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Abstract

We report the presence of a hitherto unknown ordinary turning point in a tangential
system of the Pearcey system. It isadouble turning point which does not originate from the
turning points of the Pearcey system, and we name it a non‐hereditary turning point. Thanks
to a result of Takei [4], a non‐hereditary turning point is irrelevant to the Stokes phenomena
of WKB solutions of the tangential system near the point.

§1. Introduction

In this paper, we discuss the exact WKB analysis for a tangential system of the

Pearcey system and its ordinary turning point. Here the Pearcey system is the com‐

pletely integrable system of two variables  x=(x_{1}, x_{2}) as follows:

 \{\begin{array}{l}
\eta^{-1}\frac{\partial}{\partial x_{1}}\Psi=P(x,\eta)\Psi,P(x,\eta)=\sum_{n=0}^
{\infty}\eta^{-n}P_{n}(x)
\eta^{-1}\frac{\partial}{\partial x_{2}}\Psi=Q(x,\eta)\Psi,Q(x,\eta)=\sum_{n=0}^
{\infty}\eta^{-n}Q_{n}(x)
\end{array}
where

 P_{0}= (\begin{array}{lll}
0   1   0
0   0   1
      -x_{1}/4-x_{2}/20
\end{array}) , P_{n}=0 (n=1,2, . . .) ,

 Q_{0}=P_{0}^{2}, Q_{1}=  \frac{\partial P_{0}}{\partial x_{1}}, Q_{n}=0 (n=2,3,
. . .) .
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The tangential system under consideration is the restriction of the Pearcey system to

the hyperplane

 L_{c,\theta}=\{x=(x_{1}, x_{2})\in \mathbb{C}^{2} ; (- \sin\theta)x_{1}+
(\cos\theta)x_{2}=c\},

and it is denoted by  \mathcal{M}_{c,\theta} . The Stokes geometry of the Pearcey system and its rela‐

tionship with the tangential system  \mathcal{M}_{c,0} was discussed in [2]. Note that the tangential
system  \mathcal{M}_{c,0} is equivalent to the equation which Berk‐Nevins‐Roberts [1] discussed to
study new Stokes’ line. In [2], we showed that the set of ordinary turning points for
the tangential system  \mathcal{M}_{c,0} coincides with the set of turning points for the Pearcey

system restricted to  L_{c,0} . This means that the turning points for the Pearcey system

are inherited to the tangential system  \mathcal{M}_{c,0} . In this paper we show that the set of turn‐

ing points for the Pearcey system restricted to  L_{c,\theta} is included in the set of ordinary

turning points for the tangential system  \mathcal{M}_{c,\theta} , and further, we show that the tangential

system  \mathcal{M}_{c,\theta} has an ordinary turning point which is not in the set of turning points

for the Pearcey system restricted to  L_{c,\theta} . That is, this ordinary turning point does not

originate from a turning point of the Pearcey system. We call this ordinary turning

point a non‐hereditary turning point. The purpose of this paper is to show why such

a turning point appears and how it is related to the singularity structure of the Borel
transform of WKB solutions of  \mathcal{M}_{c,\theta}.

This paper is constructed as follows: In §2 we recall the definition of an ordinary

turning point, and show the existence of a non‐hereditary turning point for  \mathcal{M}_{c,\theta} . In

§3, we present characteristic properties of a non‐hereditary turning point. Finally in§4

we show, thanks to the results of Takei [4], that a non‐hereditary turning point is not
relevant to the Stokes phenomena of WKB solutions of  \mathcal{M}_{c,\theta}.

The author would like to express his thanks to Professor Takahiro Kawai and Pro‐

fessor Yoshitsugu Takei for their many valuable advices and encouragements. This

work was supported by the Research Institute for Mathematical Sciences, a Joint Us‐

age/Research Center located in Kyoto University.

Remark. The paper [3] discusses a non‐hereditary turning point from the view‐
point of the integral representation of solutions of the Pearcey system. This paper

discusses it from the viewpoint of the tangential system of the Pearcey system.

