Local cohomology solutions of holonomic D-modules associated with a non-isolated hypersurface singularity

By
Shinichi TAJima*

Abstract

A hypersurface with a smooth 2-dimensional singular locus is considered in the context of Computational Algebraic Analysis. The holonomic D-module associated with each root of the reduced b-function is computed. Local cohomology solutions to the holonomic D-module are explicitly computed.

§ 1. Introduction

In this paper, we consider a hypersurface with a smooth 2-dimensional singular locus in the context of Computational Algebraic Analysis. We explicitly compute holonomic D-modules associated with the reduced b-function of the hypersurface by using a computer algebra system and we study holonomic D-modules by computing its local cohomology solutions.

In 1970's, M. Kashiwara studied b-functions by using D-modules. It turned out that holonomic D-modules that he introduced to study b-functions contain a wealth information on singularity. It is important therefore to analyze the structures of the holonomic D-module associated with a root of b-functions.

In a previous paper [15], Y. Umeta and the author of the present paper studied certain kinds of hypersurfaces with a smooth 1-dimensional singular locus. We considered the holonomic D-module associated with a root of the reduced b-function of hypersurfaces. We described in particular a method for computing structures of relevant holonomic D-modules. As a sequel of the previous paper [15], we address the

[^0]case of hypersurface with a 2-dimensional singular locus. We consider one example of hypersurface with non-isolated singularity which is given by A. Zaharia in [17]. In this paper, we present in particular an effective method for studying holonomic D-modules associated with roots of b-functions. The key of our approach is a use of the concept of local cohomology.

In section two, we compute the b-function, local b-functions of the hypersurface. We compute the holonomic D-modules associated with roots of the reduced b-function. In section three, we analyze structures of the holonomic D-modules by computing local cohomology solutions.

§ 2. An example of non-isolated hypersurface singularity

Let $S=\left\{\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \in X \mid g\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=0\right\}$ where $g=y_{1}^{2}\left(y_{1}+x_{1}^{3}+x_{2}^{2}\right)+y_{2}^{2}$. The singular locus Σ of S is the 2 -dimensional plane $\left\{\left(x_{1}, x_{2}, 0,0\right) \mid x_{1}, x_{2} \in \mathbb{C}\right\}$. The hypersurface above is taken from Table 4 (page 51) in a paper [17]. The table 4 is obtained by A. Zaharia as one of results of classification of simple germs.

The defining function g is a weighted homogeneous polynomial with respect to the weight vector $w=\frac{1}{18}(2,3,6,9)$. Let E denote the Euler operator defined by

$$
E=\frac{1}{9} x_{1} \frac{\partial}{\partial x_{1}}+\frac{1}{6} x_{2} \frac{\partial}{\partial x_{2}}+\frac{1}{3} y_{1} \frac{\partial}{\partial y_{1}}+\frac{1}{2} y_{2} \frac{\partial}{\partial y_{2}} .
$$

Then, g satisfies, $E(g)=g$.
In this section, we compute the b-function, local b-functions of the defining function g and compute the holonomic D-module associated with each root of the reduced bfunction of g. For this purpose, we use a computer algebra system Risa/Asir [11] and four algorithms bfct, ndbf.bf_strat, ann and cgsw_dx implemented in Risa/Asir.

By using bfct, we compute the b-function of g.
[250] $G=y 1^{\sim} 2 *\left(y 1+x 1^{\wedge} 3+x 2^{\wedge} 2\right)+y 2^{\wedge} 2$;
$\mathrm{y} 1 \wedge 3+(\mathrm{x} 1 \sim 3+\mathrm{x} 2 \sim 2) * \mathrm{y} 1 \wedge 2+\mathrm{y} 2 \sim 2$
[251] fctr(bfct(G));
[[1, 1], [s+1, 2], [2*s+3,1],
$[9 * s+10,1],[9 * s+11,1],[9 * s+13,1],[9 * s+14,1],[9 * s+16,1],[9 * s+17,1]]$
The output means

$$
(s+1)^{2}\left(s+\frac{3}{2}\right)\left(s+\frac{10}{9}\right)\left(s+\frac{11}{9}\right)\left(s+\frac{13}{9}\right)\left(s+\frac{14}{9}\right)\left(s+\frac{16}{9}\right)\left(s+\frac{17}{9}\right)
$$

is the b-function of the polynomial g.

§2.1. a stratification and local b-functions

First, we briefly recall the concept of local b-functions. Let X be a complex manifold, \mathcal{O}_{X} the sheaf on X of holomorphic functions, f a germ of holomorphic function at a point $x \in X$. Let \mathcal{D}_{X} be the sheaf on X of linear partial differential operators with holomorphic coefficients. There exists a polynomial $b(s)$ in s and partial differential operator $P(s) \in \mathcal{D}_{X}[s]$ in a neighborhood of x such that

$$
P(s) f(x)^{s+1}=b(s) f(x)^{s} .
$$

The monic generator $b_{f, x}(s)$ of the ideal consisting of such polynomials $b(s)$ is the local b-function of f at $x \in X$. This is defined in the context of analytic functions and described in terms of holomorphic linear partial differential operators.

