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Asymptotics for the focusing integrable discrete
nonlinear Schrödinger equation

By

Hideshi Yamane \ovalbox{\tt\small REJECT}

Abstract

We investigate the long-time asymptotics for the focusing integrable discrete nonlinear
Schrödinger equation. The soliton resolution conjecture is valid for this equation. Namely,
under generic assumptions on the initial value, the solution is approximated by a sum of 1-
solitons.

§1. Introduction

In this article we announce our result about the long-time behavior of the solutions

to the focusing integrable discrete nonlinear Schrödinger equation (IDNLS) introduced
by Ablowitz and Ladik ([1]):

(1.1)  i \frac{d}{dt}R_{n}+(R_{n+1}-2R_{n}+R_{n-1})+|R_{n}|^{2}(R_{n+1}+R_{n-1})=0 
(n\in \mathbb{Z}) .

It is a discrete version of the focusing nonlinear Schrödinger equation (NLS)

(1.2)  iu_{t}+u_{xx}+2u|u|^{2}=0.

As is the case with (1.2), the equation (1.1) can be solved by the inverse scattering
transform. Eigenvalues appear in quartets of the form  (\pm z_{j}, \pm\overline{z}_{j}^{-1}) (see §2).

It is well known ([1, 2]) that (1.1) admits multi-soliton solutions in the reflectionless
case. When there is only one quartet of eigenvalues including  z_{1}  =\exp(\alpha_{1}+i\beta_{1}) with
 \alpha_{1}  >0,  R_{n}(t) is  a (bright) 1-soliton solution, namely,

 R_{n}(t)= BS  (n, t;z_{1}, C_{1}(0)) ,
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where  C_{1}(0) is the norming constant and

BS  (n, t;z_{1}, C_{1}(0))=\exp(-i[2\beta_{1}(n+1)-2w_{1}t+\arg C_{1}(0)])
 \cross\sinh(2\alpha_{1}) sech [ 2\alpha_{1}(n+1)-2v_{1}t-\theta_{1}],

 v_{1}=-\sinh(2\alpha_{1})\sin(2\beta_{1}) , w_{1}=\cosh(2\alpha_{1})
\cos(2\beta_{1})-1,

 \theta_{1}=\log|C_{1}(0)|-\log\sinh(2\alpha_{1}) .

Changing the value of  C_{1}(0) implies phase shifts in the  \exp and/or the sech factors. The
velocity of  BS(n, t;z_{1}, C_{1}(0)) is, by definition, that of its sech factor denoted by tw(z1).
We have

tw  (z_{1})= tw  (\exp(\alpha_{1}+i\beta_{1}))=\alpha_{1}^{-1}v_{1}=-\alpha_{1}^{-1}
\sinh(2\alpha_{1})\sin(2\beta_{1}) .

The soliton resolution conjecture (see [14] for a brief survey) about (not necessarily
integrable) nonlinear dispersive equations states that any reasonable solution splits into
a sum of solitons up to a small error term as  t tends to infinity. In the case of integrable

equations, the difficulty lies in the perturbed case where the reflection coefficient does

not vanish identically. In the present paper, we deal with such aproblem concerning

(1.1). Our main result is as follows: if the quartets of eigenvalues are  (\pm z_{j}, \pm\overline{z}_{j}^{-1}) with
 tw(z_{j})  <tw(z_{j'} )  (j<j') , then we have, formally,

 R_{n}(t) \sim\sum_{j\in G_{1}} BS  (n, t;z_{j}, \delta_{n/t}(0)\delta_{n/t}(z_{j})^{2}p_{j}T(z_{j})^{-2}C_{j}(0))

 + \sum_{j\in G_{2}} BS  (n, t;z_{j},p_{j}T(z_{j})^{-2}C_{j}(0)) ,

 p_{j}=\ovalbox{\tt\small REJECT} z_{k}^{2}\overline{z}_{k}^{-2}k>j ’

 T(z_{j})= \frac{z_{k}^{2}(z_{j}^{2}-\overline{z}_{k}^{-2})}{z_{j}^{2}-z_{k}^{2}
}k>j
under generic assumptions. Here we have denoted  G_{1}  =  \{j; |tw(z_{j})| < 2\} and  G_{2}  =

 \{j; |tw(z_{j})| \geq 2\} . The function  \delta_{n/t}(z)  =  \delta(z) is defined in terms of the reflection

coefficient. In the reflectionless case we have  \delta(z)  =  1 and recover the known formula

about a multi-soliton.

