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Experimental determination of Bose-Hubbard energies
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We present an experimental measurement of the ensemble averages of both the kinetic and interaction
energies of the three-dimensional Bose-Hubbard model at finite temperature and various optical lattice depths
across weakly to strongly interacting regimes, for an almost unit filling factor within single-band tight-binding
approximation. The kinetic energy is obtained through Fourier transformation of a time-of-flight signal, and
the interaction energy is measured using a newly developed atom-number-projection spectroscopy technique, by
exploiting an ultranarrow optical transition of two-electron atoms. The obtained experimental results can be used
as benchmarks for state-of-the-art numerical methods of quantum many-body theory. As an illustrative example,
we compare the measured energies with numerical calculations involving the Gutzwiller and cluster-Gutzwiller
approximations, assuming realistic trap potentials and particle numbers at nonzero entropy (finite temperature);
we obtain good agreement without fitting parameters. We also discuss the possible application of this method
to temperature estimations for atoms in optical lattices using the thermodynamic relation. This study offers a
unique advantage of cold atom system for “quantum simulators.”
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I. INTRODUCTION

Ultracold atoms in optical lattices are strongly interacting
quantum many-body systems that can be well described by
the tight-binding single-band (Bose, Fermi) Hubbard model
[1,2]. The exotic many-body quantum phases of these “arti-
ficial solids” and their phase transition properties have been
extensively investigated because of their defect-free lattices
and widely tunable experimental parameters, as well as the
availability of powerful detection methods [3,4]. An important
aim of experiments using artificial solids (so-called “quantum
simulators”) is phase diagram mapping of the fundamental
many-body model Hamiltonians. One of the most interesting
problems, which has attracted much attention and has been
widely studied, is the quantum phase transition of ultracold
bosonic atoms in a three-dimensional (3D) optical lattice from
a superfluid (SF) state to a Mott insulating (MI) state [3].

The Hamiltonian of the Bose-Hubbard model is given by

Ĥ = −t
∑
〈 j,l〉

(â†
j âl + H.c.) + U

2

∑
j

â†
j â

†
j â j â j

+
∑

j

(Vj − μ)â†
j â j, (1)

where â†
j , â j are the creation and annihilation operators at

site j, respectively; t is the tunneling matrix element between
nearest-neighbor sites; U is the on-site interaction energy; μ

is the chemical potential; and Vj is the local potential offset at
site j, which originates from the trap potential and Gaussian
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envelopes of optical lattice lasers. Here
∑

〈 j,l〉 indicates sum-
mation over all neighboring sites. Note that we count only one
time per 〈 j, l〉 pair.

For the Bose-Hubbard system, the competition between
the kinetic (atom tunneling) and interaction energies yields
a quantum phase transition at low temperature [5]. In the
SF phase, the atoms are spread out over the entire lattice
and have long-range phase coherence. In the MI phase, the
atoms are localized at individual lattice sites with integer atom
occupancies and have no phase coherence across the entire
lattice. The ratio of U/t determines the quantum phase at zero
temperature. The system is in the MI or SF phase when U/t >

(U/t )c or U/t < (U/t )c, respectively, with the location of the
critical point (U/t )c depending on the system dimensionality
and the filling factor. For the 3D homogeneous Bose-Hubbard
model at unit filling, (U/t )c has been numerically calculated
to be 29.34(2) using quantum Monte Carlo methods [6].

The quantity taken as the experimental observable is im-
portant. Since the first observation of SF-MI transition in 2002
[5], the quantities most commonly used to characterize the
properties of the quantum states in the Bose-Hubbard system
have been the visibility and widths of the interference peaks
of the time-of-flight (TOF) signals, which are sensitive to
atomic phase coherence. These quantities capture the essence
of the quantum states. In an SF state, the existence of long-
range phase coherence over entire lattice sites yields high
visibility and narrow widths for the interference peaks in the
TOF signal. In contrast, MI state formation is signaled by
a decrease in the visibility and broadening of the interfer-
ence widths, resulting from a decrease in the atomic phase
coherence. Experimental techniques such as noise-correlation
measurements [7], quantum gas microscopy [8], and radio-
frequency (rf) [9] and laser spectroscopy [10] are used to
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probe the phase coherence, density-density correlation, and
atom number distribution, respectively.

The most important quantity governing the quantum phase
at thermal equilibrium is the Hamiltonian. However, despite
its crucial importance, there are no reports of systematic
measurement of the energy terms in the Hamiltonian, i.e., the
ensemble averages of both the kinetic and interaction terms,
the competition of which induces the SF-MI quantum phase
transition. The lack of such experiments is partly because no
established experimental methods or protocols are known to
accurately evaluate the ensemble averages of the kinetic and
interaction terms.

