj\;zﬁ’m (R™).

(iii) Let 0 <r < oo. If ¢ satisfies (2.2), then we have

j/lg,min(q,r) (Rn> — g_iAf,r(Rn> — NjAg,oo(Rn)

Proof. (i) and (ii) have been proved by [11, Proposition 3.3]. We omit the proof
of (iii) because it is obtained by an argument similar to [16, Section 2.3.2, Proposition
2. O

Lemma 3.6 ([11, Lemma 3.4]). Let0 < ¢ < 00,0 <r < o0 and ¢ € G,. As-
sume that s > 0 satisfies
(3.5) P
| )

Jj=1

Then we have A% . (R") < B3, (R"). In particular, we obtain
Ajys (R") = B31 (R") < BUC(R") — S'(R").

Proposition 3.7 ([11, Proposition 3.6]). Let0 < ¢ < 00, 0 <7 <00, s € R
and ¢ : (0,00) — (0,00) be a function belonging to G,. Assume in addition that ¢
satisfies (2.2) when A = & with r < co. Then we have S(R™) — Ai\/l;",r(Rn) — S'(R™)
i the sense of continuous embeddings.
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§ 3.4. Characterization by local means

In this section, we recall the characterization of A% . (R") by local means. We
start with two given functions v, 1) € S(R"). We define ¢;(z) = ¢(277*'z) for z € R"
and 7 € N.

Theorem 3.8.  Let 9,9 € S(R"), ¢o,¢ € S(R"), R € Ny and s € R with
R >s. Forx € R" and j € N we define ¢;(z) = ¢(277 T x). Suppose that

(3.6) P(0) =0
holds for all 0 < |5| < R and that
|po(z)| >0 on {zxeR": |z| <€},
p(x)| >0 on {zeR":€/2< x| <2}

hold for some € > 0. Let (¢ f)a and (¢} f)a be Peetre mazimal functions. Then we
have

(3.7) 427 (5 Fat5Zoller gy S K275 (@5 F)ad5Zoller (i),
(3.8) 427 (5 Fa}5Zollaeg ery S K27 (@5F)ad5Zo0llaag (o) -

Before proving Theorem 3.8, we need the following lemma which is a corollary of
[6, Lemma 8].

Lemma 3.9 (Hardy type inequality). Let0 < ¢ < 0o, 0 <7 < 00 and § > 0.

Let {g,}52 _, be a sequence of non-negative measurable functions on R™ and define
Gi(x) =Y 277, (x)
VEZ

forx € R™ and j € Z. Then we have

I{G} 52 —scller(mey Sars {90 oo ller g,
LG} 52— collme ery Sars {90 oz ool Mz er)-

Proof of Theorem 3.8 . By the argument in [6, Proof of Theorem 12] with wy =
2ks we have

2% (3 fla(e) S 3 27 W2 (67 1) (o)
k=0

for x € R™, where § = min(1, R — s) > 0. Therefore, we see that (3.7) and (3.8) hold
by Lemma 3.9. O

By using a similar argument in [6, 3.1 Proof of Local Means| with Theorem 3.8, we
have the following theorem.
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Theorem 3.10. Let 0 < g<o0,0<r<oo, ReNgands e R with R> s.
Furthermore suppose that 1y, v € S(R™) satisfy

(3.9) %y(0) =0,
for all B € N with 0 < |5| < R, and that

(3.10) [Yo(x)] >0 on{xeR": |z| <€},
(3.11) [W(x)| >0 on{reR": /2 <|z| < 2€}

for some € > 0. Let (¢ f)a be Peetre mazimal functions.

(¢) Fora> % and for all f € S'(R"), we have
1wy, ~ 27 F~ [w3]  F35Zoller gy ~ {27 (45 FadiZoller (aag)-

(i) Assume in addition (2.2) when r < co. For a > —2— and for all f € S'(R™), we

min(q,)
have

1Flles, o |~ 27 F ] * F520ll g omy ~ 127 (45 Fad5Zoll g o) -

Remark 4.
1. Conditions (3.10) and (3.11) are the so-called Tauberian conditions.

2. If R =0, then no moment condition (3.9) on % is required.

§4. Ball means of differences

It is well known that there are several definitions of Besov spaces. Two of the
most prominent approaches are the Fourier analytic approach using the Fourier trans-
forms and the classical approach via higher order differences involving the modulus of
smoothness order. These two definitions are equivalent under certain restriction on
the parameters. In this section, we consider the characterization of Aj\Ag’T(R”) by ball
means of differences [6, Section 4] due to Kempka and Vybiral.

Let f be a function on R™ and A € R™. Then we define

AL f(z) = f(x+h) = f(z) (z € R).
The higher order differences are defined inductively by

AR flz) = AAY T (@), M =2.3,....



