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A note on Gq-summability of formal solutions of some
linear q-difference-differential equations

By

Hidetoshi TAHARA \ovalbox{\tt\small REJECT} and Hiroshi YAMAZAWA  \ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}

Abstract

Let  q  >  1 and  \delta  >  0 . For a function  f(t, z) , the q-shift operator  \sigma_{q} in  t is defined
by  \sigma_{q}(f)(t, z)  =  f(qt, z) . This article discusses a linear q-difference-differential equation

  \sum_{j+\delta|\alpha|\leq m}a_{j,\alpha}(t, z)(\sigma_{q})^{j}\partial_{z}
^{\alpha}X  =  F(t, z) in the complex domain, and shows a result on the
Gq-summability of formal solutions (which may be divergent) in the framework of q-Laplace
and q-Borel transforms by Ramis-Zhang.

§1. Introduction

Let  (t, z) be the variable in  \mathbb{C}_{t}\cross \mathbb{C}_{z}^{d} . Letq  >  1 . Fora function f  (t, z) we define a

q-shift operator  \sigma_{q} in  t by  \sigma_{q}(f)(t, z)=f(qt, z) .

In this note, we consider a linear q-difference-differential equation

(1.1)   \sum_{j+\delta|\alpha|\leq m}a_{j,\alpha}(t, z)(\sigma_{q})^{j}\partial_{z}
^{\alpha}X=F(t, z)
under the following assumptions:

(1)  q>1,  \delta>0 and  m\in \mathbb{N}^{\ovalbox{\tt\small REJECT}}(=\{1,2, . . .\}) ;
(2)  a_{j,\alpha}(t, z)(j+\delta|\alpha| \leq m) and  F(t, z) are holomorphic functions in a neighborhood

of  (0,0)\in \mathbb{C}_{t}\cross \mathbb{C}_{z}^{d} ;
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(3) (1.1) has a formal power series solution

(1.2)  X(t, z)= \sum_{n\geq 0}X_{n}(z)t^{n}\in \mathcal{O}_{R}[[t]]
where  \mathcal{O}_{R} denotes the set of all holomorphic functions on  D_{R}=\{z\in \mathbb{C}^{d} ;  |z_{i}|  <R  (i=
 1

, . . . ,  d)\}.

Our basic problem is:

Problem 1.1. Under what condition can we get atrue solution  W(t, z) of (1.1)
which admits  \hat{X}(t, z) as a q-Gevrey asymptotic expansion of order 1 (in the sense of
Definition 1.2 given below) ?

For  \lambda\in \mathbb{C}\backslash \{0\} and  \Cyrillic_xa>0 we set

 \mathscr{Z}_{\lambda}=\{-\lambda q^{m}\in \mathbb{C};m\in \mathbb{Z}\},

 \mathscr{Z}\lambda,\Cyrillic_xa=\geq\{t\in \mathbb{C}\backslash \{0\};m\in 
\mathbb{Z} |1+\lambda q^{m}/t| \leq\Cyrillic_xa\}.
It is easy to see that if  \Cyrillic_xa>0 is sufficiently small the set  \mathscr{Z}\lambda ϵ is a disjoint union of closed,ϵ

disks. For  r>0 we write  D_{r}^{\ovalbox{\tt\small REJECT}}=\{t\in \mathbb{C};0< |t| <r\} . The following definition is due to

Ramis-Zhang [8].

Definition 1.2. (1) Let  \hat{X}(t, z)  =   \sum_{n\geq 0}X_{n}(z)t^{n}  \in  \mathcal{O}_{R}[[t]] and let  W(t, z) be a
holomorphic function on  (D_{r}^{\ovalbox{\tt\small REJECT}}\backslash \mathscr{Z}_{\lambda})  \cross D_{R} for some  r>0 . We say that  W(t, z) admits

 \hat{X}(t, z) as a q-Gevrey asymptitoc expansion of order 1, if there are  M>0 and  H>0

such that

 |W(t, z)- \sum_{n=0}^{N-1}X_{n}(z)t^{n}| \leq-- MH\Cyrillic_xa N_{q^{N(N-1)/2}}
|t|^{N}
holds on  (D_{r}^{\ovalbox{\tt\small REJECT}}\backslash  \mathscr{Z}\lambda ,ϵ  )  \cross D_{R} for any  N=0 , 1, 2, . . . and any sufficiently small  \Cyrillic_xa>0.

(2) If there is a  W(t, z) as above, we say that the formal solution  \hat{X}(t, z) is Gq-
summable in the direction  \lambda.

