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Local cohomology solutions of holonomic D‐modules
associated with a non‐isolated hypersurface singularity

By

Shinichi Tajima  *

Abstract

A hypersurface with a smooth 2‐dimensional singular locus is considered in the context
of Computational Algebraic Analysis. The holonomic  D‐module associated with each root of
the reduced  b‐function is computed. Local cohomology solutions to the holonomic  D‐module
are explicitly computed.

§1. Introduction

In this paper, we consider a hypersurface with a smooth 2‐dimensional singular

locus in the context of Computational Algebraic Analysis. We explicitly compute holo‐

nomic  D‐modules associated with the reduced  b‐function of the hypersurface by using

a computer algebra system and we study holonomic  D‐modules by computing its local

cohomology solutions.

In  1970' s , M. Kashiwara studied  b‐functions by using  D‐modules. It turned out

that holonomic  D‐modules that he introduced to study  b‐functions contain a wealth

information on singularity. It is important therefore to analyze the structures of the
holonomic  D‐module associated with a root of  b‐functions.

In a previous paper [15], Y. Umeta and the author of the present paper studied
certain kinds of hypersurfaces with a smooth 1‐dimensional singular locus. We con‐
sidered the holonomic  D‐module associated with a root of the reduced  b‐function of

hypersurfaces. We described in particular a method for computing structures of rel‐

evant holonomic  D‐modules. As a sequel of the previous paper [15], we address the
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case of hypersurface with a 2‐dimensional singular locus. We consider one example of

hypersurface with non‐isolated singularity which is given by A. Zaharia in [17]. In this
paper, we present in particular an effective method for studying holonomic  D‐modules

associated with roots of  b‐functions. The key of our approach isause of the concept of

local cohomology.

In section two, we compute the  b‐function, local  b‐functions of the hypersurface.

We compute the holonomic  D‐modules associated with roots of the reduced  b‐function.

In section three, we analyze structures of the holonomic  D‐modules by computing local

cohomology solutions.

§2. An example of non‐isolated hypersurface singularity

Let  S=\{(x_{1}, x_{2}, y_{1}, y_{2})\in X|g(x_{1}, x_{2}, y_{1}, y_{2})=0\} where  g=y_{1}^{2}(y_{1}+x_{1}^{3}+x_{2}^{2})+y_{2}^{2}.
The singular locus  \Sigma of  S is the 2‐dimensional plane  \{(x_{1}, x_{2},0,0) | x_{1}, x_{2} \in \mathbb{C}\} . The

hypersurface above is taken from Table 4 (page 51) in a paper [17]. The table 4 is
obtained by A. Zaharia as one of results of classification of simple germs.

The defining function  g is a weighted homogeneous polynomial with respect to the

weight vector  w=   \frac{1}{18}(2,3,6,9) . LetE denote the Euler operator defined by

 E=  \frac{1}{9}x_{1}\frac{\partial}{\partial x_{1}}+\frac{1}{6}x_{2}
\frac{\partial}{\partial x_{2}}+\frac{1}{3}y_{1}\frac{\partial}{\partial y_{1}}+
\frac{1}{2}y_{2}\frac{\partial}{\partial y_{2}}.
Then,  g satisfies,  E(g)=g.

In this section, we compute the  b‐function, local  b‐functions of the defining function

 g and compute the holonomic  D‐module associated with each root of the reduced b‐

function of  g . For this purpose, we use acomputer algebra system Risa/Asir [11] and
four algorithms bfct, ndbf.bf‐strat, ann and cgsw‐dx implemented in Risa /Asir.

By using bfct, we compute the  b‐function of  g.

[250]  G=yl\wedge 2*(yl+xl\wedge 3+x2\wedge 2)+y2\wedge 2 ;

 yl\wedge 3+(xl\wedge 3+x2\wedge 2)*yl\wedge 2+y2\wedge 2

[251] fctr(bfct (G));

 [[1 , 1  ],  [s+1, 2],  [2*s+3, 1],

 [9*s+10, 1],  [9*s+11, 1],  [9*s+13, 1],  [9*s+14, 1],  [9*s+16, 1],  [9*s+17, 1]]

The output means

 (s+1)^{2}(s+ \frac{3}{2})(s+\frac{10}{9})(s+\frac{11}{9})(s+\frac{13}{9})(s+
\frac{14}{9})(s+\frac{16}{9})(s+\frac{17}{9})
is the  b‐function of the polynomial  g.
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§2.1. a stratification and local  b‐functions

