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Antiferromagnetic interorbital spin-exchange interaction of 171Yb
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We report on the investigation of the scattering properties between the ground state 1S0 and the metastable
state 3P0 of the fermionic isotope of 171Yb. We measure the s-wave scattering lengths in the two-orbital collision
channels as a+

eg = 225(13)a0 and a−
eg = 355(6)a0, using clock transition spectroscopy in a three-dimensional

optical lattice. The results show that the interorbital spin-exchange interaction is antiferromagnetic, indicating
that 171Yb is a promising isotope for the quantum simulation of the Kondo effect with the two-orbital system.
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I. INTRODUCTION

Ultracold atomic gases have been successfully used to
study quantum many-body systems owing to a high degree
of controllability [1]. Thus far, the single-band Hubbard
model has been the main target of quantum simulations of
condensed-matter systems using ultracold atoms, revealing a
great deal of important physics [2]. However, real materials
such as transition metal oxide exhibit rich orbital degrees of
freedom as well as spin, the description of which is beyond
the single-band Hubbard model. In this respect, alkaline-
earth-like atoms have received much attention in recent years
as an important experimental platform for unique quantum
simulations [3]. One of the remarkable properties of two-
electron atoms is the existence of metastable states 3P0 or
3P2 as well as the ground state 1S0. Fermionic isotopes of
alkaline-earth atoms in the ground state |g〉 = |1S0〉 and in the
metastable state |e〉 = |3P0〉 trapped in an optical lattice can
be described by the two-orbital SU(N ) Hubbard Hamiltonian,
including the spin-exchange interaction term between |g ↑〉
and |e ↓〉, where the arrows represent arbitrary components of
the nuclear spin I [4].

One of the most important problems in condensed matter
physics, which highlights a relevant role of the orbital and
spin degrees of freedom, is the Kondo effect [5], in which
an impurity in one orbit forms a spin-singlet state with an
electron in the conduction band in the other orbit, inducing a
Fermi surface instability. The Kondo effect manifests itself in
the increase of the resistance at low temperature, in contrast to
the monotonic decrease expected for noninteracting fermions.
The competition between the magnetic correlation and lo-
calization effects is believed to induce rich quantum phases
represented by a Doniach phase diagram [6]. Several schemes
for cold-atom quantum simulation of the Kondo effect have
been proposed for alkali atoms, which require superlattice
structures [7] or a population of excited bands [8], and a
confinement-induced p-wave resonance [9,10]. However, so
far there have been no reports on the experimental progress of
these proposals. In contrast, the two-orbital system naturally
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realized in the two-electron atoms is a promising candidate for
the quantum simulation of the Kondo effect [11–15].

One of the essential ingredients for the emergence of the
Kondo effect is an antiferromagnetic coupling. The scatter-
ing properties between the 1S0 and 3P0 states in fermionic
isotopes of 173Yb(I = 5/2) [16–19] and 87Sr(I = 9/2) [20]
have been investigated previously, and the interorbital spin-
exchange interactions were found to be ferromagnetic with
a+

eg = 1878(37)a0 and a−
eg = 220(2)a0 for 173Yb and a+

eg =
169(8)a0 and a−

eg = 68(22)a0 for 87Sr, which are the s-wave
scattering lengths in units of the Bohr radius a0 in the
nuclear spin-singlet state |eg+〉 and triplet state |eg−〉, re-
spectively. In Ref. [21], a genuine scheme of tunable spin-
exchange interaction of 173Yb using a confinement-induced
resonance [22] was successfully demonstrated and found
to be consistent with the theoretical results in Ref. [23],
but at the same time the particle loss from the trap was
observed.

