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Movable singularity of generalized Emden equation
via Birkhoff reduction

By

Masafumi Yoshino*

Abstract

This paper studies the movable singularity of the generalized Emden‐Fowler equation. For
a certain nonlinear term we shall show the existence of infinitely many movable singularities
in the complex plane by virtue of the reduction similar to Birkhoff’s normal form theory.

§1. Motivation and the result

In this paper we shall study the movable singularity of generalized Emden ‐Fowler

equation

(1.1)   \frac{d^{2}u}{dt^{2}}+\frac{n-1}{t}\frac{du}{dt}+u\ell=0, t\in \mathbb{C},
where  n  \neq  2,  \ell  \geq  2 are integers. By the movable singularity we mean the singularity

which depends on the respective solution and that does not appear in the coefficients of

the equation. There are many works as to the movable singularity of nonlinear ordinary

differential equation. We cite [1] and the references therein. The existence of movable
branching singularity of (1.1) was shown in [1] by the argument closely related with
Painlevé’s theorem. Recently, detailed analysis on the singularity was also made in

terms of phase space analysis. (cf. [4]). The object of the present paper is to give an
alternative proof of the existence of a movable singularity by virtue of the reduction

argument similar to the Birkhoff normal form theory of a Hamiltonian system. The

advantage of our method is that one can show some structure of the movable singularity
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in terms of Jacobi’s elliptic function. Indeed, we write (1.1) in the Hamiltonian system
and we transform it to the autonomous form by some analytic transformation in certain

domain. By virtue of Jacobi’selliptic function we shall show the existence of infinitely

many movable singularities. We shall prove

Theorem 1.1. Assume that  \ell=3 in (1.1). Then (1.1) has an infinitely many
movable singularities.

§2. Normalization via Birkhoff reduction

We shall transform (1.1) to a simpler form. For this purpose we write (1.1) in a
Hamiltonian system. Set  \ell=  3,  t=  e^{z} and definev  =  e^{(2-n)z/2}u . Then, by (1.1) we
have

(2.1)  u_{zz}-\tilde{c}_{0}u+e^{z\beta}u^{3}=0,

where  \tilde{c}_{0}  =  (n-2)^{2}/4 and  \beta=4-n . Next, by putting  q:=u and  p:=u_{z} , we write

(2.1) in the system of equations for  q and  p . Indeed, the Hamiltonian function is given
by

  \frac{1}{2}(p^{2}-\tilde{c}_{0}q^{2})+\frac{e^{z\beta}}{4}q^{4}
By replacing  q and  p with constant times of respective variable, if necessary, and by

introducing new unknown quantities  q_{2}  :=q+p and  p_{2}  :=q-p we can write the system

in the Hamiltonian system with Hamitonian

(2.2)  H=\lambda q_{2}p_{2}+ce^{z\beta}(q_{2}+p_{2})^{4},

where  \lambda  \neq  0 and  c are certain constants. One may assume  \lambda  =  1 without loss of

generality.

We set  q_{1}=z and  \tilde{c}(z)=4ce^{\beta z} in (2.2). Consider the autonomous system p 1+H

with  H  :=q_{2}p_{2}+ce^{z\beta}(q_{2}+p_{2})^{4} . The resonance term appears from the nonlinear part.
Define

(2.3)  a\equiv a(q_{2}p_{2}) :=6cq_{2}^{2}p_{2}^{2}.