§2. Ordinary turning points of the tangential system  \mathcal{M}_{c,\theta}

We consider the tangential system  \mathcal{M}_{c,\theta} of the Pearcey system to the hyperplane

 L_{c,\theta} and its ordinary turning points. We first give the explicit form of the tangential
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system  \mathcal{M}_{c,\theta} . By the coordinate transformation

 z=xR_{\theta}, z=(z_{1}, z_{2}) , x=(x_{1}, x_{2}) , R_{\theta}= (\begin{array}
{l}
cos\theta-sin\theta
sin\theta cos\theta
\end{array}) ,

the Pearcey system is transformed into the following form:

(2.1)  \mathcal{M} :  \{   \eta^{-1}\frac{}{}\Psi=S(z,\theta,\eta)\Psi\eta^{-1}\frac{\partial}{\partial 
z_{1},\partial z_{2}\partial}\Psi=R(z,\theta,\eta)\Psi,
’

where

 R(z,  \theta, \eta)=\sum_{n=0}^{\infty}\eta^{-n}R_{n}(z, \theta) ,

 S(z,  \theta, \eta)=\sum_{n=0}^{\infty}\eta^{-n}S_{n}(z, \theta) ,

 R(z, \theta, \eta)=\{(\cos\theta)P(x, \eta)+(\sin\theta)Q(x, \eta)\}|_{x=zR-
\theta},
 S(z, \theta, \eta)=\{-(\sin\theta)P(x, \eta)+(\cos\theta)Q(x, \eta)\}|_{x=zR-
\theta}.

We call this system also the Pearcey system. The tangential system of the Pearcey
system to the hyperplane

 L_{c,\theta}=\{x=(x_{1}, x_{2})\in \mathbb{C}^{2} ; -(\sin\theta)x_{1}+
(\cos\theta)x_{2}=c\}
 =\{z=(z_{1}, z_{2})\in \mathbb{C}^{2}; z_{2}=c\}

is given by

 -1 d
 \mathcal{M}_{c,\theta} :\eta \overline{dz_{1^{\Psi=R(z_{1},c,\theta,\eta)\Psi}}
},  R(z_{1}, c,  \theta, \eta)=\sum_{n=0}^{\infty}\eta^{-n}R_{n}(z_{1}, c, \theta) ,

where

 R(z_{1}, c, \theta, \eta)=\{(\cos\theta)P(x, \eta)+(\sin\theta)Q(x, \eta)\}|_{x
=(z_{1},c)R-\theta}.
Here and in what follows we always assume  c\neq 0.

The definition of an ordinary turning point for the tangential system  \mathcal{M}_{c,\theta} is as
follows:

Definition2.1. A point  a_{1}  \in  \mathbb{C} is called an ordinary turning point for the

tangential system  \mathcal{M}_{c,\theta} if there exist  i,  i'\in\{1 , 2, 3  \}  (i\neq i') for which

 \zeta_{1,i}(a_{1}, c)=\zeta_{1,i'}(a_{1}, c)

holds, where  \zeta_{1,i}(z_{1}, c) is a root of the characteristic equation

 \det(\zeta_{1}-R_{0}(z_{1}, c, \theta))=0.
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That is, an ordinary turning point for the tangential system  \mathcal{M}_{c,\theta} is a zero of

the discriminant of the characteristic equation for the variable  \zeta_{1} . The characteristic

equation of the tangential system  \mathcal{M}_{c,\theta} is

 \det(\zeta_{1}-R_{0}(z_{1}, c, \theta))=\zeta_{1}^{3}+a_{1}(z_{1}, c, \theta)
\zeta_{1}^{2}+a_{2}(z_{1}, c, \theta)\zeta_{1}+a_{3}(z_{1}, c, \theta) ,

where

 a_{1}(z_{1}, c, \theta)=(\sin^{2}\theta)z_{1}+c\cos\theta\sin\theta,

 a_{2}(z_{1}, c,  \theta)=(\frac{1}{4}\sin^{4}\theta)z_{1}^{2}+ (\frac{1}{2}
c\cos\theta\sin^{3}\theta+\frac{5}{4}\cos^{2}\theta\sin\theta)z_{1}
 + \frac{1}{4}c^{2}\cos^{2}\theta\sin^{2}\theta+\frac{1}{2}c\cos^{3}\theta-\frac
{3}{4}c\cos\theta\sin^{2}\theta,

