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A certain property of a unified family of P_{J}‐hierarchies
(J=I, II, IV, 34) with a large parameter

By

Yoko Umeta  *

Abstract

We study a unified family of  P_{J} ‐hierarchies (  J=I , II, IV, 34) with a large parameter. The
explicit forms of the deformation equation and the Schrödinger equation associated with the
unified family of  P_{J} ‐hierarchies are derived from the underlying Lax pair.

§1. Introduction

In the series of papers ([1], [6]–[14], [16]–[19]), the exact WKB analysis for higher
order Painlevé equations has been progressed and important results have been estab‐

lished. T. Kawai, T. Koike, Y. Nishikawa and Y. Takei ([10], [17]) proved that there
is a closed connection between the Stokes geometries of  P_{J}‐hierarchies (  J=I , II, IV, 34),
the Noumi‐Yamada system and those of their underlying Lax pairs. For example, the

following important properties are shared.

(i) If  t  =  \tau^{I} is a turning point of the first kind of a system of non‐linear ordinary
differential equations, a double turning point merges with a simple turning point in

the Stokes geometry of the underlying Lax pair at  t=\tau^{I}.

(ii) If  t=\tau\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT} is a turning point of the second kind of a system of non‐linear ordinary
differential equations, two double turning points in the Stokes geometry of the

underlying Lax pair merge at  t=\tau^{II}.

(iii) Under generic assumptions, if  t lies on a Stokes curve of a system of non‐linear
ordinary differential equations, two turning points are connected by a Stokes curve

in the Stokes geometry of the underlying Lax pair.
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These three properties play an important role in analyzing the Stokes phenomenon

on a Stokes curve of non‐linear differential equations (see [10]‐[12], [16] and [19] for  P_{J^{-}}

hierarchies). The author has a question: Do three properties always hold for any system
of non‐linear ordinary differential equations which describes the compatibility condition

of a Lax pair? To investigate the question, the author proved that (i), (ii), (iii) also hold
for a unified family of  P_{J}‐hierarchies ( J=I , II, IV, 34) in [20] . The unified family of  P_{J^{-}}

hierarchies is introduced in [21]. The system has arbitrary coefficients. If we specify the
coefficients, then the unified family is equivalent to the m‐th member of  P_{J}‐hierarchies

( J=I , II, IV, 34). However it is not certain whether the system contains other known
Painlevé hierarchies or essentially new equations or not. Motivated by the problem, this

paper makes clear the difference between  P_{J}‐hierarchies (  J=I , II, IV, 34) and the unified
family. The plan of the paper is as follows: In §2 and §3, we recall the explicit form

(2.2) of a unified family of  P_{J} ‐hierarchies (  J=I , II, IV, 34) with a large parameter and
the underlying Lax pair. In §4, we apply the method given by T. Koike in[13] and [14]
to (2.2). We derive the deformation equation and the Schrödinger equation from the
Lax pair in §3 and the difference between (2.2) and the  P_{J}‐hierarchies is clarified. In
§5, we give a supplementary explanation.

Acknowledgments The author would like to express her sincere gratitude to Professor

Naofumi Honda. §4 is inspired by T. Koike’sidea in [13] and [14]. The author would
like to express her thanks to Professor Tatsuya Koike.

§2. A unified family of  P_{J}‐hierarchies ( J=I , II, IV, 34)
with a large parameter

In [21], a unified family of  P_{J} ‐hierarchies(  J=I , II, IV, 34) with a large parameter  \eta is
derived from some common structures between the m‐th members  (P_{J})_{m}(m=1,2, \cdots )
of  P_{J}‐hierarchies. Let us recall the explicit form of the system. Let  \theta be an independent

variable and the notation  A\equiv B means that  A-B is zero modulo  \theta^{m+2} . We denote by

 \mathcal{O}(t)[[\theta]] the set of formal power series in  \theta with coefficients in holomorphic functions

of variable  t . Let  U,  V and  C denote generating functions of unknown functions  u_{k},  v_{k}

 (k=1,2, . . . , m) of  t and constants  c_{k} as follows.