We shall find a formal Birkhoff transformation which brings the nonlinear part of  H to
the one  a(q_{2}p_{2})+c(q_{2}^{4}+p_{2}^{4}) . In fact, we have

Theorem 2.1. There exists a formal symplectic transformation which trans‐

forms  p_{1}+H to  p_{1}+q_{2}p_{2}+a(q_{2}p_{2})+c(q_{2}^{4}+p_{2}^{4}) .
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Proof. The proof is essentially Birkhoff’s reduction. For the sake of completeness

we give the proof. By the general theory of the transformation of avector field, we
know that the vector field  X_{0}+R is transformed to  X_{0}+S by certain coordinate

change generated by  Y , if we determine  Y by the homology equation (adjoint equation)
 [X_{0}, Y ]  =R-S , where  [X_{0}, Y ] denotes the Lie bracket and  S is a certain term containing

the resonance. We shall solve the homology equation  [X_{0}, Y]=R-S formally in terms
of the infinite composition of symplectic transformations. Because we cannot show

the convergence of the infinite compositions, the transformation is formal. As to the

solvability and properties of the adjoint equation in the Hamiltonian setting we refer

to Lemma 6 in [3]. Let  \chi_{g} denotes the Hamiltonian vector field with the Hamiltonian
function  g with respect to a standard symplectic structure. We denote by  \{\cdot,  \} the
Poisson bracket.

Let  x=  (\tilde{q}_{1},\tilde{p}_{1},\tilde{q}_{2},\tilde{p}_{2}) and  y=  (q_{1},p_{1}, q_{2},p_{2}) be the original and the transformed

coordinates, respectively. For simplicity we sometimes write  y  =  (y_{1}, . . . , y_{4}) . We

consider the transformation  x=u(y) for some  u=  (u_{1}, . . . , u_{4}) . For  \phi\equiv\phi(q_{1}, q_{2},p_{2}) ,
define

(2.4)  X_{0}:= \chi_{p_{1}+q_{2}p_{2}} Y:=\chi_{\phi}=\sum_{j}u_{j\frac{\partial}
{\partial y_{j}}}.
Then the component of  X_{0} on the basis  \partial/\partial q_{1},  \partial/\partial p_{1},  \partial/\partial q_{2},  \partial/\partial p_{2} with this order is

given by  \Lambda(y)=(1,0, q_{2},- p2) . Set

(2.5)  f(x):=\tilde{c}(\tilde{q}_{1})(\tilde{q}_{2}+\tilde{p}_{2})^{4}/4,

and define

(2.6)  R:=\chi_{f}, S:=\chi_{a(q_{2}p_{2})+c(q_{2}^{4}+p_{2}^{4})}.

Write  R=r(x) \frac{\partial}{\partial x} and  S=s(y) \frac{\partial}{\partial y} . Note that the first and the second components of

 s(y) vanish and  r(x) is independent of  x_{2} . We have

(2.7)  \chi_{\{p_{1}+q_{2}p_{2},\phi\}}=[X_{0}, Y ] =X_{0}Y-YX_{0}.

Note that the component of the right‐hand side is given by  \Lambda(y)\nabla u-u\nabla\Lambda(y) . Then,

by simple computation the equation  [X_{0}, Y ]  =R-S is written as

(2.8)  \Lambda(y)\nabla u-u\nabla\Lambda(y)=r(u)-s(y)\nabla u.

If we set  u_{1}  =v_{1},  u_{2}=v_{2},  u_{j}(y)  =y_{j}+v_{j}(y) , then we see that (2.8) is written in the
form

(2.9)  \Lambda(y)\nabla v-v\nabla\Lambda(y)=r(v_{1}, y_{j}+v_{j})-s(y)-s(y)\nabla v.
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Clearly, if we can solve (2.8) or (2.9) formally, then we have our theorem. Ap‐
proximate the right‐hand side of (2.8) with  r(y)-s(y) . Consider the linear equation of
 \phi

(2.10)  \{pi+q_{2}p_{2}, \phi\}=f(y)-a(q_{2}p_{2})-c(q_{2}^{4}+p_{2}^{4}) .

The right‐hand side is homogeneous degree of four. Consider the monomial of the form

 e^{\beta q_{1}}Kq_{2}^{i}p_{2}^{j} for some constants  \beta and  K in the right‐hand side. Set  \phi=  e^{\beta q_{1}}\psi(q_{2},p_{2}) .

