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On the rapid decay homology of F.Pham
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*

Abstract

In [9], M. Hien introduced rapid decay homology group  H_{*}^{rd}(U, (\nabla, E)) associated to an
irregular connection  (\nabla, E) on a smooth complex affine variety  U , and showed that it is the
dual group of the algebraic de Rham cohomology group  H_{dR}^{*}(U, (\nabla^{\vee}, E^{\vee})) . On the other hand,
F. Pham has already introduced his version of rapid decay homology when  (\nabla, E) is the so‐
called elementary irregular connection ([20]) in [18]. In this report, we will state a comparison
theorem of these homology groups and give an outline of its proof. This can be regarded as
a homological counterpart of the result [20] of C. Sabbah. As an application, we construct a
basis of some rapid decay homologies associated to a hyperplane arrangement and hypersphere
arrangement of Schlöfli type.

§0. Motivation

Gauss hypergeometric function is presumably the most important and well‐studied

special function. Amongst various properties of Gauss hypergeometric function, the one
which enables us to analyse its global behaviour is that it has an integral representation:

 2F_{1}(\alpha, \beta, \gamma;x)=   \frac{\Gamma(\gamma)}{\Gamma(\gamma-\alpha)\Gamma(\alpha)}\int_{0}^{1}
t^{\alpha-1}(1-t)^{\gamma-\alpha-1}(1-xt)^{-\beta}dt  (|x| <1) .

Here, parameters  \alpha,  \beta,  \gamma  \in  \mathbb{C} must satisfy  0  <  \Re(\alpha)  <  \Re(\gamma) so that the integral

is convergent. However, sucha restriction can be relaxed by considering the so‐called

“regularization” of paths  [0 , 1  ] ([2]), so the essential assumption is only  \alpha,  \gamma-\alpha\not\in \mathbb{Z}_{\leq 0}.
Let us put

 z_{1}=2F_{1}(\alpha, \beta, \gamma;x) ,  z_{2}= \frac{\Gamma(\gamma)}{\Gamma(\gamma-\alpha)\Gamma(\alpha)}\int_{0}^{1}t^
{\alpha-1}(1-t)^{\gamma-\alpha}(1-xt)^{-\beta}dt,  Z=t(z_{1}, z_{2}) .
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Then, it can easily be confirmed that  Z satisfies the differential equation

(0.1)   \frac{d}{dx}Z= (\begin{array}{ll}
\frac{\gamma-\alpha-\beta}{x-1}   \frac{\beta-\gamma}{x-1}
\frac{\gamma-\alpha}{x}   \frac{-\gamma}{x}
\end{array}) Z.
This suggests that there is another linearly independent solution  \tilde{Z}  =t(\tilde{z}_{1},\tilde{z}_{2} ) of

(0.1), which is given by the following expression when  \Re(\beta)  <1 and  \alpha,  \beta,  \gamma-\alpha\not\in \mathbb{Z} :

  \tilde{z}_{1}=\int_{0}^{\frac{1}{x}}t^{\alpha-1}(1-t)^{\gamma-\alpha-1}(1-xt)^
{-\beta}dt,
  \tilde{z}_{2}=\int_{0}^{\frac{1}{x}}t^{\alpha-1}(1-t)^{\gamma-\alpha}(1-xt)^{-
\beta}dt.
Note that the integrands of  \tilde{z}_{1} and  \tilde{z}_{2} are exactly those of  z_{1} and  z_{2} . This fact

can be recaptured from the view point of the period pairing. In order to formulate the

pairing, we prepare several notations. We put

 S= \{0, 1, \infty, \frac{1}{x}\},  \Phi=t^{\alpha}(1-t)^{\gamma-\alpha}(1-xt)^{-\beta},  U_{x}=\mathbb{P}^{1}\backslash S,
  \nabla=\Phi^{-1}d_{t}\Phi=d_{t}+d_{t}log\Phi\wedge=d_{t}+(\alpha\frac{dt}{t}-(
\gamma-\alpha)\frac{dt}{1-t}+\beta x\frac{dt}{1-xt})\wedge.
We equip  U_{x} with Zariski topology and we denote by  \mathcal{O}_{U_{x}} its structure sheaf.

Then,  \nabla naturally defines a flat algebraic connection  \nabla :  \mathcal{O}_{U_{x}}  arrow\Omega_{U_{x}}^{1} . We finally put

 H_{dR}^{1}(U_{x}, (\mathcal{O}_{U_{x}}, \nabla))  =  H(\Gamma(U_{x}, \mathcal{O}_{U_{x}}) arrow\nabla \Gamma(U, \Omega_{U_{x}}^{1}) 
arrow 0) . The following theorem is a

simple application of the famous comparison theorem of Deligne and Gröthendiek ([6]).

Theorem0.1. Let  \mathcal{L} be the local system of flat sections of  \nabla^{an}.

There is a perfect pairing given by integration

  \int:H_{1}(U_{x}^{an}, \mathcal{L}^{\vee})\cross H_{dR}^{1}(U_{x}, 
(\mathcal{O}_{U_{x}}, \nabla))arrow \mathbb{C}
 \in  \in

 ([ \Gamma\otimes\Phi], [\omega]) arrow \int_{\Gamma}\Phi\omega
In the theorem above,  an stands for the analytification as usual. Now, since

 [ \frac{dt}{t(1-t)}],  [ \frac{dt}{t}]  \in H_{dR}^{1}(U_{x}, (\mathcal{O}_{U_{x}}, \nabla)) , and  [0 , 1  ],  [0,  \frac{1}{x}]  \in H_{1}^{lf}(U_{x}^{an}, \mathcal{L}^{\vee})\simeq H_{1}(U_{x}^{an}, \mathcal
{L}^{\vee}) ,

we can verify that  Z and  \tilde{Z} are periods of this pairing. Thanks to this description, K.

Aomoto and I. M. Gelfand succeeded in introducing a generalization of Gauss hyperge‐
ometric function as well as its integral representation and its integration cycles.

On the other hand, it is natural to ask whether we can obtain a similar description

of Kummer hypergeometric function. Here  H^{lf} stands for the locally finite homology

group ([17]). The differential equation for Kummer hypergeometric function can be
obtained by the process of confluence. Namely, introducinga small parameter  \in  \in  \mathbb{C},

putting  -\in\tilde{x}  =  x,  \beta  =  \in\underline{1} , letting  \in  arrow  +0 , and again putting  \tilde{x}  =  x , we obtain a

differential equation

(0.2)   \frac{d}{dx}Y= (\begin{array}{ll}
-1   1
\frac{\gamma-\alpha}{x}   \frac{-\gamma}{x}
\end{array})Y.
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as well as its solution basis

 Y=t( \int_{0}^{1}t^{\alpha-1}(1-t)^{\gamma-\alpha-1}e^{-xt}dt, \int_{0}^{1}
t^{\alpha-1}(1-t)^{\gamma-\alpha}e^{-xt}dt)
 \tilde{Y}=t  ( \int_{0}^{\infty}t^{\alpha-1}(1-t)^{\gamma-\alpha-1}e^{-xt}dt, \int_{0}
^{\infty}t^{\alpha-1}(1-t)^{\gamma-\alpha}e^{-xt}dt) .