CHARACTERIZATION OF BESOV TYPE SPACES AND TRIEBEL—LIZORKIN TYPE SPACES BY DIFFERENCES 103

This definition also allows a direct formula

M (M M
(4.1) AN fe) =) (-1) <j ) fl@+ (M = j)h) =) cjmf(x+ jh).
j=0 j=0

By ball mean of differences we mean the quantity

M - M g _ Mg
aM f(x) =t /Ihlﬁmhﬂ )| dh /B\Ath<>|dh,

where ¢ > 0 is a real number and M is a natural number.
Now we define the quasi-norms corresponding to generalized Triebel-Lizorkin Mor-
rey spaces. Let f € M#(R"). Then we define

o0 ar\ "’
(4.2 19125, =i+ ([ 0@t or )
Mq T 0
M3
(modification if r = 0o) and its partially discretized counterpart
0o 1/r
(4.3) VAIE gy = IflLaag + ( S gk (al, ) )
Ma.r k=—o0 qu
= fllas + || {2P2a H

(modification if r = 00). For the generalized Besov—Morrey spaces, we define

Oo—sr dt Hr
(4.4 Il ey = Wlaag + ([l )
45 Ve @ = {2t
(@5) uan R /IR [EC00 i H

(modification if r = c0). Then the following theorem holds.

Theorem 4.1. Let0<g<o00,0<r<oo,secR andycG,. Furthermore, let
M € N with M > s.

(R™) holds if and only if f € Li,.(R™) N

*
s ny < 00. Furthermore P "
b (B0 Al

(i) If r < 00 and s > 04, then f € 5/8\45
S'(R") and || f|

,T

s n) Qare
£,p  BY)

equivalent on 3 (R™). The same statement holds for || f[|5% . (R")
a> Mq \T

(i) If s > oq, then f € N34 (R") holds if and only if f € Li,.(R") NS (R") and
||f||NS (®ny < 0 Furthermore, ||f”/\/ (Rn)(md ||f||N (®m) are equivalent

on Nj/t“” .(R™). The same statement holds for ||f|| ®R")-

r
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Before proving Theorem 4.1, we need the following results in the next section.
§4.1. Key results
Lemma 4.2 ([6, Lemma 22]). Leta,b>0, M € N and h € R". Define

p, |f(z = 2)|
aJ\Z) = SU
5, f(z) ZSGan 1+ |bz|®

for f € 8'(R™) with supp f € {€ € R™ : |€] < b}. Then there is a constant C > 0
independent of f,b and h such that

| Ay f(2)] < C'max(1, [bh|*) min(L, [bh[*) Py o f ()
holds for every x € R"™.

If ¢ > 1, then all elements of A% . , (R™) can be regard as Lj, (R")-functions as well
g
as Besov and Triebel-Lizorkin space cases. This assertion is also true when 0 < g < 1

and s > oy.

Proposition 4.3. If0<¢<1,0<r <00, p €G, and s > o4, then we have

(4.6) sup || fll1 sy S Ifllas,, -
yER™ ar

Proof. Note that A% . (R") = N3 . (R™) holds for all 0 < r < oo by Propo-
sition 3.5. Thus it suffices to prove

(4.7) sup [[fllLr .1y S Il ,
yeRn q°

in order to get (4.6). Let f € A% (R") and ¢ € G;. Then ¢ = ¢? € G;. Take
g € MZ(R™) N L>*(R") arbitrarily. Using the following obvious inequality

q 1/471
S ol < ol [90(7") (i L rg<y>rqdy) } ,

we first note that
1—
(4.8) 91l v < Mgl llgll ="

We next estimate ||0;(D)f||%. and 16;(D)f| ;-3 for each j € Ny. From the definition
of the quasi-norm of N} . __(R™) we have

(4.9) 2°916,(D) flljay < 1%, -
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Additionally by the proof of [11, Lemma 3.4] we get |0;(D)f(x)| S HfHNij

9—Js
©(277)

Hence we obtain 275¢(277)||0,;(D) f||Le < HfHNjAap . Therefore we have
(4.10) 20D (27 )10,(D) Fll - < 1 F 1!
Mg

Finally we prove (4.7) using (4.9) and (4.10). Note that we can use (4.8) as g =
0;(D)f for any j € Ny. By virtue of p(277) > 277"/ (1) we obtain

oo 2—js oo o 00 . .
< —jsgjin(l—q)/q _ —j(s—n(5-1))
Z S S . 27759 Zz < 0.
Jj=0 Jj=0 Jj=0
Thus we get [/ ¢ < Z 1020) g £ 3 syl & Wl - T
j= j=
implies that (4.7) holds. O

Let M € N be given. Triebel [19, p. 173, Lemma 3.3.1] proved that there exist
two smooth functions ¢ and v defined on R satisfying supp ¢ C (0, 1) suppw c (0,1),

/gp(T)deland cp(t)—lgp <£> = pM)(t) for all t € R. Let p(x ng xy). We
= 27\ 2

additionally define

Z Z M+m+m +1 (i\i) (]Z) mM(mm/)_nP <m5:n/>’

m/=1m=1

T(x) = To(x) - 2—"To<§>,

S
&
I

Ti(x) = 2MT(272)

M
) denotes the binomial coefficient.

for € R™ and j € N, where every (
m

Proposition 4.4 ([17, p174, Section 3.3.2, Proposition]).  Let Ty and T be the
functions defined as above.
(¢) The functions Ty and T are compactly supported on R™ satisfying
suppTo C R and suppT C RY,
where R = {x = (x1,...,2,) € R" : x, > 0}. Furthermore we have F1y(0) = 1
and FT(€) = O(J¢|M) near the origin.