Clearly, if  \beta+i-j  \neq  0 , then one can determine  \phi . If otherwise, then we set  \phi  =

 q_{1}e^{\beta q_{1}}\psi(q_{2},p_{2}) . In general, we consider  \alpha(q_{1})\beta(q_{2},p_{2}) , where  \beta(q_{2},p_{2}) isamonomial.

We have, for  \phi=\omega(q_{1})\psi(q_{2},p_{2})

 \{p_{1}+q_{2}p_{2}, \phi\}=\{p_{1}, \omega\}\psi+\{q_{2}p_{2}, \psi\}\omega=
\alpha(q_{1})\beta(q_{2},p_{2}) .

Clearly,  \{q_{2}p_{2}, \psi\} can be chosen as the constant times of  \beta(q_{2},p_{2}) . Hence  \omega satisfies

the equation like  \omega'+c_{1}\omega=c_{2}\alpha for some constants  c_{1} and  c_{2} . Therefore one can solve

(2.10).
One can verifies that  \phi gives the terms of homogeneous degree 4 of  v in (2.9). Set

 u  =  y+v . Then, the change of variables  x  =  u(y) eliminate the terms of degree 4

in  f except for those which remain in  S . After the change of variables we make the
same argument in such a way that we eliminate the terms of homogeneous degree 5

in the right‐hand side of (2.9). We repeat the same argument. One can delete every
homogeneous term in the right‐hand side of (2.9). Finally, by the infinite compositions of
transformations like  u=y+v one can solve (2.9) in category of formal power series.  \square 

Next we give a meaning to a certain normal form obtained in Theorem 2.1. First

we look for the alternative expression of the homology equation. In fact, we have

Lemma2.2. Suppose that  u satisfy

(2.11)  \Lambda(y)\nabla u+s(y)\nabla u=r(u)+\Lambda(u) .

Then, the transformation  x  =  u(y) maps the vector field  ( \Lambda(x)+r(x))\frac{\partial}{\partial x} to  (\Lambda(y)+

 s(y)) \frac{\partial}{\partial y}.

Proof.

 ( \Lambda(x)+r(x))\frac{\partial}{\partial x}=(\Lambda(u)+r(u))(\nabla u)^{-1}
\frac{\partial}{\partial y}=(\Lambda(y)+s(y))\frac{\partial}{\partial y} .

We remark that  \Lambda(u) in (2.11) and  u\nabla\Lambda(y) in (2.8) is identical except for the
term 1 in the first component, which causes a minor change of variables in the original
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equation. We shall simplify (2.11). We first consider the third equation of (2.11). Set
 w=u_{3},  u=  (u_{1}, \cdots , u_{4}) . Then we have

(2.12)   \frac{\partial w}{\partial q_{1}}+\delta w+q_{2}p_{2}\delta+p_{2}^{3}
\frac{\partial w}{\partial q_{2}}-q_{2}^{3}\frac{\partial w}{\partial p_{2}}-w-
\mathcal{R}(u)=0
where   \delta=q_{2}\frac{\partial}{\partial q_{2}}-p_{2}\frac{\partial}{\partial 
p_{2}} and  \mathcal{R}(u)  =\tilde{c}(u_{1})(u_{3}+u_{4})^{3} . Because we considera singular

solution we shall solve (2.12) near  q_{2}  =  \infty,  p_{2}  =  \infty . Hence we replace  q_{2}  arrow  q_{2}^{-1},
  \frac{\partial}{\partial q_{2}}  arrow  -q_{2}^{2} \frac{\partial}{\partial q_{2}} and so on in (2.12) and we multiply the equation with q  23_{p_{2}^{3}} . Then we
obtain

(2.13)  q_{2}^{3}p_{2}^{3} \frac{\partial w}{\partial q_{1}}-q_{2}^{3}p_{2}^{3}\delta w
-q_{2}^{2}p_{2}^{2}\delta w-q_{2}^{5}\frac{\partial w}{\partial q_{2}}+p_{2}^{5}
\frac{\partial w}{\partial p_{2}}-q_{2}^{3}p_{2}^{3}w-q_{2}^{3}p_{2}^{3}\mathcal
{R}(u)=0.
We shall look for  w=w(q_{1}, q_{2}+p_{2}) . Setr  =q_{2}+p_{2} and define