In 1997, T . Oaku showed that local b-functions of a polynomial f in $\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ can be computed by applying computations in Weyl algebra and gave an algorithm for computing local b-functions at all points simulateneously by using a primary decomposition algorithm. The algorithm outputs a stratification of \mathbb{C}^{n} giving the local b-function $b_{f, x}$ which is constant on each stratum. More recently in 2010, K. Nishiyama and M. Noro proposed alternative method for computing local b-functions([10]). The resulting algorithm ndbf.bf_strat is implemented in Risa/Asir([11]).

We compute local b-functions of g by executing ndbf.bf_strat on Risa/Asir. By analyzing the result of computation, we see that the stratification of the space $X=\mathbb{C}^{4}$ associated with the local b-functions of g consists of 5 strata :

$$
\Sigma_{0}, \Sigma_{1}, \Sigma_{2}, S-\Sigma, X-S
$$

where

$$
\Sigma_{0}=\{(0,0,0,0)\}, \Sigma_{1}=\left\{\left(x_{1}, x_{2}, 0,0\right) \mid x_{1}^{3}+x_{2}^{2}=0\right\}-\Sigma_{0}, \Sigma_{2}=\Sigma-\Sigma_{1} \cup \Sigma_{0}
$$

We have $b_{g, x}(s)=(s+1)$ on the non-singular locus $S-\Sigma$, and

$$
\begin{gathered}
b_{g, x}(s)=(s+1)^{2} \text { on } \Sigma_{2}, \quad b_{g, x}(s)=(s+1)^{2}(2 s+3) \text { on } \Sigma_{1}, \\
b_{g, x}(s)=(s+1)^{2}\left(s+\frac{3}{2}\right)\left(s+\frac{10}{9}\right)\left(s+\frac{11}{9}\right)\left(s+\frac{13}{9}\right)\left(s+\frac{14}{9}\right)\left(s+\frac{16}{9}\right)\left(s+\frac{17}{9}\right) \text { on } \Sigma_{0} .
\end{gathered}
$$

§ 2.2. holonomic D-modules

First, we recall some basics. Let $\operatorname{Ann}_{D_{X}[s]}\left(f^{s}\right)$ denote the annihilating ideal of f^{s} in the ring $D_{X}[s]$:

$$
\operatorname{Ann}_{D_{X}[s]}\left(f^{s}\right)=\left\{P \in D_{X}[s] \mid P f^{s}=0\right\}
$$

Let

$$
I=\operatorname{Ann}_{D_{X}[s]} f^{s}+D_{X}[s] f+D_{X}[s] J_{f},
$$

where $D_{X}[s] J_{f}$ is the ideal generated by $\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{n}}$.
For each root β of the reduced b-function of f, the D_{X}-module M_{β} defined by

$$
D_{X}[s] /\left(I+D_{X}[s](s-\beta)\right)
$$

is holonomic and the support of M_{β} is a subset of the singular locus of the hypersurface S, in general.

In this subsection we compute holonomic D-modules associated with roots of the reduced b-function of g in question.

We define a list of variables, a matrix for term ordering and a list of generators of the ideal I for preparations. For this purpose, we use the algorithm ann.

```
[300] G=y1^2*(y1+x1^3+x2^2)+y2^2$
[301] W=[[x1,x2,y1,y2],[dx1,dx2,dy1,dy2]]$
[302] Mat=newmat(11,10,[[0,0,0,0,0,1,1,1,1,0],[0,0,0,0,0,1,0,0,0,0],
[0,0,0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,0,1,0],
[1,1,1,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0,0,0],
[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,1]])$
```

[303]
$L=\operatorname{append}([G, \operatorname{diff}(G, x 1), \operatorname{diff}(G, x 2), \operatorname{diff}(G, y 1), \operatorname{diff}(G, y 2)], \operatorname{ann}(G)) \$$

Note that in the list L above $\operatorname{ann}(\mathrm{G})$ is a list of generators of the annihilating ideal $\mathrm{Ann}_{D_{X}[s]} g^{s}$. The contents are as follows.

```
[304] ann(G);
```

```
[-3*dy2*y1^2+(-2*dy2*x1^3-2*dy2*x2^2)*y1+2*y2*dy1,
-3*dy2*x1^2*y1^2+2*dx1*y2,
-dy2*x2*y1^2+dx2*y2,
9*dy2*y1^3-6*y2*dy1*y1+(4*dx1*x1+6*dx2*x2)*y2,
(-3*x1^2*dy1+3*dx1)*y1+2*dx1*x1^3+2*dx1*x2^2,
(6*x2*dy1-9*dx2)*y1-4*dx1*x2*x1-6*dx2*x2^2,
-3*dx2*x1~2+2*dx1*x2,
18*s-6*dy1*y1-9*dy2*y2-2*dx1*x1-3*dx2*x2]
```

