Singular solutions of q-difference-differential equations of Briot-Bouquet type

By

Hiroshi Yamazawa*

Abstract

In 1990, Gérard-Tahara [3] introduced the Briot-Bouquet type partial differential equation $t\partial_t u = F(t,x,u,\partial_x u)$. In [17] the author showed existences of holomorphic and singular solutions of the following type of difference-differential equations $tD_q u = F(t,x,u,\partial_x u)$ when the characteristic exponent $\rho(0) \neq (q^N - 1)/(q - 1)$ holds. In this paper the author shows existences of singular solutions with $\rho(0) = (q^N - 1)/(q - 1)$

§ 1. Introduction

In this paper let q > 1: for a function f(t, x) we define the q-difference operator D_q by

$$D_q f(t,x) = \frac{\sigma_q f(t,x) - f(t,x)}{qt - t} = \frac{f(qt,x) - f(t,x)}{qt - t}.$$

In [15] Ramis introduced the q-difference operator D_q . We will study the following type of nonlinear q-difference-differential equations:

(1.1)
$$tD_q u = F(t, x, \{\partial_x^{\alpha} u\}_{|\alpha| \le m})$$

where $(t,x) = (t,x_1,\ldots,x_n) \in \mathbb{C}_t \times \mathbb{C}_x^n$, $\alpha = (\alpha_1,\ldots,\alpha_n) \in \mathbb{N}^n$, $|\alpha| = \alpha_1 + \cdots + \alpha_n$, $\partial_x^{\alpha} = \partial_1^{\alpha_1} \ldots \partial_n^{\alpha_n}$, $\partial_i = \partial/\partial_{x_i}$ for $i = 1,\ldots,n$, F(t,x,Z) $(Z = \{Z_{\alpha}\}_{|\alpha| \leq m})$ is a function defined in a polydisk Δ centered at the origin of $\mathbb{C}_t \times \mathbb{C}_x^n \times \mathbb{C}_Z^\delta$ and δ is the cardinal of $\{\alpha \in \mathbb{N}^n : |\alpha| \leq m\}$.

Received October 26, 2016. Revised January 20, 2018.

²⁰¹⁰ Mathematics Subject Classification(s): Primary 35C10; Secondary 35C20

Key Words: q-Briot-Bouquet, Singular solutions.

^{*}Shibaura Institute of Technology, Saitama 337-8570, Japan. e-mail: yamazawa@shibaura-it.ac.jp

In the case of q-difference equations, Vizio, Ramis, Sauloy and Zhang [2] studied linear equations and Joshi and Shi [5], Nishioka [11] and Ohyama [12] obtained some results for nonlinear equations. In the case of q-difference-differential equations, Lastra, Malek and Sanz [7] and Tahara and Yamazawa [14] studied the summability of formal solutions of linear equations.

Let us denote $\Delta_0 = \Delta \cap \{t = 0, Z = 0\}$. In this paper we assume the following conditions:

- (A1) F(t, x, Z) is holomorphic in Δ ,
- **(A2)** F(0, x, 0) = 0 in Δ_0 ,

(A3)
$$\frac{\partial F}{\partial Z_{\alpha}}(0, x, 0) = 0 \text{ in } \Delta_0 \text{ for all } 1 \leq |\alpha| \leq m.$$

Definition 1.1. If the equation (1.1) satisfies (A1), (A2) and (A3) we say that (1.1) is a q-analogue of the Briot-Bouquet type with respect to t (simply the q-Briot-Bouquet type with respect to t).

Definition 1.2. ([3]) Let us define

$$\rho(x) = \frac{\partial F}{\partial u}(0, x, 0),$$

then the holomorphic function $\rho(x)$ is called the characteristic exponent of the equation (1.1).

Let us denote by

- 1. $\mathcal{R}(\mathbb{C}\setminus\{0\})$ the universal covering space of $\mathbb{C}\setminus\{0\}$,
- 2. $S_{\theta} = \{t \in \mathcal{R}(\mathbb{C} \setminus \{0\}); |\arg t| < \theta\},$
- 3. $S(\epsilon(s)) = \{t \in \mathcal{R}(\mathbb{C} \setminus \{0\}); \ 0 < |t| < \epsilon(\arg t)\}$ for some positive-valued function $\epsilon(s)$ defined and continuous on \mathbb{R} ,
- 4. $S_{\theta}(T) = S_{\theta} \cap S(T)$,
- 5. $D_R = \{x \in \mathbb{C}^n; |x_i| < R \text{ for } i = 1, \dots, n\},\$
- 6. $\mathbb{C}\{x\}$ the ring of germs of holomorphic functions at the origin of \mathbb{C}^n ,
- 7. $\mathcal{O}(D)$ the set of all holomorphic functions on a domain $D \subset \mathbb{C}_x^n$,
- 8. $||f||_R := \sup_{x \in D_R} |f(x)|$.

Definition 1.3. ([3]) We define the set $\widetilde{\mathcal{O}}_+$ of all functions u(t,x) satisfying the following conditions:

- 1. u(t,x) is holomorphic in $S(\epsilon(s)) \times D_R$ for some $\epsilon(s)$ and R > 0,
- 2. there is an a>0 such that for any $\theta>0$ and any compact subset K of D_R

$$\max_{x \in K} |u(t, x)| = O(|t|^a) \quad \text{as} \quad t \to 0 \quad \text{in} \quad S_{\theta}.$$

Set $\rho_q(x) = \log\{1 + (q-1)\rho(x)\}/\log q$. Then the author proved the following result:

Theorem 1.4. ([17]) If the equation (1.1) is of the q-Briot-Bouquet type and $\rho(0) \neq [i]_q := (q^i - 1)/(q - 1)$ for i = 1, 2, ... then we have;