(2.14)  q_{2}=\alpha\zeta, p_{2}=\eta\zeta,

where  \alpha+\eta\neq 0 and  \zeta is a complex parameter. Then we have   \delta w=(\alpha-\eta)\zeta\frac{\partial w}{\partial r} and

 -q_{2}^{5} \frac{\partial w}{\partial q_{2}}+p_{2}^{5}\frac{\partial w}
{\partial p_{2}}=(-\alpha^{5}+\eta^{5})\zeta^{5}\frac{\partial w}{\partial r}.
Hence, by (2.13) we have

(2.15)   \zeta\frac{\partial w}{\partial q_{1}}+(\zeta^{2}(\eta-\alpha)+\alpha^{-1}-
\eta^{-1})\frac{\partial w}{\partial r}+(-\alpha^{2}\eta^{-3}+\alpha^{-3}
\eta^{2})\frac{\partial w}{\partial r}-\zeta w-\zeta \mathcal{R}(u)=0.
Suppose that  \alpha^{-1}-\eta^{-1}-\alpha^{2}\eta^{-3}+\alpha^{-3}\eta^{2}\neq 0 . This is equivalent to  (\eta^{3}-\alpha^{3})(\eta^{2}+\alpha^{2})\neq 0.
We assume

(2.16)  \eta^{3}-\alpha^{3}\neq 0, \eta^{2}+\alpha^{2}\neq 0, \eta+\alpha\neq 0.

We make the change of variables  q_{1}arrow\lambda q_{1} and  rarrow rK for some  \lambda\neq 0 and  K\neq 0 such

that (2.15) is transformed to the following

(2.17)  r \frac{\partial w}{\partial q_{1}}+(r^{2}+1)\frac{\partial w}{\partial r}-\in 
0rw-\in 0r\mathcal{R}(u)=0,
where  \in 0 is some constant. Similarly, one can verify that  u_{4} satisfies (2.17) with  -\in 0rw

replaced by  \in 0rw.

Next we consider the equation for  u_{1} in (2.11), which is given by the first column
of (2.11). Because the first component of  r(u) vanishes, the equation for  w  :=  u_{1} is
exactly the equation (2.17) with  -\in 0rw-\in 0r\mathcal{R}(u) replaced by  -\in 0r . One can easily
verify that it has a solution

(2.18)   \tilde{q}_{1}\equiv u_{1}=q_{1}-\frac{1-\in 0}{2}\log(1+r^{2}) .



94 Masafumi Yoshino

On the other hand, the equation for  u_{2} has the same form as (2.17), where the nonlinear
term  \mathcal{R}(u) does not contain  u_{2} . Hence the equation is linear. One can integrate it by

the method which we show in the following if we detemine u3 and  u_{4}.

Insert  u_{1} into  \mathcal{R}(u)  =  \tilde{c}(u_{1})(u_{3}+u_{4})^{3} and consider the system of equations for
 u_{3} and  u_{4} in (2.17). We note that one can delete  \in 0rw by introducing the unknown
quantity  w_{3}  =  we^{q_{1}\in 0} . Then  \tilde{c} in  \mathcal{R} is multiplied by some power of  e^{q_{1}\in 0} , which we

denote by  \mathcal{R}_{3} . Defining w 4=we^{-q_{1\in 0}} and  \mathcal{R}_{4} in the same way as  \mathcal{R}_{3} we obtain

(2.19)  r \frac{\partial w_{3}}{\partial q_{1}}+(1+r^{2})\frac{\partial w_{3}}{\partial
r}=\in 0r\mathcal{R}_{3}(w_{3}, w_{4}) .

