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Toward exact WKB analysis of nonlinear eigenvalue
problems

By

Takahiro SHIGAKI *

Abstract

In this paper, we study the nonlinear first order ordinary differential equation which
Bender‐Fring‐Komijani studied as a model equation of nonlinear eigenvalue problems. We
announce our recent results on the Borel summability of  0‐parameter solutions of the equation
in question, and, by using this result, we show that the Borel sum of a  0‐parameter solution
gives a separatrix, a solution which satisfies the boundary condition imposed by Bender‐Fring‐
Komijani.

§1. Introduction

Bender, Fring and Komijani introduced nonlinear eigenvalue problems in [BFK].
As a typical example, they studied

(1.1)  y'(x)=\cos[\pi xy(x)].

They pointed out that, for each  n , the boundary condition

(1.2)  y(x) \sim\frac{m+1/2}{x} (with  m=2n-1 ) as   xarrow\infty

determines a unique solution of (1.1), and argued that the initial value  a_{n}  :=y(0) can
be considered as the corresponding eigenvalue (see also §2.2). Based on the complex
WKB method with some physically reasonable intuition, they derived the asymptotic

behavior of eigenvalues:

(1.3)  a_{n}\sim 2^{5/6}\sqrt{}n as  narrow\infty.
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One of our goals is to give a mathematically rigorous proof of the formula (1.3) by
employing exact WKB analysis (see, e.g., [KT]). Although we have not succeeded in
proving it, we obtain

(1) the Borel summability of the so‐called  0‐parameter solution of the equation (3.3)
associated to (1.1), and

(2) the solution of (1.1) which satisfies the boundary condition (1.2) by an exact WKB
theoretic argument

at this stage. In this paper we will give an announcement on (1)  ([KoS] . Some results
are already given in [S]), and give a proof of (2) (where the result (1) will be used).

This paper is organized as follows: In §2 we will briefly recall the argument given

in [BFK]. We will also study more details about the asymptotic expansion of solutions
near the infinity. In §3, after scaling the variable and the unknown function, we will

construct  0‐parameter solutions and study their properties. Their Borel summability

will be explained in §4. This section is also an announcement ofaresult in our forth‐

coming paper  [KoS] . In §5 we will show that one of the  0‐parameter solution satisfies

the boundary condition (1.2). In §6 we will give some remarks on the solution which
satisfies (1.2) with an even integer  m , and also the Borel summability of  0‐parameter
solution for  \arg\eta\neq 0.

§2. Nonlinear eigenvalue problems

In [BFK], Bender, Fring and Komijani studied

(2.1)  y'(x)=\cos[\pi xy(x)]

as one example of nonlinear eigenvalue problems. To this equation we expect that the
solution behaves like

(2.2)  y(x)\sim \underline{m+1/2}
 x

with some integer  m (so that  y'(x) tends to zero), as  x tends to the infinity. Figure
1 shows a result of numerical computations1 of the initial value problem of (2.1). We
can see from this figure that each solution approaches to a curve  xy= (const). An
interesting observation made by [BFK] (see also [BO]) is that these asymptotic curves
are  \{xy =m+1/2\} with an even integer  m (cf. Figure2). In fact there exists one and
only one solution which satisfies (2.2) with an odd integer  m . In this section, basically
following [BFK] (see also [K]), we recall some results on solutions of (2.1) with (2.2).

1Numerical computations in this paper were done by Mathematica.
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Figure 1. Graph of the solutions of(2.1) with  y(0)=0.2k  (k=1,2, \ldots 21) .

Figure 2. The solid curves are graph of the solutions of (2.1) with  y(0)=  0.2k  (k  =

 1 , 2, . . . 21). The dashed curves arey  =(m+1/2)/x  (m=0, 1, . . . , 10  ) .
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§2.1. Asymptotic expansions of the solution

In [BFK, §I] it is claimed that

Proposition 2.1. For any solution  y(x) of (2.1) witha positive initial value at
the origin, there exists an positive integer  m such that  y(x) has an asymptotic expansion

(2.3)  y(x) \sim \frac{m+1/2}{x}+\sum_{k=1}^{\infty}\frac{c_{k}}{x^{2k+1}}
as  x tends   to+\infty along the positive real axis.

We can determine coefficients of the asymptotic expansion (2.3) uniquely and re‐
cursively by substituting (2.3) into (2.1), and comparing both sides degree by degree.
First four coefficients are

(2.4)  c_{1}=\underline{(-1)^{m}}(m+1/2) ,
 \pi

(2.5)  c_{2}= \frac{3}{\pi^{2}}(m+1/2) ,

(2.6)  c_{3}=(-1)^{m} [ \frac{(m+1/2)^{3}}{6\pi}+\frac{15(m+1/2)}{\pi^{3}}] ,

(2.7)  c_{4}= \frac{8(m+1/2)^{3}}{3\pi^{2}}+\frac{105(m+1/2)}{\pi^{4}},
and, in general, we obtain

Proposition 2.2. The coefficients  c_{k} in (2.3) for  k  \geq  1 are determined by the
recursive relations  c_{1}=((-1)^{m}/\pi)c_{0} and

(2.8)

 c_{k}=- \frac{1}{\pi}\sum_{2}\frac{(-1)^{l}\pi^{2l+1}}{(2l+1)!}\sum_{11\leq 
l\leq(k-1)/k_{k_{1},,k_{2l+1}\geq 1}+\cdot\ldots+k_{2l+1}=k}c_{k_{1}}\cdots 
c_{k_{2l+1}}+\frac{(-1)^{m}(2k-1)}{\pi}c_{k-1}
for  k\geq 2 with  c_{0}=m+1/2.

Proof. We set  y(x)  =c_{0}/x+w(x) with  w(x)  = \sum_{k=1}^{\infty}c_{k}/x^{2k+1} and substitute it

into (2.1). Because

(2.9)  y'(x)=-c_{0}/x^{2}+w'(x)=-c_{0}/x^{2}+O(1/x^{4}) (xarrow\infty)

and

(2.10)  \cos[\pi xy(x)]=\cos(c_{0}\pi)\cos(\pi xw(x))-\sin(c_{0}\pi)\sin(\pi xw(x))

 =\cos(c_{0}\pi)-(\sin(c_{0}\pi))\pi c_{1}/x^{2}+O(1/x^{4}) (xarrow\infty) ,
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we obtain  \cos(c_{0}\pi)=0 as a leading term of (2.1). Therefore  c_{0}=m+1/2 for an integer
 m . Then (2.1) becomes

(2.11)  w'(x)-(m+1/2)/x^{2}=(-1)^{m+1}\sin(\pi xw(x)) .