First, we briefly recall the concept of local  b‐functions. LetX beacomplex mani‐

fold,  \mathcal{O}_{X} the sheaf on  X of holomorphic functions,  f a germ of holomorphic function at
a point  x  \in  X . Let  \mathcal{D}_{X} be the sheaf onX of linear partial differential operators with

holomorphic coefficients. There exists a polynomial  b(s) in  s and partial differential

operator  P(s)  \in \mathcal{D}_{X}[s] in a neighborhood of  x such that

 P(s)f(x)^{s+1}=b(s)f(x)^{s}

The monic generator  b_{f,x}(s) of the ideal consisting of such polynomials  b(s) is the local
 b‐function of  f at  x  \in  X . This is defined in the context of analytic functions and
described in terms of holomorphic linear partial differential operators.

In 1997, T. Oaku showed that local  b‐functions of a polynomial  f in  \mathbb{C}[x_{1}, x_{2}, x_{n}]
can be computed by applying computations in Weyl algebra and gave an algorithm for

computing local  b‐functions at all points simulateneously by using a primary decomposi‐

tion algorithm. The algorithm outputsa stratification of  \mathbb{C}^{n} giving the local  b‐function

 b_{f,x} which is constant on each stratum. More recently in 2010, K. Nishiyama and M.

Noro proposed alternative method for computing local  b‐functions([10]). The resulting
algorithm ndbf.bf‐strat is implemented in Risa/Asir([11]).

We compute local  b‐functions of  g by executing ndbf.bf‐strat on Risa /Asir. By

analyzing the result of computation, we see that the stratification of the space  X=\mathbb{C}^{4}

associated with the local  b‐functions of  g consists of 5 strata :

 \Sigma_{0}, \Sigma_{1}, \Sigma_{2}, S-\Sigma, X-S,

where

 \Sigma_{0}= {(0,0,0,0)},  \Sigma_{1}=\{(x_{1}, x_{2},0,0) |x_{1}^{3}+x_{2}^{2}=0\}-\Sigma_{0},  \Sigma_{2}=\Sigma-\Sigma_{1}\geq\Sigma_{0}.

We have  b_{g,x}(s)=(s+1) on the non‐singular locus   S-\Sigma , and

 b_{g,x}(s)=(s+1)^{2} on  \Sigma_{2},  b_{g,x}(s)=(s+1)^{2}(2s+3) on  \Sigma_{1},

 b_{g,x}(s)=(s+1)^{2}(s+ \frac{3}{2})(s+\frac{10}{9})(s+\frac{11}{9})(s+
\frac{13}{9})(s+\frac{14}{9})(s+\frac{16}{9})(s+\frac{17}{9}) on  \Sigma_{0}.

§2.2. holonomic  D‐modules

First, we recall some basics. Let  Ann_{D_{X}[s]}(f^{s}) denote the annihilating ideal of fs

in the ring  D_{X}[s] :

 Ann_{D_{X}[s]}(f^{s})=\{P\in D_{X}[s] |Pf^{s}=0\}.
Let

 I=Ann_{D_{X}[s]}f^{s}+D_{X}[s]f+D_{X}[s]J_{f} ,
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where  D_{X}[s]J_{f} is the ideal generated by   \frac{\partial f}{\partial x_{1}},   \frac{\partial f}{\partial x_{2}},   \frac{\partial f}{\partial x_{n}} .

For each root  \beta of the reduced  b‐function of  f, the  D_{X} ‐module  M_{\beta} defined by

 D_{X}[s]/(I+D_{X}[s](s-\beta))

is holonomic and the support of  M_{\beta} is a subset of the singular locus of the hypersurface
 S , in general.

In this subsection we compute holonomic  D‐modules associated with roots of the

reduced  b‐function of  g in question.

We define a list of variables, a matrix for term ordering and a list of generators of

the ideal  I for preparations. For this purpose, we use the algorithm ann.

[300]  G=yl\wedge 2*(yl+xl\wedge 3+x2\wedge 2)  +y2
 \hat{}

2$

[301]  W= [  [x1 , x2,y1, y2], [dx1, dx2, dy1, dy2]]$

[302] Mat  =newmat (  11,10,  [[0,0,0,0,0,1,1,1,1,0],  [0,0,0,0,  0 ,1,0,0,0,0 ],

 [0, 0, 0, 0, 0, 0, 1, 0, 0, 0],  [0, 0, 0, 0, 0, 0, 0, 1, 0, 0],  [0, 0, 0, 0, 0, 0, 0, 0, 1, 0],