A partial answer to Problem 1.1 was given in Tahara-Yamazawa [11]: in this paper,
we will give an improvement of the result in [11]. As in [11], we will use the framework of
q-Laplace and q-Borel transforms via Jacobi theta function, developped by Ramis-Zhang

[8] and Zhang [10].
Similar problems are discussed by Zhang [9], Marotte-Zhang [5] and Ramis-Sauloy-

Zhang [7] in the q-difference equations, and by Malek [3, 4], Lastra-Malek [1] and Lastra-
Malek-Sanz [2] in the case of q-difference-differential equations. But, their equations are
different from ours.
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§2. Main results

For a holomorphic function  f(t, z) in a neighborhood of  (0,0)  \in \mathbb{C}_{t}\cross \mathbb{C}_{z}^{d} , we define

the order of the zeros of the function  f(t, z) at  t=0 (we denote this by  ord_{t}(f) ) by

  ord_{t}(f)=\min{  k\in \mathbb{N} ;  (\partial_{t}^{k}f)(0, z)\not\equiv 0 near  z=0}

where  \mathbb{N}=\{0 , 1, 2, . . .  \}.
For  (a, b)  \in  \mathbb{R}^{2} we set  C(a, b)  =  \{(x, y) \in \mathbb{R}^{2} ; x \leq a, y \geq b\} . We define the

t-Newton polygon  N_{t}(1.1) of equation (1.1) by

 N_{t}(1.1)= the convex hull of  \geq  C(j, ord_{t}(a_{j,\alpha})) .

 j+\delta|\alpha|\leq m

In this note, we will consider the equation (1.1) under the following conditions  (A_{1})
and (A2):

(A) There is an integer  m_{0} such that  0\leq m_{0}<m and

 N_{t}(1.1)= \{(x, y)\in \mathbb{R}^{2} ; x\leq m, y\geq\max\{0, x- m0\}\}.

(A) Moreover, we have

 |\alpha| >0=\Rightarrow(j, ord_{t}(a_{j,\alpha}))\in int(N_{t}(1.1)) ,

where int  (N_{t}(1.1)) denotes the interior of the set  N_{t}(1.1) in  \mathbb{R}^{2}.

The figure of  N_{t}(1.1) is as in Figure 1. In Figure 1, the boundary of  N_{t}(1.1) consists

of a horizontal half-line  \Gamma_{0} , a segment  \Gamma_{1} and a vertical half-line  \Gamma_{2} , and  k_{i} is the slope
of  \Gamma_{i} for  i=0 , 1, 2.

Lemma2.1. If  (A_{1}) and  (A_{2}) are satisfied, we have

(2.1)  ord_{t}(a_{j,\alpha})\geq  \{   \max\{0,j-m_{0}\}\max\{1,j-m_{0}+1\}, if  |\alpha|>0if  |\alpha|=0.’
By the condition (2.1), we have the expression

(2.2)  a_{j,0}(t, z)=t^{j-m_{0}}b_{j,0}(t, z) for m 0<j\leq m

for some holomorphic functions  b_{j,0}(t, z)  (m_{0} <j \leq m) in a neighborhood of  (0,0)  \in

 \mathbb{C}\cross \mathbb{C}_{z}^{d} We suppose:

(2.3)  a_{m_{0},0}(0,0)\neq 0 and  b_{m,0}(0,0)\neq 0.
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 k_{0}=0(m_{0},0)^{k_{1}=1}N_{t}(1,1)_{\Gamma_{1^{\Gamma_{2^{k_{2}=\infty}}}}}
\Gamma_{0}(m,m-m_{0})
Figure 1. t-Newton polygon of  N_{t}(1.1)

We set

(2.4)  P( \tau, z)=\sum_{m_{0}<j\leq m}\frac{b_{j,0}(0,z)}{q^{j(j-1)/2}}\tau^{j-m_{0}}
+\frac{a_{m_{0},0}(0,z)}{q^{m_{0}(m_{0}-1)/2}}
and denote by  \tau_{1} , . . . ,  \tau_{m-m_{0}} the roots of  P(\tau, 0)  =0 . By (2.3) we have  \tau_{i}  \neq 0 for all
 i=1 , 2, . . . ,  m-m_{0} . The setS of singular directions atz  =0 is defined by

 s_{i=1}^{m-m_{0}}=\geq\{t=\tau_{i}\eta;\eta>0\}.
In [11], we have shown the following result.