- (1) (Holomorphic solutions) The equation (1.1) has a unique solution $u_0(t,x)$ holomorphic near the origin of $\mathbb{C}_t \times \mathbb{C}_x^n$ satisfying $u_0(0,x) \equiv 0$.
- (2) (Singular solutions) When $\Re \rho(0) > 0$ for any $\varphi(x) \in \mathbb{C}\{x\}$ there exists an $\widetilde{\mathcal{O}}_+$ solution $U(\varphi)$ of (1.1) having an expansion of the following form:

$$(1.2) \ U(\varphi) = \sum_{i=1}^{\infty} u_i(x)t^i + \sum_{k \le i+2m(j-1), j \ge 1} \varphi_{i,j,k}(x)t^{i+\rho_q(x)j}(\log t)^k, \quad \varphi_{0,1,0}(x) = \varphi(x).$$

The purpose of our paper is to construct $\widetilde{\mathcal{O}}_+$ -solutions of (1.1) on the case $\rho(0) = [N]_q$. The main result of this paper is;

Theorem 1.5. If (1.1) is of the q-Briot-Bouquet type and $\rho(0) \equiv [N]_q$ for $N \in \mathbb{N}$ and $\rho(x) \not\equiv \rho(0)$ then we have;

For any $\varphi(x) \in \mathbb{C}\{x\}$ there exists an \mathcal{O}_+ -solution $U(\varphi)$ of (1.1) having an expansion of the following form:

(1.3)
$$U(\varphi) = \varphi(x)t^{\rho_q(x)} + \sum_{k \ge 1} \sum_{1 \le l \le m_k} \phi_{k,l}(x)w_{k,l}(t,x).$$

Here m_k and $w_{k,l}(t,x)$ are as follows: (1) m_k $(k \ge 1)$ are positive integers determined by the equation (1.1), and (2) $w_{k,l}(t,x)$ $(k \ge 1 \text{ and } 1 \le l \le m_k)$ are functions also determined by the equation (1.1) satisfying the following property: there is a $\sigma > 0$ such that $w_{k,l}(t,x) = O(t^{\sigma k}, \widetilde{\mathcal{O}}_+)$ (as $t \to 0$) holds for all (k,l). The coefficients $\varphi(x)$ and $\phi_{k,l}(x)$ are as follows: (3) $\varphi(x)$ are arbitrary holomorphic function, and (4) $\phi_{k,l}(x)$ $(k \ge 1 \text{ and } 1 \le l \le m_k)$ are holomorphic functions determined by $\varphi(x)$.

In the above condition (2) the notation

$$w(t,x) = O(t^s, \widetilde{\mathcal{O}}_+) \quad (\text{as } t \to 0)$$

means that the condition $t^{-s}w(t,x) \in \widetilde{\mathcal{O}}_+$ holds.

This paper is organized as follows. In section 2 and 3 we give the definition and estimates of $w_{k,l}(t,x)$ in Theorem 1.5. In section 4 and 5 we prepare lemmas to show our theorem. In section 6 and 7 we give a proof of Theorem 1.5.

§ 2. Definition of the System $\{w_{k,l}\}$

In this section we will define functions $\{w_{k,l}\}$, the idea to construct the functions is in [13]. We choose a constant σ such that $0 < \sigma < \min\{1, \rho_q(0)\}$ and $\{\sigma k; k = 1, 2, \ldots\} \not\ni \rho_q(0)$. Then we have an integer N^* such that

(2.1)
$$\sigma N^* < \rho_a(0) < \sigma(N^* + 1).$$

Remark. By the definition of $\rho_q(x)$, $\rho_q(0) > 0$ holds.

Set $\lambda(x) = 1 + (q-1)\rho(x)$ and a > 0. Let us define an operator Q by

(2.2)
$$Q[t^N] = (\sigma_q - \lambda(x))^{-1}[t^N] := \frac{t^{\rho_q(x)} - t^{\rho_q(0)}}{\lambda(x) - \lambda(0)}$$

for $N = 1, 2, \ldots$ and

(2.3)
$$Q[u(t,x)] := \begin{cases} \sum_{j=0}^{\infty} (\lambda(x))^{j} \sigma_{q}^{-(j+1)} u(t,x) & \text{if } ||\lambda||_{r} < q^{a} \\ -\sum_{j=0}^{\infty} (\lambda(x))^{-j-1} \sigma_{q}^{j} u(t,x) & \text{if } ||\lambda||_{r} > q^{a} \end{cases}$$

for $u(t,x) = O(t^a, \widetilde{\mathcal{O}}_+)$

Lemma 2.1. ([17], Corollary 5.5, p.196) Suppose that u(t,x) belongs to $\widetilde{\mathcal{O}}_+$ and satisfies

$$||u(t,\cdot)||_r \le M|t|^a$$
 for $t \in S_{\theta}(T)$

for any $\theta > 0$ and an a > 0. Then there exists a positive constant C such that

$$||Qu(t,\cdot)||_r \le \frac{M}{Cq^a}|t|^a \quad for \ t \in S_{\theta}(T).$$

Then we define function classes in order to construct $w_{k,l}$.