(2.20)  r \frac{\partial w_{4}}{\partial q_{1}}+(1+r^{2})\frac{\partial w_{4}}{\partial
r}=\in 0r\mathcal{R}_{4}(w_{3}, w_{4}) .

We shall solve the reduced homology equation (2.19) and (2.20) by iteration. Con‐
sider

(2.21)  r \frac{\partial W}{\partial q_{1}}+(1+r^{2})\frac{\partial W}{\partial r}=f(r,
q_{1})
where  W=(w_{3}, w_{4}) and  f(r, q_{1}) is a given vector function.

The equation (2.21) can be solved by the method of characteristics. Consider

(2.22)   \frac{dq_{1}}{r}= \frac{dr}{1+r^{2}}=d\sigma.
By integration we have  \tan^{-1}r=\sigma+\tan^{-1}r^{0} and   q_{1}=q_{1}^{0}-\log\cos\sigma . For givenr and

 q_{1} we set  r^{0}=0 and define  \sigma_{0} and  q_{1}^{0} by

(2.23)  \tan^{-1}r=\sigma_{0}, q_{1}=q_{1}^{0}-\log\cos\sigma_{0}.

Then the solution of (2.21) is given by

(2.24)  W(r, q_{1})=Pf := \int_{0}^{\sigma_{0}}f(\tan\sigma, q_{1}^{0}-\log\cos\sigma)d
\sigma.
We shall show that in the integrand of (2.24) the function  \tilde{c}(\tilde{q}_{1}) is bounded, where
 \tilde{q}_{1}  =  q_{1}-   \frac{1-\in 0}{2}\log(1+r^{2}) . Because  \tilde{c}(\tilde{q}_{1}) is a constant times of  e^{\beta\tilde{q}_{1}} we consider the

latter function. By using q 01-\log\cos\sigma=   q_{1}+\log\cos\sigma_{0}-\log\cos\sigma and   r=\tan\sigma we
have

(2.25)  e^{\beta\overline{q}_{1}} =e^{\beta q_{1}}(1+r^{2})^{-\beta/2+\in 0/2}=e^{\beta
q_{1}}(\cos\sigma_{0})^{\beta}(\cos\sigma)^{-\in 0}.

Hence the integrand is bounded in  \sigma.

Define

(2.26)  \Omega_{0} :=\{(q_{1}, r)||q_{1}| <\eta_{0}, |r|<\eta_{0}\}.
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We shall solve (2.19) and (2.20) in the set of functions analytic in  \Omega_{0} and continuous
up to the boundary. Set  K:=\overline{\Omega_{0}} and define

(2.27)   \Vert W\Vert:=\Vert w_{3}\Vert+\Vert w_{4}\Vert, \Vert w_{j}\Vert :=\sup_{K}
|w_{j}(r, q_{1})|.
Define  Q\equiv Q(W)  :=\in 0r(\mathcal{R}_{3}, \mathcal{R}_{4}) . We define the approximate sequence  \{W_{n}\}_{n} by

 W_{-1}=0,  W_{0}=  (q_{1}- \frac{1}{2}\log(1+r^{2}), q_{1}-\frac{1}{2}\log(1+r^{2})) and

(2.28)  W_{n}=W_{n-1}+PQ(W_{n-1})-PQ(W_{n-2}) ,  n=1 , 2, . . .

One can easily see that the sequence is well defined on  \Omega_{0} . If the limit,  W:= \lim W_{n}=

 W_{0}+ \sum_{n=1}^{\infty}(W_{n}-W_{n-1}) exists , then we have

(2.29)  W-W_{0}=P( \sum_{n=1}^{\infty}(Q(W_{n-1})-Q(W_{n-2}))) =P(\lim Q(W_{n}))=PQ(W) .