Theorem 2.2 (Theorem2.3 in [11]). (1) Suppose the conditions (A1),  (A_{2}) and
(2.3). Then, if equation (1.1) has aformal solution  \hat{X}(t, z)  = \sum_{n\geq 0}X_{n}(z)t^{n}\in  \mathcal{O}_{R}[[t]],
we can find  A>0,  h>0 and  0<R_{1}  <R such that  |X_{n}(z)|  \leq Ah^{n}q^{n(n-1)/2} on  D_{R_{1}}
for any  n=0 , 1, 2, . . ..

(2) In addition, if the condition

(2.5)  ord_{t}(a_{j,\alpha})\geq j-m_{0}+2, if  |\alpha|>0 and m 0\leq j<m

is satisfied, for any  \lambda\in \mathbb{C}\backslash (\{0\}\geq S) the formal solution Xˆ  (t, z) is Gq-summable in the
direction  \lambda . In other words, there are  r>0,  R_{1}  >0 and a holomorphic solution  W(t, z)
of (1.1) on  (D_{r}^{\ovalbox{\tt\small REJECT}}\backslash \mathscr{Z}_{\lambda})\cross 
D_{R_{1}} such that  W(t, z) admits X  (t, z) asaq-Gevrey asymptitoc
expansion of order 1.
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In this paper, we remove the additional condition (2.5) from the part (2) of Theorem
2.2. We have

Theorem 2.3. Suppose the conditions (A1),  (A_{2}) and (2.3). Then, for any
 \lambda\in \mathbb{C}\backslash (\{0\}\geq S) the formal solution Xˆ  (t, z) (in (1.2)) is Gq-summable in the direction
 \lambda.

To prove this, we use the framework of q-Laplace and q-Borel transforms developped

by Rramis-Zhang [8]. By (1) of Theorem 2.2 we know that the formal q-Borel transform
of  \hat{X}(t, z) in  t

(2.6)  u( \xi, z)=\sum_{k\geq 0}\frac{X_{k}(z)}{q^{k(k-1)/2}}\xi^{k}
is convergent in a neighborhood of  (0,0)  \in \mathbb{C}_{\xi}\cross \mathbb{C}_{z}^{n} . For  \lambda\in \mathbb{C}\backslash \{0\} and  \theta>0 we write

 S_{\theta}(\lambda)=\{\xi\in \mathbb{C}\backslash \{0\} ; |\arg\xi-\arg\lambda|
<\theta\} . Then, to show Theorem 2.3 it is enough to

prove the following result.

Proposition 2.4. For any  \lambda\in \mathbb{C}\backslash (\{0\}\geq S) there are  \theta>0,  R_{1}  >0,  C>0 and
 H>0 such that  u(\xi, z) has an analytic extension  u^{\ovalbox{\tt\small REJECT}}(\xi, z) to the domain  S_{\theta}(\lambda)  \cross D_{R_{1}}
satisfying the following condition:

(2.7)  |u^{\ovalbox{\tt\small REJECT}}(\lambda q^{m}, z)|\leq CH^{m}q^{m^{2}/2}  on  D_{R_{1}},  m=0 , 1, 2, . . . .

§3. Some lemmas

Before the proof of Proposition 2.4, let us give some lemmas which are needed in
the proof of Proposition 2.4.

The following is the key lemma of the proof of Proposition 2.4.

Lemma3.1. Let  q>1 . Let f  (t, z) be afunction in  (t, z) .

(1) We have  \sigma_{q}(f)(t, z)=(\sigma_{\sqrt{}q})^{2}(f)(t, z) .
(2) We set  F(t, z)  =f(t^{2}, z) : then we have  \sigma_{q}(f)(t^{2}, z)  =\sigma_{\sqrt{}q}(F)(t, z) . Similarly,

we have  (\sigma_{q})^{m}(f)(t^{2}, z)=(\sigma_{\sqrt{}q})^{m}(F)(t, z) for any  m=1 , 2, . . ..

Proof. (1) is clear. (2) is verified as follows:  \sigma_{q}(f)(t^{2}, z)=f(qt^{2}, z)=f((\sqrt{}qt)^{2}, z)
 =  F(\sqrt{}qt, z)  =  \sigma_{\sqrt{}q}(F)(t, z) . The equality  (\sigma_{q})^{m}(f)(t^{2}, z)  =  (\sigma_{\sqrt{}q})^{m}(F)(t, z) can be

proved in the same way.  \square 

The following result is proved in [Proposition 2.1 in [6]]:
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Proposition3.2. Let f  (t)= \sum_{n\geq 0}a_{n}t^{n}\in \mathbb{C}[[t]] . The following two conditions

are equivalent:

(1) There are  A>0 and  H>0 such that

 |a_{n}|  \leq   \frac{AH^{n}}{q^{n(n-1)/2}},  n=0 , 1, 2, . . . .