In this work, we report on the measurement of the in-
terorbital spin-exchange interaction of 171Yb(I = 1/2). Its
scattering properties remain unexplored among the fermionic
isotopes of the two-electron atoms cooled below the Fermi
temperature TF whereas the p-wave scattering has been stud-
ied at a high temperature of T ∼ 10 μK [24–26]. The clock
transition spectroscopy is performed after loading the atoms
into a three-dimensional (3D) optical lattice with a magic
wavelength of 759 nm. We successfully measure the res-
onances from singly occupied sites and doubly occupied
sites. Using systematic measurements of the resonances at
various magnetic fields, we obtain a+

eg = 225(13)a0 and a−
eg =

355(6)a0. The results show that the spin-exchange interac-
tion between the two-orbital states is antiferromagnetic a+

eg −
a−

eg = −131(19)a0 < 0. With lattice depths given with respect
to 1S0 state atoms and kB as the Boltzmann constant, the
spin-exchange interaction in a combined transverse optical
lattice at the magic wavelength of depth kB × 1 μK and a
longitudinal lattice formed by a laser at 655 nm of depth kB ×
0.5 μK is on the order of kB × 10 nK. This is comparable to
the currently achieved temperature of the atoms in the optical
lattice. This work paves the way to the quantum simulation of
the Kondo effect.
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FIG. 1. (a) Singly and doubly occupied sites of 171Yb(I = 1/2) in an optical lattice at a zero magnetic field. A green (yellow) ball with a
black arrow is the 1S0 (3P0) atom in a nuclear spin state mF = ±1/2. Yellow arrows indicate single-photon excitations to the 3P0 state using
the π -polarized clock light. A blue (red) ellipse shows a nuclear spin singlet (triplet) state. Note that the interatomic interaction between 171Yb
atoms in the ground state is much smaller than that between e–g atoms [27]. (b),(c) Illustrative plots of the magnetic field dependence of the
eigenenergies for the singly occupied sites in the 3P0 state (dashed lines), the interorbital doubly occupied sites (solid curves with color gradient)
and the doubly occupied sites in the ground state (dot-dashed lines) in the case of (b) ferromagnetic and (c) antiferromagnetic spin-exchange
interaction. The line color shows the absolute square of the spin-triplet amplitude |cα

−|2 of the eigenstates |egα〉 = cα
+(B)|eg+〉 + cα

−(B)|eg−〉,
where α = H and L represent the higher and lower branch, respectively. Yellow arrows indicate the optical coupling with the π -polarized light
for the doubly occupied sites.

II. INTERORBITAL SPIN-EXCHANGE INTERACTION

We consider the scattering properties between the 1S0 and
3P0 atoms [16]. Atoms in the different orbitals with different
nuclear spins collide via the following two antisymmetric
channels:

|eg±〉 = (|eg〉 ± |ge〉)(|↑↓〉 ∓ |↓↑〉)/2. (1)

Thus, the onsite Hamiltonian in an optical lattice can be diago-
nal in the nuclear spin singlet-triplet basis, and the interorbital
Hubbard interaction is written as

UX = 4π h̄2

m
aX

∫
d3r|wg(r)|2|we(r)|2, (2)

where aX represents the s-wave scattering length associated
with the scattering channel X = eg±. Here m is the atomic
mass and wα (r) (α = e, g) is the lowest-band Wannier func-
tion. Relevant transition channels in an optical lattice are
illustrated in Fig. 1(a). As the optical coupling with the π -
polarized clock light is allowed only for the transition |gg〉 →
|eg−〉, the energy difference U −

eg − Ugg can be directly obtained
by measuring the frequency shift between the resonances from
singly and doubly occupied sites in an optical lattice.

In a nonzero magnetic field B, the Zeeman interaction
mixes the nuclear spin-singlet with the spin-triplet states, and
the onsite Hamiltonian Heg in the {|eg+〉, |eg−〉} basis is

Heg =
(

U +
eg �(B)

�(B) U −
eg

)
, (3)

where �(B) = δgmF μBB is the differential Zeeman shift be-
tween the 1S0 and 3P0 states. Here mF denotes the nuclear
spin projection along the magnetic field, μB is the Bohr
magneton, and δg = ge − gg, where gg and ge represent the
nuclear g-factors in the 1S0 ground and the 3P0 metastable
states, respectively. The eigenenergies of the Hamiltonian (3)
are

