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Singular solutions of g-difference-differential
equations of Briot-Bouquet type
By

Hiroshi YAMAZAWA*

Abstract

In 1990, Gérard-Tahara [3] introduced the Briot-Bouquet type partial differential equa-
tion tOyu = F(t,x,u,0yu). In [17] the author showed existences of holomorphic and singular
solutions of the following type of difference-differential equations tD,u = F(t,z, u, Oyu) when
the characteristic exponent p(0) # (¢ — 1)/(¢ — 1) holds. In this paper the author shows
existences of singular solutions with p(0) = (¢" —1)/(q — 1)

8§1. Introduction

In this paper let ¢ > 1: for a function f(¢,x) we define the g¢-difference operator
D, by

t — f(t t — f(t
qu(t,x)zgqf(vx) f(?x):f(Q7x) f(,l')
qt —1 qt —1
In [15] Ramis introduced the g-difference operator D,. We will study the following type

of nonlinear g-difference-differential equations:
(1.1) tDqu = F(t,2,{07 u}|a|<m)

where (t,z) = (t,z1,...,2,) € C; X C}, a = (a1,...,ap) € N, |a] = a1 + -+ + an,
OF = 01" ...05m, 0y =00y, fori=1,....,n, F(t,z,Z) (Z = {Za}|a|<m) is a function
defined in a polydisk A centered at the origin of C; x CI! x C‘} and 9§ is the cardinal of
{a e N": |a| <m}.
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In the case of g-difference equations, Vizio, Ramis, Sauloy and Zhang [2] studied
linear equations and Joshi and Shi [5], Nishioka [11] and Ohyama [12] obtained some
results for nonlinear equations. In the case of ¢-difference-differential equations, Lastra,
Malek and Sanz [7] and Tahara and Yamazawa [14] studied the summability of formal

solutions of linear equations.

Let us denote Ag = AN{t = 0,Z = 0}. In this paper we assume the following
conditions:

(A1) F(t,z,Z) is holomorphic in A,

(A2) F(0,2,0) =0 in Ao,

OF
(A3) 67(0,36,0) =0in Ag for all 1 < |a| < m.

Definition 1.1.  If the equation (1.1) satisfies (Al), (A2) and (A3) we say that
(1.1) is a g-analogue of the Briot-Bouquet type with respect to t (simply the g-Briot-
Bouquet type with respect to t).

Definition 1.2.  ([3]) Let us define

OF

pla) = 5 (0,,0),

then the holomorphic function p(x) is called the characteristic exponent of the equation
(1.1).

Let us denote by
1. R(C\{0}) the universal covering space of C\{0},
2. Sp = {t € R(C\{0}); |argt| <0},

3. S(e(s)) ={t € R(C\{0}); 0 < |t|] < e(argt)} for some positive-valued function €(s)

defined and continuous on R,
4. Sp(T) = Sp N S(T),
5. Dp={x€C" |z;/<Rfori=1,...,n},
6. C{z} the ring of germs of holomorphic functions at the origin of C",

7. O(D) the set of all holomorphic functions on a domain D C CZ,

8. [[fllr := supzep, [f(2)]
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Definition 1.3.  ([3]) We define the set O of all functions u(t, z) satisfying the
following conditions:
1. u(t,z) is holomorphic in S (e(s)) x Dg for some €(s) and R > 0,
2. there is an a > 0 such that for any # > 0 and any compact subset K of Dg

mea[}{{]u(t,x)]:()(]ﬂa) as t—0 in Sp.