(2)  \hat{f}(t) is the Taylor expansion at  t=0 of an entire unction f (t) satisfying the
estimate

 |f(t)|\leq M\exp  ( \frac{(\log|t|)^{2}}{2\log q}+\alpha\log|t|)  on  \mathbb{C}\backslash \{0\}

for some  M>0 and  \alpha\in \mathbb{R}.

§4. Proof of Proposition 2.4

We set  q_{1}  =  q^{1/4} , replace  t by  t^{2} in (1.1), and apply Lemma 3.1 to the equation
(1.1): then(1.1) is rewritten into the form

(4.1)   \sum_{j+\delta|\alpha|\leq m}A_{j,\alpha}(t, z)(\sigma_{q_{1}})^{2j}
\partial_{z}^{\alpha}Y=G(t, z)
where

 A_{j,\alpha}(t, z)=a_{j,\alpha}(t^{2}, z) (j+\delta|\alpha| \leq m) ,

 Y(t, z)=X(t^{2}, z)= \sum_{k\geq 0}X_{k}(z)t^{2k},
 G(t, z)=F(t^{2}, z) .

We can regards (4.1) as a q1-difference-differential equation, and in this case, the order
of the equation is  2m in  t . Therefore, the t-Newton polygon  N_{t}(4.1) of (4.1) (as a
q1-difference equation) is

 N_{t}(4.1)= \{(x, y)\in \mathbb{R}^{2} ; x\leq 2m, y\geq\max\{0, x-2m_{0}\}\}

which is as in Figure 2.

Moreover, we have

(4.2)  ord_{t}(A_{j,\alpha})\geq  \{   \max\{0,2j-2m_{0}\}\max\{2,2j-2m_{0}+2\}, if  |\alpha|>0if  |\alpha|=0.’
By (2.2) we have

 A_{j,0}(t, z)=t^{2j-2m_{0}}B_{j,0}(t, z) for m 0<j\leq m
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 k_{0}=0(2m_{0},0)N_{t}(4,1)\Gamma_{0}\Gamma_{1} k_{1}=1\Gamma_{2} k_{2}=
\infty(2m, 2m-2m_{0})
Figure 2. t-Newton polygon of (4.1)

for  B_{j,0}(t, z)  =  b_{j,0}(t^{2}, z)  (m_{0} <j \leq m) . The set  S_{1} of singular directions of (4.1) is
defined by using

 P_{1}( \rho, z)=m_{0}<j\leq mq_{12j(2j-1)/2}\sum B_{j,0}(0,z)\rho^{2j-2m_{0}}+
\frac{A_{m_{0},0}(0,z)}{q_{12m_{0}(2m_{0}-1)/2}}
 = \sum_{m0<j\leq m}\frac{b_{j,0}(0,z)}{q_{12j(2j-1)/2}}\rho^{2j-2m_{0}}. +\frac
{a_{m_{0},0}(0,z)}{q_{12m_{0}(2m_{0}-1)/2}}.

Let  \rho_{1} , . . . ,  \rho_{2m-2m_{0}} be the roots of  P_{1}(\rho, 0)=0 : then  S_{1} is defined by

 S_{1}=\geq\{t=\rho_{i}\eta;2m-2m_{0}i=1\eta>0\}.
Let  u_{1}(\xi, x) be the q1-formal Borel transform of  Y(t, x) , that is,

 u_{1}( \xi, z)=\sum_{k\geq 0}\frac{X_{k}(z)}{q_{12k(2k-1)/2}}\xi^{2k}
Since  q_{1}  =q^{1/4} we can easily see:

(4.3)  u_{1}(\xi, z)=u(q^{-1/4}\xi^{2}, z) ,

(4.4)  P_{1}(\lambda, z)=q^{-m_{0}/4}P(q^{-1/4}\lambda^{2}, z) ,

where  u(\xi, z) and  P(\tau, z) are the ones in (2.6) and (2.4), respectively.
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By (4.3) we see that  u_{1}(\xi, z) is convergent in a neighborhood of  (\xi, z)  =  (0,0) .
The equality (4.4) implies that  \lambda  \in  \mathbb{C}\backslash (\{0\}\geq S_{1}) is equivalent to the condition  \lambda^{2}  \in

 \mathbb{C}\backslash (\{0\}\geq S) .

Since  ord_{t}(A_{j,\alpha})  \geq 2j-2m_{0}+2 holds for any  (j, \alpha) with  m_{0}\leq j<m and  |\alpha|  >0,

the q1-difference equation (4.1) satisfies the condition (2.5) (with  j,  m_{0},  m replaced by
 2j,  2m_{0},  2m , respectively). Therefore, we can apply (2) of Theorem2.2 and its proof
to the equation (4.1).