(Note that the signature of the variable  x of the usual Kummer hypergeometric
function is different from the one of this paper).

However, we must notice that the direction to the infinity can never be arbitrary in

the integration above. This observation was made quite explicit by Bloch‐Esnault ([3])
in the 1‐dimensional case and by M. Hien ([9]) in multidimensional cases. In order to
explain their idea, we put

 S'=\{0, 1, \infty\},  \Psi=t^{\alpha}(1-t)^{\gamma-\alpha},  U=\mathbb{P}^{1}\backslash S',
 \nabla'=e^{xt}\Psi^{-1}d_{t}\Psi e^{-xt}=d_{t}+ dtlog  ( \Psi e^{-xt})\wedge=d_{t}+(\alpha\frac{dt}{t}-(\gamma-\alpha)\frac{dt}{1-t}-
xdt)\wedge.
Using similar notations as Theorem 0.1, we can now state a corollary of the result

of Bloch‐Esnault‐Hien for the case of Kummer hyoergeometric function.

Theorem0.2. There is a perfect pairing given by integration

  \int:H_{1}^{rd}(U^{an}, \mathcal{L}^{\vee}) \cross H_{dR}^{1}(U, (\mathcal{O}_
{U}, \nabla'))arrow  \mathbb{C}

 \in  \in

 ([ \Gamma\otimes\Psi], [\omega]) arrow \int_{\Gamma}\Psi e^{-xt}\omega

Here,  H_{1}^{rd}(U^{an}, \mathcal{L}^{\vee}) is their invention, the rapid decay homology group, which we

shall discuss in this paper. Roughly speaking, the rapid decay homology group is an

abelian group of locally finite chains whose direction toward the infinity is the rapid

decay direction of the integrand (in this case, it is the rapid decay direction of  e^{-xt} ).
It is now natural to ask how to construct the basis of rapid decay homology group.

One way is to employ Morse theory as in [7]. This method is better suited to the
computation of asymptotic expansions at infinity. However, it relies on the existence

of critical points, and it is in general untrue that the phase function has as many

Morse critical points as the rank of the rapid decay homology group when there appear
bounded chambers.

Therefore, in this paper, we focus on a rather older work [18] where F. Pham defined
his own version of rapid decay homology. The important aspect of Pham’s approach

is that it enables us to compute the rapid decay homology group in terms of a certain

relative homology associated to the phase function. We would like to show that the rapid

decay homology group of F.Pham is isomorphic to the one of Bloch‐Esnault‐Hien and

apply it to computations of rapid decay homology groups associated to some elementary

irregular connections which comes from hyperplane arrangements.
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§1. Rapid decay homology theories

In this short section, we review the rapid decay homology theory of Bloch‐Esnault‐

Hien and that of F. Pham. Since we are interested in the case of elementary irregular

connection, we rewrite the definition of the rapid decay homology group of Bloch‐

Esnault‐Hien (see [10]). Throughout this section, we let  U denote a complex quasi‐
projective variety over  \mathbb{C} . We take asmooth projective compactification  X of Usuch

that  D=X\backslash U is a normal crossing divisor.

We define the oriented blow‐up along  D following [21]: denoting by L(D) the line
bundle associated to  \mathcal{O}_{X}(D) , we take a local section  s :  X^{an}  arrow  L(D) so that the

equation  \{s = 0\}  =  D holds locally. This local section naturally induces a section
 s :  X^{an}\backslash D  arrow  S^{1}\underline{(D)} where  S^{1}(D)  =  (L(D)\backslash X^{an})/\mathbb{R}_{>0} . Then, we define the real

oriented blow‐up  X(D) alongD by the formula

 \overline{X(D)}= (closure of the image of  X^{an}\backslash D in  S^{1}(D) ).

One can easily check that  X(D) does not depend on the choice of  s , so that we can patch

them up to obtain a globally defined topological space  \overline{X(D)}\subset S^{1}(D) . By construction,

there is a projection map  \pi :  X(D)arrow X^{an} which is compatible with the projection of

a  S^{1} bundle  \pi :  S^{1}(D)  arrow X^{an} . It can also been confirmed that X(D) hasa structure
of a differentiable manifold with corners and  \pi is a morphism of manifolds with corners

in the sense of [12]. Note also that X(D) can be embedded intoa real Euclidian space
as a semi‐analytic subset. We write  \tilde{X} for  X(D) in order to simplify the notation.

Let us describe the morphism  \pi . Outside the divisor D,  \pi defines abiholomorphic

map  \pi :  \tilde{X}\backslash \pi^{-1}(D)arrow\sim X^{an}\backslash D  =  U^{an} . On the other hand, locally at  p  \in  D,  \pi

behaves as a polar coordinate, i. e. if  x=  (x_{1}, \cdots , x_{n}) isalocal coordinate such that

 D=\{x_{1}\cdots x_{k}=0\},  \pi reads as

 \pi :  ([0, \epsilon) \cross S^{1})^{k}  \cross  \mathbb{C}^{n-k}  arrow  X^{an}

 \in  \in

 ((r_{i}, e^{\sqrt{-1}\theta_{i}})_{i=1}^{k} , x_{k+1}, \cdots , x_{n}) arrow (r
\ovalbox{\tt\small REJECT} e^{\sqrt{-1}\theta_{1}}, \cdots , r_{k}e^{\sqrt{-1}
\theta_{k}}, x_{k+1}, \cdots , x_{n}) .