By the definition of  W_{0},  W satisfies (2.21).
We shall show an apriori estimate. Given an  \in  >  0 . Take  C_{1}  >  0 such that

 |e^{\beta\tilde{q}_{1}}|  \leq  C_{1} on  \Omega_{0} . If  \eta_{0} is sufficiently small, then we have  \Vert W_{0}\Vert  \leq  \in/2 . Consider
 W_{1}-W_{0}  =PQ(W_{0}) . We have  |r|  <  \in if  \eta_{0} is sufficiently small. Because  \tilde{c}(\tilde{q}_{1}) in the

integrand is bounded, we get, from the formula of  P that  \Vert W_{1}-W_{0}\Vert  <\tilde{K}\in^{2} for some
 \tilde{K}  >  0 depending only on the equation. Take  \in such that  \tilde{K}\in  \leq  1/4 . Then we have

 \Vert W_{1}\Vert  \leq(1/2+1/4)\in<\in.
Next, we shall estimate  \Vert W_{2}-W_{0}\Vert . Writing  W_{2}-W_{0}=W_{2}-W_{1}+W_{1}-W_{0} we

consider  \Vert W_{2}-W_{1}\Vert , where

(2.30)  W_{2}-W_{1}=P(Q(W_{1})-Q(W_{0})) .

By the definition of  Q we see that  Q(W_{1})-Q(W_{0}) is estimated by the constant times

of  \Vert W_{1}-W_{0}\Vert(\Vert W_{1}\Vert^{2}+\Vert W_{1}\Vert\Vert W_{0}\Vert+
\Vert W_{0}\Vert^{2}) . By the estimate of W1 the last term is

bounded by   3\in^{2}\Vert W_{1}-W_{0}\Vert  \leq 3\in^{3}/4 . Hence, by (2.30) we have  \Vert W_{2}-W_{1}\Vert  \leq\in^{3}K for
some  K depending only on the equation. Therefore we have

(2.31)  \Vert W_{2}-W_{0}\Vert \leq\in/4+\in^{3}K\leq\in(1/4+\in^{2}K) .

If  \in^{2}K\leq 1/8 , then we have  \Vert W_{2}-W_{0}\Vert  <\in/2 . Especially, we have  \Vert W_{2}\Vert  \leq\in.

We proceed in the same way for  W_{3}-W_{0}  =  W_{3}-W_{2}+W_{2}-W_{1}+W_{1}  -W_{0}.

We can show that  \Vert W_{3}  -W_{0}\Vert  \leq  2^{-1}\in(1/2+1/4+1/8)  <  \in/2 . In general we have

 \Vert W_{n}-W_{0}\Vert  \leq\in/2 for all  n . Hence we obtain the apriori estimate

(2.32)  \Vert W_{n}\Vert  \leq\in,  n=0 , 1, . . .
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By the apriori estimate and (2.28) we have

(2.33)   \Vert W_{n}-W_{n-1}\Vert\leq 3\in^{2}\Vert W_{n-1}-W_{n-2}\Vert \leq \frac{1}
{2}\Vert W_{n-1}-W_{n-2}\Vert
if  3\in^{2}\leq 1/2 . This proves the convergence. Therefore we have proved

Theorem 2.3. Suppose that  \alpha and  \eta satisfy (2.16). Then there exists an  \eta_{0}  >0

such that if  p_{1} is in some neighborhood of the origin and  (q_{1}, q_{2},p_{2}) is given by (2.14)
with  q_{2} and  p_{2} replaced by  q_{2}^{-1} and p2‐1, respectively, and  \zeta=(\alpha+\eta)^{-1}r,  (q_{1}, r)  \in\Omega_{0},

then the vector field  ( \Lambda(x)+r(x))\frac{\partial}{\partial x} is transformed to  ( \Lambda(y)+s(y))\frac{\partial}{\partial y} by an analytic

change of coordinates.

§3. Movable Singularity

In this section we shall study the movable singularity of solutions of (1.1) with  \ell=3.

