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Intuitive representation of local cohomology groups

By

Daichi Komori*

Abstract

The theory of hyperfunctions had been introduced by M. Sato with algebraic method. A.
Kaneko and M. Morimoto gave another definition which makes us easy to understand them
elementarily. In this article, by generalizing their idea we construct a framework which enables
us to define intuitive representation of local cohomology groups. This note is asummary of
our forthcoming paper [5] by D. Komori and K. Umeta.

§1. Introduction

It is well‐known that a hyperfunction in one variable is given by a boundary value of
holomorphic functions on the upper half space and the lower half space in the complex

plane. Ahyperfunction in several variables is, however, defined by alocal cohomology

group and is not easy to understand. A. Kaneko and M. Morimoto defined it, roughly

speaking, as a formal sum of holomorphic functions on infinitisimal wedges in [2]. Their
idea can be applied to not only hyperfunctions but also local cohomology groups.

In this article, we generalize their idea and construct a framework which enables us

to realize intuitive representation of local cohomology groups. To prove the equivalence

of local cohomology groups and their intuitive representation, we study the boundary

value map and its inverse map in detail.

As an application we have intuitive represenation of Laplace hyperfunctions [1],
but we do not state it in this paper. We recommend the readers to make reference to

our forthcoming paper [5].

Received April 19, 2017. Revised April 24, 2017.
2010 Mathematics Subject Classification(s): Primary  32A45 ; Secondary  32C36

Key Words: hyperfunctions, local cohomology groups.
 *

Department of Mathematics, Hokkaido University 060‐0810, Japan.
e‐mail: komori‐d@math. sci.hokudai.ac.jp

⃝ 2019 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



20 Daichi Komori

§2. Intuitive representation

In this section we introduce some definitions which are needed for construction of

the framework, and we define intuitive representation of local cohomology groups.

§2.1. Preparations

Let  X be a topological manifold and  M a closed oriented submanifold of  X . Here
these manifolds are allowed to have their boundaries. We define  \overline{X}  =  M  \cross  D^{m} and

assume that  X  \simeq  \tilde{X} by the homeomorphism  \iota . Here  D^{m}  =  \{y \in \mathbb{R}^{m};|y| < 1\} and
 \iota :  X  arrow  \overline{X} satisfies  \iota(M)  =  M  \cross  \{0\} . Hereafter we identify  \overline{X} as  X by  \iota . Set
 S^{m-1}=\partial D^{m}.

Definition2.1. Let  k=0 , 1,  \cdots ,  m-1 . We definea linear k‐cell  \sigma in  S^{m-1} by

(2.1)  \sigma=\phi(\leqq H_{i})\leqq S^{m-1}

Here the map  \phi :  \mathbb{R}^{k+1}  arrow \mathbb{R}^{m} is a linear injection and  \{H_{i}\} is a finite family of open

half spaces in  \mathbb{R}^{k+1} whose intersection is non‐empty.

Let us recall the definition of a stratification of a set  U . For aset  U , a partition
 U=  \sqcup  U_{\lambda} is called astratification of  U , if it is locally finite, and it satisfies for all the

 \lambda\in\Lambda

pairs  (U_{\lambda}, U_{\tau} ) that

 \overline{U_{\lambda}}\leqq U_{\tau}\neq\phi \Rightarrow U_{\tau}
\subset\overline{U_{\lambda}}.

Let  \chi be a stratification of  S^{m-1} such that each stratum is a linear cell of  S^{m-1}.

Moreover we denote by  \Delta(\chi) (resp.  \Delta_{k}(\chi) ) aset of all the cells of  \chi (resp. aset of all
the  k‐cells of  \chi).

For two stratifications  \chi and  \chi' we introduce the order  \prec.

Definition2.2. For two stratifications  \chi and  \chi' of  S^{m-1} we say that  \chi' is finer

than  \chi if and only if for any  \sigma'\in\Delta(\chi') there exists  \sigma\in\Delta(\chi) such that  \sigma'\subset\sigma , which

is denoted by  \chi\prec\chi'.

We introduce a property for two cells. Two  k‐cells  \sigma_{1} and  \sigma_{2} are adjacent to each
other if there exists  a(k-1) ‐cell  \tau for which  \overline{\sigma_{1}}\leqq\overline{\sigma_{2}}=\overline{\tau} is satisfied.