 m+1 m+1

 U( \theta) := m\sum u_{k}\theta^{k}, V(\theta) := m\sum v_{k}\theta^{k}, 
c(\theta) := \sum c_{k}\theta^{k}m
 k=1 k=1 k=1

with arbitrary polynomials  u_{m+1},  v_{m+1}  \in  \mathcal{O}(t)[u_{1}, . . . , u_{m}, v_{1}, . . . , v_{m}] on condition

that  u_{m+1} and  v_{m+1} do not include  \eta . Let us define  H  (U, V) by the polynomial in U

and  V with arbitrary complex constants  p_{i} of the form

(2.1)  H(U, V)  :=(p_{1}U^{2}+p_{2}V^{2})\theta+p_{3}UV+p_{4}CU+p_{5}CV+p_{6}U+p_{7}V+p_{8}C+p_
{9}.
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We consider the following system on   \frac{\mathcal{O}(t)[[\theta]]}{\mathcal{O}(t)[[\theta]]\theta^{m+2}}.
(2.2)   \eta^{-1}\frac{d}{dt} (\begin{array}{l}
U\theta
 V\theta
\end{array}) \equiv (\begin{array}{l}
f_{1}
f_{2}
\end{array}) \cross(1-U)+ (\begin{array}{l}
0-1
10
\end{array}) (\begin{array}{l}
\partial H
\overline{\partial U}
\partial H
\overline{\partial V}
\end{array}) + (\begin{array}{l}
0
\frac{H(U,V)}{1-U}
\end{array}) ,

where  f_{1},  f_{2} are defined by

 f_{1}:=p_{7}+(\alpha ui+p_{5}ci)\theta+y_{1}\theta^{m}+(y_{1}u_{1}+y_{2})
\theta^{m+1},
(2.3)

 f_{2} :=-\beta-(2\beta u_{1}+\alpha v_{1}+\epsilon c_{1})\theta+z_{1}\theta^{m}
+(2z_{1}u_{1}-y_{1}v_{1}+z_{2})\theta^{m+1}

with arbitrary holomorphic functions  y_{i},  z_{i} of  t . Here c1 is the coefficient of the leading

term of  C(\theta) and  \alpha,  \beta,  \epsilon are defined by

(2.4)  \alpha:=p3  +p_{7},  \beta:=p_{6}+p_{9} and  \epsilon:=p_{4}+p_{8},

respectively.

The system (2.2) is equivalent to the following form of the first order system with
 2m unknown functions  u_{j},  v_{j} :

(2.5)  \{\begin{array}{l}
\eta^{-1}\frac{du_{j}}{dt}=-\alpha u_{j+1}-(\alpha u_{1}+p_{5}c_{1})u_{j}-2p_{2}
v_{j}-p_{5}c_{j+1}+y_{1}\delta_{j,m-1}+y_{2}\delta_{j,m}
j=1,2,\ldots,m
\eta^{-1\frac{dv_{j}}{dt}=\beta uj+1+p_{3}vj+1+p4^{C}j+1+(2\beta u_{1}+\alpha v_
{1}+2p_{1}+\epsilon c_{1})u_{j}}
+w_{j+1}+z_{1}\delta_{j,m-1}+(z_{1}u_{1}-y_{1}v_{1}+z_{2})\delta_{j,m},j=1,2,
\ldots,m
\end{array}
Here  \delta_{j},  m-1,  \delta_{j},  m stand for Kronecker’s delta,  c_{m+1}  =0 and  w_{j} is recursively defined

by

 j-1 j-2 j-2 j-1

 w_{j} =  \sum w_{k}u_{j-k} +p_{1} \sum u_{k}u_{j-k-1} +p_{2}\sum v_{k}v_{j-k-1}
+p_{3}\sum u_{k}v_{j-k}
 k=1 k=1 k=1 k=1

(2.6)
 j-1 j-1

 +p_{4} \sum u_{k}c_{j-k}+p_{5}\sum v_{k}c_{j-k}+\beta u_{j}+p_{7}v_{j}+p_{8}
c_{j} (1\leq j\leq m+1) .

 k=1 k=1

If  p_{j},  y_{i},  z_{i} in (2.1) and (2.3) are specified by the following list, then (2.2) (also
(2.5)) is equivalent to the m‐th member  (P_{J})_{m} of  P_{J}‐hierarchy ( J=I , II, IV, 34) which
are studied by Kudryashov ([15]), Gordoa, Joshi and Pickering ([5]), Clarkson, Joshi
and Pickering ([3]) and so on.
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Remark that other  p_{i},  y_{i},  z_{i} which are not listed are zero and the explicit forms of  u_{m+1}

and  v_{m+1} are described in [21].