After expanding the right‐hand side of (2.11), we obtain (2.8).  \square 

Let us determine the asymptotic behavior of  c_{k} as  m tends to the infinity.

Proposition 2.3. Let  \{c_{k}\}_{k\geq 1} be a sequence satisfying (2.8). We regard each
 c_{k} as a function of  c_{0} . Then

(i)  c_{k}  (k\geq 1) is a polynomial of  c_{0} without a constant term. Its degree isk when  k is
odd, and  k-1 when  k is even.

(ii) The coefficient of the linear term of  c_{k}  (k\geq 1) with respect to  c_{0} is

(2.12)  (-1)^{mk}( \frac{2}{\pi})^{k}\frac{\Gamma(k+1/2)}{\Gamma(1/2)}.
(iii) Let  d_{k} be the coefficient of the highest degree term of  c_{k} . Then, for  l\geq 1 , we obtain

(2.13)  d_{2l-1}= \frac{1}{2l-1}(\begin{array}{l}
-1/2
l-1
\end{array}),
(2.14)  d_{2l}= \frac{(-1)^{l-1}}{\pi^{2}}\sum_{j=0}^{l-1}\frac{4l-4j-1}{2l-2j-1}
(\begin{array}{ll}
1/2   
l-j   -1
\end{array}) (\begin{array}{l}
-1/2
j
\end{array}).
In particular, each  d_{k} is non‐zero. Here  (\begin{array}{l}
\alpha
 k
\end{array}) is a binomial coefficient, that is,  (\begin{array}{l}
\alpha
 k
\end{array})  =

 \alpha(\alpha-1)\cdots(\alpha-k+1)/k!.

Because  c_{0}=m+1/2 in our case, the asymptotic behavior of  c_{k} as  m tends to the

infinity is

(2.15)
 c_{k}=  \{\begin{array}{l}
d_{k}m^{k}\{1+O(\frac{1}{m})\}
d_{k}m^{k-1}\{1+O(\frac{1}{m})\}
\end{array}  (k(k even)

 odd)

with a non‐zero constant  d_{k}.

Proof. The induction shows  c_{k} is a polynomial of  c_{0} with the degree described in

(i). If  c_{0}=0 , then we get  ck=0 for any kfrom the recursion relation (2.8). Therefore
 c_{k}  (k\geq 1) has no constant term. Thus we obtain (i).
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Because  c_{k} has no constant term, products of  c_{k} ’s do not contain alinear term.

Hence the recursion relation (2.8) gives

(2.16) (the linear term of  c_{k} )  =(-1)^{m} \frac{2k-1}{\pi} (the linear term of  c_{k-1} )

for  k\geq 1 . Thus we obtain(ii).
Finally, let us prove (iii). Because c  1=(-1)^{m}c_{0}/\pi , we have d  1=(-1)^{m}/\pi . Since

(2.17)  k_{1}+ \cdot\cdot.\cdot.+k_{2l+1}=k\sum_{k_{1},.,l_{2l+1}\geq 1}c_{k_{1}}\cdots
c_{k_{2l+1}} = (\begin{array}{llll}
\Sigma   d_{k_{1}}   \cdots   d_{k_{2l+1}}
k_{1},..,k_{2l+1}\geq 1:oddk_{1}.+\cdots k_{2l+1}=k         
\end{array}) c_{0^{k}}
 + (lower order terms).

holds when  k\geq 3 is odd, we obtain

(2.18)  d_{k}=- \frac{1}{\pi}\sum_{2}\frac{(-1)^{l}\pi^{2l+1}}{(2l+1)!}\sum_{k_{1},..,
k_{2l+1}\geq 1:odd}d_{k_{1}}\cdots d_{k_{2l+1}}1\leq l\leq(k-1)/k_{1}.+\cdots k_
{2l+1}=k ’

or

(2.19)   \sum_{0\leq l\leq(k-1)/2}\frac{(-1)^{l}\pi^{2l+1}}{(2l+1)!}\sum_{k_{1}.+\cdots
k_{2l+1}=kk_{1},,..,k_{2l+1}\geq 1:odd}d_{k_{1}}\cdots d_{k_{2l+1}} =0.
Let  F(X)= \sum_{k\geq 0}d_{2k+1}X^{2k+1} . Then (2.19) gives

(2.20)  \sin((-1)^{m}\pi F(X)) =X.

Thus

(2.21)  F(X)=  \frac{(-1)^{m}}{\pi}\sin^{-1}(X)= \frac{(-1)^{m}}{\pi}\sum_{j=0}
^{\infty}\frac{1}{2j+1}(\begin{array}{l}
-1/2
j
\end{array})X^{2j+1}
In a similar manner, since

(2.22)   \sum \frac{(-1)^{l}\pi^{2l+1}}{(2l)!} \sum d_{k_{1}} \cdot\cdot \cdot d_{k_{2l
+1}} = (-1)^{m}(2k - 1) d_{k-1}
 0\leq l\leq(k-2)/2 k_{1}+\cdots k_{2l+1}=k

 k_{1} ,  \cdots ,  k_{2l}\geq 1 :odd
 k_{2l+1}\geq 2 :even

holds for even  k,  G(X)= \sum_{k\geq 1}d_{2k}X^{2k} is given by

(2.23)  G(X)=  \frac{(-1)^{m}}{\pi}\frac{X}{\sqrt{1-X^{2}}}\{F(X)+2XF'(X)\}
 =  \frac{1}{\pi^{2}} (\frac{X\sin^{-1}(X)}{\sqrt{l-X^{2}}}+\frac{2X^{2}}{1-
X^{2}}) .
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This completes the proof of (iii).  \square 

§2.2. The separatrix and the eigenvalue

As Figure 1 and 2 illustrate, a solution which behaves like

(2.24)  y(x) \sim\frac{m+1/2}{x} (xarrow+\infty)
with  m=2n-1  (n=1,2, \cdots ) plays a special role:

Proposition 2.4 ([BFK], §I‐A.). For  n=  1 , 2,  \cdots , there exists a unique solu‐
tion  y_{n}(x) of (2.1) which satisfies (2.24) withm  =2n-1.

This  y_{n}(x) is called the n‐th separatrix in [BFK], and  a_{n}  :=y_{n}(0) the n‐th eigen‐
value. To study the asymptotic behavior of the eigenvalue  a_{n} , they introduce the scaling

of variables (cf. [BFK, §III]):

(2.25)  x=\sqrt{}2n-1/2\cdot t, y(x)=\sqrt{}2n-1/2\cdot z(t) .