In view of Theorem2.3 we consider the reduced Hamiltonian  p_{1}+q_{2}p_{2}+cq_{2}^{2}p_{2}^{2}+\tilde{c}(q_{2}^{4}+p_{2}^{4}) ,

where   c\neq  0 and  \tilde{c}\neq  0 are constants. By setting  q_{2}  =  q and p  2  =p we consider the
Hamiltonian

(3.1)   \tilde{H}:=qp+\frac{\epsilon}{2}q^{2}p^{2}-\frac{\eta}{8}(q^{2}-p^{2})^{2},
where  \in and  \eta\neq 0 are constants. Because  \tilde{c} can be chosen arbitrarily by changing the

transformation in the proof of Theorem 2.3, we may assume  \in\neq 0,  \in+\eta\neq 0 without

loss of generality. Suppose that  (q,p) is the solution of the Hamiltonian system for  \tilde{H}.

Then there exists a constant  C_{2} such that  \tilde{H}=C_{2} . Define

(3.2)   \zeta=\frac{q+p}{2}, \xi= \frac{q-p}{2i}.
Then we have

(3.3)  C_{2}=\tilde{H}=(\zeta^{2}+\xi^{2+2})\in-(\zeta^{2}+\xi^{2})^{2}+2\eta\zeta^{2}
\xi^{2}

 = \frac{\in+\eta}{2}(\zeta^{2}+\xi^{2}+\frac{1}{\in+\eta})^{2}-\frac{1}{2(\in+
\eta)}-\frac{\eta}{2}(\zeta^{2}-\xi^{2})^{2}
Hence we have

(3.4)  1=  \frac{(\in+\eta)^{2}}{A}(\zeta^{2}+\xi^{2}+\frac{1}{\in+\eta})^{2}-
\frac{\eta(\in+\eta)}{A}(\zeta^{2}-\xi^{2})^{2}
where  A=1+2C_{2}(\in+\eta) . We determine  \theta=\theta(z) such that

(3.5)   \sin^{2}\theta= \frac{(\in+\eta)^{2}}{A}(\zeta^{2}+\xi^{2}+\frac{1}{\in+\eta})
^{2}, \cos^{2}\theta=-\frac{\eta(\in+\eta)}{A}(\zeta^{2}-\xi^{2})^{2}
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Then, by (3.5) and simple computations we have

(3.6)  \zeta\equiv\zeta(z)=\sqrt{\frac{\sqrt{\frac{A(\in+\eta)}{-\eta}}\cos\theta+
\sqrt{A}\sin\theta-1}{2(\in+\eta)}},
(3.7)  \xi\equiv\xi(z)=\sqrt{\frac{-\sqrt{\frac{A(\in+\eta)}{-\eta}}\cos\theta+
\sqrt{A}\sin\theta-1}{2(\in+\eta)}}.
Set  X(z)=\sin\theta(z)+\eta\in^{-1}/\sqrt{}A and define

(3.8)  \mathcal{A}=\sqrt{\mathcal{E}+\frac{i}{2}\sqrt{\mathcal{F}}}, \mathcal{B}=\sqrt
{\mathcal{E}-\frac{i}{2}\sqrt{\mathcal{F}}},
where

(3.9)   \mathcal{E}=\frac{1}{2(\in+\eta)}(\sqrt{A}X(z)-\eta\in^{-1}-1) ,

(3.10)   \mathcal{F}=\frac{A}{\eta(\in+\eta)} (1-(X(z)-\eta\in^{-1}/\sqrt{A})^{2})
Then we see that  \zeta=\mathcal{A} and  \xi=\mathcal{B} . Therefore, by (3.2) we obtain

(3.11)  q(z)=\mathcal{A}+i\mathcal{B}, p(z)=\mathcal{A}-i\mathcal{B}.

We will show the following lemma.

Lemma3.1.  X(z) is an elliptic function.

Proof. By (3.1) the Hamitonian equation with Hamiltonian  \tilde{H} is given by

  \dot{q}=q+\in q^{2}p+\frac{\eta}{2}p(q^{2}-p^{2}) , \dot{p}=-p-\in qp^{2}+
\frac{\eta}{2}q(q^{2} - p2) .