 [1, 1, 1, 1, 0, 0, 0, 0, 0, 0],  [1, 0, 0, 0, 0, 0, 0, 0, 0, 0],  [0, 1, 0, 0, 0, 0, 0, 0, 0, 0],

 [0, 0, 1, 0, 0, 0, 0, 0],  [0, 0, 0, 1, 0, 0, 0, 0, 0, 0],  [0, 0, 0, 0, 0, 0, 0, 0, 0, 1]]) $

[303]  L=append (  [G ,diff(  G ,x1),diff  (G ,x2),diff  (G ,y1),diff  (G ,y2)], ann(G))$

Note that in the list  L above ann(G) is a list of generators of the annihilating ideal

 Ann_{D_{X}[s]}g^{s} . The contents are as follows.

[304] ann (G);

 [-3*dy2*yl\wedge 2+(-2*dy2*xl\wedge 3-2*dy2*x2\wedge 2)*yl+2*y2*dyl,

 -3*dy2*xl\wedge 2*yl\wedge 2+2*dxl*y2,

 -dy2*x2*yl\wedge 2+dx2*y2,

 9*dy2*yl\wedge 3-6*y2*dyl*yl+(4*dxl*xl+6*dx2*x2)*y2,
 (-3*xl\wedge 2*dyl+3*dxl)*yl+2*dxl*xl\wedge 3+2*dxl*x2\wedge 2,

 (6*x2*dyl-9*dx2)*yl-4*dxl*x2*xl-6*dx2*x2\wedge 2,
 -3*dx2*xl\wedge 2+2*dxl*x2,

 18*s-6*dyl*yl-9*dy2*y2-2*dxl*xl-3*dx2*x2]

Now we compute holonomic  D‐modules by using the algorithm cgsw‐dx con‐

structed recently in [8] by K. Nabeshima, K. Ohara and the author of the present
paper.
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[305] cgsw -dx (  L,  [s],W,  1 ,Mat);

 [[s+1], [1]]

[y2, y1,  -2*dxl*xl-3*dx2*x2-3,  -3*dx2*xl\wedge 2+2*dxl*x2]

 [[2*s+3], [1]]

[y2,  y1\wedge 2,  -6*dyl*yl-2*dxl*xl-3*dx2*x2-18,  (-2*x2*dyl+dx2)*yl-4*x2,
 -3*dx2*xl\wedge 2+2*dxl*x2,  yl+xl\wedge 3+x2\wedge 2,  (3*xl\wedge 2*dyl-dxl)*yl+6*xl\wedge 2]

 [[9*s+10], [1]]

[y2,y1, x2,x1]

 [[9*s+11], [1]]

[y2,y1, x2,  -dxl*xl-2,  x1\wedge 2]

 [[9*s+13], [1]]

[y2,  9*dx2*yl-16*x2,  y1\wedge 2,  x2*yl,  9*yl+16*x2\wedge 2,

 -6*dyl*yl-2*dxl*xl-3*dx2*x2-17,  xl*yl,  x2*xl,  -3*dxl*yl+8*xl\wedge 2]

 [[9*s+14], [1]]

[y2,  9*dx2*yl-20*x2,  y1\wedge 2,  x2*yl,  -9*yl-20*x2\wedge 2,

 -6*dyl*yl-2*dxl*xl-3*dx2*x2-19,  -3*dxl*yl+10*xl\wedge 2]

 [[9*s+16], [1]]

[y2,  -6*dyl*yl-2*dxl*xl-3*dx2*x2-23,  y1\wedge 3,

 (-18*x2*dyl+9*dx2)*yl-46*x2,  x2*yl\wedge 2,  9*yl\wedge 2+10*x2\wedge 2*yl,

 27*x2*yl+28*x2\wedge 3,  xl*yl\wedge 2,  x2*xl*yl,  9*xl*yl+28*x2\wedge 2*xl,

 -3*dx2*xl\wedge 2+2*dxl*x2,  -9*dyl*yl\wedge 2+15*yl+28*xl\wedge 3+28*x2\wedge 2,

 (9*xl\wedge 2*dyl-3*dxl)*yl+23*xl\wedge 2]

 [[9*s+17], [1]]

[y2,  -6*dyl*yl-2*dxl*xl-3*dx2*x2-25,  y1\wedge 3,

 (-18*x2*dyl+9*dx2)*yl-50*x2,  x2*yl\wedge 2,

 9*yl\wedge 2+14*x2\wedge 2*yl,  27*x2*yl+32*x2\wedge 3,  -3*dx2*xl\wedge 2+2*dxl*x2,

