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A note on G, ,-summability of formal solutions of some
linear g-difference-differential equations

By

Hidetoshi TAHARA™* and Hiroshi YAMAZAWA**

Abstract

Let ¢ > 1 and § > 0. For a function f(¢t,z), the g¢-shift operator o4 in ¢ is defined
by oq¢(f)(t,z) = f(qt,z). This article discusses a linear g-difference-differential equation
D jtblal<m ajol(t,2)(04) 02X = F(t,2) in the complex domain, and shows a result on the
Gg-summability of formal solutions (which may be divergent) in the framework of g-Laplace
and g-Borel transforms by Ramis-Zhang.

8§1. Introduction

Let (t,z) be the variable in C; x C2. Let ¢ > 1. For a function f(t,z) we define a
g-shift operator o4 in t by o,(f)(t, 2) = f(qt, 2).
In this note, we consider a linear g-difference-differential equation

(1.1) Z aj.alt, 2)(0,)1 02X = F(t,2)

j+dlal<m

under the following assumptions:

(1) g>1,6>0and me N*(={1,2,...});

(2) aja(t,z) (j4+6|la] < m)and F(t, z) are holomorphic functions in a neighborhood
of (0,0) € C; x C%;

Received January 15, 2017. Revised December 23, 2017.
2010 Mathematics Subject Classification(s): 35A01, 35C20, 39A13
Key Words: q-difference-differential equations, summability, formal power series solutions, q-
Gevrey asymptotic expansions.
The first author is supported by JSPS KAKENHI Grant Number 15K04966.
*Dept. of Information and Communication Sciences, Sophia University, Tokyo 102-8554, Japan.

e-mail: h-tahara@sophia.ac.jp

**College of Engineering and Design, Shibaura Institute of Technology, Saitama 337-8570, Japan.
e-mail: yamazawa@shibaura-it.ac. jp

© 2019 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



114 HipETosHl TAHARA AND HirosHI YAMAZAWA

(3) (1.1) has a formal power series solution

(1.2) X(t,z) =Y Xn(2)t" € Og|lt]]

n>0

where Op denotes the set of all holomorphic functions on Dg = {z € C¢; |z| < R (i =
1,...,d)}.

Our basic problem is:

Problem 1.1. Under what condition can we get a true solution W(t, z) of (1.1)
which admits X (t,z) as a ¢-Gevrey asymptotic expansion of order 1 (in the sense of
Definition 1.2 given below) 7

For A € C\ {0} and € > 0 we set

“H={-XMN"e€C;meZ}
Ze= |J{t € C\{0}; [1+ A/t < e}

meZ

It is easy to see that if € > 0 is sufficiently small the set Z) . is a disjoint union of closed
disks. For r > 0 we write D} = {t € C; 0 < |t| < r}. The following definition is due to
Ramis-Zhang [8].

Definition 1.2. (1) Let X(t,2) = 3,50 Xn(2)t" € Og[[t]] and let W (t,z) be a
holomorphic function on (D} \ %) x Dg for some r > 0. We say that W (t,z) admits

A

X(t,z) as a q-Gevrey asymptitoc expansion of order 1, if there are M > 0 and H > 0
such that

MHN _

N-1
‘ - €

Wit z) = Y Xn(2)t"

n=0

holds on (D} \ ) x Dg for any N =0,1,2,... and any sufficiently small ¢ > 0.
(2) If there is a W (t,z) as above, we say that the formal solution X(t,z) is G-
summable in the direction A.

A partial answer to Problem 1.1 was given in Tahara-Yamazawa [11]: in this paper,
we will give an improvement of the result in [11]. As in [11], we will use the framework of
g-Laplace and ¢-Borel transforms via Jacobi theta function, developped by Ramis-Zhang
[8] and Zhang [10].

Similar problems are discussed by Zhang [9], Marotte-Zhang [5] and Ramis-Sauloy-
Zhang [7] in the g-difference equations, and by Malek [3, 4], Lastra-Malek [1] and Lastra-
Malek-Sanz [2] in the case of g-difference-differential equations. But, their equations are

different from ours.
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§2. Main results

For a holomorphic function f(t, z) in a neighborhood of (0,0) € C; x C%, we define
the order of the zeros of the function f(¢,z) at t = 0 (we denote this by ord.(f)) by

ord;(f) = min{k € N; (87 £)(0,2) # 0 near z =0}

where N = {0,1,2,...}.
For (a,b) € R? we set C(a,b) = {(z,y) € R?; 2 < a,y > b}. We define the
t-Newton polygon N¢(1.1) of equation (1.1) by

N¢(1.1) = the convex hull of U C(j,orde(aj,q))-

j+élal<m

In this note, we will consider the equation (1.1) under the following conditions (A1)
and (Asg):

(A1) There is an integer mg such that 0 < mg < m and
Ni(1.1) = {(z,y) € R?; 2 < m, y > max{0,2 — mo}}.
(A2) Moreover, we have
la| > 0= (j,ord¢(aj,a)) € int(Ne(1.1)),

where int(N;(1.1)) denotes the interior of the set N;(1.1) in R2.