(1) For all f € S(R™), f can be represented as f = ZTj x f in the sense of S'(R™).
§=0



106 MiTsuO I1zUKI AND TAKAHIRO NOI

(iit) For any f € 8'(R™) N L},.(R™), we have that

1\ M
(4.11) (To*f)@):(]\lj! > o (—pMem <M> mMx

=1 .
x / (=) 3 e <m> Fla+m'y) dy

and that for all j € N,

_{\M+1 M
(112) (B = ) = T S v <M> M
<[ o=ty = 2mp- ] AY, o)

Proposition 4.4 shows that the function F7T' satisfies condition (3.6) with ¢ = FT.
Then we have the following lemma by Theorem 3.10 with a similar argument as in [17,
Section 3.3.3, Step 1 in the proof of Theorem)].

Lemma 4.5. Let0<qg<o0,0<r<o00,s€eR, pc§, and M € N such that
M > s.

(i) For all f € ./\/'f\/w;yr(R”) we have

1/r

o0
(4.13) Z% 127°T 5 Fllg |~ IF vy, -
p

(ii) Assume in addition (2.2) when r < co. Then for all f € € M2, (R™) we have
1/r
Jsr (. T ~ s
(4.14) > 27 (T« f) I£lles,,
§=0
M3
§4.2. Proof of Theorem 4.1

We rely on an argument similar to the proof of [6, Lemma 16]. We divide the proof
into 3 parts as follows: Firstly, we prove

(4.15) [aly

Ao (BT ~ || f1I%

A ME, (R™)

for f € L} (R") N S'(R") in Part 1. We next prove

A B

for f € Aje (R") in Part 2. Finally, we prove Ay () <

f €L (R")NS (R™) in Part 3.

- .y Tor
A B
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Part 1. We have only to prove (4.15) in the case A = &€ and 0 < r < oo because the
case A = N and the case r = oo are proved by a similar argument. It is easy to see
that

(4.16) UO“’ -~ (/B |A%f(x)|dh>r%] "
: [im [l (e ) %] -

If 271 < ¢t < 27F then we have 2ks7 < =57 < 2(k+1)sm apd
(4.17) Qk”/ ‘Aiwf(x)} dv < t”/ |Af,wf(x)‘ dv
2—(k+1)B tB
S 2(k+1)n/ ’AMf ‘ dv.
2-kB

(4.16) and the right-hand side of (4.17) yield

> —sr "t Hr
o (i) 3
co 9—k Tdt 1/r
< ksr Mk T v i )
S L_ZOO/2 ([ 182 s@la0) t]

This implies that || f|

o5 . RS P . (R™) holds. The opposite inequality is easily
Mq T Mq T
obtained by virtue of the same argument using (4.16) and the left-hand side of (4.17).

Part 2. We prove

(R7) ~ S A las M. L(R™)-
(Step 1. ) We first prove the estlmate [ fllae < HfHAjW ®n). By s > 0 and

Proposition 3.5, we have
1" < Z 10 (D) f I

s min r min(1,q,r
< 22 (g, )k”f” ( @ (]I)Qn)
k=0

mln(l q,r)
. (&)

(Step 2. ) From this step through Step 4, we prove o ®m S £ . (Rn)-
Mg,'r Mgw

Let kg € S(R™) with ko(z) = 1 for || < 1 and supprg C {z € R : |z| < 2}. For
j € N, we define

Kj(T) = Ko(277x) — Ko(277 ).
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We use the decomposition

f: Z f(k+l)7 kEZ,

l=—o00

where f(i41) = Kr1(D)f, or = 0 if k41 < 0. Recall that

115, @y = Iflleg + {25 d30r i |

Therefore, we consider the M quasi-norm of

kar (/ |A2 ot (@ |dh) - kar (/ ’Az kh ( Z f(k+l)> |dh> .

l=—00

M<P(€'r ’

k:* 00
If » <1, then we have

oo

> 2 ([ 188,50) |dh) S Y ok ([ 184 fiena >rdh)

k=—o00 k=—o0l=—o0

We split the above right-hand side into two parts as below:

(4. 18)

£ £ o ([ ptasorn)

l=—00 k=—0o0

_ Z Z oksr </ AM enfrrn (@ |dh) +Z Z oksr (/ 1AM St (T )|dh)
= — o0 ke —oo =1 k=—o00

= Il—f-fg.