§3. Lax pair of the system

Firstly, the system (2.2) is expressed in the following form

 (3.2)(3.1)  \{   \eta^{-1}\frac{}{}(V\theta)\equiv f_{2}(1-U)+\frac{\frac{}{}-\alpha u\partial 
HH(U,V)\partial V}{1-U}+\frac{\partial H}{\partial U}+(2\beta u_{m}+1+\alpha 
v_{m+1})\theta^{m+1}\eta^{-1}\frac{d}{dt,dtd}(U\theta)\equiv f_{1}(1-U)-m+
1\theta^{m+1},
with

(3.3)  U( \theta) := \sum u_{k}\theta^{k}m, V(\theta) := \sum v_{k}\theta^{k}m, 
c(\theta) := \sum c_{k}\theta^{k}m
 k=1 k=1 k=1

To admit terms of negative power in  \theta , we formally calculate the following underlying

Lax pair on  \mathcal{O}(t)[[\theta, \theta^{-1}]]:=   \{\sum_{k=-\infty}^{\infty}f_{k}\theta^{k}|f_{k}\in \mathcal{O}(t)\}.
(3.4)  ( \gamma\theta^{k}\frac{\partial}{\partial\theta}-\eta A)\psi(\theta, t)=0,
with

(3.5)  A:= (\begin{array}{ll}
\triangle_{1}(1-   U)\theta
\triangle_{2}   -\triangle_{1}
\end{array}) ,

where  \triangle_{j} and  \square _{j}  (j=1, 2) are defined by

 ( \frac{\partial}{\partial t}-\eta B)\psi(\theta, t)=0

 B:=  (\begin{array}{ll}
\square _{1}   1
\square _{2}   -\square _{1}
\end{array}) ,

  \triangle 1 :=-\frac{1}{2}\frac{\partial H}{\partial V}-\frac{p_{3}}{2}(1-U)+
\frac{1}{2}(y_{1}\theta^{m}+y_{2}\theta^{m+1})-\frac{\alpha}{2}u_{m+1}\theta^{m+
1},
  \triangle 2:=p_{2}\cross (-\frac{\partial H}{\partial U}-\frac{H(U,V)}{1-U}-
(z_{1}\theta^{m}+(z_{1}u_{1}-y_{1}v_{1}+z_{2})\theta^{m+1})(3.6)

 -(2\beta u_{m+1}+\alpha v_{m+1})\theta^{m+1}) ,

  \square _{1} :=-\frac{1}{2\theta}(\alpha+(\alpha u_{1}+p_{5}c_{1})\theta) , 
\square  2 :=-\frac{p_{2}}{\theta}(\beta+(2\beta u_{1}+\alpha v_{1}+\epsilon 
c_{1})\theta) .
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Then the compatibility condition of (3.4) is given in the form

(3.7)   \frac{\partial A}{\partial t}-\gamma\theta^{k}\frac{\partial B}
{\partial\theta}+\eta(AB-BA)= (\begin{array}{ll}
M_{1}   M_{2}
M_{3}   -M_{1}
\end{array}) =0.
Apparently the matrix  B contains   \frac{1}{\theta} , but the compatibility condition of  M_{i}  =  0  (i  =

 1 , 2, 3) does not contain terms of negative power in  \theta . Therefore we can consider the
 \mathcal{O}(t)[[\theta]]

equations  M_{i}  =  0 on — that is  M_{i}  \equiv  0 . The system (2.2) has arbitrary
 \mathcal{O}(t)[[\theta]]\theta^{m+2}

’

coefficients  p_{i} , arbitrary holomorphic functions  y_{i},  z_{i} , and arbitrary polynomials  u_{m+1},

 v_{m+1} . However, (2.2) dose not necessarily have the underlying Lax pair. As is shown
in [20], if we choose  u_{m+1},  v_{m+1},  p_{i},  y_{i} and  z_{i} satisfying the conditions which will be
given in Theorem 3.1, then the system (3.1), (3.2) has the underlying Lax pair.

Theorem 3.1. ([20]) Assume that  p_{1}  =  0 andk is  m+3 or  m+2 . Let  \gamma and
 p_{2} be arbitrary nonzero constants. If we choose  u_{m+1} and  vm+1 so that they satisfy

the conditions blow, then the system (2.2) (also (2.5)) is equivalent to the compatibility
condition  (M_{i}\equiv 0 (i=1, 2, 3)) of (3.4).