Definition2.3. For a cell  \sigma\in\Delta(\chi) a star open set  St_{\chi}(\sigma) is defined by

(2.2)  St_{\chi}(\sigma)=\tau\in\Delta(\chi)\sigma\subset\overline{\tau}\sqcup T.
Definition2.4. For a subset  K of  S^{m-1} we define  M*K\subset M\cross D^{m} by

(2.3)  M*K=\{(x, ty) \in M\cross D^{m} ; x\in M, y\in K, 0<t<1\}.
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§2.2. Intuitive representation and its framework

We introduce the framework which realizes intuitive representation of local coho‐

mology groups.

Let  \mathcal{F} be a sheaf of  \mathbb{C}‐vector spaces on  X,  \mathcal{W} a family of open sets in  X and  \mathscr{T}a

family of stratifications of  S^{m-1} . We assume two conditions for  \mathscr{T} below.

1. Each  \chi\in  \mathscr{T} is associated with partitioning by afinite family of hyperplanes in  \mathbb{R}^{m}.

2. For any  \chi',  \chi"\in  \mathscr{T} , there exists  \chi\in \mathscr{T} such that  \chi'\prec\chi and  \chi"\prec\chi.

Let  T be an open neighborhood of  M in  X . Then we also assume that  (\mathcal{W}, \mathscr{T}, T)
satisfies the following conditions.

(P‐1) For any  \chi\in \mathscr{T} and for any  \sigma\in\Delta(\chi) , we have  (M*St(\sigma))\leqq T\in \mathcal{W} and

(2.4)  H^{k} ( ( M* St  (\sigma))\leqq T,  \mathcal{F})  =0  (k\neq 0) .

(P‐2) (Existence of a finer asyclic stratification) For any  W\in \mathcal{W} , there exist  \chi\in  \mathscr{T} and
an open neighborhood  U\subset T of  M such that the following conditions hold.

(a) There exists  \sigma\in\Delta(\chi) such that  (M*St(\sigma))\leqq U\subset W.

(b) For any  \sigma\in\Delta(\chi) , we have  (M*St(\sigma))\leqq U\in \mathcal{W} and

(2.5)  H^{k} ( ( M* St  (\sigma))\leqq U,  \mathcal{F})  =0.

(P‐3) (Cone connectivity of  W ) Let  W  \in  \mathcal{W},  \sigma_{1}  \in  \Delta_{m-1}(\chi_{1}) and  \sigma_{2}  \in  \Delta_{m-1}(\chi_{2}) for
some  \chi_{1},  \chi_{2}\in  \mathscr{T} and let  U\subset T be an open neighborhood of  M satisfying

(2.6) ( M* St  (\sigma_{k}) )  \leqq U\in \mathcal{W}  (k=1,2) .

Then there exist  \chi which is finer than  \chi_{1} and  \chi_{2},  (m- 1)‐cells  \tau_{1},  \tau_{2} , . . . ,  \tau_{l}  \in

 \Delta_{m-1}(\chi) and an open neighborhood  U'  \subset  T of  M which satisfy the following
conditions.

(a)  \tau_{1}\subset\sigma_{1} and  \tau_{l}\subset\sigma_{2}.

(b)  \tau_{k} and  \tau_{k+1} is adjacent to each other for  k=1 , 2, . . . ,  l-1.

(c) ( M* St  (\tau_{k}) )  \leqq U'\subset W for  k=1 , 2, . . . ,  l.

Now we are ready to define intuitive representation of local cohomology groups.
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Definition 2.5. We define intuitive representation  \check{H}(\mathcal{F}) of local cohomology

groups   H_{M}^{m}(X, \mathcal{F})\bigotimes_{\mathbb{Z}}H_{M}^{m}(X, \mathbb{Z}_{X}) as follows.

(2.7)   \check{H}(\mathcal{F})= (\bigoplus_{U\in \mathcal{W}}\mathcal{F}(U))
/\mathcal{R}.
Here  \mathcal{R} is a  \mathbb{C}‐vector space generated by the following elements.

(2.8)  f\oplus(-f|_{V} ) (  f\in \mathcal{F}(U) ,  U,  V\in \mathcal{W} and  V\subset U).

§3. The equivalence of local cohomology groups and their intuitive

representation

The purpose of this section is to prove the following main theorem. We specifically

construct the boundary value map  b_{\mathcal{W}} and its inverse map  \vartheta for that purpose.

Theorem3.1. There exists the boundary value map  b_{\mathcal{W}} from intuitive repre‐

sentation to a local cohomology group

(3.1)  b_{\mathcal{W}} :   \check{H}(\mathcal{F})arrow^{\sim}H_{M}^{m}(X, \mathcal{F})\bigotimes_{\mathbb
{Z}}H_{M}^{m}(X, \mathbb{Z}_{X}) .