Now, suppose that we are given a regular flat algebraic connection  \nabla :  Earrow E\otimes\Omega_{U}^{1}
and a non‐constant regular function  f on  U . On the oriented blow‐up, we can introduce

a sheaf  \mathscr{A}_{\tilde{X}}^{<D} of holomorphic functions whose asymptotic expansions are  0 along  \tilde{D}=

 \pi^{-1}(D) . More precisely, for an open set  \Omega  \subset  \tilde{X} , aholomorphic function  u on  \Omega\backslash \tilde{D}
belongs to  \mathscr{A}_{\tilde{X}}^{<D}(\Omega) if for any compact subset   K\subset\Omega and for any  N=(N_{1}, \cdots , N_{k})  \in

 \mathbb{Z}_{>0}^{k} , there exists  C_{K,N}>0 such that  u satisfies

 |u(x)|\leq C_{K,N}|x_{1}|^{N_{1}}\cdots|x_{k}|^{N_{k}} for all  x\in K\backslash \tilde{D}.
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Then, the twisted connection  \nabla_{f}=\nabla-df\wedge can be prolonged to a morphism of sheaves

 \nabla_{f} :  E\otimes \mathscr{A}_{\tilde{X}}^{<D}arrow E\otimes \mathscr{A}_{x^{-}}^{<D}
\otimes_{\pi-1}\mathcal{O}_{X^{an}}\pi^{-1}\Omega_{X^{an}}^{1}(*D) . We put

 \mathcal{S}^{<D}=Ker(\nabla_{f}:E\otimes \mathscr{A}_{x^{-}}^{<D}arrow E\otimes
\mathscr{A}_{\tilde{X}}^{<D}\otimes_{\pi^{-1}\mathcal{O}_{X^{an}}}\pi^{-1}
\Omega_{X^{an}}^{1}(*D)) .

Definition 1.1. Let  \mathcal{C}_{X^{-},\tilde{D}}^{-p} denote the sheaf on  \tilde{X} associated to the presheaf

 Varrow S_{p} (\tilde{X}, (\tilde{X}\backslash V) \geq\tilde{D}) .

We define the sheaf of rapid decay chains  \mathcal{C}_{\tilde{X}}^{r.d,-p} by the formula

 \mathcal{C}_{x^{-}}^{r.d.,-p=\mathcal{C}_{\tilde{X},D^{-}\otimes_{\mathbb{C}}S^
{<D}}^{-p}}
Then, if  \mathcal{C}_{\tilde{x}^{d}}^{r} . denotes the complex  \mathcal{C}_{\tilde{X}}^{r.d.,-\bullet} , we define the p‐th rapid decay homology

group by

 H_{p}^{r.d}(U^{an}, (E, \nabla_{f}))=\mathbb{H}^{-p}(\tilde{X}, \mathcal{C}
_{\tilde{x}^{d}}^{r}\cdot) .

The following theorem is a special case of the main result of [9].

Theorem 1.2.

Under the notations above, there is a perfect pairing given by integration

  \int:H_{p}^{rd}(U^{an}, (E^{\vee}, \nabla_{\check{f}}))\cross H_{dR}^{p}(U, 
(E, \nabla_{f}))arrow \mathbb{C}.
Hereafter, we discuss the rapid decay homology group of F. Pham. We use the same

notation as above. For any positive real number  c , we put  S_{c}^{\pm}=\{z\in \mathbb{C}|\pm(\Re z-c) >0\}.
By  \Phi , we denote a family of supports  \Phi=  \{A^{clo}\subset^{sed}U^{an}|\forall c>0, A\leqq f^{-1} (S_{\overline{c}}^{-} )
\} . Then,

for any given local system  \mathcal{L} , we define the rapid decay homology of F.Pham by the
formula

Definition 1.3.

 \tilde{H}_{*}^{r.d}.(U^{an}, \mathcal{L})=H_{*}^{\Phi}(U^{an}, \mathcal{L}) .

Note that this homology group is computed as

  H_{*}^{\Phi}(U^{an}, \mathcal{L})=H_{*} (1iC_{\bullet} (U^{an}, f^{-1}
c>arrow\frac{m}{0} (S_{c}^{+} ); \mathcal{L})) .

Let us prove the following simple lemma.

Lemma 1.4.

There exists a finite set  F\subset \mathbb{C} such that  f :  U^{an}\backslash f^{-1}(F)arrow \mathbb{C}\backslash F defines a fiber
bundle.
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Proof. Take a smooth projective compactification  X of  U so that the following

diagram is commutative
 Uarrow f\mathbb{A}^{1}
 \iota  \iota

 Xarrow f\mathbb{P}^{1}.

Here,  f :  Xarrow \mathbb{P}^{1} is an extension of  f . We equip  X witha Whitney stratification

so that  U and  X\backslash U are unions of strata. Then, the lemma is an easy consequence of

the first isotopy lemma of Thom‐Mather ([22]).  \square 

Thanks to this lemma, when  c'  >  c>  0 are large enough, the morphism of pairs

 (U^{an}, f^{-1}(S_{c}^{+}))arrow(U^{an}, f^{-1}(S_{c}^{+} )) induces a homotopy equivalence so that the induced

chain map  C_{\bullet}(U^{an}, f^{-1}(S_{c}^{+});\mathcal{L})  arrow  C_{\bullet}(U^{an}, f^{-1}(S_{c}^{+} ); \mathcal{L}) is an isomorphism. Since  S_{c}^{+}
is contractible, we obtain the following long exact sequence:

 arrow H_{k}(f^{-1}(t);\mathcal{L})arrow H_{k}(U^{an};\mathcal{L})arrow\tilde{H}
_{k}^{r.d}(U^{an};\mathcal{L})arrow\cdots (exact)

where  t\in S_{c}^{+} forc  >0 large enough.

Example 1.5. Let us consider the simplest case which was fully investigated in

[18]. Let  U=\mathbb{A}^{n} and  \mathcal{L}=\mathbb{C} . Then, by the exact sequence above, we obtain

 \tilde{H}_{*}^{r.d}.(\mathbb{C}^{n}, \mathbb{C})\simeq\tilde{H}_{*}(f^{-1}(t)
^{an}, \mathbb{C})

where  t\in \mathbb{C} is a generic point, and  \sim on the right hand side stands for the reduced

homology.

§2. Comparison theorem

In this section, we are going to prove that the rapid decay homology of F.Pham is
isomorphic to that of Bloch‐Esnault‐Hien when the connection is the so‐called elemen‐

tary irregular connection.

We fix a regular flat algebraic connection  (E, \nabla) and a non‐constant regular func‐
tion  f on  U . As before, we suppose that  f is extended to amorphism  f :  X  arrow  \mathbb{P}^{1}.