 -9*dyl*yl\wedge 2+21*yl+32*xl\wedge 3+32*x2\wedge 2,  (9*xl\wedge 2*dyl-3*dxl)*yl+25*xl\wedge 2,

 xl\wedge 2*yl\wedge 2,  x2*xl\wedge 2*yl,  9*xl\wedge 2*yl+32*x2\wedge 2*xl\wedge 2]

 [[0],  [1062882*s\wedge 8+12223143*s\wedge 7+61135398*s\wedge 6+173682792*s\wedge 5
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 +306514368*s\wedge 4+344058597*s\wedge 3+239861032*s\wedge 2+94945468*s+
16336320]]

[1]

No. of segment is
9

0.  0312\sec(0.093\sec)

The output consists of each factor of the reduced  b‐function, the Gröbner basis of
the holonomic  D‐module associated with each root of the reduced  b‐function.

§3. Local systems and local cohomology solutions

In this section we study structures of the holonomic  D‐modules presented in the

previous section. We explicitly compute algebraic local cohomology solutions.

§3.1. Algebraic local cohomology solutions supported on  \Sigma_{2}

Let  s+1  =  0 . Then aGröbner basis of the holonomic ideal associated with the

root  \beta=-1 is given by

 y_{1}, y_{2}, 2x_{1} \frac{\partial}{\partial x_{1}}+3x_{2}\frac{\partial}
{\partial x_{2}}+3, 2x_{2}\frac{\partial}{\partial x_{1}}-3x_{1}^{2}
\frac{\partial}{\partial x_{2}}.
Let  \mathcal{H}_{[\Sigma_{2}]}^{2}(\mathcal{O}_{X}) be the sheaf of algebraic local cohomology supported on  \Sigma_{2} , where

 \Sigma_{2}=\{(x_{1}, x_{2},0,0) |x_{1}, x_{2}\in \mathbb{C}\}-\{(x_{1}, x_{2},
0,0) |x_{1}^{3}+x_{2}^{2}=0\}.

Set

 H_{\Sigma_{2}}=\{\psi\in \mathcal{H}_{[\Sigma_{2}]}^{2}(\mathcal{O}_{X}) | 
y_{1}\psi=y_{2}\psi=0\}.
Then any germ at a point  Q\in\Sigma_{2} of the sheaf  H_{\Sigma_{2}} can be represented in a form

 h(x_{1}, x_{2}) \{y_{1}   11   y_{2}\} ,

where  [  ] denotes the Grothendieck symbol and  h(x_{1}, x_{2}) ia a germ at  Q of holomorphic
functions on  \Sigma_{2}.

Algebraic local cohomology solution  \psi of the holonomic  D‐module  M_{-1} satisfies

the following system of linear partial differential equations

 (2x_{1} \frac{\partial}{\partial x_{1}}+3x_{2}\frac{\partial}{\partial x_{2}}+
3)h=0, (2x_{2}\frac{\partial}{\partial x_{1}}-3x_{1}^{2}\frac{\partial}{\partial
x_{2}})h=0.
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Since  |\begin{array}{ll}
2x_{1}   3x_{2}
2x_{2}   -3x_{1}^{2}
\end{array}|  =  -6(x_{1}^{3}+x_{2}^{2}) , the singular locus of the holonomic  D‐module

 M_{-1} is

 \{(x_{1}, x_{2},0,0) |x_{1}^{3}+x_{2}^{2}=0\}=\Sigma_{1}\geq\Sigma_{0}.
We set  h(x_{1}, x_{2})=(x_{1}^{3}+x_{2}^{2})^{\alpha} . Then we have

 (2x_{1} \frac{\partial}{\partial x_{1}}+3x_{2}\frac{\partial}{\partial x_{2}}+
3)h=(6\alpha+3)h, (2x_{2}\frac{\partial}{\partial x_{1}}-3x_{1}^{2}
\frac{\partial}{\partial x_{2}})h=0.
Hence,

 (x_{1}^{3}+x_{2}^{2})^{-\frac{1}{2}} \{y_{1}   1   y_{2}\}
is a local cohomology solution.

The monodromy structure on  \Sigma_{2} of the holonomic  D‐module  M_{-1} is non trivial.

Since the local cohomology solution  \psi can not be analytically continued to  \Sigma_{1}\geq\Sigma_{0},

there exists no non‐trivial algebraic local cohomology solution in  \mathcal{H}_{[\Sigma]}^{2}(\mathcal{O}_{X}) at  \Sigma_{0}.