In particular, by the proof of [Proposition 5.6 in [11]] we have

Proposition4.1. For any  \rho  \in  \mathbb{C}\backslash (\{0\}\geq S_{1}) we can find  \theta_{1}  >  0 and  R_{1}  >  0

which satisfy the following conditions (1) and (2):
(1)  u_{1}(\xi, z) has an analytic extension  u_{1}^{\ovalbox{\tt\small REJECT}}(\xi, z) to the domain  S_{\theta_{1}}(\rho)  \cross D_{R_{1}}.
(2) There are  \mu>0 and holomorphic functions  w_{n}(\xi, z)  (n\geq\mu) on  S_{\theta_{1}}(\rho)  \cross D_{R_{1}}

which satisfy

(4.5)  u_{1}( \xi, z)=\sum_{n\geq 2\mu}w_{n}(\xi, z)+\sum_{0\leq k<\mu}\frac{X_{k}(z)}
{q_{12k(2k-1)}}\xi^{2k}  on  S_{\theta_{1}}(\rho)  \cross D_{R_{1}}

and

 |w_{n}(\xi, z)|  \leq   \frac{AH^{n}|\xi|^{n}}{q_{1^{n(n-1)/2}}}  on  S_{\theta_{1}}(\rho)\cross D_{R_{1}},   n\geq 2\mu

for some  A>0 and  H>0.

Therefore, by applying Proposition 3.2 to (4.5) we have the estimate

(4.6)  |u_{1}^{\ovalbox{\tt\small REJECT}}(\xi, x)|\leq M\exp  ( \frac{(\log|\xi|)^{2}}{2\log q_{1}}+\alpha\log|\xi|) on  S_{\theta_{1}}(\rho)  \cross D_{R_{1}}

for some  M>0 and  \alpha\in \mathbb{R}.

Completion of the proof of Proposition 2.4. Take any  \lambda=re  \sqrt{}-1\theta\in \mathbb{C}\backslash (\{0\}\geq S) .

We set  \rho=\sqrt{}re^{\sqrt{}-1\theta/2} : then we have  \rho\in \mathbb{C}\backslash (\{0\}\geq S_{1}) . Therefore, by Proposition 4.1

we can get  \theta_{1}  >0,  R_{1}  >0,  M>0 and  \alpha\in \mathbb{R} such that  u_{1}(\xi, z) has an analytic extension

 u_{1}^{\ovalbox{\tt\small REJECT}}(\xi, z) to the domain  S_{\theta_{1}}(\rho)  \cross D_{R_{1}} satisfying the estimate (4.6) on  S_{\theta_{1}}(\rho)  \cross D_{R_{1}}.
Since  u_{1}(\xi, z)  =  u(q^{-1/4}\xi^{2}, z) holds, this shows that  u(\xi, z) has also an analytic

continuation  u^{\ovalbox{\tt\small REJECT}}(\xi, x) to the domain  S_{\theta}(\lambda)\cross D_{R_{1}} (with  \theta=2\theta_{1} ), and we have  u^{\ovalbox{\tt\small REJECT}}(\xi, z)=
 u_{1}^{\ovalbox{\tt\small REJECT}}(q^{1/8}\xi^{1/2}, z) on  S_{\theta}(\lambda)  \cross D_{R_{1}} . Therefore, by (4.6) we have the estimate

 |u^{\ovalbox{\tt\small REJECT}}( \xi, x)|\leq M\exp (\frac{(\log(q^{1/8}
|\xi|^{1/2}))^{2}}{2\log q^{1/4}}+\alpha\log(q^{1/8}|\xi|^{1/2}))
 =M_{1}| \xi|^{\beta}\exp(\frac{(\log|\xi|)^{2}}{2\log q}) on  S_{\theta}(\lambda)  \cross D_{R_{1}}

(with  M=M_{1}q^{1/32+\alpha/8} and  \beta=1/4+\alpha/2 ).
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Thus, by setting  \xi=\lambda q^{m} we obtain

 |u( \lambda q^{m}, x)| \leq M_{1}|\lambda q^{m}|^{\beta}
\exp(\frac{(\log|\lambda q^{m}|)^{2}}{2\log q})
 =M_{1}| \lambda|^{\beta}\exp(\frac{(\log|\lambda|)^{2}}{2\log q})
(|\lambda|q^{\beta})^{m}q^{m^{2}/2},  m=0 , 1, 2, . . . .

This proves (2.7).  \square 
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