Then (2.1) is transformed to

(2.26)  z'(t)=\cos[\lambda tz(t)]

with

(2.27)  \lambda=(2n-1/2)\pi.

Because  z(t) also depends on  \lambda , we denote it by  z(t, \lambda) from now on. Bender‐Fring‐

Komijani then claimed that the limit  Z(t)  =   \lim_{\lambdaarrow\infty}z(t, \lambda) exists, and  Z(0)  =  2^{1/3}

holds. Hence they concluded that

(2.28)  a_{n}=y_{n}(0)=\sqrt{}2n-1/2\cdot z(0, (2n-1/2)\pi)\sim 2^{1/3}\sqrt{}2n=
2^{5/6}\sqrt{}n.

holds as  n tends to the infinity.

Bender‐Fring‐Komijani compared their results with the usual eigenvalue problem

of the Schrödinger equation. See Table 1. Because of this analogy, they call  a_{n} the

eigenvalue of the problem.

§3. Exact WKB analysis and  0‐parameter solutions

As is mentioned in Introduction, our goal is to prove the asymptotic behavior (2.28)
of the eigenvalue  a_{n} . Following the conventional notation of exact WKB analysis, we use

 \eta instead of  \lambda as a large parameter (i.e., we replace  \lambda with  \eta in (2.26)). An immediate
consequence of Proposition 2.1, Proposition 2.3, (2.25) and (2.27) is
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NEP Schrödinger

Equation  y'(x)=\cos[\pi xy(x)]  -\psi"(x)+x^{4}\psi(x)=E\psi(x)
Boundary condition   y(x)\sim   \frac{2n-1/2}{x}  (xarrow\infty)   \lim_{x}arrow\pm\infty\psi(x)=0

Eigenvalue  a_{n}=y(0)  E_{n}=E

Asymptotic behavior  a_{n}\sim 2^{5/6}\sqrt{}n  E_{n}\sim 3\Gamma(3/4)\sqrt{}\pi n^{4/3}/\Gamma(1/4)
 (narrow\infty)

Number of nodes of
 n nodes  n nodes

n‐th eigenfunction

Table 1. Nonlinear eigenvalue problems (NEP) and well‐known eigenvalue problems of
Schrödinger equation.

Proposition3.1. The equation (2.26) has a formal solution of the form

(3.1)  z(t,  \eta)=\frac{1}{t}(1+\eta^{-1}\tilde{u}(t, \eta)) with   \tilde{u}(t, \eta)=\sum_{l=1}^{\infty}\tilde{c}_{l}(\eta)\frac{1}{t^{2l}}.
Here  \tilde{c}_{l}(\eta) is a polynomial in  \eta^{-1} of degree  l-1.

Because of this property, we transform the unknown function by

(3.2)  z(t,  \eta)= \frac{1}{t}(1+\eta^{-1}u(t, \eta))
to remove the term  1/t from  z(t, \eta) . Then the resulting equation

(3.3)   \eta^{-1}\frac{\partial}{\partial t}u(t, \eta)=t\sin u(t, \eta)+\frac{1}{t}+
\eta^{-1}\frac{u(t,\eta)}{t}
has a suitable form for WKB analysis. We now construct the so‐called  0‐parameter

solution (cf. [KT]) of (3.3).

Proposition3.2. The equation (3.3) has a formal power series solution

(3.4)   \hat{u}(t, \eta)=\sum_{j=0}^{\infty}\eta^{-j}u_{j}(t)
with respect to  \eta . Here u 0(t) satisfies

(3.5)   \sin u_{0}(t)=-\frac{1}{t^{2}},
and  u_{j}(t)  (j \geq 1) are (multi‐valued) holomorphic functions in  U^{*}  =  \mathbb{C}\backslash \{0, \pm 1, \pm i\},
which are determined uniquely and recursively once we fix a solution of (3.5). Fur‐
thermore, for any compact set  K in  U^{*} , there exist positive constants  A_{K},  C_{K} such
that

(3.6)   \sup_{t\in K}|u_{j+1}(t)|\leq A_{K}C_{K^{j}}j! (j=0,1,2, \ldots) .
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Proof. By substituting (3.4) into (3.3), we obtain

(3.7)   \sum_{j=0}^{\infty}\eta^{-j-1}\frac{\partial}{\partial t}u_{j}(t)=t  ( \sin u_{0}(t)\cos\sum_{j=1}^{\infty}\eta^{-j}u_{j}(t)+\cos u_{0}(t)
\sin\sum_{j=1}^{\infty}\eta^{-j}u_{j}(t))
 + \frac{1}{t}+\frac{1}{t}\sum_{j=1}^{\infty}\eta^{-j-1}u_{j}(t) .

The leading term of (3.7) with respect to  \eta gives (3.5). Therefore

(3.8)  u_{0}(t)=- \sin^{-1} (\frac{1}{t^{2}}) =i\log(\frac{i}{t^{2}}+\sqrt{1-\frac{1}
{t^{4}}}) .

We fix a branch of  \sin^{-1} in (3.8) so that

(3.9)   \sin^{-1}\frac{1}{t^{2}}=N\pi+(-1)^{N}\sum_{n=0}^{\infty}\frac{(2n)!}{(n!)^{2}
4^{n}(2n+1)} (\frac{1}{t^{2}})^{2n+1}
holds for  t  >  1 , where  N is an integer. As ttends to  +\infty,  u_{0}(t)  arrow  -N\pi , and hence

 \cos u_{0}(t)arrow(-1)^{N} . Therefore

(3.10)  \cos u_{0}(t)=(-1)^{N}\sqrt{}1 —sin2  u_{0}(t)=(-1)^{N} \frac{\sqrt{t^{4}-1}}{t^{2}},
where we have chosen a branch of square root such that  \sqrt{}t^{4}-1>0 for  t>1.

The terms of  \eta^{-1} in (3.7) give

(3.11)  u_{0}'(t)=t( \cos u_{0}(t))u_{1}(t)+\frac{u_{0}(t)}{t}.
By (3.10) and

(3.12)  u_{0}'(t)=(-1)^{N}\underline{2}
 t\sqrt{}t^{4}-1

’

we obtain

(3.13)  u_{1}(t)= \frac{2}{t^{4}-1}+(-1)^{N}\frac{1}{\sqrt{t^{4}-1}}\sin^{-1}\frac{1}
{t^{2}}.
Finally the terms of  \eta^{-j-1}  (j\geq 1) in (3.7) give

(3.14)  u_{j}'(t)=t( \sin u_{0}(t))\Phi_{1,j}(t)+t(\cos u_{0}(t))(u_{j+1}(t)+\Phi_{2,j}
(t))+\frac{u_{j}(t)}{t}.
Here  \Phi_{1,j}(t) is a coefficient of  \eta^{-j-1} in

(3.15)   \cos (\sum_{j=1}^{\infty}\eta^{-j}u_{j}(t)) ,
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and  \Phi_{2,j}(t) is a coefficient of  \eta^{-j-1} in

(3.16)   \sin (\sum_{j=1}^{\infty}\eta^{-j}u_{j}(t)) -\sum_{j=1}^{\infty}\eta^{-j}u_{j}
(t) .