Now we compute holonomic D-modules by using the algorithm cgsw_dx constructed recently in [8] by K. Nabeshima, K. Ohara and the author of the present paper.

```
[305] cgsw_dx(L,[s],W,1,Mat);
[[s+1], [1]]
[y2,y1, -2*dx1*x1-3*dx2*x2-3,-3*dx2*x1~2+2*dx1*x2]
[[2*s+3],[1]]
[y2, y1~2, -6*dy1*y1-2*dx1*x1-3*dx2*x2-18, (-2*x2*dy1+dx2)*y1-4*x2,
-3*dx2*x1^2+2*dx1*x2,y1+x1^3+x2^2,(3*x1^2*dy1-dx1)*y1+6*x1^2]
[[9*s+10],[1]]
[y2,y1,x2,x1]
[[9*s+11], [1]]
[y2,y1,x2,-dx1*x1-2,x1~2]
[[9*s+13],[1]]
[y2,9*dx2*y1-16*x2,y1^2,x2*y1, 9*y1+16*x2^2,
-6*dy1*y1-2*dx1*x1-3*dx2*x2-17,x1*y1,x2*x1, -3*dx1*y1+8*x1~2]
[[9*s+14], [1]]
[y2,9*dx2*y1-20*x2,y1~2,x2*y1, -9*y1-20*x2^2,
-6*dy1*y1-2*dx1*x1-3*dx2*x2-19,-3*dx1*y1+10*x1~2]
[[9*s+16], [1]]
[y2,-6*dy1*y1-2*dx1*x1-3*dx2*x2-23,y1-3,
(-18*x2*dy1+9*dx2)*y1-46*x2,x2*y1~2,9*y1^2+10*x2^2*y1,
27*x2*y1+28*x2^3, x1*y1^2, x 2*x 1*y1, 9*x1*y1+28*x2^ 2*x
-3*dx2*x1^2+2*dx1*x2,-9*dy1*y1^2+15*y1+28*x1^3+28*x2^2,
(9*x1~2*dy1-3*dx1)*y1+23*x1~2]
[[9*s+17], [1]]
[y2,-6*dy1*y1-2*dx1*x1-3*dx2*x2-25,y1~3,
(-18*x2*dy1+9*dx2)*y1-50*x2,x2*y1~2,
9*y1~2+14*x2^2*y1,27*x2*y1+32*x2^3,-3*dx2*x1^2+2*dx1*x2,
-9*dy1*y1~2+21*y1+32*x1^3+32*x2^2,(9*x1^2*dy1-3*dx1)*y1+25*x1^2,
x1~2*y1^2,x2*x1~2*y1,9*x1~2*y1+32*x2^2*x1~2]
```

$[[0],[1062882 * s \wedge 8+12223143 * s \wedge 7+61135398 * s \wedge 6+173682792 * s \wedge 5$
$\left.\left.+306514368 * s \wedge 4+344058597 * s \wedge 3+239861032 * s^{\wedge} 2+94945468 * s+16336320\right]\right]$
[1]

No. of segment is
9
$0.0312 \mathrm{sec}(0.093 \mathrm{sec})$

The output consists of each factor of the reduced b-function, the Gröbner basis of the holonomic D-module associated with each root of the reduced b-function.

§3. Local systems and local cohomology solutions

In this section we study structures of the holonomic D-modules presented in the previous section. We explicitly compute algebraic local cohomology solutions.

§3.1. Algebraic local cohomology solutions supported on Σ_{2}

Let $s+1=0$. Then a Gröbner basis of the holonomic ideal associated with the root $\beta=-1$ is given by

$$
y_{1}, y_{2}, 2 x_{1} \frac{\partial}{\partial x_{1}}+3 x_{2} \frac{\partial}{\partial x_{2}}+3,2 x_{2} \frac{\partial}{\partial x_{1}}-3 x_{1}^{2} \frac{\partial}{\partial x_{2}} .
$$

Let $\mathcal{H}_{\left[\Sigma_{2}\right]}^{2}\left(\mathcal{O}_{X}\right)$ be the sheaf of algebraic local cohomology supported on Σ_{2}, where

$$
\Sigma_{2}=\left\{\left(x_{1}, x_{2}, 0,0\right) \mid x_{1}, x_{2} \in \mathbb{C}\right\}-\left\{\left(x_{1}, x_{2}, 0,0\right) \mid x_{1}^{3}+x_{2}^{2}=0\right\}
$$

Set

$$
H_{\Sigma_{2}}=\left\{\psi \in \mathcal{H}_{\left[\Sigma_{2}\right]}^{2}\left(\mathcal{O}_{X}\right) \mid y_{1} \psi=y_{2} \psi=0\right\}
$$

Then any germ at a point $Q \in \Sigma_{2}$ of the sheaf $H_{\Sigma_{2}}$ can be represented in a form

$$
h\left(x_{1}, x_{2}\right)\left[\begin{array}{c}
1 \\
y_{1} \\
y_{2}
\end{array}\right]
$$

where [] denotes the Grothendieck symbol and $h\left(x_{1}, x_{2}\right)$ ia a germ at Q of holomorphic functions on Σ_{2}.