 a3  (z_{1}, c,  \theta)=(\frac{1}{16}\cos^{2}\theta\sin^{3}\theta)z_{1}^{2}+  ( \frac{1}{8}c\cos^{3}\theta\sin^{2}\theta+\frac{1}{4}\cos^{4}\theta)z_{1}
‐   \frac{1}{8}c^{2}\cos^{2}\theta\sin^{3}\theta-   \frac{1}{16}c^{2}\sin^{5}\theta-   \frac{1}{4}c\cos^{3}\theta\sin\theta,

and its discriminant is

 D_{1}(z_{1}, c, \theta)D_{2}(z_{1}, c, \theta)^{2},
where

 D_{1}(z_{1}, c, \theta)=D_{13}(c, \theta)z_{1}^{3}+D_{12}(c, \theta)z_{1}^{2}+
D_{11}(c, \theta)z_{1}+D_{10}(c, \theta) ,

 D_{2}(z_{1}, c, \theta)=D_{21}(c, \theta)z_{1}+D_{20}(c, \theta) ,

and

 D13  (c, \theta)=8\sin^{3}\theta,
 D_{12}(c, \theta)=24c\cos\theta\sin^{2}\theta+27\cos^{2}\theta,

 D_{11}(c, \theta)=24c^{2}\cos^{2}\theta\sin\theta-54c\cos\theta\sin\theta,
 D_{10}(c, \theta)=8c^{3}\cos^{3}\theta+27c^{2}\sin^{2}\theta,
 D_{21}(c, \theta)=3\cos\theta\sin^{3}\theta,
 D_{20}(c, \theta)=2c\cos^{2}\theta\sin^{2}\theta-c\sin^{4}\theta+4\cos^{3}
\theta.

Hence the set of ordinary turning points for the tangential system  \mathcal{M}_{c,\theta} is explicitly

given by

 T_{c,\theta}=\{z_{1} \in \mathbb{C} ; D_{1}(z_{1}, c, \theta)D_{2}(z_{1}, c, 
\theta)^{2}=0\}
 =\{z_{1}\in \mathbb{C} ; D_{1}(z_{1}, c, \theta)=0\}\geq\{z_{1} \in \mathbb{C};
D_{2}(z_{1}, c, \theta)=0\}.

Note that  D_{2}(z_{1}, c, \theta) is a non‐zero constant function for  \theta=m\pi/2  (m\in \mathbb{Z}) . In what

follows, we assume  \theta\neq m\pi/2(m\in \mathbb{Z}) .
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On the other hand, the definition of a turning point for the Pearcey system  \mathcal{M} is
as follows:

Definition2.2. A point  a  =  (a_{1}, a_{2})  \in  \mathbb{C}^{2} is called a turning point for the
Pearcey system  \mathcal{M} if there exist  i,  i'\in\{1 , 2, 3  \}  (i\neq i') for which

 \zeta_{1,i}(a)=\zeta_{1,i'}(a) , \zeta_{2,i}(a)=\zeta_{2,i'}(a)

hold, where  \zeta_{1,i}(z) (resp.,  \zeta_{2,i}(z) ) is a root of the algebraic equation

 \det(\zeta_{1}-R_{0}(z, \theta))=0 (resp.,  \det(\zeta_{2}-S_{0}(z, \theta))=0)

satisfying

  \frac{\partial\zeta_{1,i}}{\partial z_{2}}= \frac{\partial\zeta_{2,i}}
{\partial z_{1}}.
As was shown in [2], the set of turning points for the Pearcey system  \mathcal{M} is explicitly

given by

 T=\{x=(x_{1}, x_{2})\in \mathbb{C}^{2} |27x_{1}^{2}+8x_{2}^{3}=0\}.
Note that we have

 D_{1}(z, \theta)=(27x_{1}^{2}+8x_{2}^{3})|_{x=zR-\theta},
and, in the coordinate system  z,  T is expressed as follows:

 T=\{z=(z_{1}, z_{2})\in \mathbb{C}^{2} |D_{1}(z, \theta)=0\}.