This result has a significant difference from those about the continuous NLS (1.2)
in [7, 10, 11]. In the case of (1.2), the effect of the reflection coefficient can be felt in
the entire half-plane  t>0 , but in the case of (1.1) it is irrelevant in  |n|/t\geq 2.

We review some known results about the long-time asymptotics of integrable equa-
tions based on the method of nonlinear steepest descent. This method was established

in [5] in order to study the MKdV equation and has been employed in many papers
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including ones by the present author. The defocusing NLS was studied in [3]. The
soliton resolution for the focusing NLS (1.2) was studied in [7, 10, 11]. The present
author studied the defocusing IDNLS in [16, 17]. The Toda lattice was studied in [9]
(solitonless), [12] (soliton resolution included). In [8], the asymptotics for the  KdV

equation was studied in several regions.

Notice that the focusing IDNLS was investigated in the solitonless case in [15] by
using some ansatz. It is possible, although now unpopular, to study the long-time

asymptotics by using the Gelfand-Levitan-Marchenko integral equation (e.g. the study
of the  KdV equation in [13]).

§2. Inverse scattering transform

We review the inverse scattering transform for (1.1) following [1] and [2, Chap. 3].
The n-part of the Lax pair is

(2.1)  X_{n+1}= \{\begin{array}{ll}
z   -\overline{R}_{n}
R_{n}   z^{-1}
\end{array}\}X_{n},
where the bar denotes the complex-conjugate. The t-part is

(2.2)   \frac{d}{dt}X_{n}= \{\begin{array}{ll}
-iR_{n-1}\overline{R}_{n}-\frac{i}{2}(z-z^{-1})^{2}   i(z\overline{R}_{n}-z^{-1}
\overline{R}_{n-1})
i(z^{-1}R_{n}-zR_{n-1})   iR_{n}\overline{R}_{n-1+\frac{i}{2}}(z-z^{-1})^{2}
\end{array}\}X_{n}
and (1.1) is equivalent to the compatibility condition   \frac{d}{dt}X_{n+1}=(\frac{d}{dt}X_{m})_{m=n+1}.

We can construct eigenfunctions of (2.1) for any fixed  t in  |z|  \geq 1 and  |z|  \leq 1 . More
precisely, one can define the eigenfunctions ϕn  (z, t) ,  \psi_{n}(z, t)  \in  \mathcal{O}(|z| > 1)\leqq \mathcal{C}^{0}(|z| \geq 1)
and  \psi_{n}^{\ovalbox{\tt\small REJECT}}(z, t) , ϕn  (z, t)\in \mathcal{O}(|z|<1)\leqq \mathcal{C}^{0}(|z| \leq 1) such that

ϕn  (z, t)\sim z^{n}  \{\begin{array}{l}
1
0
\end{array}\} , ϕn  (z, t)\sim z^{-n}  \{\begin{array}{l}
0
1
\end{array}\} as  narrow-\infty,

 \psi_{n}(z, t)\sim z^{-n}  \{\begin{array}{l}
0
1
\end{array}\} ,  \psi_{n}^{\ovalbox{\tt\small REJECT}}(z, t)\sim z^{n}  \{\begin{array}{l}
1
0
\end{array}\} as  narrow\infty.

On the unit circle  C :  |z|  =  1 , there exist unique functions  a(z) ,  a^{\ovalbox{\tt\small REJECT}}(z) ,  b(z, t) ,  b^{\ovalbox{\tt\small REJECT}}(z, t)
for which

ϕ n  (z, t)  =  b(z, t)\psi_{n}(z, t)  +a(z)\psi_{n}^{\ovalbox{\tt\small REJECT}}(z, t) ,

ϕ n  (z, t)  =  a^{\ovalbox{\tt\small REJECT}}(z)\psi_{n}(z, t)  +b^{\ovalbox{\tt\small REJECT}}(z, t)\psi_{n}^{\ovalbox{\tt\small REJECT}}(z, 
t)
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holds. It can be proved that aand  a^{\ovalbox{\tt\small REJECT}} are independent of t. Moreover we have

 a(z)\in \mathcal{O}(|z|>1)\leqq \mathcal{C}^{0}(|z| \geq 1) , 
a^{\ovalbox{\tt\small REJECT}}(z)\in \mathcal{O}(|z| <1)\leqq \mathcal{C}^{0}
(|z|\leq 1) ,

 a^{\ovalbox{\tt\small REJECT}}(z)=\overline{a}(1/\overline{z}) (0< |z|\leq 1)

 b(z) , b(z)\in \mathcal{C}^{0}(|z|=1) , b(z)=-\overline{b}(1/\overline{z}) (|z|
=1) .