Algebraic local cohomology solution ψ of the holonomic D-module M_{-1} satisfies the following system of linear partial differential equations

$$
\left(2 x_{1} \frac{\partial}{\partial x_{1}}+3 x_{2} \frac{\partial}{\partial x_{2}}+3\right) h=0,\left(2 x_{2} \frac{\partial}{\partial x_{1}}-3 x_{1}^{2} \frac{\partial}{\partial x_{2}}\right) h=0
$$

Since $\left|\begin{array}{ll}2 x_{1} & 3 x_{2} \\ 2 x_{2} & -3 x_{1}^{2}\end{array}\right|=-6\left(x_{1}^{3}+x_{2}^{2}\right)$, the singular locus of the holonomic D-module M_{-1} is

$$
\left\{\left(x_{1}, x_{2}, 0,0\right) \mid x_{1}^{3}+x_{2}^{2}=0\right\}=\Sigma_{1} \cup \Sigma_{0} .
$$

We set $h\left(x_{1}, x_{2}\right)=\left(x_{1}^{3}+x_{2}^{2}\right)^{\alpha}$. Then we have

$$
\left(2 x_{1} \frac{\partial}{\partial x_{1}}+3 x_{2} \frac{\partial}{\partial x_{2}}+3\right) h=(6 \alpha+3) h,\left(2 x_{2} \frac{\partial}{\partial x_{1}}-3 x_{1}^{2} \frac{\partial}{\partial x_{2}}\right) h=0 .
$$

Hence,

$$
\left(x_{1}^{3}+x_{2}^{2}\right)^{-\frac{1}{2}}\left[\begin{array}{c}
1 \\
y_{1} \\
y_{2}
\end{array}\right]
$$

is a local cohomology solution.
The monodromy structure on Σ_{2} of the holonomic D-module M_{-1} is non trivial. Since the local cohomology solution ψ can not be analytically continued to $\Sigma_{1} \cup \Sigma_{0}$, there exists no non-trivial algebraic local cohomology solution in $\mathcal{H}_{[\Sigma]}^{2}\left(\mathcal{O}_{X}\right)$ at Σ_{0}.

§3.2. Algebraic local cohomology solutions supported on Σ_{1}

Since the local b-function is $(s+1)\left(s+\frac{3}{2}\right)$ on the strutum Σ_{1}, we consider two cases.
(i) Let $2 s+3=0$. Then a Gröbner basis of the holonomic ideal associated with the root $\beta=-\frac{3}{2}$ is given by

$$
\left\{\begin{array}{c}
x_{1}^{3}+x_{2}^{2}+y_{1}, \quad y_{1}^{2}, \quad y_{2}, \quad 2 x_{1} \frac{\partial}{\partial x_{1}}+3 x_{2} \frac{\partial}{\partial x_{2}}+6 y_{1} \frac{\partial}{\partial y_{1}}+18, \\
2 x_{2} \frac{\partial}{\partial x_{1}}-3 x_{1}^{2} \frac{\partial}{\partial x_{2}}, \quad y_{1} \frac{\partial}{\partial x_{1}}-3 x_{1}^{2} y_{1} \frac{\partial}{\partial y_{1}}-6 x_{1}^{2}, \quad y_{1} \frac{\partial}{\partial x_{2}}-2 x_{2} y_{1} \frac{\partial}{\partial y_{1}}-4 x_{2} .
\end{array}\right.
$$

From $\left(x_{1}^{3}+x_{2}^{2}\right)^{2}=\left(x_{1}^{3}+x_{2}^{2}-y_{1}\right)\left(x_{1}^{3}+x_{2}^{2}+y_{1}\right)+y_{1}^{2}$, we see that $\left(x_{1}^{3}+x_{2}^{2}\right)^{2}$ is an annihilator. Therefore the holonomic D-module $M_{-\frac{3}{2}}$ is supported on $\Sigma_{1} \cup \Sigma_{0}$, where

$$
\Sigma_{1} \cup \Sigma_{0}=\left\{\left(x_{1}, x_{2}, 0,0\right) \mid x_{1}^{3}+x_{2}^{2}=0\right\} .
$$

Now consider algebraic local cohomology class ψ in $\mathcal{H}_{\Sigma_{1}}^{3}\left(\mathcal{O}_{X}\right)$ supported on Σ_{1} of the form

$$
\psi=a\left[\begin{array}{c}
1 \\
\left(x_{1}^{3}+x_{2}^{2}\right) y_{1}^{2} y_{2}
\end{array}\right]+b\left[\begin{array}{c}
1 \\
\left(x_{1}^{3}+x_{2}^{2}\right)^{2} y_{1} y_{2}
\end{array}\right] .
$$

Note that the weighted degree of ψ is equal to $-\frac{27}{18}=-\frac{3}{2}$.
Then, ψ satisfies, $y_{1}^{2} \psi=y_{2} \psi=0$ and

$$
\left(2 x_{1} \frac{\partial}{\partial x_{1}}+3 x_{2} \frac{\partial}{\partial x_{2}}+6 y_{1} \frac{\partial}{\partial y_{1}}+18\right) \psi=\left(2 x_{2} \frac{\partial}{\partial x_{1}}-3 x_{1}^{2} \frac{\partial}{\partial x_{2}}\right) \psi=0 .
$$

From

$$
\left(x_{1}^{3}+x_{2}^{2}+y_{1}\right) \psi=(a+b)\left[\begin{array}{c}
1 \\
\left(x_{1}^{3}+x_{2}^{2}\right) y_{1} y_{2}
\end{array}\right]
$$

we have $a+b=0$. Therefore, we set

$$
\psi=\left[\begin{array}{c}
1 \\
\left(x_{1}^{3}+x_{2}^{2}\right) y_{1}^{2} y_{2}
\end{array}\right]-\left[\begin{array}{c}
1 \\
\left(x_{1}^{3}+x_{2}^{2}\right)^{2} y_{1} y_{2}
\end{array}\right] .
$$