Set pg(x) = log{14+(¢—1)p(z)}/logq. Then the author proved the following result:

Theorem 1.4.  ([17]) If the equation (1.1) is of the q-Briot-Bouquet type and
p(0) # [ilg == (¢* —1)/(¢—1) fori=1,2,... then we have;
(1) (Holomorphic solutions) The equation (1.1) has a unique solution ug(t,x) holomor-
phic near the origin of Cy x CI' satisfying uo(0,z) = 0.
(2) (Singular solutions) When Rp(0) > 0 for any p(x) € C{z} there exists an O, -
solution U(y) of (1.1) having an expansion of the following form:

(1.2) U(p) = > ui(z)t'+ > i (@)t TP (logt)*, o 10(z) = o).
i=1 k<i+2m(j—1),5>1

The purpose of our paper is to construct O -solutions of (1.1) on the case p(0) =
[N]4. The main result of this paper is;

Theorem 1.5.  If(1.1) is of the g-Briot-Bouquet type and p(0) = [N], for N € N
and p(x) # p(0) then we have;
For any o(x) € C{z} there exists an O -solution U(y) of (1.1) having an expansion of
the following form:

(1.3) U(p) = p(x)tre™) + Z Z Ok (x)wg,i(t, ).

E>11<I<my

Here my, and w1 (t,x) are as follows: (1) my (k > 1) are positive integers determined
by the equation (1.1), and (2) wi,(t,z) (k > 1 and 1 < 1 < my) are functions also
determined by the equation (1.1) satisfying the following property: there is a o > 0
such that wy(t,x) = O(t7%,OL) (as t — 0) holds for all (k,1). The coefficients ¢(z)
and ¢ (x) are as follows: (3) p(x) are arbitrary holomorphic function, and (4) ¢ri(z)
(k>1 and 1 <1< my) are holomorphic functions determined by ¢(x).

In the above condition (2) the notation
w(t,z) = Ot*,0L) (ast — 0)

means that the condition t~w(¢, z) € O, holds.
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This paper is organized as follows. In section 2 and 3 we give the definition and
estimates of wy (¢, 2) in Theorem 1.5. In section 4 and 5 we prepare lemmas to show
our theorem. In section 6 and 7 we give a proof of Theorem 1.5.

§2. Definition of the System {wy;}

In this section we will define functions {wy,;}, the idea to construct the functions
is in [13]. We choose a constant ¢ such that 0 < o < min{l, p,(0)} and {ck; k =
1,2,...} # pg(0). Then we have an integer N* such that

(2.1) oN* < pa(0) < o(N* +1).
Remark. By the definition of pg(z), pe(0) > 0 holds.

Set AM(z) =1+ (¢ —1)p(x) and a > 0. Let us define an operator @) by

tPa (z) _ tPa (0)

(2.2) QU™ = (o0 = M) Y] = s =3y

for N =1,2,... and

(A(@)Y o Du(t,z) i [\l < q°

M3

I
I ©

(2.3) Q[u(t,x)] =
(A@) " ou(t, ) if [[All- > ¢°

for u(t,x) = O(t*, O,)

Lemma 2.1.  ([17], Corollary 5.5, p.196) Suppose that u(t, x) belongs to (5+ and
satisfies
lu(t, Yl < MIte  for t € Sy(T)

for any 8 >0 and an a > 0. Then there exists a positive constant C' such that

M
[t|*  fort e Se(T).

HQU(t7 )“”’ < an

Then we define function classes in order to construct wy, ;.

Definition 2.2.  We define finite sets Fy, G and Hy (k = 1,2,...) in 5+ in-
ductively by the following procedure (1) ~ (3) :
(1) We set F1 = {Q[t]}. If k> 2 and if H4,...,Hi_1 are already defined, we set

Fe= U U {QUt' bk, -+ bk | dr;, € Hiy (G=1,...,[v])}-

2<pu+|v|<k ptki+-+k), =k
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(2) If Fi, is already defined, we set

Fi (k#N*)
Or =
{]—“ku{tpq(m)} (k= N*).

(3) If Gy is already defined, we set

me= U U G w wea)

la|<m 0<fBa<a

where 8 < awmeans §; < «; for j=1,...,n.