Definition 2.2. We define finite sets \mathcal{F}_k , \mathcal{G}_k and \mathcal{H}_k (k = 1, 2, ...) in $\widetilde{\mathcal{O}}_+$ inductively by the following procedure $(1) \sim (3)$:

(1) We set $\mathcal{F}_1 = \{Q[t]\}$. If $k \geq 2$ and if $\mathcal{H}_1, \ldots, \mathcal{H}_{k-1}$ are already defined, we set

$$\mathcal{F}_k = \bigcup_{2 \le \mu + |\nu| \le k} \bigcup_{\mu + k_1 + \dots + k_{|\nu|} = k} \{ Q[t^{\mu} \phi_{k_1} \cdots \phi_{k_{|\nu|}}]; \ \phi_{k_j} \in \mathcal{H}_{k_j} \ (j = 1, \dots, |\nu|) \}.$$

(2) If \mathcal{F}_k is already defined, we set

$$\mathcal{G}_k = \begin{cases} \mathcal{F}_k & (k \neq N^*) \\ \mathcal{F}_k \cup \{t^{\rho_q(x)}\} & (k = N^*). \end{cases}$$

(3) If \mathcal{G}_k is already defined, we set

$$\mathcal{H}_k = \bigcup_{|\alpha| < m} \bigcup_{0 < \beta_{\alpha} < \alpha} \left\{ k^{|\beta_{\alpha}|} \left(\frac{\partial}{\partial x} \right)^{\alpha - \beta_{\alpha}} W; \ W \in \mathcal{G}_k \right\}$$

where $\beta \leq \alpha$ means $\beta_j \leq \alpha_j$ for j = 1, ..., n.

Definition 2.3. We define the system of functions $\{w_{k,l}(t,x): k \geq 1, 1 \leq l \leq m_k\}$ by the following: set $m_k = \sharp \mathcal{F}_k$ and

$$\mathcal{F}_k = \{w_{k,1}(t,x), \dots, w_{k,m_k}(t,x)\}$$
 for $k = 1, 2, \dots$

Then we have:

Proposition 2.4. If R > 0 is sufficiently small, we have

- (1) $w_{k,l}(t,x)$ belongs to $\widetilde{\mathcal{O}}_+$ for any $k \geq 1$ and $1 \leq l \leq m_k$.
- (2) For any $\theta > 0$ there exists a T > 0 and $0 < \sigma' < \sigma$ such that

$$\left| \left(\frac{\partial}{\partial x} \right)^{\alpha} w_{k,l}(t,x) \right| \le \frac{k^{|\alpha|}}{q^{\sigma'k}} |t|^{\sigma'k} \quad on \ S_{\theta}(T) \times D_R$$

holds for any $k \geq 1$, $1 \leq l \leq m_k$ and $|\alpha| \leq m$.

In the next section, we will show the proof of Proposition 2.4.

§ 3. Proof of Proposition 2.4

In this section we will give the proof of Proposition 2.4.

Recall that $\mathcal{F}_1 = \{w_{1,1}(t,x)\}$ with $w_{1,1} = Q[t]$. Then taking $0 < \sigma < 1$ in Section 2 we can assume that $w_{1,1}$ is holomorphic on $S(1) \times D_R$ and for any $\theta > 0$ there exists $K_{\theta} > 1$ such that

(3.1)
$$\left\| \left(\frac{\partial}{\partial x} \right)^{\alpha} w_{1,1}(t,\cdot) \right\|_{R} \le K_{\theta} \frac{1}{g^{\sigma}} |t|^{\sigma} \quad \text{on } S_{\theta}(1) \text{ for any } |\alpha| \le m.$$

By induction on k we have:

Lemma 3.1. For any k = 1, 2, ... we have the following properties $(1)_k$ and $(2)_k$, in which the constant $C_{\theta} > 1$ is independent of α , k and l.

- $(1)_k \ w_{k,l}(t,x)$ is holomorphic on $S_{\theta}(1) \times D_r$ for any $\theta > 0$ and 0 < r < R and $l = 1, \ldots, m_k$.
- $(2)_k$ We have the following estimates for any $\theta > 0$:

(3.2)
$$\left\| \left| \left(\frac{\partial}{\partial x} \right)^{\alpha} w_{k,l}(t,\cdot) \right| \right|_{r} \leq \frac{k^{|\alpha|}}{q^{\sigma k}} \frac{C_{\theta}^{2k-2}}{(R-r)^{m(k-1)}} |t|^{\sigma k} \quad on \ S_{\theta}(1)$$

for any 0 < r < R, $|\alpha| \le m$ and $l = 1, \ldots, m_k$.

Proof. For $t^{\rho_q(x)}$ we can assume

(3.3)
$$\left\| \left(\frac{\partial}{\partial x} \right)^{\alpha} t^{\rho_q(x)} \right\|_r \le \frac{N^{*|\alpha|}}{q^{\sigma N^*}} \frac{C_{\theta}^{2N^*-2}}{(R-r)^{m(N^*-1)}} |t|^{\sigma N^*} \quad \text{on } S_{\theta}(1)$$

for any 0 < r < R and $|\alpha| \le m$.

Let $k \geq 2$. Suppose that $(1)_i$ and $(2)_i$ already hold for i = 1, ..., k - 1. Set $\varphi_{k_{\nu}} = k_{\nu}^{|\beta_{\alpha}|} (\frac{\partial}{\partial x})^{\alpha - \beta_{\alpha}} W$ for some $|\alpha| \leq m$, $0 \leq \beta_{\alpha} \leq \alpha$ and $W(t, x) \in \mathcal{G}_{k_{\nu}}$. Since $1 \leq k_{\nu} \leq k - 1$ holds, in the case $W(t, x) \in \mathcal{F}_{k_{\nu}}$ we have

(3.4)
$$||\varphi_{k_{\nu}}||_{r} \leq k_{\nu}^{|\beta_{\alpha}|} \frac{k_{\nu}^{|\alpha| - |\beta_{\alpha}|}}{q^{\sigma k_{\nu}}} \frac{C_{\theta}^{2k_{\nu} - 2}}{(R - r)^{m(k_{\nu} - 1)}} |t|^{\sigma k_{\nu}}$$

$$\leq K_{m} \frac{C_{\theta}^{2k_{\nu} - 2}}{(R - r)^{m(k_{\nu} - 1)}} |t|^{\sigma k_{\nu}} \quad \text{on } S_{\theta}(1)$$

for any 0 < r < R. Here we used that there exists positive constant K_m such that

$$\frac{k^{|\alpha|}}{q^{\sigma k}} \le K_m$$
 for $|\alpha| \le m$ and $k = 1, 2, \dots$

In the case $k_{\nu} = N^*$ and $W(t, x) = t^{\rho_q(x)}$, by the estimate (3.3) we can obtain the same estimate as (3.4). By the definition of \mathcal{F}_k , we see that $w_{k,l}(t, x)$ is expressed the form

$$w_{k,l}(t,x) = Q[t^{\mu}\varphi_{k_1} \times \cdots \times \varphi_{k_{|\nu|}}]$$

where $2 \le \mu + |\nu| \le k$ and $\mu + k_1 + \dots + k_{|\nu|} = k$.