This means that the set  T of turning points for the Pearcey system restricted to  L_{c,\theta}
is  \{z_{1} \in \mathbb{C} ; D_{1}(z_{1}, c, \theta)=0\} and does not coincide with  T_{c,\theta} . That is, the tangential

system  \mathcal{M}_{c,\theta} has an ordinary turning point  z_{1}  =  -D_{20}(c, \theta)/D_{21}(c, \theta) which is not in
the set  T restricted to  L_{c,\theta} . Here and in what follows, we identify  (z_{1}, c)  \in  L_{c,\theta} with
 z_{1}  \in \mathbb{C} . We call this ordinary turning pointa non‐hereditary turning point. Note that

this ordinary turning point is a double turning point, because of the form of the relevant

factor  D_{2}(z_{1}, c, \theta)^{2} in the discriminant. For the reference of the reader we present in

Figure 1 the configuration of ordinary and virtual turning points for the tangential

system  \mathcal{M}_{c,\theta} and Stokes curves emanating from them for  \theta  =  \pi/4,  c  =  1/2-\sqrt{}-1,
ignoring the non‐hereditary turning point. The Stokes geometry of  \mathcal{M}_{c,\theta} with the non‐

hereditary turning point added will be later given in Figure 3.

§3. Characteristic properties of a non‐hereditary turning point

We discuss the non‐hereditary turning point for the tangential system  \mathcal{M}_{c,\theta} from

the viewpoint of the relation between the characteristic variety of  \mathcal{M}_{c,\theta} and that of the



144 Sampei Hirose

Figure 1. The ordinary and virtual turning points for the tangential system  \mathcal{M}_{c,\theta} and

the Stokes curves emanating from them for  \theta  =\pi/4,  c=  1/2-\sqrt{}-1 . Here we ignore

a non‐hereditary turning point. The dotted part ofa Stokes curve indicates that it is
inert.

Pearcey system  \mathcal{M} in (2.1). Let  a_{1}  \in  \mathbb{C} be anon‐hereditary turning point. Since a1
is not a turning point for the Pearcey system  \mathcal{M} but an ordinary turning point for the

tangential system  \mathcal{M}_{c,\theta} , there exist  i,   i'\in  \{1 , 2, 3  \}  (i\neq i') such that

 \zeta_{1,i}(a_{1}, c)=\zeta_{1,i'}(a_{1}, c) , \zeta_{2,i}(a_{1}, c)
\neq\zeta_{2,i'}(a_{1}, c) .

This condition characterizes a non‐hereditary turning point.

Theorem3.1. Let  a_{1}  \in \mathbb{C} be a point which satisfies

 \zeta_{1,i}(a_{1}, c)=\zeta_{1,i'}(a_{1}, c) , \zeta_{2,i}(a_{1}, c)
\neq\zeta_{2,i'}(a_{1}, c) .

Then  a_{1} is a non‐hereditary turning point for the tangential system  \mathcal{M}_{c,\theta} , that is,  a_{1}  \in

 \{z_{1} \in \mathbb{C}; D_{2}(z_{1}, c, \theta)=0\}.

Proof. By the relations

 R_{0}(z, \theta)=\{(\cos\theta)P_{0}(x)+(\sin\theta)Q_{0}(x)\}|_{x=zR-\theta},
 S_{0}(z, \theta)=\{-(\sin\theta)P_{0}(x)+(\cos\theta)Q_{0}(x)\}|_{x=zR-\theta},

 Q_{0}(x)=P_{0}(x)^{2},
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we have

 \zeta_{1,i}(z)=\{(\cos\theta)\xi_{i}(x)+(\sin\theta)\xi_{i}(x)^{2}\}|_{x=zR-
\theta},
 \zeta_{2,i}(z)=\{-(\sin\theta)\xi_{i}(x)+(\cos\theta)\xi_{i}(x)^{2}\}|_{x=zR-
\theta}

for  i=1 , 2, 3. Here  \xi_{i}(x) isaroot of the algebraic equation

  \det(\xi-P_{0}(x))=\xi^{3}+\frac{x_{2}}{2}\xi+\frac{x_{1}}{4}=0.
For simplicity,  \xi_{i}(x)|_{x=zR-\theta} is denoted by  \xi_{i}(z) . Note that, since  (a_{1}, c)  \in  \mathbb{C}^{2} is not a

turning point for the Pearcey system,  (a_{1}, c) satisfies

 \xi_{i}(a_{1}, c)\neq\xi_{i'}(a_{1}, c) .