It is easy to verify that the local cohomology class ψ above satisfies

$$
\left(y_{1} \frac{\partial}{\partial x_{1}}-3 x_{1}^{2} y_{1} \frac{\partial}{\partial y_{1}}-6 x_{1}^{2}\right) \psi=\left(y_{1} \frac{\partial}{\partial x_{2}}-2 x_{2} y_{1} \frac{\partial}{\partial y_{1}}-4 x_{2}\right) \psi=0 .
$$

Since the solution ψ can be analytically continued to Σ_{0}, ψ belongs to

$$
\mathcal{H}_{\Sigma_{1} \cup \Sigma_{0}}^{3}\left(\mathcal{O}_{X}\right)
$$

and the dimension of the algebraic local cohomology solutions of the holonomic Dmodule $M_{-\frac{3}{2}}$ is equal to one at the origin Σ_{0}.
(ii) Let $s+1=0$. It is easy to see that the holonomic D-module M_{-1} has no non-trivial local cohomology solution in $\mathcal{H}_{\Sigma_{1}}^{3}\left(\mathcal{O}_{X}\right)$.

§3.3. Local cohomology solutions supported at Σ_{0}

Since the reduced local b-function at Σ_{0} of g is equal to

$$
\tilde{b}_{g, \Sigma_{0}}=(s+1)\left(s+\frac{3}{2}\right)\left(s+\frac{10}{9}\right)\left(s+\frac{11}{9}\right)\left(s+\frac{13}{9}\right)\left(s+\frac{14}{9}\right)\left(s+\frac{16}{9}\right)\left(s+\frac{17}{9}\right),
$$

we compute algebraic local cohomology solutions for the holonomic D-module associated with each root of the reduced local b-function.

Let $\mathcal{H}_{\left[\Sigma_{2}\right]}^{4}\left(\mathcal{O}_{X}\right)$ be the algebraic local cohomology supported on Σ_{0}.
(i) $9 s+10=0$. Then, a Gröbner basis of the holonomic ideal associated with the root $\beta=-\frac{10}{9}$ is given by $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$. We see that the local cohomology class

$$
\left[\begin{array}{ccc}
& 1 & \\
x_{1} & x_{2} & y_{1}
\end{array} y_{2}\right]
$$

is a solution of the holonomic D-module $M_{-\frac{10}{9}}$.
(ii) $9 s+11=0$. Then, a Gröbner basis of the holonomic ideal associated with the root $\beta=-\frac{11}{9}$ is given by $\left\{x_{1}^{2}, x_{2}, y_{1}, y_{2}, x_{1} \frac{\partial}{\partial x_{1}}+2\right\}$. The local cohomology class

$$
\left[\begin{array}{ccc}
1 & \\
x_{1}^{2} & x_{2} & y_{1}
\end{array} y_{2}\right]
$$

is a solution of the holonomic D-module $M_{-\frac{11}{9}}$.
(iii) $9 s+13=0$. Then, a Gröbner basis of the holonomic ideal associated with the root $\beta=-\frac{13}{9}$ is given by

$$
\left\{\begin{array}{c}
x_{1} x_{2}, \quad x_{1} y_{1}, \quad x_{2} y_{1}, \quad y_{1}^{2}, \quad y_{2}, \quad 16 x_{2}^{2}+9 y_{1} \\
2 x_{1} \frac{\partial}{\partial x_{1}}+3 x_{2} \frac{\partial}{\partial x_{2}}+6 y_{1} \frac{\partial}{\partial y_{1}}+17, \quad 3 y_{1} \frac{\partial}{\partial x_{1}}-8 x_{1}^{2}, 9 y_{1} \frac{\partial}{\partial x_{2}}-16 x_{2}
\end{array}\right.
$$

Note that since

$$
16 x_{2}^{3}=x_{2}\left(16 x_{2}^{2}+9 y_{1}\right)-9 x_{2} y_{1}
$$

and

$$
8 x_{1}^{4}=-x_{1}^{2}\left(3 y_{1} \frac{\partial}{\partial x_{1}}-8 x_{1}^{2}\right)+3 \frac{\partial}{\partial x_{1}}\left(x_{1}^{2} y_{1}\right)-6 x_{1} y_{1}
$$

partial differntial operators x_{1}^{4}, x_{2}^{3} belong to the annihilating ideals. It follows in particular from this fact that the support of the holonomic D-module $M_{-\frac{13}{9}}$ is the origin Σ_{0}.