Their explicit forms are

(3.17)   \Phi_{1,j}(t)=\sum_{1\leq k\leq(j+1)/2}\{\frac{(-1)^{k}}{(2k)^{1}}\sum_{l_{i}
\neq 0}u_{l_{1}}l_{1}+\cdots+l_{2k=}j+1(t)\cdots u_{l_{2k}}(t)\}
and

(3.18)   \Phi_{2,j}(t)=\sum_{1\leq k\leq j/2}\{\frac{(-1)^{k}}{(2k+1)^{1}}\sum_{l_{i}
\neq 0}u_{l_{1}}l1+\cdots+l2k+1=j+1(t)\cdots u_{l_{2k+1}}(t)\}
Therefore each  u_{j+1}(t) is determined from (3.14) recursively and uniquely once we fix
a branch of  u_{0}(t) .

It also follows from (3.14) and the Cauchy integral formula that, for any point
 t_{0}  \in  U^{*} and for any positive number  r such that a closed disk  \{t\in \mathbb{C} | |t-t_{0}| \leq r\} is

included in  U^{*} , there exist positive constants  C_{1},  C_{2} for which

(3.19)   \sup_{|t-t_{0}|<r-\epsilon}|u_{j+1}(t)| \leq C_{1} (\frac{C_{2}}{\epsilon})
^{j}j!
holds for any  j=0 , 1, 2,  \cdots and any positive  \epsilon small enough. Since this is somewhat a

routine task, and we omit its detail here. Estimates (3.6) follow from(3.19).  \square 

Here we summarize the results obtained in this proof:

(3.20)  u_{0}(t)=- \sin^{-1}\frac{1}{t^{2}}, u_{1}(t)=\frac{2}{t^{4}-1}+(-1)^{N}
\frac{1}{\sqrt{t^{4}-1}}\sin^{-1}\frac{1}{t^{2}},
(3.21)  u_{j+1}(t)=(-1)^{N} \frac{1}{\sqrt{t^{4}-1}}\{tu_{j}'(t)-u_{j}(t)+\Phi_{1,j}(t)
\}-\Phi_{2,j}(t) .

It follows from (3.20) and (3.21) that each  u_{j}(t) is holomorphic except at  t  \neq
 0,  \pm 1,  \pm i . It is also holomorphic near the infinity. By substituting the Taylor expansion

of  u_{j}(t) near   t=\infty into (3.4),  u(t, \eta) becomes a double power series of  t^{-1} and  \eta^{-1}.

Proposition3.3. The solution uˆ  (t, \eta) in Proposition 3.2 coincides with  \tilde{u}(t, \eta)
in Proposition 3.1 as a formal power series in  t^{-1} and  \eta^{-1} . Here the branch of  u_{0}(t)
in uˆ  (t, \eta) is chosen as the principal value, that is,  N=0 in (3.9).
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Proof. Because both uˆ  (t, \eta) and  \tilde{u}(t, \eta) are formal solutions of (3.3), and because
they have the form

(3.22)  u(t,  \eta)=\sum_{j,k=0}^{\infty} ˆj,k  \eta ‐jt‐k with  \hat{u}_{0,0}=0,

it is enough to prove the uniqueness of the formal solution of the form (3.22).
By substituting (3.22) into (3.3) and comparing both sides degree by degree, we

obtain

(3.23)  \hat{u}_{1,0}=u\ovalbox{\tt\small REJECT} 0, 1=0,

(3.24)  \hat{u}_{2,0}=  û 1,1  =0 ,  û 0,2  =-1,

(3.25)  \hat{u}3,0  =  u_{2},  1  =u\ovalbox{\tt\small REJECT} 1,  2  =  û 0,3  =  0

and for  l\geq 3,

(3.26)   \hat{u}_{l+1}(t, \eta)=-\sum_{j+k+2=l,j\geq 0,k\geq 1} kuˆj,k  \eta‐j‐1t‐k‐2  +\eta^{-1}t^{-2} uˆl‐2  (t, \eta)

 + \sum_{1\leq m\leq l/2}\frac{(-1)^{m}}{(2m+1)^{1}}\sum_{j_{1}+\cdots+j_{2m+1}=
l+1,j_{n}\geq 1}\hat{u}_{j_{1}}(t, \eta)  \cdots û j2  m+ 1  (t, \eta) .

Here we set ˆl  (t, \eta)  =   \sum_{j+k=l},  j,k\geq 0 uˆj,k  \eta‐jt‐k. By (3.26), uˆl  + 1  (t, \eta) is determined
uniquely from {uˆj,k}j  + k  \leq l-1 . Therefore once {uˆj,k}j  + k  \leq l is given, then {uˆj,k}j  + k  =l+1

is determined uniquely. By induction with respect to l, we conclude that there exists a

unique formal solution (3.22) of (3.3).  \square 

§4. Borel resummation method and Stokes geometry

§4.1. Borel resummation method

To give an analytic meaning to the  0‐parameter solutions constructed in Proposition

3.2, we employ the Borel resummation method. In this subsection we recall its definition

and basic properties. See, e.g., [KT] for more detailed explanation.

Definition 4.1 (Borel transform). Fora power series

(4.1)  f( \eta)=\sum_{j=1}^{\infty}f_{j}\eta^{-j}
of a large parameter  \eta , we define the Borel transform of  f by

(4.2)  f_{B}(y) := \sum_{j=1}^{\infty}\frac{f_{j}}{(j-1)^{1}}y^{j-1}
If  f_{B} converges in a neighborhood of  y=0,  f is said to be Borel transformable.
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Definition4.2 (Borel sum). When a power series (4.1) satisfies the following
three conditions,  f is said to be Borel summable.

(i) A power series  f is Borel transformable.

(ii) There exists  \delta>0 such that the Borel transform  f_{B}(y) can be analytically continued
into

(4.3)  \Sigma(\delta)  := {  z\in \mathbb{C}| dist  (z, \mathbb{R}_{+})<\delta }.