Consider the lift of  f to the oriented blow‐up

 \tilde{X}arrow\overline{f}\overline{\mathbb{P}^{1}}
 arrow  arrow

 Xarrow f\mathbb{P}^{1}

where  \overline{\mathbb{P}^{1}} is the oriented blow‐up of  \mathbb{P}^{1} along  \infty . Note that for each  \theta  \in  \mathbb{R} , the

closure of the ray  [0, \infty )  e^{\sqrt{-1}\theta} in  \overline{\mathbb{P}^{1}} , and  \overline{\mathbb{P}^{1}}\backslash \mathbb{C} has only one intersection point which we
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will denote by   e^{\sqrt{-1}\theta}\infty . Then, we have adecomposition  \overline{\mathbb{P}^{1}}=\mathbb{C}\geq S^{1}\infty of the oriented

blow‐up  \overline{\mathbb{P}^{1}} . Let us put  \overline{D^{r.d}\cdot}  =\tilde{f}^{-1}  ( \{e^{\sqrt{-1}\theta}\infty|-\frac{\pi}{2} <\theta< \frac{\pi}{2}\}) , which corresponds to

the rapid decay directions of  e^{-f} . However, since the dimension of  X is larger than 1

in general, we need to subtract irrelevant divisors as follows. We first decompose the

divisor  D as  D=f^{-1}(\infty)\geq D' . Then, we put  \overline{D^{\prime^{r.d}}}=\overline{D}^{r.d}\cdot\backslash \pi^{-1}(D') .

If  U^{an}\hookrightarrow iU^{an}\geq\overline{D^{\prime^{r.d}}}  \hookrightarrow j\tilde{X} denote the sequence of inclusions, we have the following

Proposition 2.1.

 \mathcal{S}^{<D}=j_{!}i_{*}\mathcal{L},

where  \mathcal{L} is the local system of flat sections of  \nabla^{an}.

The proof of this proposition is essentially same as the argument in [9] pp11‐12.
We omit the proof.

Since we have an inclusion  (U^{an}\geq\overline{D^{\prime^{r.d}}},\overline{D^{\prime^{r.d}}})  \subset(\tilde{X},\overline{D}) , and  j :  U^{an}\geq\overline{D^{\prime^{r.d}}}arrow\tilde{X}
is an open embedding, we have a morphism

 \mathcal{C}_{U^{an}\geq\overline{D^{\prime^{r.d}}},\overline{D^{\prime^{r.d}}}}
^{-\bullet}. arrow j^{-1}\mathcal{C}_{\tilde{X},\overline{D}}^{-\bullet}=j^{!}
\mathcal{C}_{\tilde{X},\overline{D}}^{-\bullet}
which is induced from the morphism of presheaves

 S (U^{an}\geq\overline{D^{\prime^{r.d}}}, (U^{an}\geq\overline{D^{\prime^{r.d}}
} \backslash V ) \geq\overline{D'})arrow S(\tilde{X}, (\tilde{X}\backslash V ) 
\geq\tilde{D}) .

Rigorously speaking, for two presheaves  \mathscr{F} and  \mathscr{G} , we consider a morphism

 \mathscr{F}arrow j^{-1}\mathscr{G}.

This induces a morphism

 \mathscr{F}^{\dagger}arrow(j^{-1}\mathscr{G})^{\dagger}.

But since we have a canonical morphism  \mathscr{G}arrow \mathscr{G}\dagger , we have a morphism of presheaves

 j^{-1}\mathscr{G}arrow j^{-1}(\mathscr{G}\dagger) and this induces a morphism of sheaves by the universality of sheafi‐

fication  (j^{-1}\mathscr{G})\daggerarrow j^{-1}(\mathscr{G}\dagger) . We finally obtain  \mathscr{F}\daggerarrow j^{-1}(\mathscr{G})\dagger.
Now, applying the functor  j_{!} yields toamorphism

 j_{!}\mathcal{C}_{U^{an}\geq\overline{D^{\prime^{rd}}},\overline{D^{\prime^{r.
d}}}}^{-\bullet}. arrow j_{!}j^{!}\mathcal{C}_{\tilde{X},\overline{D}}^{-
\bullet}arrow \mathcal{C}_{\tilde{X},\overline{D}}^{-\bullet}.
In the end, we obtain a morphism

 j! (\mathcal{C}_{U^{an}\geq\overline{D^{\prime r.d}},\overline{D^{\prime r.d}}}
^{-\bullet}. \otimes i_{*}\mathcal{L}^{\vee}) arrow \mathcal{C}_{x^{-}}^{r.d.,-
\bullet}
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In view of the fact that  U^{an}\geq\overline{D^{\prime^{r.d}}} is a manifold with boundary and  j is an open

embedding, this morphism can be confirmed to be an isomorphism.

Proposition 2.2.  H_{p}^{r.d}(U^{an}, (E, \nabla))\simeq H_{p}(U^{an}\geq\overline{D^{\prime^{r.
d}}},\overline{D^{\prime^{r.d}}}, i_{*}\mathcal{L}) .

Proof. Denoting by  \Gamma_{\tilde{X}} the global section, we obtain

 \mathbb{R}\Gamma_{\tilde{X}}  (j! (\mathcal{C}_{U^{an}\geq D^{\overline{\prime}r.d},D^{\overline{\prime}r.d}}
^{-\bullet}. \otimes i_{*}\mathcal{L}))  \simeq \mathbb{R}\Gamma_{X^{-}} ◦  \mathbb{R}j!  ((\mathcal{C}_{U^{an}\geq D^{\overline{\prime}r.d},D^{\overline{\prime}r.d}}^{-
\bullet}. \otimes i_{*}\mathcal{L}))
 \simeq \mathbb{R}\Gamma_{c}(U^{an}\geq\overline{D^{\prime^{r.d}}}., \mathcal{C}
_{U^{an}\geq\overline{D^{\prime^{r.d}}},\overline{D^{\prime^{r.d}}}}^{-\bullet}.
\otimes i_{*}\mathcal{L})

 -rd. -r.d.

 \simeq C_{-\bullet} (U^{an}\geq D' D' ;i_{*}\mathcal{L}) .

The last isomorphism follows from the fact that the homology complex is homotopically

fine. See [4].  \square 

Now, we would like to prepare a lemma necessary for the proof of the comparison

theorem. It concerns aconstruction of homotopy which does not preserve the stratifi‐
cation.

Lemma 2.3.

 C_{-\bullet}  (U^{an} \geq\overline{D}^{r.d},\overline{D}^{r.d}|i_{*}\mathcal{L})   quasiarrowisom  C_{-\bullet}(U^{an} \geq\overline{D} r.d.,\overline{D} r.d. 1i_{*}\mathcal{L}) .

Proof. Let us remember a basic notations of manifold with corners ([12]). Let
 M be a manifold with corners. Let  x  =  (x', x")  =  (x_{1}, \cdots , x_{l}, x_{l+1}, \cdots , x_{m}) be a

coordinate at  q\in M so that it corresponds to the open set  [0, \epsilon)^{l}\cross(-\epsilon, \epsilon)^{m-l} . We may
assume  x(q)=0 . Then the subset

 IS_{q}^{+}(M)= \sum_{i=1}^{l}\mathbb{R}>0\frac{\partial}{\partial x_{\dot{l}}}
|_{q}+\sum_{i=l+1}^{m}\mathbb{R}\frac{\partial}{\partial x_{i}}|_{q}
of  T_{q}M does not depend on the choice of coordinate.