Futhermore it is isomorphic.

§3.1. Construction of  b_{\mathcal{W}}

First we construct the boundary value map  b_{\mathcal{W}} due to Schapira’sidea in [4]. Let
 \mathcal{F} be a sheaf on  X . We define the dual complex D (  \mathcal{F}) of  \mathcal{F} as follows.

(3.2)  D(\mathcal{F})=R\mathcal{H}om_{\mathbb{C}_{X}}(\mathcal{F}, \mathbb{C}_{X}) .

We fix  W\in \mathcal{W} . From the condition(P‐2), we can find an open neighborhoodU of M,
 \chi\in  \mathscr{T} and  \sigma\in\Delta(\chi) which satisfy  (M*St(\sigma))\leqq U\subset W , then we have the restriction
map

(3.3)  \mathcal{F}(W)arrow \mathcal{F} ( ( M* St  (\sigma))\leqq U).

It follows from  M\subset M*St(\sigma) that we also have the restriction map

(3.4)  \mathbb{C}_{\overline{M*St(\sigma)}}arrow \mathbb{C}_{M}.

By applying  D(*) and   \bigotimes_{\mathbb{C}_{X}}\mathbb{C}_{U} to the above, we get

(3.5)  \mathbb{C}_{(M*St(\sigma))\leqq U}arrow D(\mathbb{C}_{M}) .
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Here we note that

(3.6)  D( \mathbb{C}_{M})\simeq \mathbb{C}_{M}[m]\bigotimes_{\mathbb{Z}_{X}}\omega_{M}
,
and because  M is orientable

(3.7)  H_{M}^{m}(X, \mathbb{Z}_{X})\simeq\Gamma(X, \omega_{M}) ,

where  \omega_{M}  =\mathcal{H}_{M}^{m}(\mathbb{Z}_{X}) . Then by applying RHom  \mathbb{C}_{X}(*, \mathcal{F}) to (3.5) and taking its0‐th
cohomology we obtain

(3.8)  \mathcal{F} ( ( M* St  (\sigma))\leqq U )   arrow H_{M}^{m}(X, \mathcal{F})\bigotimes_{\mathbb{Z}}H_{M}^{m}(X, \mathbb{Z}_
{X}) .

We can get  b_{W} by composing (3.3) and (3.8):

(3.9)  \mathcal{F}(W)arrow \mathcal{F} ( ( M* St  (\sigma))\leqq U)   arrow H_{M}^{m}(X, \mathcal{F})\bigotimes_{\mathbb{Z}}H_{M}^{m}(X, \mathbb{Z}_
{X}) .

It follows from the construction that  b_{W} satisfies the proposition below.

Proposition3.2.  b_{W} does not depend on the choice of  U,  \chi and  \sigma.

As a corollary, we have the following.

Corollary 3.3. For any  W_{1} and  W_{2} with  W_{2}\subset W_{1} which belong to  \mathcal{W} and for

any  f\in \mathcal{F}(W_{1}) , we have

(3.10)  b_{W_{1}}(f)=b_{W_{2}}(f|_{W_{2}}) .

We get  b_{\mathcal{W}} by assigning   \oplus f_{W}\in\bigoplus_{W\in \mathcal{W}}\mathcal{F}(W) to   \sum_{W\in \mathcal{W}}b_{W}(f_{W}) .

(3.11)  b_{\mathcal{W}} :   \bigoplus_{W\in \mathcal{W}}\mathcal{F}(W)arrow H_{M}^{m}(X, \mathcal{F})
\bigotimes_{\mathbb{Z}}H_{M}^{m}(X, \mathbb{Z}_{X}) .

Moreover by Corollary 3.3 the element of  \mathcal{R} is sent to  0 , and we have obtained  b_{\mathcal{W}}.

(3.12)  b_{\mathcal{W}} :  ( \bigoplus_{U\in \mathcal{W}}\mathcal{F}(U))/\mathcal{R}arrow H_{M}^{m}(X, 
\mathcal{F})\bigotimes_{\mathbb{Z}}H_{M}^{m}(X, \mathbb{Z}_{X}) .

§3.2. The interpretation of  b_{\mathcal{W}}

Next let us study the concrete correspondence of  b_{\mathcal{W}}.
First we define the function  sgn(*, *) which reflects the orientations of two cells.

Let  \sigma and  \tau be cells of  \chi . We assume that  \sigma and  \tau satisfy one of two cases below.