Then by (3.4) we have

$$(3.5) \qquad ||t^{\mu}\varphi_{k_{1}}(t,\cdot)\times\cdots\times\varphi_{k_{|\nu|}}(t,\cdot)||_{r}$$

$$\leq |t|^{\mu}\times K_{m}\frac{C_{\theta}^{2k_{1}-2}}{(R-r)^{m(k_{1}-1)}}|t|^{\sigma k_{1}}\times\cdots\times K_{m}\frac{C_{\theta}^{2k_{|\nu|}-2}}{(R-r)^{m(k_{|\nu|}-1)}}|t|^{\sigma k_{|\nu|}}$$

$$\leq K_{m}^{|\nu|}\frac{C_{\theta}^{2(k_{1}+\cdots+k_{|\nu|}-|\nu|)}}{(R-r)^{m(k_{1}+\cdots+k_{|\nu|}-|\nu|)}}|t|^{\sigma k}\leq \frac{C_{\theta}^{2k-2\mu-3/2|\nu|}}{(R-r)^{m(k-\mu-|\nu|)}}|t|^{\sigma k} \quad \text{on } S_{\theta}(1)$$

when $K_m \leq C_{\theta}^{1/2}$.

Since $\theta > 0$ is arbitrary, this implies that $t^{\mu}\varphi_{k_1} \times \cdots \times \varphi_{k_{|\nu|}}$ is holomorphic on $S(1) \times D_r$ for any 0 < r < R. Thus we see that $w_{k,l}(t,x)$ is holomorphic on $S(1) \times D_r$, that is, $w_{k,l}(t,x)$ belongs to $\widetilde{\mathcal{O}}_+$. By Lemma 2.1, we have

$$(3.6) ||w_{k,l}||_r \le \frac{1}{Cq^{\sigma k}} \frac{C_{\theta}^{2k-2\mu-3/2|\nu|}}{(R-r)^{m(k-2)}} |t|^{\sigma k} \le \frac{1}{Cq^{\sigma k}} \frac{C_{\theta}^{2k-3}}{(R-r)^{m(k-2)}} |t|^{\sigma k} on S_{\theta}(1).$$

We need the following lemma in order to estimate the derivative of $w_{k,l}$.

Lemma 3.2 (Nagumo's lemma). If a holomorphic function u(x) in D_R satisfies

$$||u||_r \le \frac{C}{(R-r)^p}$$
 for $0 < r < R$

then we have

$$||\frac{\partial}{\partial x}u||_r \le \frac{Ce(p+1)}{(R-r)^{p+1}}$$
 for $0 < r < R$.

For the proof, see Hörmander ([4], lemma 5.1.3).

By Lemma 3.2, we obtain

$$\begin{aligned} \left| \left| \left(\frac{\partial}{\partial x} \right)^{\alpha} w_{k,l} \right| \right|_{r} &\leq \frac{C_{\theta}^{2k-3}}{Cq^{\sigma k}} \frac{(m(k-2)+1)(m(k-2)+2)\cdots(m(k-2)+|\alpha|)e^{|\alpha|}}{(R-r)^{m(k-2)+|\alpha|}} |t|^{\sigma k} \\ &\leq \frac{C_{\theta}^{2k-3}}{Cq^{\sigma k}} \frac{(m(k-1))^{|\alpha|}e^{|\alpha|}}{(R-r)^{m(k-2)+|\alpha|}} |t|^{\sigma k} \leq \frac{C_{\theta}^{2k-3}(k-1)^{|\alpha|}}{Cq^{\sigma k}} \frac{(me)^{m}}{(R-r)^{m(k-1)}} |t|^{\sigma k} \\ &\leq \frac{k^{|\alpha|}}{q^{\sigma k}} \frac{C_{\theta}^{2k-2}}{(R-r)^{m(k-1)}} |t|^{\sigma k} \quad \text{on } S_{\theta}(1) \end{aligned}$$

for any $|\alpha| \leq m$ and $(me)^m/C \leq C_\theta$. Q.E.D.

Completion of the proof of Proposition 2.4.

Set r=R/2 and take $\sigma'>0$ with $\sigma'<\sigma$ and (2.1). Then we see that $w_{k,l}(t,x)$ is holomorphic on $S(1)\times D_{R/2}$ for all (k,l) and

(3.8)
$$\left\| \left(\frac{\partial}{\partial x} \right)^{\alpha} w_{k,l}(t,\cdot) \right\|_{R/2} \leq \frac{k^{|\alpha|}}{q^{\sigma k}} \frac{C_{\theta}^{2k-2}}{(R/2)^{m(k-1)}} |t|^{\sigma k}$$

$$\leq \frac{k^{|\alpha|}}{q^{\sigma' k}} \left(\frac{C_{\theta}^{2}}{(R/2)^{m}} \left(\frac{|t|}{q} \right)^{\sigma-\sigma'} \right)^{k} |t|^{\sigma' k} \quad \text{on } S_{\theta}(1)$$

holds for any $|\alpha| \leq m$ and (k, l). Then if we take T > 0 so that

$$\left(\frac{C_{\theta}^2}{(R/2)^m} \left(\frac{|t|}{q}\right)^{\sigma-\sigma'}\right) \le 1 \quad \text{for } |t| \le T,$$

we obtain the estimate in Proposition 2.4-(2) with R and σ replaced R/2 and σ' respectively.