Consider a canonical morphism of manifold with boundaries  p :  \overline{X}  arrow  X(D') ob‐

tained by collapsing  \pi^{-1}(D^{\infty}) to  D^{\infty} . We then put

 N_{\tilde{D}',q}^{+}=p_{*}^{-1}(IS_{q}^{+}(\overline{X(D'})))
We would like to construct a vector field  \eta on  \tilde{X} so that

 \eta\tilde{f}=0 and   \eta_{q}\in N\frac{+}{D},q.
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At each point  q\in D^{\infty}\leqq D' , we take a coordinate system  z of  X so that

 D^{\infty}=\{z_{1}\cdots z_{s}=0\},  D'=\{z_{s+1}\cdots z_{t}=0\} , and   \frac{1}{f}=z_{1}^{m_{1}}\cdots z_{s}^{m_{s}} . Now we put locally
around  q,

  \eta^{(q)}= \frac{\partial}{\partial r_{s+1}}+\cdots+\frac{\partial}{\partial 
r_{t}}.
This satisfies the two desired conditions locally. By means of partition of unity, we

get the desired  \eta . Furthermore, by this construction, there isavector field  \tilde{\eta} on  X(D')
such that  \eta_{q}\in IS_{q}^{+}(X(D')) and  p_{*}\eta=\tilde{\eta}.

Since  \tilde{X} is compact, the flow of  \eta is complete and since  p_{*}\eta=\tilde{\eta} , we have  p\Phi_{t}^{\eta}=\Phi_{t}^{\tilde{\eta}} .

Now,  \Phi_{t}^{\overline{\eta}}(X(D'))\leqq\overline{D'}=\phi implies

 \Phi_{t}^{\eta}(\tilde{X})\leqq\overline{D'}=\phi

for any  t>0 . It can be confirmed that  \Phi_{t}^{\eta}(U^{an})  \subset U^{an} since  \Phi_{t}^{\overline{\eta}}(U^{an})  \subset U^{an} and that

 \Phi_{t}^{\eta}(\overline{D}^{r.d}\cdot)  \subset\overline{D^{\prime^{r.d}}} since  \eta\tilde{f}=0 . Summing up, we have a homotopy equivalence

 (U^{an}\geq\overline{D^{\prime^{r.d}}},\overline{D^{\prime^{rd}}})arrow(U^{an}
\geq\overline{D}^{r.d}.,\overline{D}^{r.d}.) .

Now we are able to prove the following comparison theorem.

Theorem 2.4.

 \tilde{H}^{r.d}.(U^{an}, \mathcal{L})\simeq H^{r.d}.(U^{an}, (E, \nabla_{f}))

Proof. We put  Y_{\epsilon}  =  f^{-1}(A_{\epsilon})\geq\tilde{f}^{-1}(e^{\sqrt{-1}[-\frac{\pi}{2}+\epsilon,
\frac{\pi}{2}-\epsilon]} \infty) where  A_{\epsilon}  =  \mathbb{C}\backslash \{R+

  \frac{1}{\epsilon_{\sim}}+re^{\sqrt{-1}\theta}|0  <  r,   \frac{\pi}{2}-\epsilon  <  \theta  <   \frac{\pi}{2}+\epsilon or   \frac{3}{2}\pi-\epsilon  <  \theta  <   \frac{3}{2}\pi+\epsilon\} . We also put  \partial Y_{\epsilon}  =

 f^{-1}(e^{\sqrt{-1}[-\frac{\pi}{2}+\epsilon,\frac{\pi}{2}-\epsilon]}
\cdot\infty) .

Since  (U^{an}\geq\overline{D}^{r.d}\cdot,\overline{D}^{r.d}\cdot)  =\geq_{\epsilon>0}(IntY_{\epsilon}, Int\partial Y_{\epsilon}) , we have that

 H_{*}(U^{an}\geq\overline{D}^{r.d}.,\overline{D}^{r.d}.;i_{*}\mathcal{L})\simeq
\underline{1i_{\Psi_{/}}}H_{*}(Y_{\epsilon}, \partial Y_{\epsilon;}\mathcal{L})
\epsilon>0^{\cdot}
Here, since  \tilde{f} :  \tilde{X}arrow\tilde{\mathbb{P}}^{1} is a proper map,  \{f^{-1} (\{\Re(z) >R'\}\leqq A_{\epsilon})\geq\partial Y_{\epsilon}\}_{R'>0} is a

fundamental system of neighbourhoods of  \partial Y_{\epsilon} in  Y_{\epsilon}.

Now, since  f^{-1}  (\{\Re(z) > R'\}\leqq A_{\epsilon})\geq\partial Y_{\epsilon} and  \partial Y_{\epsilon} are semi‐analytic sets, by the

famous result of Lojasiewicz([14]), we obtain that there is a triangulation of  f^{-1}(\{\Re(z)  >

 R'\}\leqq A_{\epsilon})\geq\partial Y_{\epsilon} such that  \partial Y_{\epsilon} is a subcomplex of it.

Now, by means of derived neighbourhood, one can show that there is a deformation

retract neighbourhood  N of  \partial Y_{\epsilon} (see [11] lemma2.10).
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Therefore, we have

 H_{*}(Y_{\epsilon}, \partial Y_{\epsilon})  \simeq  H_{*}  (_{N:} deformation  1iarrow r\overline{et}ract nbd of  \partial Y_{\epsilon}C_{\bullet}(Y_{\epsilon}, N))
  cofi\simeqnality

 H_{*}  (1 iC_{\bullet}arrow\frac{m}{o}(Y_{\epsilon}, N))
 cofi\simeq H_{*}nality

 ( \lim_{arrow}C_{\bullet}(Y_{\epsilon}, f^{-1}(\{\Re(z) > R'\} \leqq 
A_{\epsilon}) \geq\partial Y_{\epsilon}))
 excision\simeq H_{*} (^{f-1}(A_{\epsilon}), f-1(A_{\epsilon} \leqq \{\Re(z) > 
R'\}))

Note that quasi‐isomorphism is preserved under projective limit of surjective mor‐

phisms. On the other hand, the last homology is isomorphic to

 H_{*}(U^{an}, f^{-1}\{\Re(z)>R'\})

for  R'>0 large enough.
In view of lemma, we obtain

 -r.d -r.d

 H_{*}^{r.d} (U^{an}, (E, \nabla_{f})) = H_{*}(U^{an} \geq D' , D' ;i_{*}
\mathcal{L})

 \simeq\simeq
 H_{*}(U^{an}  \geq\overline{D}^{r.d} , Dr.  d_{;\mathcal{L})}

 \underline{1i_{\Psi}}H_{*}(Y_{\epsilon}, \partial Y_{\epsilon 1}\mathcal{L})
 \epsilon>0

 \simeq H_{*}(U^{anf-1}(\{\Re(z) > R'\}))
 \simeq  \tilde{H}_{*}^{r.d}.(U^{an}, \mathcal{L}) .