§3.2. Algebraic local cohomology solutions supported on  \Sigma_{1}

Since the local  b‐function is  (s+1)(s+  \frac{3}{2}) on the strutum  \Sigma_{1} , we consider two
cases.

(i) Let  2s+3=0 . Thena Gröbner basis of the holonomic ideal associated with the
root   \beta=-\frac{3}{2} is given by

 \{\begin{array}{l}
x_{1}^{3}+x_{2}^{2}+y_{1},y_{1}^{2},y_{2},2x_{1}\frac{\partial}{\partial x_{1}}+
3x_{2}\frac{\partial}{\partial x_{2}}+6y_{1}\frac{\partial}{\partial y_{1}}+18
2x_{2}\frac{\partial}{\partial x}-3x_{1}^{2}\frac{\partial}{\partial x_{2}},
y_{1}\frac{\partial}{\partial x_{1}}-3x_{1}^{2}y_{1}\frac{\partial}{\partial 
y_{1}}-6x_{1}^{2},y_{1}\frac{\partial}{\partial x_{2}}-2x_{2}y_{1}
\frac{\partial}{\partial y_{1}}-4x_{2}
\end{array}
From  (x_{1}^{3}+x_{2}^{2})^{2}  =  (x_{1}^{3}+x_{2}^{2}-y_{1})(x_{1}^{3}+x_{2}^{2}+y_{1})+y_{1}^{2} , we see that  (x_{1}^{3}+x_{2}^{2})^{2} is an

annihilator. Therefore the holonomic  D‐module  M_{-\frac{3}{2}} is supported on  \Sigma_{1}\geq\Sigma_{0} , where

 \Sigma_{1}\geq\Sigma_{0}=\{(x_{1}, x_{2},0,0) |x_{1}^{3}+x_{2}^{2}=0\}.

Now consider algebraic local cohomology class  \psi in  \mathcal{H}_{\Sigma_{1}}^{3}(\mathcal{O}_{X}) supported on  \Sigma_{1} of
the form

 \psi=a \{\begin{array}{ll}
1   
(x_{1}^{3}+x_{2}^{2})y_{1}^{2}   y_{2}
\end{array}\} +b\{\begin{array}{ll}
1   
(x_{1}^{3}+x_{2}^{2})^{2}   y_{1}y_{2}
\end{array}\} .

Note that the weighted degree of  \psi is equal to ‐   \frac{27}{18}=-\frac{3}{2}.
Then,  \psi satisfies,  y_{1}^{2}\psi=y_{2}\psi=0 and

 (2x_{1} \frac{\partial}{\partial x_{1}}+3x_{2}\frac{\partial}{\partial x_{2}}+
6y_{1}\frac{\partial}{\partial y_{1}}+18)\psi=(2x_{2}\frac{\partial}{\partial x_
{1}}-3x_{1}^{2}\frac{\partial}{\partial x_{2}})\psi=0.
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From

 (x_{1}^{3}+x_{2}^{2}+y_{1})\psi=(a+b) \{\begin{array}{ll}
1   
(x_{1}^{3}+x_{2}^{2})y_{1}   y_{2}
\end{array}\}
we have  a+b=0 . Therefore, we set

 \psi= \{\begin{array}{ll}
1   
(x_{1}^{3}+x_{2}^{2})y_{1}^{2}   y_{2}
\end{array}\} - \{\begin{array}{ll}
1   
(x_{1}^{3}+x_{2}^{2})^{2}   y_{1}y_{2}
\end{array}\} .

It is easy to verify that the local cohomology class  \psi above satisfies

 (y_{1} \frac{\partial}{\partial x_{1}}-3x_{1}^{2}y_{1}\frac{\partial}{\partial 
y_{1}}-6x_{1}^{2})\psi=(y_{1}\frac{\partial}{\partial x_{2}}-2x_{2}y_{1}
\frac{\partial}{\partial y_{1}}-4x_{2})\psi=0.
Since the solution  \psi can be analytically continued to  \Sigma_{0},  \psi belongs to

 \mathcal{H}_{\Sigma_{1}\geq\Sigma_{0}}^{3}(\mathcal{O}_{X})

and the dimension of the algebraic local cohomology solutions of the holonomic D‐

module  M_{-\frac{3}{2}} is equal to one at the origin  \Sigma_{0}.

(ii) Lets  +1=0 . It is easy to see that the holonomic D‐module  M_{-1} has no non‐trivial
local cohomology solution in  \mathcal{H}_{\Sigma_{1}}^{3}(\mathcal{O}_{X}) .