§ 4. Reduction equations

In this section we will reduct (1.1) into the following equation in order to prove the main theorem:

(4.1)
$$(\sigma_q - \lambda(x))u(t, x) = a(x)t + G_2(x)(t, \{\partial_x^{\alpha} u(t, x)\}_{|\alpha| \le m})$$

where $a(x) \in \mathcal{O}(D_R)$.

Set $Z^{\nu} = \prod_{|\alpha| \leq m} \{Z_{\alpha}\}^{\nu_{\alpha}}$. We assume that the functions $G_2(x)(t,Z)$ have the following expansion:

(4.2)
$$G_2(x)(t,Z) = \sum_{\mu+|\nu| \ge 2} g_{\mu,\nu}(x)t^{\mu}Z^{\nu}$$

where $g_{\mu,\nu}(x) \in \mathcal{O}(D_R)$.

Lemma 4.1. If the equation (1.1) is of the q-Briot-Bouquet type, then we can reduct (1.1) into the equation (4.1) with (4.2).

Proof. We multiply the both side of (1.1) by q-1. Then we get (4.1) and $\lambda(x)=1+(q-1)\rho(x)$. Q.E.D.

Remark. If $\rho(0) \equiv [N]_q$ then $\lambda(0) \equiv q^N$.

§ 5. Function equation

Let us consider a functional equation in order to estimate the coefficients $w_{l,k}(x)$. Set $A \geq 0$, $G_{\mu,\nu} \geq 0$ ($\mu + |\nu| \geq 2$) and 0 < r < R. Then we consider the following functional equation:

(5.1)
$$Y = At + \frac{1}{(R-r)^m} \sum_{\mu+|\nu|\geq 2} \frac{G_{\mu,\nu}}{(R-r)^{m(\mu+|\nu|-2)}} t^{\mu} ((2me)^m Y)^{|\nu|}$$

where a series $\sum_{\mu+|\nu|\geq 2} G_{\mu,\nu} t^{\mu} Y^{|\nu|}$ converges in a neigbourhood of (t,Y)=(0,0). For the equation (5.1) we have the following lemma.

Lemma 5.1. The functional equation (5.1) has the holomorphic solution $Y(t) = \sum_{k=1} Y_k(r)t^k$ that is expressed in the form

$$Y_k(r) = \frac{C_k}{(R-r)^{m(k-1)}} \quad \text{for } k \ge 1$$

with constants $C_1 = A$ and $C_k \ge 0$ for $k \ge 2$.

Proof. Let us show that the equation (5.1) have formal power series solutions $Y(t) = \sum_{k=1}^{\infty} Y_k(r) t^k$. By substituting $\sum_{k=1}^{\infty} Y_k t^k$ into (5.1), we have $Y_1 = A$ and

$$(5.2) \quad Y_k = \frac{1}{(R-r)^m} \sum_{2 \le \mu + |\nu| \le k} \frac{G_{\mu,\nu}}{(R-r)^{m(\mu + |\nu| - 2)}} \prod_{\mu + |k(\nu)| = k} \prod_{|\alpha| \le m} \prod_{i=1}^{\nu_{\alpha}} ((2em)^m) Y_{k_{\alpha}(i)}$$

for $k \geq 2$. Let us show that the formal power series solutions Y(t) are holomorphic in a neighborhood of the origin t = 0. Set

(5.3)
$$F(t,Y) = Y - At - \frac{1}{(R-r)^m} \sum_{\mu+|\nu|>2} \frac{G_{\mu,\nu}}{(R-r)^{m(\mu+|\nu|-2)}} t^{\mu} ((2me)^m Y)^{|\nu|}.$$

We have F(0,0) = 0 and $\partial_Y F(0,0) = 1$. Then we get holomorphic solutions Y(t) by the implicit function's theorem. Further we have the coefficients $Y_k(r) = C_k/(R-r)^{m(k-1)}$ by the recurrence formula (5.2) and induction on k. Q.E.D.

§ 6. Proof of Theorem 1.5 of the case N=1

In this section we will give the proof of theorem 1.5. We will show that the equation (4.1) has formal solutions of the form (1.3) and the formal solution converges in $S_{\theta}(T) \times D_r$ by the implicit function's theorem and the method of majorant functions.

§ 6.1. Construction of a formal solution

We note that we have $N^* = 1$ when N = 1. Let us construct a formal solution u(t, x) of the equation (4.1) in the form

(6.1)
$$u(t,x) = \sum_{k \ge 1} u_k(t,x)$$

with

(6.2)
$$u_k(t,x) = \begin{cases} \phi_{1,1}(x)w_{1,1}(t,x) + \varphi(x)t^{\rho_q(x)} & k = 1\\ \sum_{l=1}^{m_k} \phi_{k,l}(x)w_{k,l}(t,x) & k \ge 2 \end{cases}$$

where $\varphi(x)$ and $\phi_{k,l}(x)$ are suitable holomorphic functions in a common neighbourhood of x = 0. Here set $W_{1,1} := w_{1,1}$, $W_{1,2} := t^{\rho_q(x)}$, $M_1 := m_1 + 1 = 2$, $W_{k,l} := w_{k,l}$ and $M_k := m_k$ for $k \geq 2$.