§3. Rapid decay homology groups associated to hyperplane arrangements

We are going to apply our comparison theorem to elementary irregular connections

associated to hyperplane arrangements. First, we remember aresult of regular cases.

Let  l_{j}(t) be a real linear polynomial  l_{j}(t)=a_{0j}+a_{1j}t_{1}+\cdots+a_{nj}t_{n}

 (a_{kj} \in \mathbb{R}, \prod_{k=1}^{n}a_{kj}\neq 0, j=1, \cdots , N) . We put

 A_{j}=\{t\in \mathbb{A}^{n}|l_{j}(t)=0\}, X=\mathbb{A}^{n}\backslash \geq Nj=
1A_{j}, D=\geq Nj=1A_{j}.
Let further  V denote a finite dimensional complex vector space and  P_{j} be an element

of End(V). We introduce atrivial bundle  E=X\cross V on Xand aconnection

  \nabla=d+\sum_{j=1}^{N}P_{j}d\log l_{j}(t)\wedge: Earrow\Omega_{E}^{1}(\log D) .
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By considering residues, we can confirm that  \nabla^{2}=0 if and only if for any maximal

subfamily  \{A_{j_{\nu}}\}_{1\leq\nu\leq q} such that
 co\dim_{\mathbb{C}}  (A_{j_{1}}\leqq\cdots\leqq A_{j_{q}} )  =2,  1\leq\forall\nu\leq q,  [P_{j_{\nu}} , P_{j_{1}}+\cdots+P_{j_{q}} ]  =0.

Here,  \{A_{j_{\nu}}\}_{1\leq\nu\leq q} is called a maximal subfamily if

 \{A_{j}|A_{j_{1}}\leqq\cdots\leqq A_{j_{q}} \subset A_{j}\}=\{A_{j_{\nu}}\}
_{1\leq\nu\leq q}.

We compactify  \mathbb{A}^{n} to  \mathbb{P}^{n} and denote by  A_{N+1} the hypersurface at infinity  A_{N+1}  =

 \mathbb{P}^{n}\backslash \mathbb{A}^{n} . By abuse of notation, we denote the closure of  A_{j} in  \mathbb{P}^{n} by the same notation.

We also put

 P_{N+1}=- \sum_{j=1}^{N}P_{j}.
As in [13], we define the following notion.

Definition 3.1. We say  (E, \nabla) is generic if

(1) eigenvalues of  P_{j} are not integers.
(2) For any maximal subfamily  \{A_{j_{\nu}}\}_{1\leq\nu\leq q} such that  co\dim_{\mathbb{C}}[A_{j_{1}}\leqq\cdots\leqq A_{j_{q}} ]  =r<q,

any eigenvalue of  P_{j_{1}}+\cdots P_{j_{q}} is not an integer.

The following result has essentially been proved by various authors in various set‐

tings ([13], [15]).

Theorem 3.2. Suppose  (E, \nabla) is generic.

Then, putting  \mathcal{L}=Ker\nabla^{an} , we have a canonical isomorphism

 H_{p}(X^{an}, \mathcal{L})\simeq H_{p}^{lf}(X^{an}, \mathcal{L}) for all  p.

Furthermore, we have

  H_{n}^{lf}(X^{an}, \mathcal{L})=\bigoplus_{k}\mathbb{C}\Delta_{k}\otimes 
\mathcal{L}_{x_{k}}
and

 H_{p}(X^{an}, \mathcal{L})=0(p\neq n) ,

where  \Delta_{k} are bounded chambres of  Y\leqq \mathbb{R}^{n} and  x_{k}\in\Delta_{k} is a point.

Proof. The first isomorphism was proved in [13]. Let us then discuss the second
part.

For any positive real numbers  \eta  =  (\eta_{1}, \cdots , \eta_{N})  \in  \mathbb{R}_{>0}^{N} , consider the function  F_{\eta}
defined by
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 F_{\eta}(t)= \sum_{j=1}^{N}\eta_{j}\log|l_{j}(t)|.
As in [2] Chapter 4, one can prove that  F_{\eta} is Morse and that the stable manifolds of

 F_{\eta} are exactly bounded chambers  \{\Delta_{k}\}_{k} . Hence, if we consider the gradient flow  \Phi_{s} of

 F_{\eta} , we have that for any  x\in X\backslash \geq_{k}\Delta_{k} and any positive real number  R>0 , there exists
 s_{0}>0 such that for all  s\geq s_{0},  |\Phi_{s}(x)|  >R . Therefore, for any open neighbourhood  W

of  A_{N+1} in  \mathbb{P}^{n} , we have a surjection

 H_{p}(W\leqq X^{an}, \mathcal{L}^{\vee})\ovalbox{\tt\small REJECT} H_{p}
(X\backslash \geq_{k}\Delta_{k}, \mathcal{L}^{\vee}) ,

or equivalently,

 H_{p}^{lf}(X\backslash \geq k\Delta_{k}, \mathcal{L})\hookrightarrow H_{p}^{lf}
(W\leqq X^{an}, \mathcal{L}) .

Let us construct  W so that

 H^{p}(W\leqq X^{an}, \mathcal{L})=0

for any  k . This implies that  H^{lf}(W\leqq X^{an}, \mathcal{L})=0 by Poincaré duality. Denote by  \iota the

inclusion  \iota :  W\leqq X^{an}\hookrightarrow X^{an} . Firstly, we prove  R^{p}\iota_{*}(\mathcal{L})  =0 on some neighbourhood
 W of  A_{N+1}  \subset  \mathbb{P}^{n} for all  p . However, this can be proved thanks to Theorem3.3.7. of

[15]. In fact, for any point  x\in A_{N+1} , if we take asufficiently small neighbourhood  W_{x},

 W_{x}\leqq X^{an} is homotopic to a central arrangement, whose Euler characteristic is  0 by

Theorem3.3.7 of [15]. Since Rp  \iota_{*}(\mathcal{L})  =0 for  p\neq n , we can conclude the assertion by
the Euler‐Poincaré formula for local systems.

By the spectral sequence of Leray, we have that for some small neighbourhood  W

of  A_{N+1},  H^{p}(W\leqq X^{an}, \mathcal{L})=0 for any  p . We have thus proved that

 H_{p}^{lf}(X\backslash \geq_{k}\Delta_{k}, \mathcal{L})=0.