The figure of N¢(1.1) is as in Figure 1. In Figure 1, the boundary of N;(1.1) consists
of a horizontal half-line I'y, a segment I'y and a vertical half-line I's, and k; is the slope
of I'; for: =0,1,2.

Lemma 2.1.  If (A1) and (A2) are satisfied, we have

max{0,7 —mg}, if |a| =0,
(2.1) ord(aj,a) > { ! ok .f| |

max{1,j —mg + 1}, if |a] > 0.
By the condition (2.1), we have the expression

(2.2) ajolt,z) =t""0b;0(t,z) formg<j<m

for some holomorphic functions b; (¢, z) (mo < j < m) in a neighborhood of (0,0) €
C x C2. We suppose:

(2.3) mg.0(0,0) £ 0 and by, 0(0,0) # 0.



116 HipETosHl TAHARA AND HirosHI YAMAZAWA

A

ko = 00
r,|
Nt<171)
m,m — my
b <1 |
Ty L=
ko =0 (mo,0) -

Figure 1. ¢t-Newton polygon of N;(1.1)

We set

bjp(O,Z) i m Qm 70(0,2)
(2.4) P(r,z) = Z< ¢iG-1/2 T+ qmo(()mo—l)/2
mo<Jj<m

and denote by 7i,...,Tm—m, the roots of P(r,0) = 0. By (2.3) we have 7; # 0 for all
1=1,2,...,m —mg. The set S of singular directions at z = 0 is defined by

m—mo

S = U {t =mim; n>0}.
i=1

In [11], we have shown the following result.

Theorem 2.2 (Theorem 2.3 in [11]). (1) Suppose the conditions (A1), (A2) and
(2.3). Then, if equation (1.1) has a formal solution X (t,2) = 3, < Xn(2)t" € Og|[t],
we can find A >0, h >0 and 0 < Ry < R such that | X,,(z)] < ARmgr(n=1/2 op Drg,
for anyn=0,1,2,....

(2) In addition, if the condition

(2.5) orde(aja) >j—mo+2, if|al>0andmy<j<m

is satisfied, for any A\ € C\ ({0} U S) the formal solution X (t,z) is G4-summable in the
direction A. In other words, there are r > 0, Ry > 0 and a holomorphic solution W (t, z)
of (1.1) on (D} \ Z\) X Dg, such that W (t, z) admits X(t, z) as a q-Gevrey asymptitoc
expansion of order 1.
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In this paper, we remove the additional condition (2.5) from the part (2) of Theorem
2.2. We have

Theorem 2.3.  Suppose the conditions (A1), (Az) and (2.3). Then, for any
A€ C\ ({0}US) the formal solution X (t,z) (in (1.2)) is G4-summable in the direction
A

To prove this, we use the framework of ¢-Laplace and ¢-Borel transforms developped
by Rramis-Zhang [8]. By (1) of Theorem 2.2 we know that the formal g-Borel transform
of X(t,z) in t

(26) ) =3 et

k>0

is convergent in a neighborhood of (0,0) € C¢ x CZ. For A € C\ {0} and 6 > 0 we write
Se(N) ={£ € C\ {0}; |arg{ — arg A| < 0}. Then, to show Theorem 2.3 it is enough to
prove the following result.

Proposition 2.4.  For any A € C\ ({0}US) there are # > 0, R; >0, C > 0 and
H > 0 such that u(, z) has an analytic extension u* (€, z) to the domain Sg(\) x Dp,

satisfying the following condition:

(2.7) w*(\g™, 2)| < CH™¢™ /2 on Dg,, m=0,1,2,....

§3. Some lemmas

Before the proof of Proposition 2.4, let us give some lemmas which are needed in
the proof of Proposition 2.4.
The following is the key lemma of the proof of Proposition 2.4.

Lemma 3.1.  Let g > 1. Let f(t,2) be a function in (t,z).

(1) We have oq(f)(t,2) = (o 5)*(f)(t, 2).
(2) We set F(t,z) = f(t%,2): then we have oq(f)(1*,2) = o g(F)(t, 2). Similarly,
we have (o)™ (f)(t*, 2) = (0. q)™ (F)(t, z) for any m =1,2,....

Proof. (1) is clear. (2) is verified as follows: o, (f)(t%, 2) = f(qt?, 2) = f((\/qt)?, 2)
)

= F(y/qt,z) = o 4(F)(t,z). The equality (oq)™(f)(t*,2) = (o)™ (F)(t,z) can be
proved in the same way. O

The following result is proved in [Proposition 2.1 in [6]]:
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Proposition 3.2.  Let f(t) = Y nsoant™ € Cl[t]]. The following two conditions
are equivalent:
(1) There are A >0 and H > 0 such that

AH"

]anlgm, TL:O,l,Q,....

(2) f(t) is the Taylor expansion att = 0 of an entire function f(t) satisfying the

estimate )
(log [t])

1
Tog +a0g|t|> on C\ {0}

£ < M exp(

for some M >0 and o € R.