(iii) For each   0<\delta'<\delta , there exist positive constants  B_{1} and  B_{2} such that

(4.4)  |f_{B}(y)|  \leq B_{1}e^{B_{2}|y|}

holds for any  y\in\overline{\Sigma(\delta')}.

When  f is Borel summable, we define its Borel sum  F(\eta) as the Laplace transform

(4.5)  F( \eta):=\int_{0}^{\infty}e^{-\eta y}f_{B}(y)dy
of  f_{B}(y) . Here the path of integration is chosen to be the real axis.

If a power series has a constant term with respect to  \eta^{-1} like  u= \sum_{j=0}^{\infty}u_{j}\eta^{-j} , we
define

(4.6) (the Borel transform of  u )  :=v_{B} , where  v:=u-u_{0},

(4.7) (the Borel sum of  u )  :=u_{0}+ (  the Borel sum of  v ).

If  f is a convergent power series,  f coincides with its Borel sum. When  f is a

divergent power series, we obtain

Theorem4.3. If (4.1) is Borel summable, the power series  f is the asymptotic
expansion of Borel sum  F(\eta) in  \{\eta\in \mathbb{C}|{\rm Re}\eta>B_{2}\} : for any  \epsilon>0 , there exists positive
constants  A,  B such that

(4.8)  |F( \eta)-\sum_{j=1}^{N}f_{j}\eta^{-j}| <AB^{N+1}(N+1)!|\eta|^{-N-1}
holds for  N=0 , 1, . . . and  {\rm Re}\eta\geq B_{2}+\epsilon.

We refer to [ E , Theorem 4.4] for the proof.

Our formal solution (3.4) is a formal power series with respect to  \eta whose coefficients
depend on  t . To discussa power series of this kind, we define
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Definition4.4. Let  f(t, \eta)  =   \sum_{j\geq 1}f_{j}(t)\eta^{-j} be a formal power series whose

coefficient  f_{j}(t) is a holomorphic function in some domain  \Omega  \subset  \mathbb{C} . We say  f(t, \eta) is

Borel summable with respect to  \eta uniformly in  \Omega if

(i)  f(t, \eta) is Borel transformable for each  t\in\Omega.

(ii) There exists  \delta>0 such that the Borel transform  f_{B}(t, y) can be analytically con‐
tinued into  \Omega\cross\Sigma(\delta) .

(iii) For any   0<\delta'<\delta and any compact set   K\subset\Omega , there exist positive constants  B_{1}

and  B_{2} such that  |f_{B}(t, y)|  \leq B_{1}e^{B_{2}|y|} holds for any  (t, y)  \in K\cross\overline{\Sigma(\delta')}.

§4.2. Stokes geometry

The leading order part of the linearized equation of (3.3) at  u_{0}(t) (i.e., an equation
obtained by substituting  u(t, \eta)  =  u_{0}(t)+(\Delta u)(t, \eta) into (3.3) and eliminating both
non‐linear terms with respect to  \Delta u and the lower order terms with respect to  \eta ) is

(4.9)   \eta^{-1}(\Delta u)'=t\cos(u_{0}(t))\Delta u=(-1)^{N}\frac{\sqrt{t^{4}-1}}{t}
\Delta u.
Here we have used (3.10). In analogy with the Riccati equations, we define Stokes
geometry of (3.3) by

(4.10)  Q(t) :=  \{(-1)^{N}\frac{\sqrt{t^{4}-1}}{t}\}^{2}= \frac{t^{4}-1}{t^{2}},
that is, we define a turning point as a zero of  Q(t) and a Stokes curves as a curve

emanating from a turning point  a satisfying

(4.11)  {\rm Im} \int_{a}^{t}\sqrt{Q(s)}ds=0.
Note that, in our case, Stokes geometry does not depend on  N , i.e., a choice of a branch

of  u_{0}(t) , as  Q(t) does not depend on  N . We also define a Stokes region as adomain

surrounded by Stokes curves. Figure3shows the Stokes geometry of (3.3). There exist
five Stokes regions. This Stokes geometry is degenerate in the sense that there exists

Stokes curve which connect two turning points. As in the case of second order linear
differential equations, the sign of  {\rm Re} \int_{a}^{t}\sqrt{Q(s)}ds does not change on a Stokes curve

emanating from a turning point  a (cf. [KT]).
Let  X=\mathbb{C}\backslash \{0, \pm 1, \pm i\} , a set of points which are not turning points nor a singular

point. Following  [KoSc] we introduce two notions. First one is
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Figure 3. Stokes curves of(3.3).

Definition4.5. For any  t_{0}\in X , the level curve  \Gamma_{t_{0}} is defined as a curve passing

through  t_{0} and satisfying

(4.12)  {\rm Im} \int_{t_{0}}^{t}\sqrt{Q(s)}ds=0.
We also define its positive (resp., negative) component of the level curve  \Gamma_{t_{0}} by

(4.13)   \Gamma_{t_{0}}^{(+)}:= \{t\in\Gamma_{t_{0}}|{\rm Im}\int_{t_{0}}^{t}
\sqrt{\frac{s^{4}-1}{s^{2}}}ds=0, {\rm Re}\int_{t_{0}}^{t}\sqrt{\frac{s^{4}-1}
{s^{2}}}ds\geq 0\}

(4.14) (resp.,  \Gamma_{t_{0}}^{(-)}  :=   \{t\in\Gamma_{t_{0}}|{\rm Im}\int_{t_{0}}^{t}\sqrt{\frac{s^{4}-1}{s^{2}}}ds=0,  {\rm Re} \int_{t_{0}}^{t}\sqrt{\frac{s^{4}-1}{s^{2}}}ds\leq 0\} ) .
See Figure 4 for examples of level curves of  Q(t) . (We choose one point from each

Stokes regions, and draw a level curve passing through it.)
The second notion we introduce is

Definition4.6. For a domain  \Omega\subset X , we define a Stokes closure of  \Omega by

(4.15)  \hat{\Omega}:=\geq\Gamma_{t}t\in\Omega^{\cdot}
We also define the positive (resp., negative) component of  \Omegaˆ by

(4.16)  \hat{\Omega}^{(+)}  :=t\in\Omega\geq\Gamma_{t}^{(+)} (resp.,  \hat{\Omega}^{(-)}  :=t\in\Omega\geq\Gamma_{t}^{(-)} ) .
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Figure 4. Stokes curves and level curves of(3.3).

§4.3. Borel summability of  0‐parameter solutions

In this subsection we state some results on the Borel summability of the formal

solution (3.4) of (3.3). The following Theorem4.8 is an announcement of  [KoS].
A first result on the Borel summability is

Theorem4.7 ([S]). In each Stokes region I,II,III or IV in Figure 3, the formal
solution (3.4) of (3.3) is Borel summable uniformly.