By the relation  \zeta_{1,i}(a_{1}, c)=\zeta_{1,i'}(a_{1}, c) , we have

 (\cos\theta)\xi_{i}(a_{1}, c)+(\sin\theta)\xi_{i}(a_{1}, c)^{2}=(\cos\theta)
\xi_{i'}(a_{1}, c)+(\sin\theta)\xi_{i'}(a_{1}, c)^{2}

Hence

 (\xi_{i}(a_{1}, c)-\xi_{i'}(a_{1}, c))\{\cos\theta+\sin\theta(\xi_{i}(a_{1}, c)
+\xi_{i'}(a_{1}, c))\}=0

holds. Using  \xi_{i}(a_{1}, c)\neq\xi_{i'}(a_{1}, c) , we obtain

 \cos\theta+\sin\theta(\xi_{i}(a_{1}, c)+\xi_{i'}(a_{1}, c))=0.

Since  \xi_{i}+\xi_{i'}+\xi_{i"}  =0 for three roots  \xi_{i},  \xi_{i'} ,  \xi_{i"} of the algebraic equation

  \det(\xi-P_{0}(x))=\xi^{3}+\frac{x_{2}}{2}\xi+\frac{x_{1}}{4}=0,
we have

  \xi_{i"}(a_{1}, c)= \frac{\cos\theta}{\sin\theta}.
Hence, we obtain

 D_{2}(a_{1}, c,  \theta)=4\sin^{3}\theta(\xi_{i}^{3},, +\frac{x_{2}}{2}\xi_{i"}
+\frac{x_{1}}{4}) |_{x=(a_{1},c)R-\theta} =0,
that is,  a_{1}  \in\{z_{1} \in \mathbb{C} ; D_{2}(z_{1}, c, \theta)=0\}.  \square 

Schematic correspondence between characteristic points of  \mathcal{M} and that of  \mathcal{M}_{c,\theta} is

illustrated in Figure 2. The correspondence  \rho is a well‐known one in microlocal analysis.

§4. Redundancy of a non‐hereditary turning point

The purpose of this section is to show that a non‐hereditary turning point of  \mathcal{M}_{c,\theta}
is irrelevant to the Stokes phenomena of WKB solutions of  \mathcal{M}_{c,\theta} near the point. The
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Figure 2. Schematic correspondence between characteristic points of  \mathcal{M} and that of

 \mathcal{M}_{c,\theta} near a non‐hereditary turning point  z_{1}  =  a_{1} . Left (resp., Right) figure is a
configuration at  z_{1}\neq a_{1} (resp.,  z_{1}=a_{1} ).

first step of our reasoning is to use a result of Takei ([4, , Proposition 1]) on the block‐
diagonalization of completely integrable systems so that the analysis of the Pearcey

system  \mathcal{M} can be reduced to the study of a completely integrable  2  \cross  2 system near

a point  z  =  (a_{1}(c), c) where  a_{1}(c)  =  -D_{20}(c, \theta)/D_{21}(c, \theta) is a non‐hereditary turning

point of  \mathcal{M}_{c,\theta}.
We first block‐diagonalize the first equation of (2.1) near  z  =  (a_{1}(c), c) : by an

appropriate choice of transformation

(4.1)   \overline{\Psi}=T(z, \eta)\Psi, T(z, \eta)=\sum_{n=0}^{\infty}\eta^{-n}T_{n}
(z)
where  T_{n}(z)  (n=0,1, . . .) are  3\cross 3 matrices with holomorphic entries near  z=(a_{1}(c), c)
satisfying  \det T_{0}(z)\neq 0 , we can reduce the first equation of (2.1) to an equation of the
following form:

  \eta^{-1}\frac{\partial}{\partial z_{1}}\overline{\Psi}= (\overline{R}(z,\eta)
  \overline{r}(z,\eta))  \overline{\Psi},
where  \overline{R}(z, \eta) is a  2\cross 2 matrix whose entries are power series in  \eta^{-1}