It is well known that if a function on  R decays rapidly then its Fourier transform is

smooth. There is an analogous fact in our context: if the potential  R_{n} decays rapidly

as  |n|  arrow\infty , then  a,  a^{\ovalbox{\tt\small REJECT}},  b and  b^{\ovalbox{\tt\small REJECT}} are smooth functions on  |z|  =  1 . They are  \mathcal{C}^{\infty} if  R_{n}

decays faster than any negative power of  n and are analytic if  R_{n} decays exponentially.
We assume that  a(z) and  a^{\ovalbox{\tt\small REJECT}}(z) never vanish on the unit circle. Their zeros in  |z|  >1

and  |z|  <1 are called eigenvalues. They appear in quartets ofthe form  (\pm z_{j}, \pm\overline{z}_{j}^{-1})(j=
 1 , 2, . . . ,  J) . They are time-independent. We assume that the eigenvalues are all simple.
If  a(z_{j})=0 we have

ϕn(zj)  =b_{j}\psi_{n}(z_{j})

for some constant  b_{j} . We introduce the the norming constant  C_{j} associated with zj by

 C_{j}=C_{j}(t)= \frac{b_{j}}{\frac{d}{dz}a(z_{j})}.
Set  \omega_{j}  =  (z_{j}-z_{j}^{-1})^{2}/2 . Then the time evolution of the norming constant is given

by

(2.3)  C_{j}(t)=C_{j}(0)\exp(2i\omega_{j}t) .

We can define the reflection coefficient  r(z, t) by

(2.4)  r(z, t)= \frac{b(z,t)}{a(z)}, |z|=1.
Assume  \{R_{n}(0)\} is rapidly decreasing in the sense that  \{R_{n}(0)\}  \in  \ell 1,p for any

 p\in \mathbb{N} . Then  \{R_{n}(t)\} is also rapidly decreasing for any  t . Due to the construction in[2,
pp.49-56], the eigenfunctions ϕn, ϕn,  \psi_{n} and  \psi_{n}^{\ovalbox{\tt\small REJECT}} are smooth on  C :  |z|  =  1 . Hence a,  b

and  r=r(z, t) are also smooth there.

The time evolution of  r(z, t) according to (2.2) is given by

(2.5)  r(z, t)=r(z)\exp(it(z-z^{-1})^{2}) =r(z)\exp(it(z-\overline{z})^{2}) ,

where  r(z)=r(z, 0) . Notice that  (z-z^{-1})^{2} is real if  |z|=1.
Set  c_{n}=\ovalbox{\tt\small REJECT}_{k=n}^{\infty}(1+|R_{k}|^{2}) . Following [2, (3.2.94)], we set

 m(z)=m(z;n, t)=  \{  [_{0c_{n}}^{10}[_{0c_{n}}^{10} [[z—a‐(1zn) \psizn‐(nzϕtn)(,  z,t) \frac{1'}{a(z}z)nzn
 \psi

ϕnn(z(z’ t)]t) ] inin  |z||z|  <>11.’
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It is meromorphic in  |z|  \neq  1 with poles  \pm z_{j} and  \pm\overline{z}_{j}^{-1} . We have  m(z)arrow I as  zarrow\infty.

In terms of  m(z) , the pole conditions [2, (3.2.93)] are, in view of [2, (3.2.87)],

(2.6)  {\rm Res}(m(z); \pm z_{j})=\lim_{zarrow\pm z_{j}}m(z) \{\begin{array}{ll}
0   0
z_{j}^{-2n}C_{j}(t)0   
\end{array}\} ,

(2.7)  {\rm Res}(m(z); \pm\overline{z}_{j}^{-1})=\lim_{zarrow\pm\overline{z}_{j}^{-1}}
m(z) [_{00}^{0\overline{z}_{j}^{-2n-2}\overline{C}_{j}(t)}]
for  j=1 , 2, . . . ,  J . The jump condition is given by

(2.8)  m_{+}(z)=m_{-}(z)v(z) on  C :  |z|=1,

 v(z)=v(z, t)= \{\begin{array}{ll}
1+|r(z,t)|^{2}   z^{2n}\overline{r}(z,t)
z^{-2n}r(z,t)   1
\end{array}\}
(2.9)  =e^{-(it/2)(z-z^{-1})^{2}ad\sigma_{3}} \{\begin{array}{ll}
1+|r(z)|^{2}   z^{2n}\overline{r}(z)
z^{-2n}r(z)   1
\end{array}\} ,

(2.10)  m(z)arrow I as  zarrow\infty.