Eα (B) = V0 ±
√

V 2
ex + �(B)2, (4)

where V0 = (U +
eg + U −

eg )/2 is the direct interaction and Vex =
(U +

eg − U −
eg )/2 is the interorbital nuclear spin-exchange inter-

action. Here α = H and L correspond to the higher and lower
branch, respectively. The sign of the spin-exchange interac-
tion Vex is especially important because it characterizes the
magnetism in the ground state of the two-orbital system. For
Vex > 0 (Vex < 0), a nuclear spin-triplet (spin-singlet) has the
lowest energy indicating a ferromagnetic (an antiferromag-
netic) spin-exchange interaction. Figures 1(b) and 1(c) show
the two eigenenergies as a function of a magnetic field for
1(b) ferromagnetic and 1(c) antiferromagnetic interactions. In
the antiferromagnetic case shown in Fig. 1(c), for example,
the higher (lower) of the two colored branches connects to a
spin-triplet (singlet) state, associated with a red (blue) point, at
a zero magnetic field. As the magnetic fields are increased, the
branches asymptotically approach the superpositions of |eg+〉
and |eg−〉 states, associated with the green lines. Thus, clock
transition spectroscopic measurements in an optical lattice at
various magnetic fields enable us to determine V0 and Vex by
fitting the resonance positions with Eq. (4).

III. METHODS

Our experiment starts with the preparation of quantum
degenerate gases of 171Yb by sympathetic evaporative cool-
ing with 173Yb atoms in a crossed dipole trap [28]. The
number of atoms N and the temperature T in the trap are
typically N = 1.0 × 104 and T/TF ∼ 0.2. After the evapora-
tion, the remaining 173Yb atoms are removed by shining the
resonance light on the 1S0–3P1 (F = 3/2) transition at 556 nm
(see Appendix A for the relevant energy diagram). The atoms
are loaded into a 3D optical lattice with a magic wavelength
of 759 nm in 200 ms, and the ground state atoms are excited
to the 3P0 (F = 1/2) state by the π -polarized clock light at
578 nm with a duration of 50 ms. The clock light is generated
by sum-frequency generation in a periodically poled lithium
niobate module using two pump lasers with the wavelengths
of 1030 and 1319 nm. The frequency stabilization of the clock
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laser is done by locking the laser to an ultra-low-expansion
cavity, resulting in about 1 kHz line width with less than
1 kHz/h frequency drift. Then the remaining atoms in the
ground state are removed from the optical lattices by irradi-
ating a laser pulse of 1 ms resonant to the 1S0–1P1 transition
at 399 nm. The blast pulse generally causes heating of the
sample. However, heating of the 3P0 atoms is not detrimental
to the spectroscopy measurement in which we apply the blast
pulse only after the spectroscopy excitation pulse resonant to
the 1S0–3P0 transition. The atoms in the 3P0 state are repumped
to the 1S0 state via the 3S1 state by two laser pulses of 1
ms, whose wavelengths are 649 nm for the 3P0–3S1 transition
and 770 nm for the 3P2–3S1 transition. Finally, the repumped
atoms are captured by a magneto-optical trap using the strong
1S0–1P1 (F = 3/2) transition with a magnetic gradient of 45
Gauss/cm, and the fluorescence from the trap is detected with
an electron multiplying charge-coupled device camera, which
enables a high detection sensitivity of fewer than 100 atoms.
Note that this scheme successfully reproduces the results of
the previous experiments [16,17] for the measurement of the
two-orbital interaction of 173Yb.

IV. RESULTS

Figures 2(a)–2(d) show the results of the clock transition
spectroscopy in optical lattices at a zero magnetic field. Here
s denotes the lattice depth scaled by the recoil energy ER =
h̄2/2mλ2

L, with λL and m being the lattice wavelength and
the mass of 171Yb, respectively. We observe the resonances
associated with singly occupied sites and doubly occupied
sites. Here the data are plotted as a function of the detun-
ing with respect to the resonance frequency for the singly
occupied sites, which is easily identified from the expected
magnetic field dependence explained in the following, and
the robustness for the change of the atom density. The res-
onances observed at the higher-frequency side of resonance
of the singly occupied sites are successfully identified as the
resonances from the doubly occupied sites by confirming the
disappearance of the peaks at low atom density above T/TF =
0.3 and also the fact that, as shown in Fig. 2(e), the transition
frequency depends on the lattice depth owing to the change
of the on-site interaction according to Eq. (2), where the
Wannier function changes upon the lattice depth in contrast
to the resonances of singly occupied sites. The two-particle
peaks associated with different Wannier orbitals other than
those corresponding to the lowest band of |eg−〉 branch were
not clearly identified with the current signal-to-noise ratio in
our experiment. Two-photon excitation is not expected to be
observed since the excitation is chosen to be weak to suppress
power broadening of the spectrum. From this measurement
of the interaction shifts U −