Definition 2.3.  We define the system of functions {wy (¢, z) : k> 1
my} by the following : set my = §F% and

Fio ={wi1(t,z),...,wpm, (t,x)} fork=1,2,....
Then we have:

Proposition 2.4. If R > 0 is sufficiently small, we have
(1) wg,(t, z) belongs to O for any k> 1 and 1 <1< my.

(2) For any 6 > 0 there exists a T >0 and 0 < 0’ < o such that

o0\« k|a| ’
< ¢, ‘< _1t17F on Sp(T) x D
(5) weatt: )| < ol on So(T) x Dr
holds for any k > 1, 1 <1< my and |a| < m.

In the next section, we will show the proof of Proposition 2.4.

§3. Proof of Proposition 2.4

In this section we will give the proof of Proposition 2.4.

Recall that F; = {wy 1(¢, )} with w1 ; = Q[t]. Then taking 0 < ¢ < 1 in Section
2 we can assume that wj ; is holomorphic on S(1) x Dg and for any 6 > 0 there exists
Ky > 1 such that

0\« 1
(3.1) H<%) wi(t, .)HR < Koz lil7 on y(1) for any Ja] < m.
By induction on k£ we have:

Lemma 3.1.  For any k = 1,2,... we have the following properties (1) and
(2)k, in which the constant Cy > 1 is independent of a,, k and I.
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(D) wii(t,z) is holomorphic on Sy(1) x D, for any § > 0 and 0 < r < R and |l =

1,...,mk.

(2), We have the following estimates for any 6 > 0:

Lol C2k—2 .
00 (2) w5 g B s

forany 0 <r <R, |a]<mandl=1,...,my.

Proof. For (%) we can assume

a o N*\a| CQN*—2 N
_ pq() 0 oN
39 GGl < et oS
for any 0 < r < R and |a] < m.
Let £ > 2. Suppose that (1); and (2); already hold for ¢ = 1,...,k — 1. Set

Ok, = k'ﬁa‘( Dye=Paly for some |a| < m, 0 < By < a and W(t,z) € Gi,. Since
1 <k, <k —1 holds, in the case W(t,z) € Fi, we have

kla‘_lﬁa| CQku72

|Bal 2V 9
o, I < k™ =27 (R — r)nu—1)

CQk -2 ok

tlo

(3.4)

on Sy(1)

for any 0 < r < R. Here we used that there exists positive constant K, such that

Elel
— <K, for|of]<mand k=1,2,....
qO'
In the case k, = N* and W(t, x) = tP+(*)| by the estimate (3.3) we can obtain the
same estimate as (3.4). By the definition of Fj, we see that wy (¢, z) is expressed the
form

wk7l(t7 x) = Q[tuwkl X X (pk|u|]

where 2 < p+ |v| < kand p+ky + -+ k| = k.
Then by (3.4) we have

180k, (£, ) > - - X gy, ()]
C2k1 —2 C,2k|l,‘—2

I 0 okq L 0 ok,

(3.5) SU (R — r)m(k1—1) [H75 e X Ko (R — 7)™k =D [#17
2 (ks -y — ) 2h—2p—3/2]v|
C C
V] 0 ok 0 ok
SKm (R—T)m(k1+"'+k|l’\_|y|) |t| S (R—r)m(k_ﬂ_|’/|) |t| on 59(1)

when K,, < 01/2
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Since 6 > 0 is arbitrary, this implies that ¢, X .-+ X ¢, is holomorphic on
S(1) x D, for any 0 < r < R. Thus we see that wy, ;(t, ) is holomorphic on S(1) x D,
that is, wg (¢, ) belongs to O4. By Lemma 2.1, we have
1 o2k2m-3/20v| 1 (2k=3

0

r < 6 tO‘k < t
[w il < Cq°F (R — T)m(k—Z)’ 7" < Cq°F (R — r)m(k—2)‘

(3.6)

We need the following lemma in order to estimate the derivative of wy ;.