1.  \sigma and  \tau are  k‐cells.
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2.  \sigma is a  k‐cell and  \tau is  a  (k+1)‐cell with  \sigma\subset\overline{\tau}.

Definition 3.4.  sgn(\sigma, \tau) is defined by

1  (\tau and either  \sigma if the first case or the induced

(3.13)  \{ orientation from  \sigma if the second case have the same orientation),
 -1 (otherwise).

Now we study the concrete correspondence of  b_{\mathcal{W}} . We fix  \chi\in  \mathscr{T}.

Definition 3.5. Let  k=0 , 1,  \cdots ,  m-1 . We define the sheaf  \mathcal{L}_{\chi}^{k+1} by

(3.14)   \mathcal{L}_{\chi}^{k+1}= (\bigoplus_{\sigma\in\Delta_{k(\chi)}}\mathbb{C}
_{\overline{M*St(\sigma)})} \bigotimes_{\mathbb{Z}_{X}}\omega_{M}.
For convenience, we set   \mathcal{L}_{\chi}^{0}=\mathbb{C}_{X}\bigotimes_{\mathbb{Z}_{X}}\omega_{M} . Then we have the following proposition.

Proposition 3.6. The following sequence is exact.

(3.15)  0arrow \mathcal{L}_{\chi}^{0}arrow \mathcal{L}_{\chi}^{1}arrow \mathcal{L}
_{\chi}^{2}arrow\cdotsarrow \mathcal{L}_{\chi}^{m}arrow \mathbb{C}_{M}arrow 0.

By this proposition we have the quasi‐isomorphism.

(3.16)  \mathcal{L}_{\chi}^{*}\simeq \mathbb{C}_{M}.

Here  \mathcal{L}_{\chi}^{*} designates the complex

(3.17)  0arrow \mathcal{L}_{\chi}^{0}arrow \mathcal{L}_{\chi}^{1}arrow \mathcal{L}
_{\chi}^{2}arrow\cdots-arrow \mathcal{L}_{\chi}^{m}arrow 0.

Note that, in the complex, the leftmost term  \mathcal{L}_{\chi}^{0} is located at degree  -m and the

rightmost term  \mathcal{L}_{\chi}^{m} is at degree  0 . In particular the complex  \mathcal{L}_{\chi}^{*} is concentrated in

degree  0 . Hence for any  \sigma\in\Delta_{m-1}(\chi) we have the commutative diagram below.

 \mathcal{L}_{\chi}^{m}  arrow^{\sim}  \mathbb{C}_{M}

(3.18)  \epsilon\uparrow \uparrow
  \mathbb{C}_{\overline{M*St(\sigma)}}\bigotimes_{\mathbb{Z}_{X}}\omega_{M} 
arrow^{\sim\eta} \mathbb{C}_{\overline{M*St(\sigma)}}.

Here  \epsilon is the embedding map and  \eta is defined by

(3.19)  c_{\sigma}\otimes\omegaarrow sgn(\sigma,\omega)\cdot c_{\sigma}.

For convenience we set

(3.20)   \mathcal{F}_{k}^{*}(\Delta(\chi))=\bigoplus_{\sigma\in\Delta_{k-1(\chi)}}
\mathcal{F} ( M*  St  (\sigma) ).

Then by (3.15) we have
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Lemma 3.7.

(3.21)   H_{M}^{m}(X, \mathcal{F})\bigotimes_{\mathbb{Z}}H_{M}^{m}(X, \mathbb{Z}_{M})
\simeq \frac{\mathcal{F}_{m}^{*}(\Delta(\chi))}{{\rm Im}(\mathcal{F}_{m-1}^{*}
(\Delta(\chi))arrow \mathcal{F}_{m}^{*}(\Delta(\chi)))}\bigotimes_{\mathbb{Z}}H_
{M}^{m}(X, \mathbb{Z}_{M}) .

By these observations we have the following conclusion.

Proposition3.8. The boundary value map  b_{\mathcal{W}}

(3.22)   \mathcal{F}(M*St(\sigma))arrow H_{M}^{m}(X, \mathcal{F})\bigotimes_{\mathbb{Z}
}H_{M}^{m}(X, \mathbb{Z}_{x})
is induced by  farrow[f\cdot 1_{\sigma}]\otimes[1_{\sigma}].