eg − Ugg at various lattice depths,
we obtain the s-wave scattering length in a spin-triplet state
a−

eg = 355(6)a0 through fitting the interaction shifts with the
Hubbard interaction energy in Eq. (2). Here the error shows
the standard deviation of the fits in Fig. 2(e). By also including
higher band contributions the precision in the determination
of the scattering lengths can be further improved. However,
numerical calculations in Supplemental Material of Ref. [17]
show that this correction is negligible compered with the
error of the data. Previously, the s-wave scattering length

FIG. 2. Clock transition spectroscopy in a 3D optical lattice for
different lattice depths: (a) s = 15, (b) s = 20, (c) s = 25, (d) s = 30.
The horizontal axis shows the detuning of the clock laser from
the resonance of singly occupied sites. Two peaks labeled by n
correspond to resonances of singly and doubly occupied sites. Error
bars show the standard deviations of the mean values obtained by
averaging three measurements. (e) Interaction shift as a function of
s. Error bars are 95% confidence intervals of resonance position fits.
The solid line represents fits to the data with Eq. (2).

of a−
eg = 25a0 was inferred in Ref. [25], but we believe the

uncertainty of the value should be large because the previous
work was performed at the temperature of 10 μK, where
p-wave collision is dominant, and a small contribution of the
s-wave scattering is difficult to estimate accurately, as was
mentioned in Ref. [25].
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FIG. 3. (a) Magnetic field dependence of clock transition fre-
quencies of 171Yb in 3D magic optical lattice. Squares mark transi-
tions to |e ↓〉 and diamonds mark transitions to |e ↑〉. Circle (triangle,
only at 145 Gauss) points indicate transitions to |egH〉 (|egL〉), which
asymptotically connect to |eg−〉(|eg+〉) in a zero magnetic field.
The lattice depth is (sx, sy, sz ) = (30, 30, 30), where si (i = x, y, z)
denotes the lattice depth in the units of the recoil energy along
the i axis. Error bars are 95% confidence intervals of resonance
position fits. Solid lines represent the fits to the data with Eq. (4).
(b) Resonance positions as a function of a magnetic field extending
to higher magnetic fields.

In addition, we measure the transition frequencies at vari-
ous magnetic fields in a 3D optical lattice of s = 30 as shown
in Fig. 3. As depicted in Fig. 1(b), the resonances from singly
occupied sites are well fitted with the two linear lines as a
function of a magnetic field, with a slope of �(B)/(Bh) =
−200.0(6) Hz/Gauss, which is in good agreement with pre-
vious work in Refs. [29,30]. The corresponding spin state
for each resonance is also confirmed by observing the nu-
clear spin distribution after the excitation using an optical
Stern-Gerlach scheme [28]. The important features of the
excitation associated with doubly occupied sites in the case
of Vex < 0, depicted in Fig. 1(c), are that in a lower magnetic
field, the two-particle state is excited to the higher branch,
asymptotically connected to a nuclear spin-triplet state |eg−〉
at a zero magnetic field, whereas it is excited to both the higher

and lower branches at higher magnetic fields owing to mixing
between the spin-singlet and spin-triplet states. The observed
experimental data in Figs. 3(a) and 3(b) clearly show these
features expected for Vex < 0. Fitting the observed transition
frequencies in Fig. 3 with the eigenenergies in Eq. (4) yields
Vex/h = −1.03(15) kHz and V0/h = 4.56(13) kHz for the lat-
tice depth of 30 ER, from which we can obtain the s-wave scat-
tering lengths for nuclear spin-singlet and spin-triplet states
a+

eg = 225(13)a0 and a−
eg = 356(13)a0, respectively. The a−

eg
obtained by the measurement in Fig. 3 is consistent with the
result in Fig. 2 within the error bar.