§4. Proof of Proposition 2.4

We set ¢1 = ¢'/*, replace t by t? in (1.1), and apply Lemma 3.1 to the equation
(1.1): then (1.1) is rewritten into the form

(4.1) > Aja(t,2)(0q,)700Y =Gt 2)

j+dlal<m
where
Aj»a(tVZ) = aj7a<t2,z) (.] + 5|a| S m)7

Y(t,z) = X(t7,2) = Y Xp(2)t?,
k>0

G(t,z) = F(t?, 2).

We can regards (4.1) as a ¢;-difference-differential equation, and in this case, the order
of the equation is 2m in ¢. Therefore, the t-Newton polygon N;(4.1) of (4.1) (as a

q1-difference equation) is
Ni(4.1) = {(z,y) € R?; z < 2m, y > max{0,z — 2mo}}

which is as in Figure 2.

Moreover, we have

max{0,2j — 2myg}, if |a| =0,
max{2,2j — 2mg + 2}, if || > 0.

(4.2) ord¢(Aj o) > {

By (2.2) we have

Aot z) = tQj_QmOBj,o(t,z) for mg < j<m
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Figure 2. t-Newton polygon of (4.1)

for Bjo(t,z) = bjo(t?,2) (mo < j < m). The set Sy of singular directions of (4.1) is

defined by using

BJ',O(O’Z) 2j—2m Am0,0(07z)
Pi(p, 2) = Z q12j(2j—1)/2p T 4 7120 (2mo—1)/2
mo<j<m
_ Z bj,'o(Q,Z) ij_QmO- + amo,o(O,z) )
o T q12g(23—1)/2 q12m0(2m0—1)/2

Let p1,..., p2m—2m, be the roots of P;(p,0) = 0: then S is defined by

2m—2my

Si= |J {t=pin;in>0}
=1

Let uq (&, z) be the ¢i-formal Borel transform of Y (¢, z), that is,

Xy (2) 2k
u1(£7 Z) = ];) q12k(2k_1)/2€ .
Since ¢1 = ¢/* we can easily see:
(4.3) ur(é,2) = u(g /€%, 2),

(4.4) Pi(\,2) =g ™/ P(g71 2, 2),

where u(§, z) and P(7,z) are the ones in (2.6) and (2.4), respectively.
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By (4.3) we see that u;(&, z) is convergent in a neighborhood of (§,z) = (0,0).
The equality (4.4) implies that A € C\ ({0} U S;) is equivalent to the condition \? €
C\ ({0} U s).

Since ord¢(Aj,o) > 25 — 2mo + 2 holds for any (7, &) with mg < j <m and |o| > 0,
the g;-difference equation (4.1) satisfies the condition (2.5) (with j, mg, m replaced by
27, 2mg, 2m, respectively). Therefore, we can apply (2) of Theorem 2.2 and its proof
to the equation (4.1).

In particular, by the proof of [Proposition 5.6 in [11]] we have

Proposition 4.1.  For any p € C\ ({0} U S1) we can find 6, > 0 and Ry > 0
which satisfy the following conditions (1) and (2):

(1) u1(&, z) has an analytic extension uj (€, z) to the domain Sy, (p) X Dg, .

(2) There are p > 0 and holomorphic functions wy (€, z) (n > p) on Sp,(p) X Dg,
which satisfy

45w = 2w+ Y o€ onSalo)x D

n>2u 0<k<p

and AH"El"
wn(€ 2 < Smiya on Soi(p) X Dryy > 2p

for some A >0 and H > 0.

Therefore, by applying Proposition 3.2 to (4.5) we have the estimate

1 2
(4.6) i (6,2)] < Mexp(% +aloglel) o So,(p) x D,

for some M > 0 and a € R.

Completion of the proof of Proposition 2.4. Take any A = reV~1 € C\ ({0}US).
We set p = /reV~19/2: then we have p € C\ ({0} U S}). Therefore, by Proposition 4.1
we can get 01 > 0, Ry > 0, M > 0 and a € R such that u; (£, z) has an analytic extension
ui (&, z) to the domain Sy, (p) x Dp, satisfying the estimate (4.6) on Sy, (p) X Dg,.

Since u (€, 2) = u(q~ /42, 2) holds, this shows that u(¢,z) has also an analytic
continuation u* (&, x) to the domain Sp(\) X Dg, (with 8 = 20;), and we have u*(&, z) =
wl(q'/8€1/2, 2) on Sp(\) x Dg,. Therefore, by (4.6) we have the estimate

(log(q*/®|¢[*/2))?
2log q1/4

(log [¢])”
2logq

[ (€, 2)| < M exp( + alog(g'/¥¢[12))

= M, |¢)° exp( ) on Sp(\) x Dpg,

(with M = M,¢'/32+%/8 and B = 1/4 4+ a/2).
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Thus, by setting & = A\¢™ we obtain

(log |>\qm|)2>

*)\m <M/\m6 (
[u*(Ag™, x)| < Mi|Ag™|” exp 2108 ¢

log |\|)?
:Ml‘)“ﬁexp<M>(’>\’qﬁ)mqm2/2a m2051527""
2logq
This proves (2.7). O
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