§3.3. Local cohomology solutions supported at  \Sigma_{0}

Since the reduced local  b‐function at  \Sigma_{0} of  g is equal to

  \tilde{b}_{g,\Sigma 0} =(s+1)(s+\frac{3}{2})(s+\frac{10}{9})(s+\frac{11}{9})(s
+\frac{13}{9})(s+\frac{14}{9})(s+\frac{16}{9})(s+\frac{17}{9}) ,

we compute algebraic local cohomology solutions for the holonomic  D‐module associated
with each root of the reduced local  b‐function.

Let  \mathcal{H}_{[\Sigma_{2}]}^{4}(\mathcal{O}_{X}) be the algebraic local cohomology supported on  \Sigma_{0}.

(i)  9s+10=0 . Then, aGröbner basis of the holonomic ideal associated with the root

  \beta=-\frac{10}{9} is given by  \{x_{1}, x_{2}, y_{1}, y_{2}\} . We see that the local cohomology class

 \{x_{1}   x_{2}   11   y_{1}   y_{2}\}
is a solution of the holonomic  D‐module  M_{-\frac{10}{9}}.

(ii)  9s+11=0 . Then, aGröbner basis of the holonomic ideal associated with the root

  \beta=-\frac{11}{9} is given by   \{x_{1}^{2}, x_{2}, y_{1}, y_{2}, x_{1}\frac{\partial}{\partial x_{1}}+2\} . The local cohomology class

 \{x_{1}^{2}   x_{2}   1   y_{1}   y_{2}\}
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is a solution of the holonomic  D‐module  M_{-\frac{11}{9}}.

(iii)  9s+13=0 . Then, aGröbner basis of the holonomic ideal associated with the root
  \beta=-\frac{13}{9} is given by

 \{\begin{array}{l}
x_{1}x_{2},x_{1}y_{1},x_{2}y_{1},y_{1}^{2},y_{2},16x_{2}^{2}+9y_{1}
2x_{1}\frac{\partial}{\partial x_{1}}+3x_{2}\frac{\partial}{\partial x_{2}}+
6y_{1}\frac{\partial}{\partial y_{1}}+17,3y_{1}\frac{\partial}{\partial x_{1}}-
8x_{1}^{2},9y_{1}\frac{\partial}{\partial x_{2}}-16x_{2}
\end{array}
Note that since

 16x_{2}^{3}=x_{2}(16x_{2}^{2}+9y_{1})-9x_{2}y_{1}

and

 8x_{1}^{4}=-x_{1}^{2}(3y_{1} \frac{\partial}{\partial x_{1}}-8x_{1}^{2})+3\frac
{\partial}{\partial x_{1}}(x_{1}^{2}y_{1})-6x_{1}y_{1},
partial differntial operators  x_{1}^{4},  x_{2}^{3} belong to the annihilating ideals. It follows in par‐

ticular from this fact that the support of the holonomic  D‐module  M_{-\frac{13}{9}} is the origin
 \Sigma_{0}.

Since the weighted degree of the solution is equal to −   \frac{13}{9} , we consider algebraic

local cohomology class  \psi of the form

 \psi=a \{x_{1}^{4}   x_{2}   1   y_{1}   y_{2}\} +b \{x_{1}   x_{2}^{3}   1   
y_{1}   y_{2}\} +c \{x_{1}   x_{2}   11   y_{1}^{2}   y_{2}\} .

From

 (3y_{1} \frac{\partial}{\partial x_{1}}-8x_{1}^{2})\psi=-(8a+3c) \{x_{1}^{2}   
x_{2}   1   y_{1}   y_{2}\}
and

 (9y_{1} \frac{\partial}{\partial x_{2}}-16x_{2})\psi=-(16b+9c) \{x_{1}   x_{2}^
{2}   1   y_{1}   y_{2}\} ,

we have

 8a+3c=0, 16b+9c=0.

We thus have

  \psi= \{x_{1}^{4}   x_{2}   1   y_{1}   y_{2}\} + \frac{3}{2} \{x_{1}   x_{2}^
{3}   1   y_{1}   y_{2}\} -  \frac{8}{3} \{x_{1}   x_{2}   11   y_{1}^{2}   
y_{2}\}
as local cohomology solution.