Here  m+ and  m_{-} are the boundary values from the outside and inside of Crespectively

(  C is oriented clockwise following the convention in [2].) We employ the usual notation
 \sigma_{3}  = diag  (1, -1) ,  a^{ad\sigma_{3}}Q=a^{\sigma_{3}}Qa^{-\sigma_{3}} . The solution  \{R_{n}\}  =  \{R_{n}(t)\} to (1.1) can be
reconstructed from the (2, 1)-component of  m(z) . We have  ([2, (3.2.91c)])

(2.11)  R_{n}(t)=-  \frac{d}{dz}m(z)_{21} z=0
In the reflectionless case,  R_{n}(t) is a multi-soliton. When there is only one quartet

of eigenvalues, it is a 1-soliton as in the following proposition ([2, p.83]).

Proposition 2.1. Assume  r(z)\equiv 0 and that there is only one quartet of eigen-

values including  z_{1}  =\exp(\alpha_{1}+i\beta_{1}) ,  \alpha_{1}  >0 . Then the  RHP (2.6)-(2.10) has a unique
solution. We denote it by  m_{0}(z) . The solution  R_{n}(t) to (1.1) obtained from  m_{0}(z)
through (2.11) is the bright 1-soliton solution  R_{n}(t)  =  BS(n, t;z_{1}, C_{1}(0)) given in the
introduction.

Let us introduce the phase function

  \phi=\phi(z)=\phi(z;n, t)=\frac{1}{2}it(z-z^{-1})^{2}-n\log z,
so that the jump matrix  v(z) in (2.9) is given by

(2.12)  v=v(z)=e^{-\phi(z)ad\sigma_{3}} \{\begin{array}{ll}
1+|r(z)|^{2}   \overline{r}(z)
r(z)   1
\end{array}\} = \{\begin{array}{ll}
1+|r(z)|^{2}   e^{-2_{\phi}(z)}\overline{r}(z)
e^{2_{\phi}(z)}r(z)   1
\end{array}\}
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Moreover, we have  \phi(Z_{j})=i\omega_{j}t-n\log z_{j} and

(2.13)  z_{j}^{-2n}C_{j}(t)=C_{j}(0)\exp[2\phi(z_{j})],
(2.14)  {\rm Re}\phi(z_{j})=\alpha_{j}t[tw(z_{j})-n/t],
(2.15) tw  (z_{j})=-\alpha_{j}^{-1}\sinh(2\alpha_{j})\sin(2\beta_{j}) ,

where

 z_{j}=\exp(\alpha_{j}+i\beta_{j}) , \alpha_{j} >0.

Notice the equivalence

 \pm{\rm Re}\phi(z_{j})>0\xLeftrightarrow{}\pm(tw(z_{j})-n/t)>0.

If the j-th soliton is slower than the observer with velocity  n/t , then  z_{j}^{-2n}C_{j}(t) is

exponentially decreasing as   tarrow\infty . By (2.6) and (2.7), the residues at  \pm z_{j} and  \pm\overline{z}_{j}^{-1}
are infinitely small. In other words, these poles can be neglected.

The situation is complicated if the j-th soliton is faster than the observer. Assume

that the observer is chasing the s-th soliton. One can replace  z_{j}^{-2n}C_{j} (which is growing)
with its reciprocal (decreasing) by using a trick, which changes the value of the s-th
norming constant. The implication of this trick is twofold. One is that the j-th soliton

can be neglected and the other is that the s-th soliton undergoes phase shift.

§3. Main results

In this section we state our main results. See [18] for technical details.
Throughout this section, we make the following three generic assumptions:

 \bullet  a(z) never vanishes on the unit circle.

either.

 \bullet The eigenvalues are all simple.

It implies that  a^{\ovalbox{\tt\small REJECT}}(z) never vanishes there

 \bullet  tw(z_{j}) ’s are mutually distinct. We may assume that tw  (z_{j})  <  tw(z_{j+1}) for any j

without loss of generality.

The first and the second are assumed in [2].
We derive asymptotic expansions by using the method of nonlinear steepest de-

scent. Stationary points of  \phi(Z) play important roles. They have different orders and

configurations in different regions of the  (n, t) -plane. In each region, we choose a contour

that is compatible with the geometry of stationary points.
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In the region  |n|  <2t , the function  \phi(Z) has four saddle points (stationary points
of the first order) on the unit circle  |z|  =1 . They are

 S_{1}=e^{-\pi i/4}A, S_{2}=e^{-\pi i/4}\overline{A}, S_{3}=-S_{1}, S_{4}=-S_{2}
,

 A=2^{-1}(\sqrt{2+n/t}-i\sqrt{2-n/t}) .