  \overline{R}(z, \eta)=\sum_{n=0}^{\infty}\eta^{-n}\overline{R}_{n}(z) ,

and  \overline{r}(z, \eta) is a scalar power series in  \eta^{-1}

 r(z,  \eta)=\sum_{n=0}^{\infty}\eta^{-n}\overline{r}_{n}(z) ,
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and satisfy the following properties:

 \bullet the eigenvalues  (\zeta_{1,i}(z), \zeta_{1,i'}(z)) of  \overline{R}_{0}(z) satisfy

 \zeta_{1,i} (ai (z2), z_{2})=\zeta_{1,i'}(ai (z2), z_{2})

near  z_{2}=c,

 \bullet  \overline{r}_{0}(z) is distinct from the eigenvalues  (\zeta_{1,i}(z), \zeta_{1,i'}(z)) of  \overline{R}_{0}(z) .

Further  T(z, \eta) ,  \overline{R}(z, \eta) and  \overline{r}(z, \eta) are all Borel‐transformable.

Then Takei’s result guarantees that transformation (4.1) automatically block‐diagonalizes
the second equation of (2.1) to the following form:

  \eta^{-1}\frac{\partial}{\partial z_{2}}\overline{\Psi}= (\overline{S}(z,\eta)
  \overline{s}(z,\eta)) \overline{\Psi},
where  \overline{S}(z, \eta) is a  2\cross 2 matrix whose entries are power series in  \eta^{-1}

  \overline{S}(z, \eta)=\sum_{n=0}^{\infty}\eta^{-n}\overline{S}_{n}(z) ,

and  \overline{s}(z, \eta) is a scalar power series in  \eta^{-1} . Then it follows from the definition of a

non‐hereditary turning point that eigenvalues of  \overline{S}_{0}(z) are distinct, that is, eigenvalues

 (\zeta_{2,i}(z), \zeta_{2,i'}(z)) of  \overline{S}_{0}(z) satisfy

(4.2)  \zeta_{2,i}(a\ovalbox{\tt\small REJECT} (z2), z_{2})\neq\zeta_{2,i'}(a\ovalbox{
\tt\small REJECT} (z2), z_{2})

near  z_{2}=c.

Thus, in order to study the structure of the Pearcey system near a non‐hereditary

turning point, it suffices to study the following  2\cross 2 system:

(4.3)  \{   \eta^{-1}\frac{}{}\Phi=\overline{S}(z,\eta)\Phi\eta^{-1}\frac{\partial}
{\partial z,\partial z_{2}\partial^{1}}\Phi=\overline{R}(z,\eta)\Phi.
’

Then, again thanks to a result of Takei ([4, Theorem 3]), we find the following.

Theorem4.1. The completely integrable system (4.3) can be transformed to

 \{\begin{array}{l}
\eta^{-1}\frac{\partial}{\partial\overline{z}_{1}}\overline{\Phi}=(-\overline{z}
_{1}00\overline{z}_{1I}\overline{\Phi}
\eta^{-1}\frac{\partial}{\partial\overline{z}_{2}}\overline{\Phi}=(_{01}^{-10})
\overline{\Phi}
\end{array}
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by a change of coordinate  (\overline{z}_{1}, \overline{z}_{2})  =  (\overline{z}_{1}(z), \overline{z}_{2}(z)) and a Borel‐transformable transfor‐

mation of the form

  \overline{\Phi}=\exp(\eta f(z)) (\sum_{n=0}\eta^{-n}\overline{T}_{n}(z))\Phi,
where  f(z) is a holomorphic function near  z  =  (a_{1}(c), c) and  \overline{T}_{n}(z)  (n=0,1, . . .) are
 2\cross 2 matrices with holomorphic entries near  z=(a_{1}(c), c) satisfying  \det\overline{T}_{0}(z)\neq 0.

Proof. It follows from the definition of  D_{2}(z, \theta) that  z_{1}=a_{1}(z_{2}) is a double turning

point of the first equation of (4.3). Hence what remains to show is to confirm

(4.4) rank  (\overline{R}_{0} (a_{1} (z2), z_{2})-\zeta_{1,i}(a_{1} (z2), z_{2}))=0.