(iv)  9s+14=0 . Then, aGröbner basis of the holonomic ideal associated with the root
  \beta=-\frac{14}{9} is given by
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 \{\begin{array}{l}
x_{2}y_{1},y_{1}^{2},y_{2},20x_{2}^{2}+9y_{1},2x_{1}\frac{\partial}{\partial 
x_{1}}+3x_{2}\frac{\partial}{\partial x_{2}}+6y_{1}\frac{\partial}{\partial 
y_{1}}+19
3y_{1}\frac{\partial}{\partial x_{1}}-10x_{1}^{2},9y_{1}\frac{\partial}{\partial
x_{2}}-20x_{2}
\end{array}
A direct computation yields the following local cohomology solution :

  \psi= \{\begin{array}{llll}
   1      
x_{1}^{5}   x_{2}   y_{1}   y_{2}
\end{array}\} + \frac{3}{4} \{x_{1}^{2}   x_{2}^{3}   1   y_{1}   y_{2}\} - 
\frac{5}{3} \{x_{1}^{2}   x_{2}   1   y_{1}^{2}   y_{2}\} .

(v)  9s+16=0 . Then, aGröbner basis of the holonomic ideal associated with the root

  \beta=-\frac{16}{9} is given by

 \{\begin{array}{l}
28x_{1}x_{2}^{2}+9x_{1}y_{1}, xix_{2}yi, xiy_{1}^{2}, x_{2}y_{1}^{2}, 27x_{2}
y_{1}+28x_{2}^{3},
10x_{2}^{2}y_{1}+9y_{1}^{2}, y_{1}^{3}, y_{2}, P_{1}, P_{2}, Q_{1}, Q_{2}, Q_{3}
,
\end{array}
where

 P_{1}=2x_{1} \frac{\partial}{\partial x_{1}}+3x_{2}\frac{\partial}{\partial 
x_{2}}+6y_{1}\frac{\partial}{\partial y_{1}}+23,  P_{2}=2x_{2} \frac{\partial}{\partial x_{1}}-3x_{1}^{2}\frac{\partial}{\partial
x_{2}},
 Q_{1}=3y_{1} \frac{\partial}{\partial x_{1}}-9x_{1}^{2}y_{1}\frac{\partial}
{\partial y_{1}}-23x_{1}^{2},  Q_{2}=9y_{1} \frac{\partial}{\partial x_{2}}-18x_{2}y_{1}\frac{\partial}
{\partial y_{1}}-46x_{2},
 Q3=9y_{1}^{2} \frac{\partial}{\partial y_{1}}-28x_{1}^{3}-28x_{2}^{2}-15y_{1}.
Let

 \psi_{1} = \{x_{1}^{7}   x_{2}   1   y_{1}   y_{2}\}, \psi_{2}= \{x_{1}^{4}   
x_{2}^{3}   1   y_{1}   y_{2}\}, \psi_{3}= \{x_{1}^{4}   x_{2}   1   y_{1}^{2}  
y_{2}\} ,

 \psi_{4}= \{x_{1}   x_{2}^{5}   1   y_{1}   y_{2}\}, \psi_{5}= \{x_{1}   x_{2}^
{3}   1   y_{1}^{2}   y_{2}\}, \psi_{6}= \{x_{1}   x_{2}   11   y_{1}^{3}   
y_{2}\} .

Then,

  \psi=\psi_{1}+\frac{3}{8}\psi_{2}-\frac{7}{6}\psi_{3}+\frac{27}{16}\psi_{4}-
\frac{7}{4}\psi_{5}+\frac{35}{18}\psi_{6}
is a local cohomology solution.

(vi)  9s+17=0 . Then, a Gröbner basis of the holonomic ideal associated with the root
  \beta=-\frac{17}{9} is given by

 \{\begin{array}{l}
32x_{1}^{2}x_{2}^{2}+9x_{1}^{2}y_{1}, x_{1}^{2}x_{2}y_{1}, x_{1}^{2}y_{1}^{2}, 
x_{2}y_{1}^{2}, 27x_{2}y_{1}+32x_{2}^{3},
14x_{2}^{2}y_{1} + 9y_{1}^{2}, y_{1}^{3}, y_{2}, P_{1}, P_{2}, Q_{i}, Q_{2}, 
Q_{3},
\end{array}
where

 P_{1}=2x_{1} \frac{\partial}{\partial x_{1}}+3x_{2}\frac{\partial}{\partial 
x_{2}}+6y_{1}\frac{\partial}{\partial y_{1}}+25,  P_{2}=2x_{2} \frac{\partial}{\partial x_{1}}-3x_{1}^{2}\frac{\partial}{\partial
x_{2}},
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 Q_{1}=3y_{1} \frac{\partial}{\partial x_{1}}-9x_{1}^{2}y_{1}\frac{\partial}
{\partial y_{1}}-25x_{1}^{2},  Q_{2}=9y_{1} \frac{\partial}{\partial x_{2}}-18x_{2}y_{1}\frac{\partial}
{\partial y_{1}}-50x_{2},
 Q3=9y_{1}^{2} \frac{\partial}{\partial y_{1}}-32x_{1}^{3}-32x_{2}^{2}-21y_{1}.
Let