Remark. We note

$$w_{1,1}(t,x) = \frac{t^{\rho_q(x)} - t^{\rho_q(0)}}{\lambda(x) - \lambda(0)}.$$

By the proof of Proposition 2.4, we have

$$u_k(t,x) = O(t^{\sigma k}, \widetilde{\mathcal{O}}_+)$$
 as $t \to 0$

for all $k \geq 1$. Then we will construct a formal solution as follows;

(6.3)
$$(\sigma_{q} - \lambda(x))u_{1} = a(x)t$$

$$(\sigma_{q} - \lambda(x))u_{k} = \sum_{\mu+|k(\nu)|=k} g_{\mu,\nu}(x)t^{\mu} \prod_{|\alpha| \le m} \prod_{i \le \nu_{\alpha}} \left(\frac{\partial}{\partial x}\right)^{\alpha} u_{k_{\alpha}(i)}(t,x)$$

where $|\nu| = \sum_{|\alpha| \leq m} \nu_{\alpha}$ and $|k(\nu)| = \sum_{|\alpha| \leq m} \sum_{i=1}^{\nu_{\alpha}} k_{\alpha}(i)$. By substituting $u_k(t, x)$ to the relation (6.3), we have

$$(6.4) \sum_{l=1}^{m_k} \phi_{k,l}(x) (\sigma_q - \lambda(x)) w_{k,l}(t,x)$$

$$= \sum_{2 \leq \mu + |\nu| \leq k} g_{\mu,\nu}(x) \sum_{(k(\nu),l(k)) \in J_k(\mu,\nu)} \sum_{\beta(\nu) \in \Gamma(\nu)} \prod_{|\alpha| \leq m} \prod_{i=1}^{\nu_{\alpha}} \left(\frac{\alpha}{\beta_{\alpha}(i)}\right) \frac{1}{k_{\alpha}(i)^{|\beta_{\alpha}(i)|}} \left(\frac{\partial}{\partial x}\right)^{\beta_{\alpha}(i)} \phi_{k_{\alpha}(i),l_{\alpha}(i)}(x)$$

$$\times \left[t^{\mu} \prod_{|\alpha| \leq m} \prod_{i=1}^{\nu_{\alpha}} k_{\alpha}(i)^{|\beta_{\alpha}(i)|} \left(\frac{\partial}{\partial x}\right)^{\alpha - \beta_{\alpha}(i)} W_{k_{\alpha}(i),l_{\alpha}(i)}(t,x)\right]$$

where $l(\nu) = \{(l_{\alpha}(i)); |\alpha| \leq m \text{ and } 1 \leq i \leq \nu_{\alpha}\}, L(\nu, k(\nu)) = \{l(\nu); 1 \leq l_{\alpha}(i) \leq m_{k_{\alpha}}(i) (|\alpha| \leq m, 1 \leq i \leq \nu_{\alpha})\}, J_{k}(\mu, \nu) = \{(k(\nu), l(\nu)); \mu + |k(\nu)| = k, l(\nu) \in L(\nu, k(\nu))\}, \beta(\nu) = \{(\beta_{\alpha}(i)); \beta_{\alpha}(i) \in \mathbb{N}^{n}, |\alpha| \leq m \text{ and } 1 \leq i \leq \nu_{\alpha}\} \text{ and } \Gamma(\nu) = \{\beta(\nu); \beta_{\alpha}(i) \leq \alpha (|\alpha| \leq m, 1 \leq i \leq \nu_{\alpha})\}.$

Here we note the following lemma that is the same as Lemma 8 in [13].

Lemma 6.1. Let $k \geq 2$ and set $A_k = \{(\mu, \nu, k(\nu), l(\nu), \beta(\nu)); 2 \leq \mu + |\nu| \leq k, (k(\nu), l(\nu)) \in \mathcal{J}_k(\mu, \nu) \text{ and } \beta(\nu) \in \Gamma(\nu)\}$. Then by a suitable injection $\pi_k \colon A_k \to \{1, 2, \dots, m_k\}$ we have the following equality

(6.5)
$$Q\left[t^{\mu} \sum_{|\alpha| < m} \prod_{i=1}^{\nu_{\alpha}} k_{\alpha}(i)^{|\beta_{\alpha}(i)|} \left(\frac{\partial}{\partial x}\right)^{\alpha - \beta_{\alpha}(i)} W_{k_{\alpha}(i), l_{\alpha}(i)}(t, x)\right] = w_{k, l}(t, x)$$

and

(6.6)
$$g_{\mu,\nu}(x) \prod_{|\alpha| \le m} \prod_{i=1}^{\nu_{\alpha}} {\alpha \choose \beta_{\alpha}(i)} \frac{1}{k_{\alpha}(i)^{|\beta_{\alpha}(i)|}} \left(\frac{\partial}{\partial x}\right)^{\beta_{\alpha}(i)} \phi_{k_{\alpha}(i),l_{\alpha}(i)}(x) = \phi_{k,l}(x)$$

under the correspondence $\pi_k(\mu, \nu, k(\nu), l(\nu), \beta(\nu)) = l$.

Thus we have;

Proposition 6.2. We can construct a formal solution $\hat{u}(t,x)$ of the form (6.1) and (6.2). Moreover we see the following: (i) the coefficient $\varphi(x) \in \mathbb{C}\{x\}$ can be chosen arbitrary, (ii) $\phi_{1,1}(x) = a(x)$, and (iii) all the other coefficients $\phi_{k,l}(x) \in \mathbb{C}\{x\}$ are determined by (6.6) and therefore they are all holomorphic in a common neighborhood of x = 0.

§ 6.2. Proof of the convergence of a formal solution

We will prove the convergence of the formal solution $\hat{u}(t,x)$ in Proposition 6.2. Let R>0 be sufficiently small. Set

(6.7)
$$||(\frac{\partial}{\partial x})^{\alpha}\varphi||_{R} + ||(\frac{\partial}{\partial x})^{\alpha}\phi_{1,1}||_{R} \le A \quad \text{for } |\alpha| \le m \text{ and}$$

$$||g_{\mu,\nu}||_{R} \le G_{\mu,\nu} \quad \text{for } \mu + |\nu| \ge 2.$$

We will assume that

$$At + \sum_{\mu+|\nu|>2} G_{\mu,\nu} t^{\mu} Z^{\nu}$$

is convergent in a neighborhood of (t, Z) = (0, 0).