In terms of (3.2), these equations are written as

(3.12)  \dot{\zeta}=i\xi+i\in\xi(\zeta^{2}+\xi^{2})+2i\eta\zeta^{2}\xi, \dot{\xi}=-
i\zeta-i\in\zeta(\zeta^{2}+\xi^{2})-2i\eta\zeta\xi^{2}

In view of (3.2) we have

(3.13)   \frac{d}{dz}(\zeta^{2}+\xi^{2})=4\eta i\zeta\xi(\zeta^{2}-\xi^{2}) .

By (3.6) and (3.7) we have

(3.14)   \zeta^{2}-\xi^{2}=\frac{\sqrt{\frac{A(\in+\eta)}{-\eta}}\cos\theta}{\in+\eta}.
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(3.15)   \zeta^{2}\xi^{2}= \frac{(\sqrt{A}\sin\theta-1)^{2}+\eta^{-1}A(\in+\eta)
\cos^{2}\theta}{4(\in+\eta)^{2}}
 = \frac{1}{4(\in+\eta)^{2}} (-\eta^{-1}A\in\sin^{2}\theta-2\sqrt{A}\sin\theta+1
+\eta^{-1}A(\in+\eta))
 = \frac{1}{4(\in+\eta)^{2}} (-\eta^{-1}A\in(\sin\theta+\eta\in^{-1}A^{-1/2})
^{2}+\eta\in^{-1}+1+\eta^{-1}A(\in+\eta))
 = \frac{1}{4(\in+\eta)^{2}} (-\eta^{-1}A\in X^{2}+\eta\in^{-1}+1+\eta^{-1}A(\in
+\eta)) .

(3.16)   \frac{d}{dz}(\zeta^{2}+\xi^{2})= \frac{d\theta}{dz}\frac{d}{d\theta} 
(\frac{\sqrt{A}\sin\theta-1}{\in+\eta}) =\frac{\sqrt{A}\cos\theta}{\in+\eta}
\frac{d\theta}{dz}= \frac{\sqrt{A}}{\in+\eta}\frac{dX}{dz}.
By (3.13), (3.14), (3.15) and (3.16) we have

(3.17)   \frac{dX}{dz}=\sqrt{\frac{\eta}{\in+\eta}}\sqrt{1-(X-\eta\in^{-1}A-1/2)2}
 \cross\sqrt{-\eta^{-1}A\in X^{2}+\eta\in^{-1}+1+\eta^{-1}(\in+\eta)A}.

Hence,  ( \frac{dX}{dz})^{2} is at most the fourth order polynomial of  X . By the general theory of the

elliptic function we see that  X(z) is Jacobi’s elliptic function. (See [2] and [5]).  \square 

Proof of Theorem 1.1. First we recall that  qp=\zeta^{2}+\xi^{2}=C_{0}X(z)+C_{1} for some

constants  C_{0}\neq 0 and  C_{1} by what we have proved in the above, where  X(z) is the elliptic

function. In view of representation formula of qand  p , qandpare singular at the poles
of the elliptic function  X(z) . It may occur that another branch point appears forp or

 q . One can easily verify that the singular point is the movable singularity because it
does not appear in the coefficients of the equations of  q and  p.

In order to show that the generalized Emden equation has movable singularities,
we transform the equation to a normal form as in Theorem 2.3 in some domain near

the infinity. Indeed, the assumption (2.16) is the condition on q2 and p2, which can be
satisfied by changing parameters in view of the expression of singular solution in §3.

Recall that the elliptic function has a pole on each paralleogram. By suitable choice

of parameters of the transformed equation, the image of the fundamental paralleogram

lies in the domain on which the normalizing transformation is defined. Hence we have a

singular solution of the generalized Emden equation which is parametrized by the elliptic

function. Finally, by (2.18) one can change the independent variable of the transformed
equation to that of the generalized Emden equation, and one obtains a singular solution

of the generalized Emden equation. There exist infinitely many movable singularities in

view of the periodicity of the elliptic function.
 \square 
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