 (3.8)\{\begin{array}{l}
\gamma\alpha\theta^{k-2}=y_{1}'\theta^{m}+y_{2}'\theta^{m+1}-
\alpha\frac{\partial u_{m+1}}{\partial t}\theta^{m+1}
\gamma\beta\theta^{k-2}=-(z_{1}\theta^{m}+(z_{1}u_{1}-y_{1}'v_{1}+z_{2})
\theta^{m+1+}\prime,,(2\beta\frac{\partial u_{m+1}}{\partial t}+
\alpha\frac{\partial v_{m+1}}{\partial t})\theta^{m+1})
\end{array}
Here ’ denotes the derivative with respect to  t.

§4. The deformation equation and the Schrödinger equation associated

with (2.2)

Let us investigate the difference between (2.2) and  (P_{J})_{m} (  J=I , II, IV, 34). In what
follows, equations are formally calculated on  \mathcal{O}(t)[[\theta, \theta^{-1}]] and we do not use relations

 \mathcal{O}(t)[[\theta]]which hold on  \overline{\mathcal{O}(t)[[\theta]]\theta^{m+2}} unless otherwise mentioned. Following T. Koike’s idea (A.34)
in [13], we take the change of unknown functions  \psi and  \overline{\phi} in (3.4):

(4.1)   \psi=\exp(-\frac{\eta}{2\gamma}\int^{\theta}h(t, \theta)d\theta)
\overline{\phi},
where

(4.2)  h(t,  \theta):=\frac{\alpha+p_{5}C-y_{1}\theta^{m}-y_{2}\theta^{m+1}+\alpha 
u_{m+1}\theta^{m+1}}{\theta^{k}}.
Then (3.4) is transformed into

(4.3)  ( \gamma\theta^{k}\frac{\partial}{\partial\theta}-\eta\tilde{A})\overline{\phi}
(t, \theta)=0, (\frac{\partial}{\partial t}-\eta\tilde{B})\overline{\phi}(t, 
\theta)=0.
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Here  \tilde{A} and  \tilde{B} are defined by

(4.4)  \tilde{A}:= (\begin{array}{llllll}
\triangle 1+   \frac{1}{2}\theta^{k}h(t   \theta)   (1-   U)\theta   
   \triangle 2      -\triangle 1+   \frac{1}{2}\theta^{k}h(t   \theta)
\end{array}) , \tilde{B}:= (\begin{array}{ll}
\fbox_{1}+\frac{\alpha}{2\theta}   1
\square  2   -\fbox_{1}+\frac{\alpha}{2\theta}
\end{array}) ,

where  \triangle j,  \square  j  (j = 1,2) are defined by (3.6). We can verify that the compatibility
condition of (4.3) is completely the same as (3.7) under the conditions (3.8) in Theorem
3.1. From now on, we consider the Lax pair of (4.3) for (2.2).

Let us calculate the equations that the first component  \phi_{1} of a solution  \overline{\phi}=  (\begin{array}{l}
\phi 1
\phi 2
\end{array})
for (4.3) satisfies. By the same argument in [13], Proposition A.2, the following two
differential equations are derived from (4.3), if  (1-U)\theta\neq 0 holds:

 ( \gamma^{2}\theta^{2k}(1-U)\frac{\partial^{2}}{\partial\theta^{2}}+
\eta\tilde{p}(t, \theta;\eta)\frac{\partial}{\partial\theta}+\eta^{2}\tilde{q}
(t, \theta; \eta))\phi 1=0,(4.5)

 (1-U) \frac{\partial_{\phi 1}}{\partial t}=\tilde{\mathcal{A}}
\frac{\partial_{\phi 1}}{\partial\theta}+\eta\tilde{\mathcal{B}}_{\phi 1}
with

  \tilde{\mathcal{A}}=\gamma\theta^{k-1}, \tilde{\mathcal{B}}=-\frac{1}{2}
(\alpha u_{1}+p_{5}c_{1})(1-U)+p_{2}V.
Here  \tilde{p}(t, \theta;\eta) and  \tilde{q}(t, \theta;\eta) are defined by