To state this theorem more precise, we first fix the branch of  u_{0}(t) : we place cuts

as in Figure 5 and choose an integer  N such that

(4.17)   u_{0}(t)=-\sin^{-1}(1/t^{2})arrow-N\pi

as  t tends to the infinity along the positive real axis. Second we define  w(t) by

(4.18)  \eta^{-1}w(t, \eta)=u(t, \eta)-u_{0}(t)-\eta^{-1}u_{1}(t) .

Then Theorem 4.7 follows from

Theorem4.8  ([KoS]) . Let  \Omega be an open or closed region in  X=\mathbb{C}\backslash \{0, \pm 1, \pm i\}.

(I) In the case when  N is even:
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We further assume that (i) the level curve  \Gamma_{t_{0}}^{(+)} flows into  \infty for each  t_{0}  \in  \Omega,

and (ii) the (usual) closure of  \Omegaˆ (  + ) does not contain turning points  \pm 1,  \pm i . Then
there exist  \delta,  B_{1},  B_{2}>0 such that the Borel transform  w_{B}(t, y) satisfies

(4.19)  |w_{B}(t, y)|  \leq   \frac{B_{0}}{|t|^{2}}e^{B_{1}|y|}  ((t, y)\in \Omega\ovalbox{\tt\small REJECT} (  + )  \cross\Sigma(\delta)) .

Especially the formal solution (3.4) is Borel summable uniformly in  \Omegaˆ (  + ) .

(II) In the case when  N is odd:

We further assume that (i) the level curve  \Gamma_{t_{0}}^{(-)} flows into  \infty for each  t_{0}  \in  \Omega,

and (ii) the (usual) closure of  \Omegaˆ  (-) does not contain turning points  \pm 1,  \pm i . Then
there exist  \delta,  B_{1},  B_{2}>0 such that the Borel transform  w_{B}(t, y) satisfies

(4.20)  |w_{B}(t, y)|  \leq   \frac{B_{0}}{|t|^{2}}e^{B_{1}|y|}  ((t, y) \in \Omega\ovalbox{\tt\small REJECT} (-) \cross\Sigma(\delta)) .

Especially the formal solution (3.4) is Borel summable uniformly in  \Omegaˆ  (-) .

(E)

(O)  t_{0}(O)

(E)
Figure 5. The level curve  \Gamma_{t_{0}} and its positive and negative component.

We can show that any compact set  K included in Region I, II, III or IV satisfies

the assumption of Theorem 4.8: In fact, let us take apoint  t_{0} from Region I. Then the

positive and negative components of the level curve  \Gamma_{t_{0}} run as shown in Figure 5, i.e.,
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both of them flow into the infinity. Furthermore, becauseK isacompact set in Region

I, its Stokes closure does not contain  \pm 1,  \pm i . Thus Theorem4.7 follows in this case.

Even in the case of  t being on Stokes curves, the formal solution (3.4) can be Borel
summable: For example when  N is even,  \Gamma_{t_{0}}^{(+)} for  t_{0} on the Stokes curve (O) indicated
in Figure 5 flows into the infinity. Hence the Borel summability of (3.4) follows from
Theorem4.8. On the other hand, when  t_{0} lies on the Stokes curve (E), the corresponding
level curve  \Gamma_{t_{0}}^{(+)} flows into a turning point. Therefore we cannot say anything about the

Borel summability in this case from Theorem 4.8.

Here we give a sketch of the proof of Theorem 4.8. Because the Borel transforma‐

bility of  w(t, \eta) is proved in Proposition 3.2, what remains for the proof is the analytic

continuation of the Borel transform of  w(t, \eta) , and its estimates. Our argument below

is based on the idea used in [S]. We refer to  [KoS] fora full proof of the theorem, where
a slightly different idea is used in which we follow  [KoSc] . To make the argument below

simple, we restrict ourselves to the case when  N=0.

We fix a point   t_{0}\in\Omega and transform the variable from  t to  z by

(4.21)  z(t)= \int_{t_{0}}^{t}\sqrt{\frac{s^{4}-1}{s^{2}}}ds.
Note that the level curve  \Gamma_{t_{0}} (resp., its positive component  \Gamma_{t_{0}}^{(+)} ) in  t‐plane is mapped
to the real axis (resp., the positive real axis) in  z‐plane. We also transform the unknown
functions by

(4.22)  \Phi(z(t), y) =t^{2}w_{B}(t, y) .

By this transformation of the variable and the unknown function, we can integrate

the Borel transform of the equation (3.3) to obtain an integral‐convolution equation:

(4.23)   \Phi(z, y)-\tilde{u}_{2}(z+y) = -\int_{0}^{y}\tilde{F}_{1}(z+y-y')\Phi(z+y-y',
y')dy'
 - \int_{0}^{y}\tilde{F}_{2}(z+y-y')(\Phi*\Phi)(z+y-y', y')dy'
 - \int_{0}^{y}\sum_{n=0}^{\infty}(\tilde{G}_{n,B}*\Phi^{*n})(z+y-y', y')dy',
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where we set  \tilde{u}_{2}(z(t))=t^{2}u_{2}(t) , and coefficients of this equation are given as follows:

(4.24)   \tilde{F}_{1}(z(t))=\frac{1}{\sqrt{t^{4}-1}}(3+u_{1}(t)) ,

(4.25)   \tilde{F}_{2}(z(t))=\frac{1}{2t^{2}\sqrt{t^{4}-1}},
(4.26)

  \tilde{G}_{0,B}(z(t), y)=t^{2}\sum_{n=1}^{\infty}(-1)^{n}\frac{y^{2n-2}}{(2n-
2)^{1}}\{\frac{u_{1}(t)^{2n+1}}{(2n+1)^{1}}+\frac{1}{\sqrt{t^{4}-1}}\frac{u_{1}
(t)^{2n+2}}{(2n+2)^{1}}\},
(4.27)

  \tilde{G}_{1,B}(z(t), y)=\sum_{n=1}^{\infty}(-1)^{n}\{\frac{y^{2n-2}}{(2n-2)
^{1}}\frac{u_{1}(t)^{2n}}{(2n)!}+\frac{1}{\sqrt{t^{4}-1}}\frac{y^{2n-1}}{(2n-1)^
{1}}u_{1}(t)^{2n+1}(2n+1)!\},
(4.28)