V. DISCUSSION

We discuss the experimental feasibilities for the antiferro-
magnetic Kondo lattice model (KLM) proposed in Ref. [4],
where the 1S0 and 3P0 states of 171Yb atoms correspond to
mobile particles and localized spins, respectively. The 3P0

atoms can be localized in a quasiperiodic optical lattice by
additionally introducing an optical lattice with a different
lattice constant such as 650 nm, which is deep only for the 3P0

atoms, or in a state-dependent optical lattice [21]. The phase
diagram of the KLM, called the Doniach phase diagram [6],
is characterized by spin correlation between itinerant atoms
and localized spins. In the strong coupling regime, a heavy-
Fermi-liquid behavior is expected when the temperature is
below the Kondo temperature. The Kondo temperature in
the state-dependent optical lattice is estimated to be approx-
imately 10 nK, which is comparable with experimentally
achievable temperature in the optical lattice (see Appendix C
for the calculation of the Kondo temperature). The two-orbital
system using 171Yb atoms, therefore, is quite promising for
realization of the quantum simulation of the Kondo effect.
In addition, the negligible interaction between atoms in the
ground state offers another advantage that the atoms in the
ground state 1S0 is well described as a noninteracting metallic
state. This is ideal for the study of the Kondo effect because
the origin of the suppression of quantum transport are well
separated from the interaction effect as in the Mott insulating
phase. Effective mass enhancement of the delocalized atoms
will be probed using the dipole oscillation scheme proposed
in Ref. [11]. In the weak coupling regime, on the other hand,
atoms in the ground state can mediate the Ruderman-Kittel-
Kasuya-Yoshida (RKKY) interaction [31] between atoms in
the 3P0 state, with a characteristic energy of kBTRKKY ∼
V 2

ex/Jg. The modulated spin-exchange interaction induced by
the RKKY interaction will be observed using double-well
potentials as proposed in Ref. [4].

VI. CONCLUSION

In conclusion, the clock transition spectroscopy of a quan-
tum gas of 171Yb atoms in a 3D optical lattice has been per-
formed successfully. We have measured the s-wave scattering
lengths in the two interorbital collision channels and have
found that the spin-exchange interaction is antiferromagnetic.
This work opens the possibility of the quantum simulation
of the Kondo effect using alkaline-earth-like atoms. In addi-
tion, our result for 171Yb provides useful information for the
determination of the mass-scaling properties of the 1S0–3P0
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interorbital scattering lengths of Yb atoms, which will also be
useful for a possible optical lattice clock with weakly bound
molecules [32].
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APPENDIX A: ENERGY LEVELS OF YTTERBIUM ATOM

Figure 4 shows the optical transitions related to the de-
tection of the 3P0 atoms. Note that the branching ratios of
the 3S1 → 3P0 and 3S1 → 3P2 transitions are 0.36 and 0.51,
respectively [33].

APPENDIX B: LOCALIZATION OF ATOMS IN THE 3P0

STATE

Figure 5 shows a schematic diagram of the proposed lattice
geometries for probing the Kondo effect. Strong transverse
confinement is realized with a deep two-dimensional lattice
with the magic wavelength of 759 nm as shown in Fig. 5(a).
We consider two kinds of longitudinal lattice potentials. Fig-
ure 5(b) shows the state-dependent potential with a wave-
length of 655 nm, where the polarizability of the 3P0 state is
11 times larger than that of the 1S0 state. Figure 5(c) shows

FIG. 4. Relevant energy levels for the clock transition spec-
troscopy. After the excitation to the 3P0 state, associated with a
yellow arrow, remaining atoms in the ground state are blasted with
a strong 1S0 → 1P1 transition, corresponding to a purple arrow.
Then the 3P0 atoms are repumped into the ground state via a 3S1 →
3P1 → 1S0 process using simultaneous applications of 3P0 → 3S1

and 3P2 → 3S1 resonant light beams, associated with solid red
arrows. Finally, the repumped atoms are captured with a magneto-
optical trap using the 1S0 → 1P1 transition. Dashed arrows represent
relevant spontaneous decays.

FIG. 5. Schematic diagram of the lattice geometry for the Kondo
system. (a) Strong transverse potential with the wavelength of
759 nm to achieve a large value of |Vex|. (b) State-dependent lattice
with a wavelength of 655 nm to localize the 3P0 atoms by the
Anderson localization. (c) Bichromatic lattice using two beams with
the wavelengths of 759 and 650 nm.

the bichromatic potential, which consists of a primary lattice
with the magic wavelength and a secondary lattice with a
wavelength of 650 nm, which gives much larger light shift to
the 3P0 atom than the 1S0 atom. In this system, only the atoms
in the 3P0 state experience the incommensurate potential,
resulting in the Anderson localization [34].