  \tilde{p}(t, \theta;\eta)=\eta^{-1}\gamma^{2}\theta^{2k-1} ((k-1)(1-U)+
\frac{\partial U}{\partial\theta}\theta) -\gamma\theta^{2k}h(t, \theta)(1-U) ,

  \tilde{q}(t, \theta;\eta)= (\frac{1}{4}h(t, \theta)^{2}\theta^{2k}-
\triangle_{1}^{2}-\triangle_{2}(1-U)\theta) (1-U)
 + \eta^{-1}\gamma\theta^{k+1}p_{2} (\frac{\partial V}{\partial\theta}(1-U)+
V\frac{\partial U}{\partial\theta})

Therefore, in  \mathcal{O}(t)[[\theta, \theta^{-1}]] , (4.5) is rewritten in the following forms.

 ( \frac{\partial^{2}}{\partial\theta^{2}}+p (t, \theta; \eta)\frac{\partial}
{\partial\theta}+q(t, \theta;\eta))\phi 1=0,(4.6)

  \frac{\partial_{\phi 1}}{\partial t}=\mathcal{A}\frac{\partial_{\phi 1}}
{\partial\theta}+\mathcal{B}_{\phi 1}
with

  \mathcal{A}= \frac{\gamma\theta^{k-1}}{1-U}, \mathcal{B}=\eta(-\frac{1}{2}
(\alpha u_{1}+p_{5}c_{1})+\frac{p_{2}V}{1-U}) .

Here  p  (t, \theta;\eta) and  q(t, \theta;\eta) are defined by

 p(t,  \theta;\eta)=-\frac{\eta}{\gamma}h(t, \theta)+\frac{1}{\mathcal{A}}  ( \frac{\partial \mathcal{A}}{\partial\theta}) ,

 q(t,  \theta;\eta)=\frac{\eta^{2}}{\gamma^{2}\theta^{2k}}  ( \frac{1}{4}h(t, \theta)^{2}\theta^{2k}-\triangle_{1}^{2}-\triangle_{2}(1-U)
\theta)  + \frac{\eta}{\gamma\theta^{k-1}}p_{2}  ( \frac{\partial V}{\partial\theta}+V\frac{\frac{\partial U}{\partial\theta}}{1
-U})
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The compatibility condition of (4.6) is  \overline{\Theta}_{1}=\overline{\Theta}_{2}=0 , where  \overline{\Theta}_{1},  \overline{\Theta}_{2} are defined by

  \overline{\Theta}_{1}=\frac{1}{(1-U)^{2}\theta^{2}} ((\frac{\partial U}
{\partial\theta}\theta-(1-U))\Theta_{1}+(1-U)\theta\frac{\partial\Theta_{1}}
{\partial\theta}) ,

(4.7)   \overline{\Theta}_{2}=\frac{\eta}{\gamma\theta^{k+1}}(1^{p_{2}V}-U)^{2} (\frac
{\partial U}{\partial\theta}+(1-U)) (-\Theta_{1}+\theta\frac{\partial\Theta_{1}}
{\partial\theta})
 + \frac{\eta}{\gamma\theta^{k+1}}\frac{1}{1-U} ((\frac{\partial U}
{\partial\theta}\theta-(1-U))\Theta_{2}+(1-U)\theta\frac{\partial\Theta_{2}}
{\partial\theta}) +\frac{\eta^{2}}{\gamma^{2}\theta^{2k}}\Theta_{3}

with

  \Theta_{1} := \frac{\partial U}{\partial t}\theta+\eta(2p_{2}V\theta+
h\theta^{k}-(\alpha+(\alpha u_{1}+p_{5}c_{1})\theta)(1-U)) ,

  \Theta_{2}:=p_{2}\frac{\partial V}{\partial t}\theta+\eta(\triangle 2+p_{2}
(\beta+(2\beta u_{1}+\alpha v_{1}+\epsilon c_{1})\theta)(1-U)) ,

(4.8)   \Theta_{3}:=p_{2}(y_{1}\theta^{m}+y_{2}\theta^{m+1}-\alpha u_{m+1}\theta^{m+1}
)\frac{\partial V}{\partial t}\theta
 -p_{2}(zi\theta^{m}+(ziui −   y iv_{1}+z_{2}+2\beta u_{m+1}+\alpha v_{m+1})\theta^{m+1})\frac{\partial U}
{\partial t}\theta
 +p_{2} (z_{1} \frac{du_{1}}{dt}-y_{1}\frac{dv_{1}}{dt}) (1-U)\theta^{m+2}

Note that, if  (U, V ) is a solution of (2.2), then we see  \Theta_{i}\equiv 0(i=1,2,3) on   \frac{\mathcal{O}(t)[[\theta]]}{\mathcal{O}(t)[[\theta]]\theta^{m+2}}.