Now, by the exact sequence of Gysin, we have

 arrow H_{p}^{lf}(\geq_{k}\Delta_{k}, \mathcal{L})arrow H_{p}^{lf}(X, 
\mathcal{L})arrow H_{p}^{lf}(X\backslash \geq_{k}\Delta_{k}, \mathcal{L})
arrow\cdots (exact).

Summing up we obtain the theorem.  \square 

Now, let us take a real linear polynomial  f(t) . For any real number  R  >  0,

 \nabla|_{f^{-1}(R)\leqq X} is another regular connection.

Definition3.3. The hyperplane arrangement  \{A_{j}\}_{j} is said to be asymptoti‐

cally generic with respect to  f if for sufficiently large  R  >  0 , the induced connection

 (E, \nabla)|_{f-1}(R)\leqq X is generic.
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Note that for sufficiently large  R  >  0 , connections  (E^{an}, \nabla^{an})|_{f^{-1}(R)\leqq X} are all

isomorphic so that this definition is well‐defined.

Now, we would like to compute the basis of rapid decay homology group associated

to the elementary irregular connection

 \nabla_{f}=\nabla-df\wedge.

Theorem 3.4. Suppose  (E, \nabla) is generic and is also asymptotically generic.

Let  \{\Delta_{k}\}_{k} denote all bounded chambres of  \mathbb{R}^{n}\leqq X and let  \{ \tilde{\Delta}_{l}\}_{l} denote all unbounded

chambres which intersect with bounded chambers of  f^{-1}(R)\leqq X for  R>0 big enough.

By abuse of notations, we denote by  \tilde{\Delta}_{l} the intersection of  \tilde{\Delta}_{l} and  \{\Re f < R\} . Then,

for any  R>0 big enough, there is an isomorphism

 H_{p}^{r.d}.(X^{an}, (\mathcal{O}_{X}, \nabla_{f}))\simeq H_{p}^{lf}(X^{an}
\backslash f^{-1}(R), \mathcal{L})

for any  p . In particular,

 H_{p}^{r.d}.(X^{an}, (\mathcal{O}_{X}, \nabla_{f}))=0(p\neq n) .

Moreover,

 H_{n}^{lf} (X^{an} \backslash f-1(R), \mathcal{L}) = \oplus \mathbb{C}
\Delta_{k} \otimes \mathcal{L}_{x_{k}} \oplus \oplus \mathbb{C}\tilde{\Delta}
_{l} \otimes \mathcal{L}_{\overline{x}_{l}},
 k  l

where  x_{k}\in\Delta_{k} and  \tilde{x}_{l}  \in\tilde{\Delta}_{l} are points.

Proof. By Lemma1.4 and Theorem2.4, we have the following exact sequence:

 arrow H_{k}(f^{-1}(R);\mathcal{L})arrow H_{k}(X^{an};\mathcal{L})arrow H_{k}
^{r.d}(X^{an};\mathcal{L})arrow\cdots (exact).

We obtain the result in view of Theorem3.2 and the fact that  H^{lf}(X^{an}\backslash f^{-1}(R), \mathcal{L})=
 H^{lf}(X^{an}, f^{-1}(R);\mathcal{L}) .  \square 

Consider now the case when  f is a non‐degenerate positive definite quadratic
 f  =   \sum_{i=1}^{n}t_{i}^{2} . If we take a sufficiently large real number  R  >  0 , we can consider

the “asymptotic connection”  (E, \nabla)|_{f^{-1}(R)\leqq X} . Now, we can compactify  f^{-1}(R) as
 \overline{Y}_{R}  =   \{\sum_{i=1}^{n}t_{i}^{2} = t_{0}^{2}R\}  \subset  \mathbb{P}^{n} . Then, divisors  A_{j} induce divisors  \overline{A}_{j} on  \overline{Y}_{R} . We put
 Y_{R}  =  \overline{Y}_{R}\backslash \geq\overline{A} . We consider a family  \overline{l}_{j}^{c}(t)  =  ca_{0j}t_{0}  +a_{1j}t_{1}  +  \cdots  +a_{nj}t_{n} where
 0\leq c\leq 1 . The corresponding hyperplane is denoted by  A_{j}^{c}=\{\overline{l}_{j}^{c}(t)=0\} , where we put

 A_{N+1}^{0}  =A_{N+1} . We say that the arrangement  \{A_{j}^{0}\}_{j=1}^{N} in  \mathbb{A}^{n} is Boolean if any subset

 \mathscr{B}\subset\{A_{j}^{0}\}_{j=1}^{N} with cardinality  n satisfies  \leqq \mathscr{B}=\{0\}.
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Theorem3.5. Suppose that  \{A_{j}^{0}\}_{j=1}^{N} in  \mathbb{A}^{n} is Boolean, the divisor  \geq N+A_{j}j=1^{1}\leqq\overline{Y}_{R}
in  \overline{Y}_{R} is normal crossing,  \overline{Y}_{R} is transversal  to\geq^{N+1}A^{0}j=1j , and the divisor  \geq^{N}A^{0}\leqq A_{N+1}j=1j\leqq

 \overline{Y}_{R} in  A_{N+1}\leqq\overline{Y}_{R} is normal crossing.

If any eigenvalue of  P_{j} is not an integer, then, we have a canonical isomorphism

 H_{p}(Y_{R}^{an}, \mathcal{L})\simeq H_{p}^{lf}(Y_{R}^{an}, \mathcal{L}) for all  p.

Furthermore, we have

 H_{n}^{lf}(Y_{R}^{an}, \mathcal{L}) = \oplus \mathbb{C}\overline{\Delta}_{l} 
\otimes \mathcal{L}_{\overline{x}_{l}}
 l

and

 H_{p}(Y_{R}^{an}, \mathcal{L})=0(p\neq n) .

Here,  \overline{\Delta}_{l} are bounded chambres of the real hypersphere arrangement  \{\mathbb{R}^{n}\leqq Y_{R}\}.

Proof. The first isomorphism follows as in [13] (note that we do not need to
employ any blow‐up because of our assumption). We notice that there is ahomotopy
equivalence between  Y_{R}^{an} and  \overline{Y}_{R}\backslash \geq jA_{j}^{0} . This can be constructed by Thom‐Mather’s 1st

isotopy lemma. Namely, equipping  \overline{Y}_{R}\cross \mathbb{A}_{c}^{1} with a canonical stratification coming from

arrangements  \{\overline{l}_{j}^{c}(t) = ca_{0j}t_{0}+a_{1j}t_{1}+\cdots a_{nj}t_{n} = 0\}
_{j=1}^{N}\geq\{t_{0} = 0\} , one can confirm

that the projection  \pi :  \overline{Y}_{R}  \cross \mathbb{A}_{c}^{1}  arrow  \mathbb{A}_{c}^{1} is a stratified submersion at  c=  0 , 1 since  \overline{Y}_{R}
is transversal to  \{A_{j}\}_{j} and  \{A_{j}^{0}\}_{j} . For notational simplicity, we denote  \overline{Y}_{R}\backslash \geq jA_{j}^{0} by
 Y^{an}.