 \psi_{1} = \{x_{1}^{8}   x_{2}   1   y_{1}   y_{2}\}, \psi_{2}= \{x_{1}^{5}   
x_{2}^{3}   1   y_{1}   y_{2}\}, \psi_{3}= \{x_{1}^{5}   x_{2}   1   y_{1}^{2}  
y_{2}\} ,

 \psi_{4}= \{x_{1}^{2}   x_{2}^{5}   1   y_{1}   y_{2}\}, \psi_{5}= \{x_{1}^{2} 
 x_{2}^{3}   1   y_{1}^{2}   y_{2}\}, \psi_{6}= \{x_{1}^{2}   x_{2}   1   y_{1}^
{3}   y2\} .

Then,

  \psi=\psi_{1}+\frac{3}{10}\psi_{2}-\frac{16}{15}\psi_{3}+\frac{27}{40}\psi_{4}
-\frac{4}{5}\psi_{5}+\frac{56}{45}\psi_{6}
is a local cohomology solution.

(vii)  s+1=0 . Gröbner basis of the holonomic ideal associated with the root  \beta=-1
is   \{y_{1}, y_{2}, 2x_{1}\frac{\partial}{\partial x_{1}}+3x_{2}\frac{\partial}
{\partial x_{2}}+3, 2x_{2}\frac{\partial}{\partial x_{1}}-3x_{1}^{2}
\frac{\partial}{\partial x_{2}} \}

Let  \psi=  \{x_{1}^{i}   x_{2}^{j}   1   y_{1}   y_{2}\} . Then,

 (2x_{1} \frac{\partial}{\partial x_{1}}+3x_{2}\frac{\partial}{\partial x_{2}}+
3)\psi=(-2i-3j+3)\psi.
Therefore there is no non‐trivial local cohomology solution supported at the origin  \Sigma_{0}.

(viii)  2s+3=0 . Recall that

 \{\begin{array}{l}
x_{1}^{3}+x_{2}^{2}+y_{1},y_{1}^{2},y_{2},2x_{1}\frac{\partial}{\partial x_{1}}+
3x_{2}\frac{\partial}{\partial x_{2}}+6y_{1}\frac{\partial}{\partial y_{1}}+18
2x_{2}\frac{\partial}{\partial x_{1}}-3x_{1}^{2}\frac{\partial}{\partial x_{2}},
y_{1}\frac{\partial}{\partial x_{1}}-3x_{1}^{2}y_{1}\frac{\partial}{\partial 
y_{1}}-6x_{1}^{2},y_{1}\frac{\partial}{\partial x_{2}}-2x_{2}y_{1}
\frac{\partial}{\partial y_{1}}-4x_{2}
\end{array}
is a Gröbner basis of the holonomic ideal associated with the root   \beta=-\frac{3}{2}

Let  \psi=  \{x_{1}^{i}   x_{2}^{j}   11   y_{1}^{k}   y_{2}\} . Then,

 (2x_{1} \frac{\partial}{\partial x_{1}}+3x_{2}\frac{\partial}{\partial x_{2}}+
6y_{1}\frac{\partial}{\partial y_{1}}+18)\psi=(-2i-3j-6k+18)\psi.
Therefore, we have  (i,j, k)=(3,2,1) .

Since

 (2x_{2} \frac{\partial}{\partial x_{1}}-3x_{1}^{2}\frac{\partial}{\partial 
x_{2}}) \{x_{1}^{3}   x_{2}^{2}   1   y_{1}   y_{2}\}  \neq 0.
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Therefore there is no non‐trivial local cohomology solution supported at the origin  \Sigma_{0}.

We have verified in this section that

 \dim_{\mathbb{C}}(Hom_{D_{X}}(M_{\beta}, \mathcal{H}_{[\Sigma_{2}]}^{4}
(\mathcal{O}_{X}))=1 , for   \beta=-\frac{10}{9},  - \frac{11}{9},  - \frac{13}{9},  - \frac{14}{9},  - \frac{16}{9},  - \frac{17}{9}
and

 Hom_{D_{X}}(M_{\beta}, \mathcal{H}_{[\Sigma_{2}]}^{4}(\mathcal{O}_{X}))=\{0\} , for  \beta=-1,  - \frac{3}{2}.
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