Let us compute the Schrödinger equation associated with (2.2). We change the
unknown function  \phi 1 by  \phi so that the second term in the first equation of (4.6) vanishes.

(4.9)  \phi 1=e^{-\frac{1}{2}\int^{\theta}p(t,\theta;\eta)d\theta_{\phi}}

Then we have the Schrödinger equation associated with (2.2) by the first equation of
(4.6):

 \partial_{\phi}^{2}\partial\theta^{2} =Q(t, \theta;\eta)\phi,(4.10)

 Q(t,  \theta;\eta)=-q(t, \theta;\eta)+\frac{1}{4}p(t, \theta;\eta)^{2}+\frac{1}
{2}\frac{\partial p}{\partial\theta}(t, \theta;\eta) .

The explicit form of the potential  Q is given by

 Q(t,  \theta;\eta)=-\frac{\eta^{2}}{\gamma^{2}\theta^{2k}}\det A
(4.11)  - \frac{\eta}{\gamma}\{\frac{p_{2}}{\theta^{k-1}} (\frac{\partial V}
{\partial\theta}+V\frac{\frac{\partial U}{\partial\theta}}{1-U}) +\frac{1}{2}
h(t, \theta)\frac{1}{\mathcal{A}}\frac{\partial \mathcal{A}}{\partial\theta}+
\frac{1}{2}\frac{\partial h}{\partial\theta}(t, \theta)\}

 + \frac{1}{4}\{(\frac{1}{\mathcal{A}}\frac{\partial \mathcal{A}}
{\partial\theta})^{2}+2\frac{\partial}{\partial\theta} (\frac{1}{\mathcal{A}}
\frac{\partial \mathcal{A}}{\partial\theta})\}
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Here  A is defined by (3.5). By the condition(3.8), we have

  \frac{\partial h}{\partial t}(t, \theta)=-\frac{\gamma\alpha}{\theta^{2}} and   \frac{\partial}{\partial t}  ( \int^{\theta}p(t, \theta;\eta)d\theta)  =- \frac{\eta\alpha}{\theta}-\frac{\frac{\partial}{\partial t}(1-U)}{1-U}.
Therefore, by (4.9), the second equation of (4.6) is transformed into

(4.12)   \frac{\partial_{\phi}}{\partial t}=\mathcal{A}\frac{\partial_{\phi}}
{\partial\theta}-\frac{1}{2} (\frac{\eta\alpha}{\theta}+\frac{\frac{\partial}
{\partial t}(1-U)}{1-U}+\mathcal{A}p(t, \theta;\eta)-2\mathcal{B})\phi.
The equation (3.1) is written in the form

(4.13)   \eta^{-1}\frac{d}{dt}(U\theta)=-2p_{2}V\theta+(\alpha+(\alpha u_{1}+p_{5}c_{1}
)\theta)(1-U)-h(t, \theta)\theta^{k}
Using (4.13) in (4.12), we have

(4.14)   \frac{\partial_{\phi}}{\partial t}=\mathcal{A}\frac{\partial_{\phi}}
{\partial\theta}-\frac{1}{2}\frac{\partial \mathcal{A}}{\partial\theta}\phi.
Summing up, by (4.9), the deformation equation and the Schrödinger equation associ‐
ated with (2.2) are obtained from (4.6):

(4.15)  \{   \frac{\partial}{\partial}=Q(t,\theta;\eta)\phi\frac{\partial_{\phi}2_{\phi}
\theta^{2}}{\partial t}=\mathcal{A}\frac{\partial_{\phi}}{\partial\theta}-
\frac{1}{2}\frac{\partial \mathcal{A}}{\partial\theta}\phi,   \mathcal{A}:=\frac{\gamma\theta^{k-1}}{1-U}.
Here  Q is defined by (4.11). In (4.15), we emphasize that  \mathcal{A} is independent of  p_{j},y_{i},z_{i}.