Since the weighted degree of the solution is equal to $-\frac{13}{9}$, we consider algebraic local cohomology class ψ of the form

$$
\psi=a\left[\begin{array}{ccc}
1 & \\
x_{1}^{4} x_{2} & y_{1} & y_{2}
\end{array}\right]+b\left[\begin{array}{ccc}
1 \\
x_{1} & x_{2}^{3} y_{1} & y_{2}
\end{array}\right]+c\left[\begin{array}{cc}
1 & \\
x_{1} & x_{2}
\end{array} y_{1}^{2} y_{2}\right] .
$$

From

$$
\left(3 y_{1} \frac{\partial}{\partial x_{1}}-8 x_{1}^{2}\right) \psi=-(8 a+3 c)\left[\begin{array}{cc}
1 \\
x_{1}^{2} x_{2} & y_{1}
\end{array} y_{2}\right]
$$

and

$$
\left(9 y_{1} \frac{\partial}{\partial x_{2}}-16 x_{2}\right) \psi=-(16 b+9 c)\left[\begin{array}{c}
1 \\
x_{1} x_{2}^{2} y_{1} y_{2}
\end{array}\right]
$$

we have

$$
8 a+3 c=0,16 b+9 c=0
$$

We thus have

$$
\psi=\left[\begin{array}{ccc}
1 & \\
x_{1}^{4} & x_{2} & y_{1}
\end{array} y_{2} .\right]+\frac{3}{2}\left[\begin{array}{cc}
1 \\
x_{1} & x_{2}^{3} y_{1}
\end{array} y_{2}\right]-\frac{8}{3}\left[\begin{array}{ccc}
1 & \\
x_{1} & x_{2} & y_{1}^{2}
\end{array} y_{2}\right]
$$

as local cohomology solution.
(iv) $9 s+14=0$. Then, a Gröbner basis of the holonomic ideal associated with the root $\beta=-\frac{14}{9}$ is given by

$$
\left\{\begin{array}{c}
x_{2} y_{1}, y_{1}^{2}, y_{2}, 20 x_{2}^{2}+9 y_{1}, 2 x_{1} \frac{\partial}{\partial x_{1}}+3 x_{2} \frac{\partial}{\partial x_{2}}+6 y_{1} \frac{\partial}{\partial y_{1}}+19 \\
3 y_{1} \frac{\partial}{\partial x_{1}}-10 x_{1}^{2}, \quad 9 y_{1} \frac{\partial}{\partial x_{2}}-20 x_{2}
\end{array}\right.
$$

A direct computation yields the following local cohomology solution :

$$
\psi=\left[\begin{array}{cc}
1 & \\
x_{1}^{5} & x_{2}
\end{array} y_{1} y_{2}\right]+\frac{3}{4}\left[\begin{array}{cc}
1 \\
x_{1}^{2} x_{2}^{3} & y_{1}
\end{array} y_{2}\right]-\frac{5}{3}\left[\begin{array}{cc}
1 & \\
x_{1}^{2} & x_{2} \\
y_{1}^{2} & y_{2}
\end{array}\right] .
$$

(v) $9 s+16=0$. Then, a Gröbner basis of the holonomic ideal associated with the root $\beta=-\frac{16}{9}$ is given by

$$
\left\{\begin{array}{c}
28 x_{1} x_{2}^{2}+9 x_{1} y_{1}, x_{1} x_{2} y_{1}, x_{1} y_{1}^{2}, x_{2} y_{1}^{2}, 27 x_{2} y_{1}+28 x_{2}^{3} \\
10 x_{2}^{2} y_{1}+9 y_{1}^{2}, y_{1}^{3}, y_{2}, P_{1}, P_{2}, Q_{1}, Q_{2}, Q_{3}
\end{array}\right.
$$

where

$$
\begin{aligned}
& P_{1}=2 x_{1} \frac{\partial}{\partial x_{1}}+3 x_{2} \frac{\partial}{\partial x_{2}}+6 y_{1} \frac{\partial}{\partial y_{1}}+23, P_{2}=2 x_{2} \frac{\partial}{\partial x_{1}}-3 x_{1}^{2} \frac{\partial}{\partial x_{2}} \\
& Q_{1}=3 y_{1} \frac{\partial}{\partial x_{1}}-9 x_{1}^{2} y_{1} \frac{\partial}{\partial y_{1}}-23 x_{1}^{2}, Q_{2}=9 y_{1} \frac{\partial}{\partial x_{2}}-18 x_{2} y_{1} \frac{\partial}{\partial y_{1}}-46 x_{2} \\
& Q_{3}=9 y_{1}^{2} \frac{\partial}{\partial y_{1}}-28 x_{1}^{3}-28 x_{2}^{2}-15 y_{1}
\end{aligned}
$$

Let

$$
\begin{aligned}
& \psi_{1}=\left[\begin{array}{ccc}
1 & \\
x_{1}^{7} & x_{2} & y_{1}
\end{array} y_{2}\right], \psi_{2}=\left[\begin{array}{ccc}
1 & \\
x_{1}^{4} & x_{2}^{3} & y_{1}
\end{array} y_{2} .\right], \psi_{3}=\left[\begin{array}{ccc}
1 & \\
x_{1}^{4} & x_{2} & y_{1}^{2}
\end{array} y_{2}\right], \\
& \psi_{4}=\left[\begin{array}{ccc}
1 & \\
x_{1} & x_{2}^{5} & y_{1}
\end{array} y_{2}\right], \psi_{5}=\left[\begin{array}{ccc}
1 & \\
x_{1} & x_{2}^{3} & y_{1}^{2}
\end{array} y_{2} .\right], \psi_{6}=\left[\begin{array}{ccc}
1 & \\
x_{1} & x_{2} & y_{1}^{3}
\end{array} y_{2}\right] .
\end{aligned}
$$