In this case, to obtain the desired inequality, it suffices to prove || I} / "Naee S £ . (@)
q-"

and ||I21/T

£ o (R)”
MqLP,T
If » > 1, by using Minkowski’s inequality, we get

(4.19) (i 2ksr (/ (A, f (2 )dh)r>1/r

k=—o00

00 1/r
< ( 2ksr (/ Z |A2 khf(kH)( )|dh> )

k=—o00 l=—0o0

i ( i oksr (/B|A2A{khf(k+l)($)|dh)r> "

l=—oc0 \k=—0c0

+§j( 3 b (/ |A¥_khf<km<x>|dh)r> "

=1 \k=—o0

A

= I3 + I4.
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In this case, to obtain the desired inequality, it suffices to prove || I3]| sz < || £ £, (@)
g-r

and (sl vg S MIflles gy
(Step 3. ) We estimate I; and I5. We use Lemma 4.2 in the form

IAY foegny ()] S max (1, [bh|*) min (1, [bR|™) Pyq fegn) (2),
where a > 0 is arbitrary, b = 2**! and

|f(z = 2)|
P a = —_—,
bl (0 = 20 T el

We use this estimate with 27%h instead of h, we obtain

(4.20)
/|A§4khf(k+l)(x)\dh§/ max (1, 627 h|*) min (1, (627 *A™) Py o fot0) (z) AR
B B

§ 2lMP2k+l,af(k:+l)($)7

where we used the fact that max(1,[b27%h|%) < 1 and min(1, [p27*h|M) < 2!M (recall
that [ <0 and |h| < 1).
If r <1, by M > sand f1(2z) =0 when k +1 < 0, we see that

0 )

Il 5 Z Z 2ksr (QZMP2k+l7af(k+l)(x))r

l=—oc0 k=—0c0

0 oo
_ Z 2l(M—s)r Z 2(k+l)sr(P2k+l7af(k+l)(:B))fr

l=—0o0 k=—oc0
S 2P (Por o fay ()"
k=0

By the boundedness of Peetre maximal function (Theorem 3.4), we get

1/r s )
15 g S {25 P afioy 1|

SI2* fu Yool me ey

S Hstngm(Rn)-

MG ()
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If » > 1, by using the similar argument as above, we have

0 - 1/r
I3§ Z (Z 2kzsr <2lMP2k+z’af(k+l)(£L‘))r>

l=—00 \k=—00

O N 1/r
Z ol (M —s) ( Z o(k+l)sr (P2k+l,af(k+l)(x))T>

l=—o0 k=—oc0
00 1/r
S < Z 2ksr (PZk,af(k)(x))r) :
k=—oc0

Therefore, we get

Hsllamg < IS

g B

(Step 4. ) In this step, we consider the Iy and Iy. Let A = 1 when min(g,r) > 1.
Otherwise, by virtue of the condition of s, there exists a A € (0,1) such that s >

—— (1 — A). This implies that there exists a real number a > 0 such that a >
min(g, )

_— 1—-A).
min(g.7) and s > a(l — )

By Lemma 4.2 and (4.1), we see that

(4.21) /B|A3/l—khf(k+l)(x)|dh
:/B’Aéwkhf(k—kl)(xﬂl_)\"Aé\/[khf(k—l-l)(:r)’)\dh

a 1—X
N (2l P2k+l,af(k‘+l)(x)) /B‘Ag/[khf(kﬂ)(x)’)\dh

M
" 1-A o
S (2Pt o firan () ) :Cj,M/B|f<k+l>(=’f+J2 “n)|* dh
j=0

M
“ 1-A
S (@ P afrn @) " 3 e MIfosn ]
i=0
where the constants ¢; ps are given by (4.1).

Firstly, we estimate I5. That is, we consider the case r > 1. We denote

oo

1/r
F(Qj) = <Z (QkSPQkﬂf(k) (l‘))r> , T€R"

k=0

and

Bk_,_l(x) = ‘Z(k_H)Sf(k_,_l)(af)‘, x € R™.
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Let 6 = —(a(l — A) — s) > 0. By Hoélder inequality, we obtain

00 oo ~\ /T
I, = Z ( Z oksr (/ ‘Aé\/‘rkhf(kﬂ)(:t)’dh) )
=1 \k=—oo B
— 5 [ © (k+1)s (1=X)r ATy T v
SO (M P @) (MIBg ) (@)
=1 k=—o00
00 A/r
) AZQ w( > [|B<k+z>\A])r/A(fIf)> :
k=—o0
Therefore we have
(4.22)
Ar min(1,q,r)
min(1,q,r T
[114][ 4 ( “ <N F() A22 ”(Z M[Bj1 M(-))
k=—o0 M?
- - A7 min(1,q,r)
< ZQ—Mmin(l,qm) F(-)l_A ( Z M[B()\k+l)]r/)\()>
=1 k=—o0 M?
The Holder inequality implies that
(4.23) 123 | ag < IFL 2 12l

holds for any Fy,F, € LY(E). Thus we have || F} " F3| ¢ < ||F1||M3||F2\|W for all
Fy, Fy € M?. Therefore, By (4.22), (4.23), Lemma 3.1 and Theorem 3. 3, we see that

(4.24)
- ~ A/ min(1,q,r)
||I ||m1n(1,q,7”) 5 Zz—wmin(l,q,r) F(-)l_A < Z M[B(AkJrl)]T/A())
=1 k=—0o0 ME
o min(1,q,r)
Szt gt | (10}
ME =1 k=—o0 MZ/AA(ETM)
o min(1,q,r)
< Hmeln(l,q,r)(l ) Z 2= 16 min(1,q,r) {Bg\k+l)()} .
1=1 F=eollme )