This means that the deformation equation associated with (2.2) is completely the same
as  (P_{J})_{m} (  J=I , II, IV, 34). The difference between(2.2) and  (P_{J})_{m} is the form of poten‐
tial  Q . This calculation implies the following. If the potential  Q is deformed such as

(4.11), the same geometric structures (specifically, (i),(ii),(iii) in §1) as  (P_{J})_{m} hold.

§5. Remark

The expressions of  (P_{J})_{m} in the series of papers [10]–[14] are derived by the trans‐
formation of  \theta=   \frac{1}{x} . Set

(5.1)   \mathcal{U}(x, t) :=\sum_{j=1}^{m}u_{j}(t)x^{m-j}, \mathcal{V}(x, t) :=\sum_{j
=1}^{m}v_{j}(t)x^{m-j}, \mathcal{C}(x) :=\sum_{j=1}^{m}c_{j}x^{m-j}.
By  \theta=   \frac{1}{x} , we have

 U( \theta)= (\frac{1}{x})^{m}\mathcal{U}(x, t) , V(\theta)= (\frac{1}{x})^{m}
\mathcal{V}(x, t) , C(\theta)= (\frac{1}{x})^{m}\mathcal{C}(x) .
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By the relation, (3.1) and (3.2) are rewritten in

  \eta^{-1}\frac{d\mathcal{U}}{dt}\equiv(p_{7^{X}}+(\alpha u_{1}+p_{5}c_{1}))(x^
{m}-\mathcal{U})-\frac{\partial \mathcal{H}}{\partial \mathcal{V}}+(y_{1^{X}}+y_
{2}-\alpha u_{m+1)},
 -1d\mathcal{V}

(5.2)  \eta  \overline{dt}\equiv-(\beta x+(2\beta u_{1}+\alpha v_{1}+\epsilon c_{1}))(x^{m}-
\mathcal{U})

 + \frac{\partial \mathcal{H}}{\partial \mathcal{U}}+\frac{\mathcal{H}
(\mathcal{U},\mathcal{V})}{x^{m}-\mathcal{U}}+(z_{1}x+(z_{1}u_{1}-y_{1}v_{1}+
z_{2}+2\beta u_{m+1}+\alpha v_{m+1}))
with

(5.3)
 \mathcal{H}(\mathcal{U}, \mathcal{V})  :=p_{2}\mathcal{V}^{2}+(p_{3}\mathcal{U}\mathcal{V}+p_{4}\mathcal{C}\mathcal{U}
+p_{5}\mathcal{C}\mathcal{V})x+(p_{6}\mathcal{U}+p_{7}\mathcal{V}+p_{8}
\mathcal{C})x^{m+1}+p_{9}x^{2m+1}

In the original equation (2.2),  A  \equiv  B means that  A-B is zero modulo  \theta^{m+2} . In
the procedure of derivation of (5.2), we multiply both sides of the original equation by
 x^{m+1} . Hence we consider our problem with mode  \theta^{(m+2)-(m+1)} . For that reason, the

notation  \equiv in (5.2) means that we exclude the terms of  x^{j}  (j\leq-1) , that is, we consider
(5.2) on  \mathcal{O}(t)[[x]] . If we compare the coefficients of  \theta^{j}  (j = 0, 1, . . . , m-1) in both
sides of (5.2), we obtain (2.5).

By  \theta=   \frac{1}{x} , Theorem 3.1 is rewritten in the following.

Theorem 5.1. Assume that  p_{1}  =0 and  k is  m+3 or  m+2 . Let  \gamma and p2 be

arbitrary nonzero constants. Let us choose  u_{m+1} and  vm+1 of (5.2) by the following
conditions.

(5.4)  \{  \gamma\beta_{X}=-('\prime,'\prime\gamma\alpha x_{m+3-k}^{m+3-k}=y'x_{Z_{1}X+
z_{1}u_{1}-y_{1}v_{1}+z_{2}+2\beta\frac{\partial u_{m+1}}{\partial t}+
\alpha\frac{\partial v_{m+1}}{\partial t})} .

Here ’ denotes the derivative with respect to t. Then we have a Lax pairfor (5.2) of the
following form.