Then,

$$
\psi=\psi_{1}+\frac{3}{8} \psi_{2}-\frac{7}{6} \psi_{3}+\frac{27}{16} \psi_{4}-\frac{7}{4} \psi_{5}+\frac{35}{18} \psi_{6}
$$

is a local cohomology solution.
(vi) $9 s+17=0$. Then, a Gröbner basis of the holonomic ideal associated with the root $\beta=-\frac{17}{9}$ is given by

$$
\left\{\begin{array}{c}
32 x_{1}^{2} x_{2}^{2}+9 x_{1}^{2} y_{1}, x_{1}^{2} x_{2} y_{1}, x_{1}^{2} y_{1}^{2}, x_{2} y_{1}^{2}, 27 x_{2} y_{1}+32 x_{2}^{3} \\
14 x_{2}^{2} y_{1}+9 y_{1}^{2}, y_{1}^{3}, y_{2}, P_{1}, P_{2}, Q_{1}, Q_{2}, Q_{3}
\end{array}\right.
$$

where

$$
P_{1}=2 x_{1} \frac{\partial}{\partial x_{1}}+3 x_{2} \frac{\partial}{\partial x_{2}}+6 y_{1} \frac{\partial}{\partial y_{1}}+25, P_{2}=2 x_{2} \frac{\partial}{\partial x_{1}}-3 x_{1}^{2} \frac{\partial}{\partial x_{2}},
$$

$$
\begin{aligned}
& Q_{1}=3 y_{1} \frac{\partial}{\partial x_{1}}-9 x_{1}^{2} y_{1} \frac{\partial}{\partial y_{1}}-25 x_{1}^{2}, Q_{2}=9 y_{1} \frac{\partial}{\partial x_{2}}-18 x_{2} y_{1} \frac{\partial}{\partial y_{1}}-50 x_{2} \\
& Q_{3}=9 y_{1}^{2} \frac{\partial}{\partial y_{1}}-32 x_{1}^{3}-32 x_{2}^{2}-21 y_{1}
\end{aligned}
$$

Let

$$
\begin{aligned}
& \psi_{1}=\left[\begin{array}{ccc}
1 \\
x_{1}^{8} & x_{2} & y_{1}
\end{array} y_{2} .\right], \psi_{2}=\left[\begin{array}{c}
1 \\
x_{1}^{5} \\
x_{2}^{3}
\end{array} y_{1} y_{2}\right], \psi_{3}=\left[\begin{array}{c}
1 \\
x_{1}^{5} x_{2} \\
y_{1}^{2}
\end{array}\right] \\
& \psi_{4}=\left[\begin{array}{ccc}
1 & \\
x_{1}^{2} x_{2}^{5} & y_{1} & y_{2}
\end{array}\right], \psi_{5}=\left[\begin{array}{c}
1 \\
x_{1}^{2} x_{2}^{3} \\
y_{1}^{2}
\end{array} y_{2}\right], \psi_{6}=\left[\begin{array}{c}
1 \\
x_{1}^{2} x_{2} y_{1}^{3} \\
y_{2}
\end{array}\right] .
\end{aligned}
$$

Then,

$$
\psi=\psi_{1}+\frac{3}{10} \psi_{2}-\frac{16}{15} \psi_{3}+\frac{27}{40} \psi_{4}-\frac{4}{5} \psi_{5}+\frac{56}{45} \psi_{6}
$$

is a local cohomology solution.
(vii) $s+1=0$. Gröbner basis of the holonomic ideal associated with the root $\beta=-1$ is $\left\{y_{1}, y_{2}, 2 x_{1} \frac{\partial}{\partial x_{1}}+3 x_{2} \frac{\partial}{\partial x_{2}}+3,2 x_{2} \frac{\partial}{\partial x_{1}}-3 x_{1}^{2} \frac{\partial}{\partial x_{2}}\right\}$

Let $\psi=\left[\begin{array}{cccl}1 & \\ x_{1}^{i} & x_{2}^{j} & y_{1} & y_{2}\end{array}\right]$. Then,

$$
\left(2 x_{1} \frac{\partial}{\partial x_{1}}+3 x_{2} \frac{\partial}{\partial x_{2}}+3\right) \psi=(-2 i-3 j+3) \psi
$$

Therefore there is no non-trivial local cohomology solution supported at the origin Σ_{0}.
(viii) $2 s+3=0$. Recall that

$$
\left\{\begin{array}{c}
x_{1}^{3}+x_{2}^{2}+y_{1}, \quad y_{1}^{2}, \quad y_{2}, \quad 2 x_{1} \frac{\partial}{\partial x_{1}}+3 x_{2} \frac{\partial}{\partial x_{2}}+6 y_{1} \frac{\partial}{\partial y_{1}}+18 \\
2 x_{2} \frac{\partial}{\partial x_{1}}-3 x_{1}^{2} \frac{\partial}{\partial x_{2}}, \quad y_{1} \frac{\partial}{\partial x_{1}}-3 x_{1}^{2} y_{1} \frac{\partial}{\partial y_{1}}-6 x_{1}^{2}, \quad y_{1} \frac{\partial}{\partial x_{2}}-2 x_{2} y_{1} \frac{\partial}{\partial y_{1}}-4 x_{2}
\end{array}\right.
$$

is a Gröbner basis of the holonomic ideal associated with the root $\beta=-\frac{3}{2}$
Let $\psi=\left[\begin{array}{ccc}1 & \\ x_{1}^{i} & x_{2}^{j} & y_{1}^{k}\end{array} y_{2}.\right]$. Then,

$$
\left(2 x_{1} \frac{\partial}{\partial x_{1}}+3 x_{2} \frac{\partial}{\partial x_{2}}+6 y_{1} \frac{\partial}{\partial y_{1}}+18\right) \psi=(-2 i-3 j-6 k+18) \psi
$$