Lemma 3.2 (Nagumo’s lemma).  If a holomorphic function u(x) in Dg satisfies
HUHTSW f07’0<7’<R
then we have 3 Ce( D
e(p+
||%U||r§m f07"0<7"<R.

For the proof, see Hérmander ([4], lemma 5.1.3).

By Lemma 3.2, we obtain

(3.7)
H(£>aw - 092147—3 (m(k—2) + D (m(k —2) +2)--- (m(k —2) + |af)el® ot
Ox P = Ogek (R — r)m(k=2)+]a
G} tm(k —D)elel*l oy OGPk -l ey,
B ngk (R — T‘)m(k_2)+|0‘| - Oqak (R _ r)m(k—l)
k|a| Cgk_Q ok
< a7 o Sul)

for any |a| < m and (me)™/C < Cy. Q.E.D.

Completion of the proof of Proposition 2.4.
Set 7 = R/2 and take o’ > 0 with ¢’ < o and (2.1). Then we see that wy (¢, z) is
holomorphic on S(1) x Dpg/s for all (k,1) and

ox) N IR = gk (R/2)m(E-1)

< s (G (577 ) e s

£
(3.8)

holds for any |a| < m and (k,l). Then if we take 7" > 0 so that

() ) <1 e
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we obtain the estimate in Proposition 2.4-(2) with R and o replaced R/2 and o’ respec-
tively.

§4. Reduction equations

In this section we will reduct (1.1) into the following equation in order to prove the

main theorem:
(4.1) (0 = A@))u(t, z) = a(x)t + G2(x) (¢, {07 ult, ) }jaj<m)

where a(z) € O(Dg).
Set Z¥ = [ljaj<m{Za}". We assume that the functions Ga(z)(t,Z) have the

following expansion:

(4.2) Go(@)(t,2) = 3 guula)t ¥

pt|v|>2

where g, ,(z) € O(Dg).

Lemma 4.1.  If the equation (1.1) is of the q-Briot-Bouquet type, then we can
reduct (1.1) into the equation (4.1) with (4.2).

Proof. We multiply the both side of (1.1) by ¢ — 1. Then we get (4.1) and A\(z) =
1+ (¢ —1)p(z). Q.E.D.

Remark.  1f p(0) = [N], then X\(0) = ¢".

§ 5. Function equation

Let us consider a functional equation in order to estimate the coefficients w; i (z).
Set A >0, G,, >0 (p+|v] >2) and 0 < r < R. Then we consider the following
functional equation:

_ 1 GH»V m 4
(5.1) V= At+ (R—r)™ Z (R — r)m(utiv]=2) t"((2me)™Y)
ptlv|>2

where a series > ,>0 G, ,t"Y ¥l converges in a neigbourhood of (¢,Y) = (0,0).

et
For the equation (5.1) we have the following lemma.

Lemma 5.1.  The functional equation (5.1) has the holomorphic solution Y (t) =
> uey Yi(r)t® that is expressed in the form

Ck
(R _ T)m(k—l)

with constants C1 = A and Cy > 0 for k > 2.

Yk(T) =

fork>1
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Proof. Let us show that the equation (5.1) have formal power series solutions
Y (t) = ro, Yi(r)t*. By substituting Y ;- Y4xt* into (5.1), we have Y; = A and

1 G N m
(5.2) Ykzm > (R — r)mutiv[=2) IT II II@em™yi,q

2<p+|v|<k ptlk(v)|=k |a|<m i=1

for kK > 2. Let us show that the formal power series solutions Y (¢) are holomorphic in

a neighborhood of the origin ¢ = 0. Set
F(t,Y)=Y — At

(53) ! Glh’/ Y m v
(B +z|:>2 (R =yt (2me) Yyl

We have F'(0,0) = 0 and 9y F'(0,0) = 1. Then we get holomorphic solutions Y (¢) by the
implicit function’s theorem. Further we have the coefficients Yy (r) = Cy /(R — r)™(*—1)
by the recurrence formula (5.2) and induction on k. Q.E.D.