17 9
< ||f||“““< ),

qr

Next, we estimate Is. That is, we consider the case » < 1. By using the similar



112 MiTsuO I1zUKI AND TAKAHIRO NOI

way, we obtain

o0 [ee] A
I S Fz)r -V ) olel=n=tor ( > (MHB(kH)‘/\])r//\(x)) :

Therefore, by Holder inequality, we get

00 00 AJr
]21/1" 5 F(:L,)(lf)\)/rZz(la(lf)\)fls)/Q < Z (M[B(k-l-l)])r//\( )) '

=1 k=—o00
Hence, by using the similar argument as in (4.24), we have

1/rmin(1l,q,r min(1,q,r
1o vl i o

qT

(Step 5) In this step, we prove ||fH/\/ REORS ”fH/\/ @ Recall that

skk _ ks M
915, ey = 17 ey + H{2 4} kf}k_,oo o

Therefore, we consider the £" (M) quasi-norm of

l=—o0

where we use again the decomposition

f= Z fe+), k€.

l=—0o0

We split f*)(z) into two parts as below:

f(k) _2ks/ |A2 kh ( Z f(k+l)> )| dh

l=—o00

0 e’
< 302 [ 1Al (o) @1+ 32 [ |AY, (o) @)l
:;l}(’gjl + f(k)vll. -
Firstly, we shall prove [[{77 il cueg) S 1l - Let
gu(x) = 2% Pyu o fru ().

Then, by (4.20), it is easy to see that

0 k
FOOT < ST UM=agl S g-lkul(=a) g1

l=—o0 U=—0
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Thanks to Lemma 3.9 and the boundedness of Peetre maximal function (Theorem 3.4)

with @ > n/min(1, ¢), we obtain

S Hoholler g S 17,
g'r(MV’)

k_—oo

Finally, we shall prove [|{f®):1}ec |, M2 S ||fHN . Let again A = 1 when
q > 1. Otherwise we set real parameters 0 < A < 1 and we “set a real number a > 0

such that
n
a> —
q
and a(l —\) < s. Due to conditions s > o4, we can choose such a real number a by

using the similar argument in Step 4. Let
ga(x) = (2% fruy(@)].

By (4.21), we get

f(k),lf522165/B|Aé\4khf(k+l)(w)|dh
=1

G all— 21 1-X
S 20V (gi) T Mg M (@),
=1
Let 6 = —(a(l — A\) —s) > 0. By Lemma 3.1, (4.23) and Hélder inequality, we see that

min(1,q,r
A2 ol

o min(1,q,r)
—1d min T 1=-A
< 3 2momntian £ (g ) Mg P
— ==o0ler(aag)
00 0o min(1,q,r)
< —18 min(1,q,7) 1 1=A 2 A7\1/A A
< Y2t |8 lghal e | (Mg DY
=1 Mq k=—o0 or
s . (1—)\)m1n(1,q7r) [ee) Amin(lvqﬂﬂ)
< 2—l5m1n(1,q,r) 1 o0 {M 2 A 1//\}
N; {gk—f—l}k:_oo o (ME) ( Hgk;+l| ) k=—o0 | gt
Therefore, by Theorem 3.3, we obtain
o min(1,q,r
||{f<’“>’”}k:0||gr(}4¢3 :
(1—X\) min(1,q,r) min(1,q,r)
< 2{la(1 A)— ls}mln(l,q,r)‘ ‘ M 21A1
> A I (€7 P15 ol S

=1
S

q
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Part 3. We prove |[flla; . @) S

(R") for f € LlOC( n) ﬂS’(Rn)

Let

Y € Cg°(R™) with @b( ) = 1 when |z| <1 and 7,[1( ) = 0 when |z| > 3/2. We define

ko(z) = (-1)MH! Z ( ) Y((M — p)z). Note that kg € C§°(R™) with ko(z) =

0 when |z| > 3/2 and ko(z) = 1 when |z| < 1/M. We define x;(z) = ro(277x) —
ko(2771 x) for j € N. Then we see that {x;}32 is a decomposition of unity. Observe

that ro(z) = (=)™ (AMy(0) — (=1)M) and that

(4.25) (k;(D)f) (z) = {(flAéwlﬁ(O)ff) (2) + ()M f(z)  (j=0)

Kempka and Vybiral [6, (49)] proved that for all j € Ny,

@) |(F (ML) Ff) @] £ [ a0 AL @) b

Firstly, we shall prove the case A=&. Weput g=v¢ € S (R™) and obtain

(4.27)

~ {27k (D) F 3520 ll g omy

{2]5 /Rn |A Sinflx |dh}j:0

S I llamg +

MG (€)

(F 1AM, (0) = A H(O)FF) (1) (G EN)

Let Iy = Band I, = 2*B\2¥ !B for k € N. Take t > s+n arbitrarily. By g = Y e S(R™),

lg(h)| < 27* holds for all h € I;.. Then we can estimate
@) [ )] A, f@)] dh = Z/ 9(h)] - | A3, £(@)] dh
R~
< 22-’“/ ¥ @) dh
k=0 Tk

oo

5 Z2k(n t)ko j

We put g;(z) = 2'*d)!, f(z) for | € Z. By (4.25), (4.26) and (4.28), we see that

oo

(4.29) s / ) |AM,, F(2)] dh S 270 S 2 0GM | f(a)

k=0

< Z 2li=U(stn=1) g ().