Here we present comprehensive measurements of the en-
semble averages of both the kinetic and interaction terms at
finite temperature and various optical lattice depths, for a
3D Bose-Hubbard model with an almost unit filling factor
within single-band tight-binding approximation. We establish
a protocol to accurately extract the ensemble average of the
kinetic term from the TOF signal, with careful consideration
of the finite TOF effect and interatomic interaction effect.
We also develop a method of atom-number-projection spec-
troscopy, which enables direct measurement of the number
distributions of multiply occupied sites at any optical lattice
depth and, hence, accurate evaluation of the ensemble average
of interaction terms across the weakly to strongly interact-
ing regimes. Excellent resolution that allows different site
occupancies to be distinguished is obtained by exploiting an
ultranarrow optical transition between the electronic states of
1S0 and 3P2, which have quite different on-site interactions
in the case of the two-electron atoms of ytterbium (Yb) (see
also Appendix A). Different from the standard quantum gas
microscopy method, which detects the parity of the atom
number at a site due to the pairwise loss of atoms induced by
light-assisted collision during fluorescence imaging [11], our
atom-number-projection spectroscopy technique can detect
any atom number at an n-occupied site. We experimentally
examine occupancy-dependent properties such as the finite
lifetime and transition probability in order to accurately eval-
uate the total atom number at the n-occupied sites. We exper-
imentally determine the kinetic and interaction terms 〈K̂〉 =∑

〈 j,l〉(〈â†
j âl〉 + c.c.) and 〈Ĝ〉 = ∑

j〈â†
j â

†
j â j â j〉, respectively,

and use the numerical values of the t (V0) and U (V0) parame-
ters reported in Ref. [12] (V0 is the optical lattice depth).

Using these methods, the ensemble averages of the kinetic
and interaction terms are successfully obtained at finite tem-
perature and various optical lattice depths. These results can
be used as benchmarks in state-of-the-art numerical meth-
ods pertaining to quantum many-body theory. In this work
we compare the measured energies with numerical calcu-
lations involving Gutzwiller and cluster-Gutzwiller methods
at nonzero entropy (finite temperature). The trap potentials
and particle numbers used in the calculations are identical
to those of the experiments, and we obtain good agreement
without fitting parameters. We also discuss application of this
experimental method to temperature estimations for atoms in
optical lattices using the thermodynamic relation.

This paper is organized as follows: In Sec. II we explain
our experiment setup and procedure. The method for mea-
suring the kinetic (interaction) energy is presented in Sec. III
(Sec. IV). We discussed a possibility of measuring ensemble

Horizontal FORT
(532 nm)

Ver�cal FORT
(532 nm)

X

Y
Z

Op�cal la�ce
(532 nm)

Op�cal la�ce
(532 nm)

Op�cal la�ce
(532 nm)

g

CCD camera
for absorp�on imaging

Light for High-
resolu�on
spectroscopy
(507nm)

Light for 
absorp�on
imaging
(399nm)

FIG. 1. Schematic view of setup. Only the FORT beams and
optical lattice beams, the probe light for absorption imaging, and the
excitation light for high-resolution spectroscopy are shown.

average of potential energy term in Sec. V. In Sec. VI we
present our main experimental results, including the kinetic
an the interaction energies. We compare the measured en-
ergies with numerical calculations involving Gutzwiller and
cluster-Gutzwiller methods at finite temperature in Sec. VII.
Section VIII is devoted to conclusions and further prospects.

II. BASIC EXPERIMENT SETUP AND PROCEDURE

We briefly describe the basic experiment setup and proce-
dure here. Further details are given in Appendix B.

A. Atom preparation

Our experiment began with magneto-optical trapping of
174Yb atoms from an atomic oven. Evaporative cooling was
performed using a crossed-beam optical far-off resonant trap
(FORT) geometry formed by two orthogonal horizontal and
vertical FORT laser beams of 532-nm wavelength with ellip-
tical laser-beam waists (see Fig. 1).

After preparation of the 174Yb Bose-Einstein condensate
(BEC), we adiabatically ramped up a 3D cubic optical lattice
generated by three orthogonal, retroreflected laser beams also
having 532-nm wavelength and propagating along the X , Y ,
and Z axes. The number of atoms before loading onto the
optical lattice was stabilized from 1.4 × 104 to 1.8 × 104.