As in Theorem3.3, we consider a function

 F= \sum_{i=1}^{n}\log|l_{j}|
on  Y^{an} . On each connected component of  Y^{an}\leqq \mathbb{R}^{n},  F has at least one critical point.

Note that the number of bounded chambers is given by

 M=  (\begin{array}{ll}
N   -1
n   -1
\end{array}) +\sum_{i=1}^{n}(\begin{array}{ll}
   N
n   -i
\end{array}) .

By Theorem4.4, Proposition5.2, and Corollary 5.13 of [16], we can confirm that  F

has at most  M critical points on  Y^{an} . Thus,  F has no critical points on  Y^{an}\backslash \geq l\overline{\Delta}_{l} . We

can now repeat the argument of Theorem 3.3.
 \square 

Remark1. Suppose  n=2 . Then, by a direct computation, one can confirm that

the residue matrix at infinity of  \{t_{1}^{2}+t_{2}^{2}=Rt_{0}^{2}\} is given by  P_{N+1} . The general case is

reduced to  n=2 case by the procedure of slicing.
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We conclude this manuscript with a theorem which concerns the construction of

solution basis of irregular Schlöfli type.

Theorem3.6. Suppose the same assumption as Theorem 3.5 is satisfied for

sufficiently large  R>0 . Then, we have an isomorphism

 H_{p}^{r.d}.(X^{an}, (\mathcal{O}_{X}, \nabla_{f}))\simeq H_{p}^{lf}(X^{an}
\backslash f^{-1}(R), \mathcal{L})

for any  p . In particular,

 H_{p}^{r.d}.(X^{an}, (\mathcal{O}_{X}, \nabla_{f}))=0 (p\neq n) .

Furthermore, we have

 H_{n}^{lf} (X^{an} \backslash f-1(R), \mathcal{L}) = \oplus\Delta_{k} \otimes 
\mathcal{L}_{x_{k}} \oplus \oplus\tilde{\Delta}_{l} \otimes \mathcal{L}
_{\tilde{x}_{l}},
 k  l

where  \Delta_{k} are bounded chambres of arrangements  \{A_{j}\}_{j} and  \tilde{\Delta}_{l} are the intersections of

 \{\Re(f) <R\} and unbounded chambres of the same arrangements.

We will conclude this paper with a more concrete description of the basis of rapid

decay homologies under a certain situation. Let us takea closer look at Theorem 3.2.

The isomorphism

 H_{p}(X^{an}, \mathcal{L})\simarrow H_{p}^{lf}(X^{an}, \mathcal{L}) for all  p

is naturally induced by the definition of locally finite homology. On the other hand, its

inverse is, in general, difficult to describe. However, there is aconcrete description of

the inverse which is called “regularization” and was developed by K. Aomoto when the

rank of the local system is 1. Let me briefly describe the method following[8]. (see also
Chapter 3, section 2 of [2]).

Hereafter, we assume that rank  \mathcal{L}  =  1 , and that the arrangement  \{A_{j}\}_{j=1}^{N} is in

general position in the sense of [2], i. e., the arrangement  \{a_{0j}t_{0}+a_{1j}t_{1}+\cdots+a_{nj}t_{n}=
 0\}_{j=0}^{N} in  \mathbb{A}^{n+1} is Boolean. Let  \Delta_{k} be abounded chambre of the arrangement  \{A_{j}\}_{j=1}^{N}.
For simplicity, let us assume that  \Delta_{k} is surrounded by  A_{1},  \cdots ,  A_{t}  (t \leq N) . For any

subset  J\subset\{1, \cdots , t\} , we put

 A_{J}=\leqq j\in JA_{j},  \Delta_{J}=\overline{\Delta}_{k}\leqq A_{J},   T_{J}=\epsilon‐neighbourhood of  \Delta_{J}.

(  \epsilon is supposed to be small enough.) We also put

 \sigma_{k}=\Delta_{k}\backslash \geq {}_{J}T_{J}

and equip with it a standard orientation coming from that of  \mathbb{R}^{n} . For any  j  \in  J, let

 l_{j} be the  n-1 face of  \sigma_{k} defined by  \sigma_{k}\leqq\overline{T}_{j} . Let  S_{j} be a circle going around  A_{j} in a
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positive direction and whose starting point is  l_{j} . Suppose the monodromy of  \mathcal{L} around

 A_{j} is  \exp(2\pi\sqrt{-1}\alpha_{j})\neq 1 and we put  dj=\exp(2\pi\sqrt{}-1\alpha_{j})-1 . Then, we put

  \Delta_{k}^{reg}=\sigma_{k+\sum_{\phi\neq J\subset\{1}} \prod_{t\}j\in J}\frac
{1}{d_{j}} ((\leqq l_{j})j\in J \cross\prod_{j\in J}S_{j}) .

Precisely speaking, we have to be more careful about its orientation. See [2]. It can
readily be seen that

 [\Delta_{k}^{reg}]=[\Delta_{k}]  in  H_{n}^{lf}(X^{an}, \mathcal{L})

where the bracket stands for the homology class in  H_{n}^{lf}(X^{an}, \mathcal{L}) .

This process is called the regularisation process. Regularization can be performed

even for unbounded chambres  \tilde{\Delta}_{l} of Theorem3.4. It can be seen that the regularised

cycle  \tilde{\Delta}_{l}^{reg} belongs to  \tilde{H}_{n}^{r.d}(X^{an}, \mathcal{L})\simeq H_{n}^{r.d}(X^{an}, \mathcal{L}) . We obtain the following

Corollary 3.7. Under the same assumption as Theorem 3.4, if further  \{A_{j}\}_{j} is

in general position and if rank  \mathcal{L}=  1 , we have the following decomposition of the rapid

decay homology group.

  H_{n}^{r.d}.(X^{an}, \mathcal{L})=\bigoplus_{k}\mathbb{C}\Delta_{k}^{reg}
\oplus\bigoplus_{l}\mathbb{C}\tilde{\Delta}_{l}^{reg}.
Remark2. We can obtain a similar result under the assumption of Theorem 3.6.

The author hopes that Corollary 3.7 and its variant for Theorem 3.6 will be the starting

point of the global analysis of various special functions (see [2] and [8]).
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