(Cf. [4, Theorem3].)
To confirm this, we first note that (4.2) entails the existence of  2\cross 2 matrix  \overline{T}(z_{2})

with holomorphic entries near  z_{2}=c such that

 \overline{T}(z_{2})^{-1}\overline{S}_{0}(a_{1} (a2), z_{2})\overline{T}(z_{2})=
(\begin{array}{ll}
\zeta_{2,i}(a_{1}(z_{2}),z_{2})   0
0   \zeta_{2,i'}(a_{1}(z_{2}),z_{2})
\end{array}) .

Since the first and second equations of (4.3) are compatible, we have

  \frac{\partial\overline{R}}{\partial z_{2}}-\frac{\partial\overline{S}}
{\partial z_{1}}+\eta[\overline{R}, \overline{S}]=0.
Hence  [ \overline{R}_{0}, \overline{S}_{0}]=0 . Then we obtain

 \overline{T}(z_{2})^{-1}\overline{R}_{0}(a_{1} (z2), z_{2})\overline{T}(z_{2})=
(\begin{array}{ll}
\zeta_{1,i}(a_{1}(z_{2}),z_{2})   0
0   \zeta_{1,i'}(a_{1}(z_{2}),z_{2})
\end{array}) .

Note that  \zeta_{1,i}  (a_{1} (z2), z_{2})  =  \zeta_{1,i'}(a_{1} (z2), z_{2}) means  \zeta_{1,i}(a_{1} (z2), z_{2}) is the value at  z  =

 (a_{1} (z2), z_{2}) of the two merging eigenvalues of  \overline{R}_{0}(z) . We thus have

rank  ( \overline{R}_{0}(a_{1} (z2), z_{2})-\zeta_{1,i}(a_{1} (z2), z_{2}))

 =rank (  (\begin{array}{ll}
\zeta_{1,i}(a_{1}(z_{2}),z_{2})   0
0   \zeta_{1,i'}(a_{1}(z_{2}),z_{2})
\end{array}) - (\begin{array}{ll}
\zeta_{1,i}(a_{1}(z_{2}),z_{2})   0
0   \zeta_{1,i}(a_{1}(z_{2}),z_{2})
\end{array}))
 =rank  (\begin{array}{lll}
0   0   
0\zeta_{1,i'}(a_{1}(z_{2}),z_{2})-      \zeta_{1,i}(a_{1}(z_{2}), z_{2})
\end{array})
 =0.

Thus Theorem 3 of [4] proves Theorem 4.1.  \square 
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Figure 3. The non‐hereditary turning point and the Stokes curve emanating from it

being added to Figure 1. The dotted part ofa Stokes curve indicates that it is inert.

Theorem4.1 means that the completely integrable system(4.3) is locally isomorphic
to a direct sum of two trivial systems, that is,

 \{\eta^{-1}\frac{}{}\overline{\phi}_{1}=-\overline{z}_{1}\overline{\phi}_{1}
\eta^{-1}\frac{\partial\overline{z}\partial\partial^{1}}{\partial\overline{z}
_{2}}\overline{\phi}_{1}=-\overline{\phi}_{1},
and

 \{   \eta^{-1}\frac{}{}\overline{\phi}_{2}=\overline{\phi}_{2}\eta^{-1}
\frac{\partial}{\partial\overline{z},\partial\overline{z}_{2}\partial^{1}}
\overline{\phi}_{2}=\overline{z}_{1}\overline{\phi}_{2},
Hence we do not anticipate any Stokes phenomena of WKB solutions of  \mathcal{M}_{c,\theta} near its

non‐hereditary turning point. Actually, if only the first equation of (4.3) were studied
(i.e., without the second equation of (4.3)), even if assuming (4.4) in addition, then, as
Theorem 1 of [4] shows,  R_{n}(z)  (n = 1,2, \ldots) should contain off‐diagonal components
in general, which are tied up with the Stokes phenomena of WKB solutions of the first

equation of (4.3). Furthermore, as Figure 3shows, the Stokes curves emanating from
the non‐hereditary turning point remain inert. Thus we see that the non‐hereditary

turning point is a redundant one.
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