§3.3. The inverse map  \vartheta of  b_{\mathcal{W}}

Let  \chi and  \chi'  \in  \mathscr{T} with  \chi\prec\chi' . First we construct the map  \Theta_{m} from  \mathcal{L}_{\chi}^{m} to  \mathcal{L}_{\chi}^{m},.
Let  \psi be a choice function such that, for each  \sigma\in\Delta_{m-1}(\chi) , there exists  \sigma'\in\Delta_{m-1}(\chi')
with  \sigma'\subset\sigma and  \psi(\sigma)=\sigma' . Then for any f \sigma\in \mathbb{C}_{\overline{M*St(\sigma)}} we define the  \Theta_{m} as follows.

(3.23)  \Theta_{m} :  f_{\sigma}arrow sgn(\sigma, \psi(\sigma))\cdot f_{\sigma}|_{\psi(\sigma)}.

And it immediately follows from the construction of  \Theta_{m} that the diagram below is
commutative.

(3.24)  \mathcal{L}_{\chi}^{m}arrow\downarrow\Theta_{m} \mathbb{C}_{M}\downarrow id
 \mathcal{L}_{\chi'}^{m} -\ovalbox{\tt\small REJECT}-arrow \mathbb{C}_{M}.

We can extend this commutative diagram to that of the complexes  \mathcal{L}_{\chi}^{*} and  \mathcal{L}_{\chi}^{*} , by the

following proposition.

Proposition3.9. Let  \Theta_{m} be a morphism defined above. Then there exist  \Theta_{k}(k=
 0 , 1,  \cdots ,  m-1) and the following diagram is commutative.

 0 -\ovalbox{\tt\small REJECT}-arrow \mathcal{L}_{\chi}^{0} -\ovalbox{\tt\small 
REJECT}-arrow\cdots -\ovalbox{\tt\small REJECT}-arrow \mathcal{L}_{\chi}^{m} -
\ovalbox{\tt\small REJECT}-arrow \mathbb{C}_{M} -\ovalbox{\tt\small REJECT}-
arrow 0

(3.25)  \downarrow\Theta_{0} \downarrow\Theta_{m} \downarrow id
 0 -\ovalbox{\tt\small REJECT}-arrow \mathcal{L}_{\chi'}^{0} -\ovalbox{\tt\small
REJECT}-arrow\cdots -\ovalbox{\tt\small REJECT}-arrow \mathcal{L}_{\chi'}^{m} -
\ovalbox{\tt\small REJECT}-arrow \mathbb{C}_{M} -\ovalbox{\tt\small REJECT}-
arrow 0.

Let us shortly explain the proof of Proposition 3.9. We construct  \Theta_{m-1} :  \mathcal{L}_{\chi}^{m-1}arrow
 \mathcal{L}_{\chi}^{m-1} such that the diagram below is commutative.

 \mathcal{L}_{\chi}^{m-1} -\ovalbox{\tt\small REJECT}-arrow \mathcal{L}_{\chi}
^{m}

(3.26)  \downarrow\ominus m-1 \downarrow\ominus m
 \mathcal{L}_{\chi}^{m-1} arrow \mathcal{L}_{\chi}^{m},.

Here the following lemma guarantees existence of  \Theta_{m-1}.
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Lemma3.10. Let  l be a non‐negative integer and  k  =  0 , 1,  \cdots ,  m . For any

 \sigma\in\Delta(\chi) we have

(3.27)  Ext^{l}(\mathbb{C}_{\overline{M*St(\sigma)}}, \mathcal{L}_{\chi}^{k}, ) =0.
By the same argument we can constuct  \Theta_{k}(k=0,1, \cdots m-1) inductively and we

have Proposition 3.9.

Then noticing Lemma 3.7, we construct  \vartheta from (3.21) to  \check{H}(\mathcal{F}) .

Proposition 3.11.

(3.28)  \vartheta :   \frac{\mathcal{F}_{m}^{*}(\Delta(\chi))}{{\rm Im}(\mathcal{F}_{m-1}^{*}(\Delta
(\chi))arrow \mathcal{F}_{m}^{*}(\Delta(\chi)))}\bigotimes_{\mathbb{Z}}H_{M}^{m}
(X, \mathbb{Z}_{M})arrow\check{H}(\mathcal{F})
is induced by

(3.29)  \vartheta :  f_{\sigma}\otimes\omegaarrow sgn(\sigma, \omega)\cdot f_{\sigma}  (\sigma\in\Delta_{m-1}(\chi), f_{\sigma}\in \mathcal{F}(M*St(\sigma))) .

By Proposition 3.9 we obtain the proposition below.

Proposition3.12.  \vartheta does not depend on the choice of  \chi.

This proposition guarantees the well‐definedness of  \vartheta . Furthermore by Propositions

3.8, 3.11 and 3.12 we can easily see Theorem 3.1.
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