l=—o0
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By virtue of Lemma 3.9, we have

o
1flles o S M lmg + {238/ AL f(a \dh}
® =0l ey
00 o0
< ||f”/\/l§ + { Z Qlj—kl(s+n—t)gk}
h=oo i=0llrmg er)
SET{IVR (105

Finally we shall prove the case A = A. Following the argument as above, we have

1wz~ 127k (D) f 3520wz er)

S Ifllme + {st/ )| A f(a ’dh}
e i=0ller (M)
Using (4.29) with ¢ > s + n and applying Lemma 3.9, we have
Iy S Wlacg + [£27° [ 1ol a3, an}
o R 3=00ler (M)
< Hf||M§; + { Z 2|j—k|(s+n—t)gk}
h=moo 7=0ller (M)
< 1°°

= [IfllN- -
f |Nj4qq,m

§5. Characterization of .Af\/l?;r(R”) by differences

Theorem 5.1. Let0<g<oo,0<r<ooands > —————. If M is an
min(l, ¢,7)
integer such that M > s, then the two quasi-norms
1/r
sr M dh
(5.1) Iflles = Wl + [P sup (A s ,
" ol <A I
PERn M<P
( ) dh 1/r
2 —sr T
(5.2) = [Ifllme + (/ A=A 1)) W)
Mg

are equivalent on €3, (R").
q,T
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§5.1. Proof of Theorem 5.1

We rely on the proof of [16, Section 2.5.10, Theorem] and [8, Theorem 8.2].
holds for all f € £, (R"). Let

Step 1. Firstly, we prove that || f]
f €& (R™). Note that || fl[pme <

and contmuous on R™ under the condltlons for s. We have

By Lemma 3.6 we see that f is bounded

1/r
. dh
(5.3) |h| =" sup [(AY F)C)| AT
Rn ol <Ih| [B]"
pER™

M

0<|h|<2-F

1/r
z 2 sup I(A?ff)(-)l”>

k=—o0

M

Let {0k(x)}72, € O(R") and fy(x) = 0if &k = —1,-2,.... Then, if 0 < r < 1, by
Jensen’s inequality, we obtain

(5.4)
S s (AFH@IE Y Y 2 s (AVF e ) @)
k=—o00 0<[h|<27F e =00 koo 0<|h|<2-F

-1

— Z ZZ“T sup  [(AMF HOrpmF ) ()|

m=—o0 k=—o0 0<|h|§2_k
+> > 2% sup [(AY T ke F ()]
0<|h|<2—F

m=0k=—oc0

= Imgfl + ImZO-

We estimate I,,,<_1. For any |h| < 27%_ by using the mean value theorem, there exists

an appropriate positive constant ¢ such that

(5.5) AN F O F @) <27 sup Y IDOF T G F ()]
|z—y|<c2—F la|=M

Let (05 f)(x) be the Peetre maximal function. By virtue of [16, (7) in Section 2.5.10],

we have

(5.6) IDF  0rmF f1(y)| < 25 M (07 P ().
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Putting this estimate into (5.5), we have

-1

(5.7) Inc1= », > 2% swp (A F G Ff)) ()]

m=—o0 k=—o0 0<|h|S2_k

—1

5 Z Z 2ksr2—k:Mr2(k+m)Mr sup (‘9;+mf)r(y)

m—=—oQ k:_oo “’I‘._y‘S627k

—1 oo
5 Z Z 2ksr2—kMr2(k+m)Mr(elﬂ;_'_mf)r(x)

m=—00 k=—o0

o0

S 20N

We estimate In,>o. It is easy to see that [(AY F~HOpmFf]) ()] < 2m%(05 . f)(2),
where a is the same as in definition of Peetre maximal function. Let s > a > L
min(1,q,r)
Then we have

(5.8) Imzo=_ >, 2% sup [(AYF e F f)(@)]"

m=0 k=—o0 0<|h|<2—F

oo oo

SJ Z Z 2$(k+m)r(92+mf)r(m)2—m(s—a)7“

m=0 k=—oc0

o0

SV @)

j=0

The sum of the left hand sides of (5.7) and (5.8) yields the right hand side of (5.4). By
(5.3) and (5.4) we have

1/r
—sr M T dh < s p*
(5.9) P17 sup [(AZ) O S 12705 Fll v ey
n Ipl<In| [
peER™ ME

If 1 < r < oo, the left hand side of (5.4) is estimated as follows:

0o 1/r
(Z 257 sup |(Aﬁ4f>(fﬂ)|r>

k=—o00 0<|h|<27F

> = 1/r
ks AM .
- <k;m<m;ooo<i‘@_k (25 AN 6 (D)) (2)]) )
> = 1/r
ks AM r
< (Ex oo | A e (D)) @) ) ,



118 MiTsuO I1zUKI AND TAKAHIRO NOI

where we have used the triangle inequality for the KT -norm in order to obtain the last
-1

inequality. We split the sum Z into Z and Z Using an argument similar to

m=—o0 m=—o00 m=0
n
the cases I),<_1 and I,,,>0, we obtain (5.9) for 1 < r < occ. By virtue of a >

and Theorem 3.4, the right hand side of (5 9)

min(l, q,r)

T‘

holds for all f € Lloc( )ﬂ S'(R™)

Step 2.