  \tilde{G}_{2,B}(z(t), y)=\frac{1}{2t^{2}}\sum_{n=1}^{\infty}(-1)^{n}\{\frac{y^
{2n-2}}{(2n-2)^{1}}u_{1}(t)^{2n-1}(2n-1)! +\frac{1}{\sqrt{t^{4}-1}}\frac{y^{2n-
1}}{(2n-1)^{1}}\frac{u_{1}(t)^{2n}}{(2n)!}\},
and, for  m\geq 1,

(4.29)   \tilde{G}_{2m+1,B}(z(t), y)= \frac{(-1)^{m}}{(2m+1)!t^{4m}}\sum_{n=0}^{\infty}
(-1)^{n}\{\frac{y^{2n+2m-2}}{(2n+2m-2)^{1}}\frac{u_{1}(t)^{2n}}{(2n)!}
 + \frac{1}{\sqrt{t^{4}-1}}\frac{y^{2n+2m-1}}{(2n+2m-1)^{1}}(2n+1)!u_{1}(t)^{2n+
1}\},

(4.30)   \tilde{G}_{2m+2,B}(z(t), y)= \frac{(-1)^{m+1}}{(2m+2)!t^{4m+2}}\sum_{n=0}
^{\infty}(-1)^{n}\{\frac{y^{2n+2m}}{(2n+2m)!}(2n+1)!u_{1}(t)^{2n+1}
 - \frac{1}{\sqrt{t^{4}-1}}\frac{y^{2n+2m-1}}{(2n+2m-1)^{1}}\frac{u_{1}(t)^{2n}}
{(2n)!}\}

Here the convolution  f*g is defined as

(4.31)  (f*g)(t, y) := \int_{0}^{y}f(t, y-y')g(t, y')dy'
for  f(t, y) and  g(t, y) , and

(4.32)  f^{*n}(t, y):=(f*f\cdots*f)(t, y)\tilde{ntimes}.
To obtain a solution of (4.23), we use the successive approximation: Let us define
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 \{\Phi_{n}(z, y)\}_{n\geq 0} by

(4.33)   \Phi_{0}(z, y)=\tilde{u}_{2}(z+y)-\int_{0}^{y}\tilde{G}_{0,B}(z+y-y', y')dy',
(4.34)   \Phi_{1}(z, y)=-\int_{0}^{y}\tilde{F}_{1}(z+y-y')\Phi_{0}(z+y-y', y')dy',
(4.35)   \Phi_{n}(z, y)=-\int_{0}^{y}\tilde{F}_{1}(z+y-y')\Phi_{n-1}(z+y-y', y')dy'

 - \sum_{j=0}^{n-2}\int_{0}^{y}\tilde{F}_{2}(z+y-y')(\Phi_{j}*\Phi_{n-2-j})(z+y-
y', y')dy'
 - \sum_{k=1m_{1}=}^{n-1}\sum_{+\cdots+m ,n-k-1k}\int_{0}^{y}(\tilde{G}_{k,B}
*\Phi_{m_{1}}*\cdots*\Phi_{m_{k}})(z+y-y', y')dy'

for  n\geq 2 . Then, by induction, we can show

Proposition4.9. There exist positive constants  C_{1},  C_{2} , C3 and  r for which

(4.36)  | \Phi_{n}(z, y)| <C_{1}\frac{C_{2}^{n}|y|^{n}}{n!}e^{C_{3}|y|}
holds for any  (z, y)  \in z(\Omega)  \cross { y| dist  (y, \mathbb{R}_{+})  <r}.

By this estimates we find that

(4.37)   \Phi(z, y):=\sum_{n\geq 0}\Phi_{n}(z, y)
converges and gives a solution of (4.23). We can also show that it coincides with
 t^{2}w_{B}(t, y) after the change of variable (4.21), and can prove the statements of the
theorem.

Remark 4.10.

(i) Estimates (4.19) and (4.20) in Theorem 4.8 become stronger than those obtained
in [S] in the sense that we obtain  |t|^{-2} in the right‐hand side. The above argument
is a stronger version of that used in [S]. Theorem4.7, however, follows from the
weaker result of [S]. This vanishing factor  |t|^{-2} will be used in the next section.

(ii) A difference between (3.3) and the Riccati equation appears when we study (3.3)
near the origin: the coefficient  u_{j}(t) in the  0‐parameter solution (3.4) contains
some power of logt, and its degree becomes greater and greater as  j increases.

Such a singular point does not observed for the Riccati equation associated with

the Schrödinger equation with rational potentials, and hence it is not discussed in
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 [KoSc] . As we will see in §6, when we vary arg  \eta , some of Stokes curves and level

curves flow into the origin. By the exactly same reason, it is not straightforward to

include Region V in Theorem 4.7. These problems will be studied in  [KoS].

§5. A consequence of Theorem 4.8

We can construct the solution of (2.1) satisfying the boundary condition (2.2) with
an odd integer  m from the Borel sum of the  0‐parameter solution (3.4) of (3.3), which
we will see below. Note that the solution  y(x) of (2.1) is transformed as

(5.1)

 y(x)= \sqrt{2n-1/2}\{\frac{\sqrt{2n-1/2}}{x}+\frac{1}{\pi x\sqrt{2n-1/2}}\cdot 
u(\frac{x}{\sqrt{2n-1/2}}, (2n-1/2)\pi)\}
 = \frac{2n-1/2}{x}+\frac{1}{\pi x}\cdot u(\frac{x}{\sqrt{2n-1/2}}, (2n-1/2)\pi)

in Section 2.2 and (3.2).

Theorem 5.1. Let  U(t, \eta) be the Borel sum of  u(t, \eta) defined by (3.4). Then
there exist  M>0 and  R>0 such that

(5.2)  y_{n}(x)=  \frac{2n-1/2}{x}+\frac{1}{\pi x}\cdot U(\frac{x}{\sqrt{2n-1/2}}, (2n
-1/2)\pi)
satisfies

(5.3)  |y_{n}(x)- \frac{2n-1/2}{x}| \leq \frac{Mn}{x^{3}} (x>Rn)
for any sufficiently large positive integer  n . Here we choosea branch ofu 0(t) as  N=0

(cf. (4.17)).

Theorem 5.1 and the uniqueness of the solution satisfying  y(x)  \sim(2n-1/2)/x as
  xarrow\infty guarantee that (5.2) should coincide the n‐th separatrix of (2.1) for sufficiently
large  n . (Cf. Section2.2).