Let
$$\hat{u}(t,x) = \sum_{k>1} u_k(t,x)$$
 with

(6.8)
$$u_k(t,x) = \sum_{l=1}^{M_k} \phi_{k,l}(x) W_{k,l}(t,x)$$

be the formal solution. We know $M_1 = 2$, $\phi_{1,1}(x) = a(x)$, $\phi_{1,2}(x) = \varphi(x)$ and

$$||u_k||_r \le \sum_{l=1}^{M_k} ||\phi_{k,l}||_r |t|^{\sigma k}$$
 for $t \in S_{\theta}(T)$.

Then set

(6.9)
$$||u_k||_r^* := \sum_{l=1}^{M_k} ||\phi_{k,l}||_r \quad \text{and } ||D_x^{\alpha} u_k||_r^* = \sum_{l=1}^{M_k} ||(\frac{\partial}{\partial x})^{\alpha} \phi_{k,l}||_r$$

in order to estimate the term $u_k(t,x)$ in (6.8).

We have $||u_k||_r^* = \delta_{k,1}||\varphi||_r + \sum_{l=1}^{m_k} ||\phi_{k,l}||_r$ where $\delta_{k,1} = 1$ if k = 1, $\delta_{k,1} = 0$ if $k \neq 1$. By the relation (6.6), we obtain

(6.10)
$$||u_{k}||_{r}^{*} \leq \delta_{k,1}||\varphi||_{r} + \sum_{2 \leq \mu + |\nu| \leq k} ||g_{\mu,\nu}||_{r} \sum_{\mu + |k(\nu)| = k, \beta(\nu) \in \Gamma(\nu)} \prod_{|\alpha| \leq m} \prod_{i=1}^{\nu_{\alpha}} {\alpha \choose \beta_{\alpha}(i)} \times \frac{1}{k_{\alpha}(i)^{|\beta_{\alpha}(i)|}} ||D_{x}^{\beta_{\alpha}(i)} u_{k_{\alpha}(i)}||_{r}^{*}.$$

Let us consider the following equation:

(6.11)
$$Y = At + \frac{1}{(R-r)^m} \sum_{\mu+|\nu|>2} \frac{G_{\mu,\nu}}{(R-r)^{m(\mu+|\nu|-2)}} t^{\mu} ((2me)^m Y)^{|\nu|}.$$

Then we have;

Proposition 6.3.

(6.12)
$$\frac{1}{k^{|\alpha|}} ||D_x^{\alpha} u_k||_r^* \le (me)^m Y_k \quad \text{for any } 0 < r < R \text{ and } |\alpha| \le m,$$

$$for \ k = 1, 2, \dots.$$

Proof.

For k = 1 by (6.7), we have

(6.13)
$$||D_x^{\alpha} u_1||_r^* = ||(\frac{\partial}{\partial x})^{\alpha} \varphi||_r + ||(\frac{\partial}{\partial x})^{\alpha} \phi_{1,1}||_r$$
$$\leq A = Y_1 \leq (me)^m Y_1 \quad \text{for any } |\alpha| \leq m.$$

When k = 1, the inequality (6.12) holds.

For $k \geq 2$, suppose that (6.12) holds for i = 1, 2, ..., k - 1. Then we have

$$\begin{aligned} ||u_{k}||_{r}^{*} &\leq \sum_{2 \leq \mu + |\nu| \leq k} \frac{G_{\mu,\nu}}{(R-r)^{m(\mu+|\nu|-2)}} \sum_{\mu + |k(\nu)| = k, \beta(\nu) \in \Gamma(\nu)} \prod_{|\alpha| \leq m} \prod_{i=1}^{\nu_{\alpha}} \binom{\alpha}{\beta_{\alpha}(i)} (me)^{m} Y_{k_{\alpha(i)}} \\ &\leq \sum_{2 \leq \mu + |\nu| \leq k} \frac{G_{\mu,\nu}}{(R-r)^{m(\mu+|\nu|-2)}} \sum_{\mu + |k(\nu)| = k} \prod_{|\alpha| \leq m} \prod_{i=1}^{\nu_{\alpha}} (2me)^{m} Y_{k_{\alpha(i)}} \\ &= (R-r)^{m} Y_{k} = \frac{C_{k}}{(R-r)^{m(k-2)}}. \end{aligned}$$

Here we used

$$\sum_{0 < \beta < \alpha} \binom{\alpha}{\beta} = 2^{|\alpha|} \le 2^m.$$

By applying Lemma 3.2 to the inequality (6.14), we obtain

$$(6.15)$$

$$\frac{1}{k^{|\alpha|}} ||D_x^{\alpha} u_k||_r^* \le \frac{1}{k^{|\alpha|}} \frac{(m(k-2)+1) \times \dots \times (m(k-2)+|\alpha|) e^{|\alpha|} C_k}{(R-r)^{m(k-2)+|\alpha|}}$$

$$\le \frac{(k-1)^{|\alpha|}}{k^{|\alpha|}} \frac{(me)^{|\alpha|} C_k}{(R-r)^{m(k-2)+|\alpha|}} \le (me)^m \frac{C_k}{(R-r)^{m(k-1)}} = (me)^m Y_k.$$

Q.E.D.

Proof of the convergence of the formal solution $\hat{u}(t,x)$. Set r=R/2. By Proposition 2.4-(2), 6.3, (6.8) and (6.9), we have

$$|u(t,x)| \le \sum_{k>1} ||u_k(t,\cdot)||_r \le \sum_{k>1} ||u_k||_r^* |t|^{\sigma k} \le (me)^m \sum_{k>1} Y_k |t|^{\sigma k}$$
 on $S_{\theta}(T)$.

u(t,x) converges on $S_{\theta}(T) \times D_r$. Since $\theta > 0$ is arbitrary, we can conclude that u(t,x) converges in $\widetilde{\mathcal{O}}_+$.