‘IT q'r

‘(g%)w < oo. Let ¢ € C§°(R™) with ¢(z) = 1 when |z| < 1 and ¥(z) = 0

q,r

when |z| > 3/2. We define k() 1M+ Z ( > (M — p)x). Note that

ko € C3°(R™) with ko(z) = 0 when |z| > 3/2 and ko(z) = 1 when |z| < 1/M. We
define () = Ko(277x) — Ko(277 11 z) for j € N. Note that {r;}32 is a decomposition
of unity. Kempka and Vybiral [6, (49)] proved that ’(]:_1 (Aé‘&gﬁ(O)) ff) (ac)’ <

/ [p(h)| - |AM,, f(z)| dh holds for any j € Ng. We put g = ¢ € S(R”) and obtain

(5.10)

~ {27k (D) 3520l g ory

Jjs A -
{2 /]R" | jhf |dh}jzo

S I g +

MG ()
Let v, = {x € R" : |z| = 1}. By using the polar coordinate system, we have

(5.11)

/ )| - |AY, fx \dhg/ / R g(Rz)| - |AY, 5. f(x)|dzdR
Rn 0 Tn
2€+1

/ / R*g(R2)| - |AY, 5. f(2)| dzdR
— 0 2[

2
/ ot / )" g(2°R2)| - AN, . f ()] d=dR,
1

—00

where, in the last equality, we changed the variable R to 2¢R. Let T',, = {zeR” 1<
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|z| < 2}. By substituting Rz to z, we obtain that for all ¢ € Z,

(5.12) Z / 2€/ 2'R)" 7 g(2°R2)| - |ANY ;10 . f(2)| dzd R
Z / 25/ 2R g(2%2)] - |AY 1o, f (@) d2d R

M ELTCRRIS IS

l=—00

Note that |g(2°z)] < 27% holds for all z € T',, ¢ > 0 and ¢ € N. Let 0 > s. Thus we
get

Gy Y [ 2ol A sl e

f=—0o0
Z / A e, f (@) dz + 22_80/ JAM e, f(2)| d2
f=—o0 (=1 I'n
If 0 < r <1 then we have
(5.14)

Z(%S/Rn |- AN, f( \dh)

=0

<

oo 0 0o r

Z <2JS Z / 2 ity (x)|dz+2j822_ga/ |A§/‘[j+ezf(a:)|dz>

Jj= /=1 Ty

oo 0 r
< % (20 1adsla) Z (2]‘82—“ [ s@a:)

§=0 f=—o00 In j=0 =1 o
< Y o (/ AM, x)!dz) ,

j=—00

where, in the last inequality, we substitute j — ¢ to 5. If 1 < r < oo, then we use the
triangle inequality for ¢"-norm and obtain a corresponding inequality. Hence, (5.14)
holds for 0 < r < co. If 1 <r < 00, then we have

(5.15) (/ang‘%z ><x>\dz)rs/m\<A¥gz @) de.

Putting (5.15) into (5.14), taking the 1/r-power and applying the M#-quasi-norm, we

o [ st
R™ j=0

obtain

q,”‘

M?(”)



120 MiTsuO I1zUKI AND TAKAHIRO NOI

If 0 <7 < 1, then (5.14) yields

(5.16) i (21'5 /Rn |- A f (@ |dh>r

=0
< Z 9sJT (/ |A2 i }dz)
j_foo
< S 9sJT AM ; d ' ; r(1—7)
P (/ AY, f()] ) sup (AL, f)(e)

By Holder’s inequality, we have

(5.17) i (27'5/ )| - |AY, f(2)] dh)r
=0 R?
Z 20 (/ A5 f @) dZ):Seurp 27T DAY ) ()"
= "
r 1-r
S| 3o [t a) [ £ aeialnwr
j=—o0 J=—oo

Taking 1/r-power, applying the M-quasi-norm, and using Holder’s inequality again we

{% sttt ‘dh}; < (g, ) (ne, )™

This proves

obtain

Mg (e7)

§5.2. Besov cases

Theorem 5.2. Let0<g<oo,0<r<o0oands> o, If M isan integer such
that M > s, then

1/r
18 I = Al + | [ sup AN
ME lp|<|h| |h
pER™
1 an equivalent quasi-norm in NjAfr(Rn)' Furthermore,
(2)M —sr dh Hr
(5.19) 11z = Wfllaag + (1R 1A f e T

is also an equivalent quasi-norm in N3 . (R™).
q,m

One can replace/ n (5.18) and (5.19) by/
|h|<1

n
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We simply write [/ = I/l adan(” —IIfH(Q)’ . respectively

,7‘

when we do not need to emphasme M.