§6. Proof of Theorem 1.5 of the case N =1

In this section we will give the proof of theorem 1.5. We will show that the equation
(4.1) has formal solutions of the form (1.3) and the formal solution converges in Sy (7T") x
D,. by the implicit function’s theorem and the method of majorant functions.

§6.1. Construction of a formal solution

We note that we have N* = 1 when N = 1. Let us construct a formal solution
u(t, x) of the equation (4.1) in the form

(6.1) u(t,z) = Zuk(t,x)

E>1
with

o11(x)wy 1 (E ) + @)™ k=1

(6.2) u(t @) = §¢k,z($)wk71(t,x) k>2
=1

where p(z) and ¢ ;(z) are suitable holomorphic functions in a common neighbourhood
of x = 0. Here set W11 := w1, Wig = tpq(“), My :=mi+1=2 Wy = wi,; and
M;. == my, for k > 2.
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Remark.  We note
tPa (33) — tPa (O)

ERCEON
By the proof of Proposition 2.4, we have

wlvl(t,x

up(t,z) = 0(t7*, 04) ast—0
for all k£ > 1. Then we will construct a formal solution as follows;
(0g = Ax))ur = a(z)t
(6.3) oA = S g I II (%)auka(i) (t, )

pt k()| =k laf<m i<va

where [v| = 37 o, Vo and [k(v)] = 30, <, 22121 ka(i). By substituting ug(t, ) to
the relation (6.3), we have

D bra(@) (0 = A@))wi(t, @)
=1

Z G (T) Z Z H ﬁ

(6.4) 2<putv|<k (k(), (k)€ Ji (1) BW)ED (v) |a| <m i=1

@ 1 D \ fali)
(o010 @R (55)™ Do, 0100

0 \a-— al(t
<[ 11 Hk’ Lyt (k)]
la|<m =1

where [(v) = {(lo(7));]a] < m and 1 < i < v}, L, k(v)) = {l(v);1 < 1,(i) <
i (0 ] < 1 <12 ) Sl ) = (KO, 1)) 4 KO )
B(v) = {(Bali)); Bali) € N" || < mand 1 < i
a(lof <m,1<i<wy,)}.

Here we note the following lemma that is the same as Lemma 8 in [13].

Lemma 6.1. Let k > 2 and set A, = {(1, v, k(v),l(v),B(v));2 < p+ |v] <
k, (k(v),l(v)) € Ti(pu,v) and B(v) € T(v)}. Then by a suitable injection m: Ap —
{1,2,...,my} we have the following equality

65 QY T kal) (D) P OW 106 2)] = wnat,2)

o] <m =1

1 0 i
(6.6) gun(@) I H (Ba (i) >m(ax)ﬁa( B i1 (@) = D1 ()

la|<m =1
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under the correspondence i (p, v, k(v),l(v), B(v)) = L.
Thus we have;

Proposition 6.2.  We can construct a formal solution u(t,x) of the form (6.1)
and (6.2). Moreover we see the following: (i) the coefficient p(x) € C{x} can be chosen
arbitrary, (i) ¢11(z) = a(x), and (i) all the other coefficients ¢i(x) € C{z} are
determined by (6.6) and therefore they are all holomorphic in a common neighborhood
of = 0.

§6.2. Proof of the convergence of a formal solution

We will prove the convergence of the formal solution (¢, z) in Proposition 6.2. Let
R > 0 be sufficiently small. Set

0 0
. (6% _ (e} < <
6.7) ||(ax) ¢llr + H(ax) $11llr < A for |a] <m and

guw|lr < Gup for p+Jv| > 2.

We will assume that
At+ > G thzY

ptlv|>2

is convergent in a neighborhood of (¢, Z) = (0,0).