§ 7. Proof of Theorem 1.5 of the case $N \geq 2$

We set

(7.1)
$$u(t,x) = \sum_{i=1}^{N-1} u_i(x)t^i + t^{N-1}w(t,x)$$

where $u_i(x) \in \mathbb{C}\{x\}$ $(1 \leq i \leq N-1)$ and $w(t,x) \in \widetilde{\mathcal{O}}_+$. Then by an easy calculation we see:

Lemma 7.1. If the function (7.1) is a solution of the equation (4.1), then the functions $u_1(x), \ldots, u_{N-1}(x)$ are uniquely determined and w(t, x) satisfies the following equation:

(7.2)
$$(\sigma_{q} - q^{-(N-1)}\lambda(x))w = ta(t,x) + t \sum_{|\alpha| \le m} A_{\alpha}(t,x)\partial_{x}^{\alpha}w$$
$$+ \sum_{|\nu| \ge 2} t^{(N-1)(|\nu|-1)} B_{\nu}(t,x) \prod_{|\alpha| \le m} \{\partial_{x}^{\alpha}w\}^{\nu_{\alpha}},$$

where

$$a(t,x) = \frac{1}{a^{N-1}t^N} \left(G_2(x)(t, \{\partial_x^{\alpha} w_0\}_{|\alpha| \le m}) + ta(x) - (\sigma_q - \lambda(x))w_0 \right)$$

with
$$w_0 = \sum_{i=1}^{N-1} u_i(x)t^i$$
 and

$$A_{\alpha}(t,x) = \frac{1}{q^{N-1}t} \frac{\partial G_2}{\partial Z_{\alpha}}(x)(t, \{\partial_x^{\alpha} w_0\}_{|\alpha| \le m}), \quad |\alpha| \le m$$

$$B_{\nu}(t,x) = \frac{1}{q^{N-1}} \frac{1}{\nu!} \frac{\partial^{|\nu|} G_2}{\partial Z^{\nu}}(x)(t, \{\partial_x^{\alpha} w_0\}_{|\alpha| \le m}), \quad |\nu| \ge 2.$$

We can apply the results in Section 6 to the equation (7.2). Hence this completes the proof of Theorem 1.5.

Acknowledgement. The author would like to express thanks to the referee for his comments.

References

- [1] Briot, Ch. and Bouquet, J. Cl., Recherches sur les propriétés des fonctions définies par des équations différentielles, J. Ecole Polytech., 21(1856), 133–197.
- [2] Vizio, L. D., Ramis, J. P., Sauloy, J. and Zhang, C., Équations aux q-différences, (French), Gaz. Math. No. 96(2003), 20–49.
- [3] Gérard, R. and Tahara, H., Holomorphic and Singular Solutions of Nonlinear Singular First Order Partial Differential Equations, Publ. RIMS, Kyoto Univ., 26(1990), 979–1000.
- [4] Hörmander, L., Linear partial differential operators, Springer, 1963.
- [5] Joshi, N. and Shi, Y., Exact solutions of a q-discrete second Painlevé equation from its isomonodromy deformation problem. II. Hypergeometric solutions, Proc. R. Lond. Ser. A Math. Phys. Eng. Sci., 468(2012), No. 2146, 3247–3264.
- [6] Lastra, A. and Malek, S., On q-Gevrey asymptotics for singularly perturbed q-differencedifferential problems with an irregular singularity, Abstr. Appl. Anal. (2012), Art. ID 860716, 35 pp
- [7] Lastra, A., Malek, S. and Sanz, J., On q-asymptotics for linear q-difference-differential equations with Fuchsian and irregular singularities, J. Differential Equations 252(2012), No. 10, 5185–5216.
- [8] Malek, S., On complex singularity analysis for linear q-difference-differential equations, J. Dyn. Control Syst. 15(2009), No. 1, 83–98.
- [9] Malek, S., On singularly perturbed q-difference-differential equations with irregular ingularitys, J. Dyn. Control Syst. 17(2011), No. 2, 243–271.
- [10] Menous, F., An example of local analytic q-difference equation: analytic classification, Ann. Fac. Sci. Toulouse Math. (6) 15(2006), No. 4, 773–814.
- [11] Nishioka, S., On solutions of q-Painlevé equation of type A(1)7, Funkcial Ekvac. 52(2009), No. 1, 41–51.
- [12] Ohyama, Y., Expansion on spesial solutions of the first q-Painlevé equation around the infinity, Proc. Japan Acad. Ser. A Math. Sci. 86(2010), No. 5, 91–92.
- [13] Tahara, H. and Yamazawa H, Strucure of solutions of nonlinear partial differential equations of Gérard-Tahara type, Publ. R.I.M.S, kyoto Univ., Vol. 41(2005), No. 2, 339–373.
- [14] Tahara, H. and Yamazawa H, q-Analogue of summability of formal solutions of some linear q-difference-differential equations, J. Opuscula Math., Vol. 35, no. 5 (2015), 713–738.

- [15] Ramis J. P., About the growth of entire functions solutions of linear algebraic q-difference equations, Annal. de la Faculté des sci. de Toulouse, Série 6, Vol. 1(1992), No. 1, 53–94.
- [16] Yamazawa H., Singular Solutions of the Briot-Bouquet Type Partial Differential Equations, J. Math. Soc. Japan, Vol. 55(2003), No. 3, 617–632.
- [17] Yamazawa H., Holomorphic and singular solutions of q-difference-differential equations of Briot-Bouquet type, Funkcial Ekvac., Vol. 59(2016), 185–197.