  \eta^{-1}\frac{\partial_{\phi}}{\partial x}= \frac{1}{\gamma}x^{k-(m+3)} 
(\begin{array}{lll}
p_{2}\mathcal{V}   -(x^{m}-\mathcal{U})   
\triangle^{\wedge}2   -(p_{2}\mathcal{V}+2h(t   x))
\end{array})  \phi
(5.5)

  \eta^{-1}\frac{\partial_{\phi}}{\partial t}= (\begin{array}{ll}
-\frac{1}{2}(\alpha u_{1}+p_{5}c_{1})   1
-p_{2}(\beta x+(2\beta u_{1}+\alpha v_{1}+\epsilon c))   \frac{1}{2}(2\alpha x+(
\alpha u_{1}+p_{5}c_{1}))
\end{array})  \phi.
Here  \mathcal{H}(\mathcal{U}, \mathcal{V}) is defined by (5.3),  \triangle^{\wedge}2 and h  (t, x) are defined by
(5.6)

  \triangle^{\wedge}2 :=p_{2} (\frac{\partial \mathcal{H}}{\partial \mathcal{U}}
+\frac{\mathcal{H}(\mathcal{U},\mathcal{V})}{x^{m}-\mathcal{U}}+z_{1}x+(z_{1}
u_{1}-y_{1}v_{1}+z_{2}+2\beta u_{m+1}+\alpha v_{m+1})) ,

 h(t, x):=   \frac{1}{2}(p_{5}\mathcal{C}x+\alpha x^{m+1}-y_{1}x-y_{2}+\alpha u_{m+1}) ,

respectively.
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By the same arguments in §4, we have

 ( \frac{\partial^{2}}{\partial x^{2}}+p(t, x;\eta)\frac{\partial}{\partial x}+q
(t, x;\eta))\phi 1=0(5.7)

 \partial_{\phi 1 ,\partial t}  = ˆ   \frac{\partial_{\phi 1}}{\partial x}- ˆ  \phi 1.

Here  p(t, x;\eta) ,  q(t, x;\eta) ,  \hat{\mathcal{A}} and  \hat{\mathcal{B}} are defined by

 p(t, x; \eta)= \underline{2\eta}_{X}k-(m+3)h(t, x)-\frac{k-(m+3)}{x}-
\frac{\frac{\partial}{\partial x}(x^{m}-\mathcal{U})}{x^{m}-\mathcal{U}}, \gamma

 q(t, x; \eta)= \frac{\eta^{2}}{\gamma^{2}}x^{2(k-(m+3))}p_{2}(\beta x^{2m+1}+
\epsilon \mathcal{C}x^{m+1}+\mathcal{V}(y_{1}x+y_{2}-\alpha u_{m+1)}
(5.8)  +(x^{m}-\mathcal{U})(z_{1}x+(z_{1}u_{1}-y_{1}v_{1}+z_{2}+2\beta u_{m+1}+\alpha 
v_{m+1})))

 + \frac{\eta}{\gamma}x^{k-(m+3)}p_{2} (\frac{\frac{\partial}{\partial x}(x^{m}-
\mathcal{U})}{x^{m}-\mathcal{U}}\mathcal{V}-\frac{\partial \mathcal{V}}{\partial
x}) ,

  \hat{\mathcal{A}}=-\frac{\gamma x^{m+3-k}}{x^{m}-\mathcal{U}} and   \hat{\mathcal{B}}=\frac{1}{2}\eta((\alpha u_{1}+p_{5}c_{1})-\frac{2p_{2}
\mathcal{V}}{x^{m}-\mathcal{U}}) ,

respectively. By the following transformation

(5.9)  \phi 1=e^{-\frac{1}{2}\int^{x}p(t,x;\eta)dx}\psi,

the system (5.7) is transformed into

(5.10)  \{\begin{array}{l}
\frac{\partial^{2}\psi}{\partial x^{2}}=Q(t,x;\eta)\psi
 Q(t,x;\eta)=-q(t,x;\eta)+\frac{1}{4}p(t,x;\eta)^{2}+\frac{1}{2}\frac{\partial 
p}{\partial x}(t,x;\eta)
\frac{\partial\psi}{\partial t}=\mathcal{D}\frac{\partial\psi}{\partial x}-\frac
{1}{2}\frac{\partial \mathcal{D}}{\partial x}\psi,\mathcal{D}:=-\frac{\gamma 
x^{m+3-k}}{x^{m}-\mathcal{U}}
\end{array}
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