Let a(t,z) = > )~ uk(t, z) with

My,
(6.8) uk(t,x) = (@) Wi (t, o)
=1
be the formal solution. We know M; = 2, ¢1.1(x) = a(z), ¢1.2(z) = p(z) and
My,
llurllr <Y llwallo[t]7" for t € So(T).
=1
Then set
Mk Mk a
(6.9) furlly =D llgnall-  and [|Dguglly =) 1(5,)" onallr
=1 =1

in order to estimate the term wug(¢,z) in (6.8).
We have [|ug||i = 0kallellr + D15 ||ékallr where dpq = 1if k =1, 61 = 0 if
k # 1. By the relation (6.6), we obtain
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luglly < S gl Y 11 H(ﬂ )
(6.10) 2<put|v|<k p|k(v)|=k,B(v)ET(v) |o| <m i=1 o
1 (2) *
X e [ DE Oy [

o (i)1Pa ()

Let us consider the following equation:

_ 1 GM: m |v|
pt|v]>2

Then we have;

Proposition 6.3.

1
(6.12) WHDg‘ukHjﬁ < (me)™Yy forany0<r <R and |a] < m,
fork=1,2,....
Proof.

For k =1 by (6.7), we have

e * a
1Dgua]l = (5%l + 11(5 )¢1ﬂh

<A=Y; < (me)mY1 for any |a| < m.

(6.13)

When k = 1, the inequality (6.12) holds.
For k > 2, suppose that (6.12) holds for ¢ = 1,2,...,k — 1. Then we have

(6.14)

* Gal/ m
D S = =N DU | | [ A (e Lo

2<ptv|<k pH k()| =k,B() €D (1) || <m i=1

G m
< Z (R_T)nf(’u+|1/\—2) Z H H(2me) Yo

2<p+lv|<k ptlk(@)|=k [a|<m =1

Ck
(R _ T)m(k—2) ’

= (R — T)mYk =

Here we used

3 () e

0<B<a
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By applying Lemma 3.2 to the inequality (6.14), we obtain

(6.15)
1o w1 (m(k=2)+1) x - x (m(k—2)+ |a])ellCy,
WHDZC uk“r < Lkl (R _ T)m(k—2)+|oz|
(k — 1)|a| (me)"”C’k m Ck . m
S T R e < MO e = (M) Ve
Q.E.D.

Proof of the convergence of the formal solution (¢, z). Set r = R/2. By Proposition
2.4-(2), 6.3, (6.8) and (6.9), we have

fut, 2)] < Y [un(t e < D lluwl[F[E7F < (me)™ Y Yalt]”™™  on Sy(T).

k>1 k>1 k>1

u(t, z) converges on Sp(T") x D,. Since 6 > 0 is arbitrary, we can conclude that u(t, )
converges in 0.

8§7. Proof of Theorem 1.5 of the case N > 2

We set
N-1 .
(7.1) u(t,x) = wi(2)t" + NV " w(t, z)
i=1
where u;(z) € C{z} (1 <i< N—1) and w(t,z) € O,. Then by an easy calculation we

see;

Lemma 7.1.  If the function (7.1) is a solution of the equation (4.1), then the
functions ui(x), ..., un—_1(z) are uniquely determined and w(t,x) satisfies the following
equation:

(0g — ¢ N UN@)w = ta(t,z) + Y At z)050w

lof <m

+ Y tWNEDWENB, () [T {05w},

lv[>2 lof <m

(7.2)

where

alt,2) = oy (Ga(e)(t {000 g ) + tale) — (0 = Alw))uo)
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1 9G, N
Ayt z) = W@(ﬂﬁ)(tv {07 wo}a)1<m)s o <m
1 1ala
B, (t,x) = 2 (@) (t, {0%w0 }aj<m)s V] > 2.

g1 v oozv

We can apply the results in Section 6 to the equation (7.2). Hence this completes

the proof of Theorem 1.5.
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