Proof. Let  \Omega be a region in I  \geq IV  \geq\{t>1\} so that  \Omega\leqq\{t>1\} is not empty set

(  \Omega=  \{t  \in  \mathbb{C}  |  |t-2|  <  1/2\} is enough). It follows from Theorem 4.8 that there exist
 B_{0},  B_{1}  >0 and  R'>1 such that for any  t>R' and any  y>0,

(5.4)  |w_{B}(t, y)|  \leq \frac{B_{0}}{t^{2}}e^{B_{1}y}
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holds. We can also take aconstant  C_{0}>0 such that

(5.5)  |u_{j}(t)| \leq \frac{C_{0}}{t^{2}} (j=0,1)
holds for  t>R' (cf. (3.20)). Let  W(t, \eta) be the Borel sum of w  (t, \eta) . For  \eta\geq 2B_{1} and
 t>R' , we obtain

(5.6)  |W(t,  \eta)| \leq \frac{B_{0}}{t^{2}}\int_{0}^{\infty}e^{(B_{1}-\eta)y}dy\leq 
\frac{B_{0}}{t^{2}}\int_{0}^{\infty}e^{-\eta y/2}dy\leq\eta^{-1}\frac{2B_{0}}{t^
{2}} \leq \frac{B_{0}}{B_{1}}\frac{1}{t^{2}}.
Therefore, for  t>R' and  \eta>2B_{1},

(5.7)  |U(t, \eta)| \leq |U(t, \eta)-u_{0}(t)|+|u_{0}(t)|

 =\eta^{-1}|ui(t)+W(t, \eta)|+|u_{0}(t)| (∵ (4.18))

 \leq   \frac{1}{2B_{1}}|W(t, \eta)|+|u_{0}(t)|+\frac{1}{2B_{1}}|u_{1}(t)| (∵  \eta>2Bi )

 \leq   \frac{1}{t^{2}}\{\frac{1}{2B_{1}} (C_{0}+\frac{B_{0}}{B_{1}}) +c_{0}\} (∵ (5.5) and (5.6))

 M'

 =:\overline{t^{2}}.
Hence

(5.8)  |y_{n}(x)- \frac{2n-1/2}{x}|  =  | \frac{1}{\pi x}\cdot U(\frac{x}{\sqrt{2n-1/2}}, (2n-1/2)\pi)|
  \leq \frac{1}{\pi x}. \frac{M'}{(x/\sqrt{2n-1/2})^{2}}

 M'(2n-1/2)
 = \overline{\pi x^{3}}

holds for  (2n-1/2)\pi\geq 2B_{1} and  x>R'\sqrt{}2n-1/2 . Let   M=2M'/\pi and  R=\sqrt{}2R'.
Then we conclude that

(5.9)  |y_{n}(x)- \frac{2n-1/2}{x}| \leq \frac{Mn}{x^{3}}
holds for  x>Rn and  n>B_{1}/\pi+1/4.  \square 

§6. Concluding remarks

In ending this paper we give two remarks here.

The first remark concerns the Borel summability of the  0‐parameter solution in

the case when  m  =  2n in (2.3): In the previous sections we have constructed the 0‐
parameter solution of (3.4), and have proven that this corresponds to the solution of
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(2.1) which satisfies (2.3) with  m=2n-1 . By the exactly same way, we can construct
 0‐parameter solutions when  m=2n . In this case the transformation of variables

(6.1)  x=\sqrt{}m+1/2t,
(6.2)  y(x)=z(t)\sqrt{}m+1/2,
(6.3)  \eta=(m+1/2)\pi,

together with (3.2), gives

(6.4)   \eta^{-1}\frac{\partial}{\partial t}u(t, \eta)=(-1)^{m-1}t\sin u(t, \eta)+
\frac{1}{t}+\eta^{-1}\frac{u(t,\eta)}{t}.
When  m=2n , the coefficient of tsinu  (t, \eta) in (6.4) is  -1 . Because of this minus sign,
although Stokes curves coincide with those for  m  =  2n-  1 , the dominance relation

on each Stokes curve becomes reversed. Therefore , although we can prove the Borel

summability of the  0‐parameter solutions in Region I, II, III and IV similarly, we cannot
prove the Borel summability on  \mathbb{R}_{>1} . This is, however, what we expect: As we saw in

Figure 2, the condition (2.3) with  m  =  2n does not determine a solution of (2.1)
uniquely. Therefore the  0‐parameter solutions which corresponds to  m=2n should not
be Borel summable on  \mathbb{R}_{>1}.

The second remark is on the Stokes geometry when  \arg\eta\neq 0 : One way to study

the analytic structure of the Borel transform of  0‐parameter solutions is to vary  \arg\eta

from  0 , and see what happens for such  \arg\eta . This method is known as the “Voros’

radar method”, because rotating  \arg\eta corresponds to rotating the path of integration

of the Laplace integral to define Borel sum. Stokes curves for arg  \eta=\theta is defined by

(6.5)  {\rm Im} (e^{i\theta} \int_{a}^{t}\sqrt{Q(s)}ds) ={\rm Im} (e^{i\theta}\int_{a}
^{t}\sqrt{\frac{s^{4}-1}{s^{2}}}ds) =0,
where  a is a turning point (i.e., azero of  Q). The level curves and their positive or
negative components are defined similarly. See Figure 6 for the Stokes curve when

 \theta=k\pi/8(-4\leq k\leq 4) . As these figures show, the degeneration of the Stokes geometry

for  \theta=0 is resolved for  -\pi/2\leq\theta<0 and for  0<\theta\leq\pi/2 (actually the degeneration
of Stokes geometry occurs only when  \theta=0mod \pi. ).

For  \arg\eta  \neq  0  mod \pi , i.e., when the degeneration is resolved, Theorem 4.8 gives

only a partial answer to the Borel summability of the  0‐parameter solutions (cf. Remark
4.10). To make the argument concrete, we consider the case when  \theta  =  -\pi/4 . In this
case Stokes regions consist of 8 regions (Figure 7). All of the level curves passing through
a point in Regions I, II, III and IV in Figure 7 flow into the infinity, and we can show

the Borel summability of the  0‐parameter solutions by the same argument which gives
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Theorem 4.8. If we choose apoint from Region V, VI, VII or VIII, however, one end of

the level curve passing through it flow into the origin, as shown in 8. The analysis in
this case will be studied in  [KoS].

   
   

 \theta = 3\pi/8

   
 \theta=0

 \theta = -\pi/4 \theta = -3\pi/8 \theta = -\pi/2

Figure 6. Stokes curves for  \theta  =  \pi/2,  3\pi/8,  \pi/4,  \pi/8,  0,  -\pi/8,  -\pi/4,  -3\pi/8,  -\pi/2
 (\arg\eta=\theta) .
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 II

IIIVIV  VIIVIII_{IV}I
Figure 7. Stokes regions for  \theta=-\pi/4.

Figure 8. The level curve for t  0\in V and VII.
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