APPENDIX C: CALCULATION OF KONDO
TEMPERATURE

The Anderson scaling method shows that a renormalized
spin-exchange interaction is enhanced with decreasing tem-
perature and diverse at the Kondo temperature [35], given by

TK = D
√

2|Vex|ρ exp

(
− 1

2|Vex|ρ
)

, (C1)

where D and ρ represent the band width and the density of
states at the Fermi energy, respectively. This method examines
how the T-matrix including scattering information between

FIG. 6. Calculation of the dimensionless spin-exchange interac-
tion of 171Yb in the state-dependent optical lattice (λ = 655 nm)
to localize 3P0 atoms. A horizontal axis represents the longitudinal
lattice depth for the 1S0 atom in units of the recoil energy ER,655 =
h2/(2mλ2). Circle, diamond, and square points indicate the lattice
depths for the transverse confinement of 30, 60, and 90 ER,759,
respectively. Note that the expression for the Kondo temperature (C1)
is reliable below 0.6 indicated by a dashed line.
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the conduction electrons and a magnetic impurity is changed
when the high-energy electrons in the edge of the band are
integrated out. The expression for the Kondo temperature (C1)
is valid in the weak coupling regime where higher-order terms
O((|Vex|ρ)4) are negligible in the perturbative renormalization
group approach for the Kondo model. In estimating the Kondo
temperature in the one-dimensional configuration of the two
orbital system, we assume D = 2Jg and ρ = 1/(2πJg), where
Jg represents the tunneling energy of the atom in the 1S0 state.
Figure 6 shows the calculation of the dimensionless spin-
exchange interaction |Vex|ρ as a function of the longitudinal
lattice depth for several transverse confinements in the case
of the state-dependent lattice. Note that the expression for
the Kondo temperature (C1) is reliable for |Vex|ρ below 0.6
indicated by a dashed line. For these values, the Kondo tem-
perature is estimated to be about 10 nK, and the Kondo effect
could emerge at an experimentally achievable temperature in
an optical lattice.

APPENDIX D: EVALUATION OF LOCALIZATION OF 3P0

ATOM IN BICHROMATIC LATTICE

We consider a single-particle Hamiltonian in the
bichromatic potential, given by

H = p2

2m
+ s1ER,1 sin2(k1x) + s2ER,2 sin2(k2x + φ), (D1)

where the indexes i = 1 and 2 correspond to the primary lat-
tice and the secondary lattice, respectively. Here ki = 2π/λi

and φ are the wavelength number of the lattice and an arbitrary
phase, respectively. In the tight-binding limit, the Hamiltonian
in Eq. (D1) can be mapped to the Aubry-André model [36],
defined by

H = −J
∑

j

(c†
j+1c j + H.c.) + �

∑
j

cos(2πβ j + φ)c†
j c j,

(D2)

FIG. 7. Numerical calculation of the IPR in the bichromatic
lattice with system size of 500 sites. A vertical axis shows the
quasiperiodic disorder strength � scaled by the hopping J . A hor-
izontal axis indicates a label number assigned to an eigenstate. The
relative phase φ is set to 0.

with β = λ1/λ2 and � = s2ER,2/2. Here c j (c†
j ) is the an-

nihilation (creation) operator on the jth site of the primary
lattice with the wavelength λ1, and J represents the hop-
ping energy. In order to evaluate the localization of the 3P0

atom in the quasiperiodic potential, we introduce the inverse
participation ratio (IPR) [37]

∑
i |〈wi|ψ〉|4, which measures

the overlap between the eigenstate of the Hamiltonian |ψ〉
and the Wannier state of the ith site |wi〉. When a particle
is maximally localized, the IPR is unity. Figure 7 shows the
numerical calculation of the IPR in the bichromatic lattice,
as depicted in Fig. 5(c), which consists of the primary lat-
tice with λ1 = 759 nm and s1 = 5 and the secondary lat-
tice with λ2 = 650 nm. The result shows that almost all of
the eigenstates are localized above �/J ∼ 3, corresponding
to s2 = 0.3.
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