We draw steepest descent paths passing through the saddle points. Moreover we intro-
duce

(3.1)   \delta(z)=\exp(\frac{-1}{2\pi i} [\int_{S_{1}}^{S_{2}}+\int_{S_{3}}^{S_{4}}] (
\tau-z)^{-1}\log(1+|r(\tau)|^{2})d\tau) ,

where the contours are the arcs  \subset\{|z|=1\} . We have the following result.

Theorem 3.1. Let  V_{0} be a constant with  0  <  V_{0}  <  2 . Assume that the initial

value satisfies the rapid decrease condition  \{R_{n}(0)\}  \in  \leqq_{p=0}^{\infty}\ell^{1,p} . Then in the region

 |n|  \leq  (2-V_{0})t , the asymptotic behavior of the solution to (1.1) is as follows:
(soliton case) In the region  -d\leq tw(z_{j})-n/t  \leq  d,  j  \in  \{1, . . . , J\} , with sufficiently
small  d , we have

 R_{n}(t)= BS  (n, t;z_{j}, \delta(0)\delta(z_{j})^{-2}p_{j}T(z_{j})^{-2}C_{j}(0))+O(t^{-1/2}) ,

 p_{j}=k>jz_{k}^{2} \overline{z}_{k}^{-2}, T(z_{j})=k>j\frac{z_{k}^{2}(z_{j}-
\overline{z}_{k}^{-2})}{z_{j}-z_{k}^{2}}.
(solitonless case) If {tw(zj);  j=1 , . . . ,  J}  \leqq[n/t-d, n/t+d]  =  \emptyset , then there exist

 C_{j}  =C_{j}(n/t)  \in \mathbb{C} and  p_{j}  =p_{j}(n/t) ,  q_{j}  =q_{j}(n/t)  \in \mathbb{R}  (j=1,2) depending only on the
ratio  n/t such that

(3.2)  R_{n}(t)= \sum_{j=1}^{2}C_{j}t^{-1/2}e^{-i(p_{j}t+q_{j}\log t)}+O(t^{-1}\log t) as  tarrow\infty.

The symbol  O represents an asymptotic estimate which is uniform with respect to  (t, n)
satisfying  |n|  \leq(2-V_{0})t.

Next, we study other regions. Since the equation (1.1) is invariant undern  arrow-n,

we may assume  n>0 without loss of generality.

If  n=2t , the function  \phi(Z) has two stationary points of the second order on the
unit circle. We have



38 Hideshi Yamane

Theorem3.2. Assume that  tw(z_{s})  =  2 for some eigenvalue  z_{s} . Then in the

region  2t-Mt^{1/3}<n<2t+M't^{1/3}  (M>0) , we have

 R_{n}(t)= BS  (n, t;z_{s},p_{s}T(z_{s})^{-2}C_{s}(0))+O(t^{-1/3}) as  tarrow\infty.

In the solitonless case, i.e. if  tw(z_{j})  \neq  2 for any j, then the behavior is as follows:

let  t_{0} be such that  \pi^{-1}  [\arg r(e-\pi i/4)\overline{T(e-\pi i/4)}^{2}-2t_{0}] is an integer. Set  t'  =  t-t_{0},

 p'=d+i(-4t'+\pi n)/4,  \alpha'=[12t'/(6t'-n)]^{1/3},  q'=-2^{-4/3}3^{1/3}(6t'-n)^{-1/3}(2t'-n)
and  r\ovalbox{\tt\small REJECT}=r(e^{-\pi i/4})\overline{T(e-\pi i/4)}^{2} . Then we have

 R_{n}(t)=   \frac{e^{2p'-\pi i/4}\alpha'}{(3t')^{1/3}}u (   \frac{4q'}{3^{1/3}} ;  rˆ, ‐  rˆ,  0)  +O(t^{-2/3}) .
Here  u(s;p, q, r) is a solution of the Painlevé  II equation  u"(s)-su(s)-2u^{3}(s)  =  0.

Its parametrization is given in [5] (and is repeated in [17]).

If  n>2t , the function  \phi(Z) has four saddle points off the unit circle. We have

Theorem 3.3. In the region  2<tw(z_{s})-d\leq n/t\leq tw(z_{s})+d with sufficiently
small  d,

 R_{n}(t)= BS  (n, t;z_{s},p_{s}T(z_{s})^{-2}C_{s}(0))+O(n^{-k})   as|n|arrow\infty

for any positive integer  k.

In the solitonless case, i.e. if  tw(z_{j})  \not\in[n/t-d, n/t+d] for any  j , then

 R_{n}(t)=O(n^{-k}) as  |n|arrow\infty

for any positive integer  k.
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