Proof. We rely on the proof of [16, p 110, Section 2.5.12, Theorem] and [2, Theo-
rem 3.18].
Step 1. If f € Nf\A?T(R”) with s > o4, then we have ||fll ;g < [[fllas,, - In this

step, we prove ||f||(1)s < ||f||/\/s for any f € NJS\/IZDJ(R”). Let f € N/S\/t(f,r(Rn) and

q,T‘

{0;(2)}320 € OR™). Then f = ZG )f holds not only in the sense of §’'(R™) but

7=0
also in the sense of M¥(R"). We have
(5.20) (A1 0;(D)f) ()] S 29M(05 f)(2) (z € R)
if [p| <27% and j =0,1,..., k. Hence we obtain
(5.21) sup [AY0;(D)f| e S min(L, 20 M) o5 f]| o -
<2 q q

Let ¢* = min(1, q). Then we get

sup HAMfIIWSZ sup[| "85 ( D)1 s

lp|<2-F j=0lpI<2
k
522“ BN 63 £1|%, 0 + Z 165 £11% -
j=k+1
It follows that
(5.22)
1)r
||f||”
< HfHMwZz‘“’“ sup | AN fllhve
k=0 [p|<27F
- A r/q" - - r/q*
S e + D257 [ D20 Mo fllSe |+ 25 | D 1165 f 1
k=0 Jj=0 k=0 j=k+1

Let € be a positive number such that 0 < e < s < s+ e < M. Then we have

*

r/q
) k oo k

(5.23) > 2k [y 2U-RMg 165 1l e S Y 2UTRMmergden) g p|n
k=0 7=0 k=0 5=0

<320 s

=0
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and

*

r/q

(5:24) D 2 Y N0 e | <D0 D 2RI f
k=0

j=k+1 k=0 j=k+1

o0
S D276 Flle-

J=0

Substituting (5.23) and (5.24) into (5.22), we get

o
1 j *
Hf!lfv}:gr Sl + D 271165 Fllnge

=0

By the boundedness of the Peetre maximal function (Theorem 3.4), we have || f ||j(\1/) <
MSD

~
q,m

17l -

Step 2. We prove ||f||NjW < Hf”/(\lfiw . Because we assume that p satisfies supp p C
a,r & r

B(0, 3557), by (4.11) and (4.12) we have

m

@+ @) = [0 3 (i <M> [ - L)a, fw)dy + ()

m=1

S sup AV (@) + | f(2)]
|hj<2-1

and
(T * f)(2)]
_{\M+1 M

S sup AN f(x)].
|h|<2-i-1

Therefore, for each j € N, we obtain ||To * fllpe < [ fllame + |h|sup 1 ||A£4f||M3; and
<o~
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1T * fllaag < suppj<a—i—1 IAY fllagg . Hence by Lemma 4.5 we have

1/r
(XD .
1Fllaz,e = D PTy + f e
§=0
1/r
oo
S g + [ D277 sup AN il
— |h|<2-i—1
) 1/r
= 2 dt
Sl + | [0 swn 1AM
o J;J 2-9-1  |n|<2-i-1 Mt
1/r
< ! sT M de
S llae + £ sup [[AR" f e 7 :
0 |h|<t
Additionally using the polar coordinate transformation we have
1/r
625) Wfllwz, SWlwg+ | [ 10 sup AN A o | SIA,,
M. Ihi< Ipl<Ihl Al i
pER™
Step 3. We prove ||f||N/sW < ||f||(2) . It is easy to see that
q,r r
(5.26)
dh rdh
IE/ |h|7*" sup AMf _/ |h|7*"  sup AMf — +27°"].
R Pl < |H iz T [ L <|pl<n) 185 s [
pER™ pER™

This implies that I can be dominated by the first term on the right-hand side of (5.26).

Hence, replacing sup by  sup , we see that the right-hand side of (5.18) is also an
lpI<[hl Ll<|p|<|n]

equivalent quasi-norm in A3 . (R"). Let Op be the segment from the origin O € R"
q,Tr
to p. Note that the length of the segment Op is in [@, |h|]. Then we define a ball K

such that the center is on Op and the distance from origin O is |8’ + |1_6’ and that
A

the radius is 6 We see that K C {z € R" : % < x| < %} See Figure 1. Let

p = po + p1 with pp € K. Then, by using the same methods as [18, Section 2.5.12], we
obtain HA%MfH;/w A fHM«o + |A fHM@ By taking integration over K we get
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Figure 1.

|aMf|n < / A F{. o dA- |h[~". Therefore, we see that
T Bl a

IAINEE" = [ g sup AR Sl dh

h
Bl <jp1<|nl

—sq-n " dh
5// |h| = ||A§4f||wd)\w
S L 7 h

3 dh
e A5 AN fll e A ——
k_z_:oo /2’“§|h|§2k+1 /g'§|>\|§| | ‘ H HM \h]“

y —sq—n r dh
. Z / / A7 HAﬁ/[fHMg; d)\w
e —oo ¥ 2F TS |R[L2k J2R =3 K N [<2F | |

oo
S Z / A5 AN £l AN
k= oo Y 2FT3<IA[<2F q

S IR IS T
= ||f||<2> M

T

This implies that /], <||f||<2> by (5.25).

’r‘
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