Therefore, we have $(i, j, k)=(3,2,1)$.
Since

$$
\left(2 x_{2} \frac{\partial}{\partial x_{1}}-3 x_{1}^{2} \frac{\partial}{\partial x_{2}}\right)\left[\begin{array}{c}
1 \\
x_{1}^{3} x_{2}^{2} y_{1} y_{2}
\end{array}\right] \neq 0
$$

Therefore there is no non-trivial local cohomology solution supported at the origin Σ_{0}.
We have verified in this section that
$\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{D_{X}}\left(M_{\beta}, \mathcal{H}_{\left[\Sigma_{2}\right]}^{4}\left(\mathcal{O}_{X}\right)\right)=1, \quad\right.$ for $\quad \beta=-\frac{10}{9},-\frac{11}{9},-\frac{13}{9},-\frac{14}{9},-\frac{16}{9},-\frac{17}{9}$ and
$H_{o m}^{D_{X}}\left(M_{\beta}, \mathcal{H}_{\left[\Sigma_{2}\right]}^{4}\left(\mathcal{O}_{X}\right)\right)=\{0\}, \quad$ for $\quad \beta=-1,-\frac{3}{2}$.

References

[1] R. Bahloul and T. Oaku, Local Bernstein-Sato ideals ; algorithms and examples, Journal of Symbolic Computation 45 (2010), 46-59.
[2] J. Briançon and P. Maisonobe, Remarques sur l'idéal de Bernstein associé à des polynômes, prépublication Univ. Nice-Sophia Antipolis, $\mathrm{n}^{\circ} 650$, Mai, 2002.
[3] P. Deligne, Le formalisme des cycles évanescents, SGA 7, II, exposés 13, Lecture Notes in Math. 340 (1973), 82-115.
[4] M. Kashiwara, b-functions and singularity of a hypersurface, (in Japanese, Noted by T. Miwa), RIMS Kôkyûroku 225 (1975), 16-53.
[5] M. Kashiwara, On the maximally overdetermined system of linear differential equations, I, Publ. Res. Inst. Math. Sci. 10 (1974-1975) 563-579.
[6] M. Kashiwara, B-functions and holonomic systems, Invent. Math. 38 (1976) 33-53.
[7] M. Kashiwara, On the holonomic systems of linear differential equations, II, Invent. Math. 49 (1978) 121-135.
[8] K. Nabeshima, K. Ohara and S. Tajima, Comprehensive Gröbner systems in rings of differential operators, holonomic D-modules and b-functions, ISSAC2016, Proceedings of the International Symposium on Symbolic and Algebraic Computation, (2016), 349356.
[9] L. Narváez-Macarro, Cycles évanescents et faisceaux pervers : cas des courbes planes irreductibles, Compositio Math. 65 (1988), 321-347.
[10] K. Nishiyama and M. Noro, Stratification associated with local b-functions, J. Symbolic Computation 45 (2010) 462-480.
[11] M. Noro and T. Takeshima, Risa/Asir- A computer algebra system, ISSAC1992, Proceedings of the International Symposium on Symbolic and Algebraic Computation (1992), 387-396.
[12] T. Oaku, Algorithms for the b-function and D-modules associated with a polynomial, J. Pure and Applied Algebra 117 \& 118 (1997) 495-518.
[13] T. Oaku, Algorithms for b-functions, restrictions, and algebraic local cohomology groups of D-modules, Adv. Appl. Math. 19 (1997), 61-105.
[14] S. Tajima, On b-functions and algebraic local cohomology classes attached to hypersurfaces with line singularities, RIMS Kôkyûroku Bessatsu 52 (2014), 175-191.
[15] S. Tajima and Y. Umeta, Computing structure of holonomic D-modules associated with a simple line singularity, RIMS Kôkyûroku Bessatsu. 57 (2016), 125-140.
[16] T. Yano, On the theory of b-functions, Publ. Res. Inst. Math. Sci. 14 (1978), 111-202.
[17] A. Zaharia, On the bifurcation variety of some non-isolated singularities, Math. Scand. 77 (1995), 45-59.

[^0]: Received May 7, 2017. Revised Octorber 11, 2017.
 2010 Mathematics Subject Classification(s): 32C38, 32S40
 Key Words: local cohomology, holonomic D-module, non-isolated singularity.
 Supported by JSPS Grant-in-Aid for Scientific Research 15K04891
 *Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata, Japan. e-mail: tajima@emiritus.niigata-u.ac.jp