The experimental procedures for the high-resolution
spectroscopy and TOF measurements, including atom
loading onto the optical lattice, are shown in Figs. 2 and
3, respectively. In the first 100 ms of loading, the optical
lattice depth was increased to 5ER, where the recoil energy
ER = h2/(2mλ2

L ), with h being the Planck constant and λL the
optical lattice wavelength (532 nm). Then we increased the
final lattice depth of V0 in 10(V0/ER − 5) ms, with the FORT
powers being kept constant.

B. Preparation of various atomic entropies

One of the important considerations in our experiment was
preparation of cold atoms with various atomic entropies in

033609-2



EXPERIMENTAL DETERMINATION OF BOSE-HUBBARD … PHYSICAL REVIEW A 99, 033609 (2019)

FIG. 2. Schematic time sequence (not scaled) for high-
resolution spectroscopy, where t1 = 10(V0/ER − 5) (ms) and t2 =
0.01|V0/ER − 15| (ms). The double-sided arrows indicate variable
parameters (see text for details).

the same experiment setup. We controlled the atomic entropy
by changing the FORT depth in the final stage of evaporative
cooling. Because the FORT depth depends on the horizontal
FORT power, we in fact controlled the final horizontal FORT
power in this manner. However, the trap frequencies also
depend on the FORT power; therefore, we changed the hor-
izontal FORT power during adiabatic loading onto the optical
lattice in the first 100 ms (see Figs. 2 and 3).

FIG. 3. Schematic time sequence (not scaled) for TOF measure-
ment, where t1 = 10(V0/ER − 5) (ms) and t2 = 0.01|V0/ER − 15|
(ms). The double-sided arrows indicate variable parameters (see text
for details).

Because direct measurement of the atomic entropy in the
optical lattice is difficult, we estimated this property from
the initial atomic entropy and heating during lattice loading.
The initial entropy S1 in a FORT harmonic trap is [13]

S1 = 4N1kB
ζ (4)

ζ (3)

(
T

Tc

)3

, (2)

where N1 is the atom number; T is the atomic temperature in
the FORT, which can be directly measured via a TOF method;
Tc is the critical temperature; ζ (z) is the zeta function; and kB

is the Boltzmann constant. Here

kBTc = h̄ω̄

(
N

ζ (3)

)1/3

, (3)

where ω̄ is the geometric mean of the three trap frequencies
and h̄ is the Planck constant divided by 2π .

To estimate the additional atomic heating during loading
onto the optical lattice, we measured the entropy S2 and
atom number N2 after adiabatically ramping down the optical
lattice in reverse order (see Appendix B). We assumed that
the entropy per atom in the optical lattice sOL was written as
in Eq. (4), using the entropy before (after) loading onto the
optical lattice S1 (S2):

sOL = 1

2

(
S1

N1
+ S2

N2

)
. (4)

We obtained the atomic entropy sOL by taking five TOF
images and calculating each atomic entropy; these values were
then averaged.

III. METHOD FOR MEASURING KINETIC-TERM
ENSEMBLE AVERAGE: FOURIER

TRANSFORMATION OF TOF SIGNAL

Here we present a method for obtaining the ensemble
average of the first term in Eq. (1) (the kinetic term) −t〈K̂〉.
We found that 〈K̂〉 can be simply measured from TOF images.
The atomic-density distribution nTOF(rTOF) after the TOF tTOF

is given by [14,15]

nTOF(rTOF) =
(

m

h̄tTOF

)3

|w̃0(kTOF)|2S(kTOF), (5)

where m is the atom mass, w̃0(kTOF) is the Fourier trans-
formation of the Wannier function in the lowest Bloch band
w0(r), and kTOF = mrTOF/h̄tTOF. The structure factor S(kTOF)
is expressed as

S(kTOF) =
∑

j,l

eikTOF·(r j−rl )−i( m
2h̄tTOF

)(r2
j −r2

l )〈â†
j âl〉, (6)

where r j indicates the site position with index j in the optical
lattice and 〈·〉 represents the ensemble average. The second
term in the exponential, exp[−im(r2

j − r2
l )/(2h̄tTOF)], intro-

duces the effect of the finite TOF. This term corresponds to
the quadratic term in the Fresnel approximation of near-field
optics [16].

Details of our derivation are given in Appendix C. Here,
for simplicity, we first consider the one-dimensional case and
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ignore the finite TOF effect. Equation (6) is then expressed as

S(kx ) =
∑

j,l

eikx (x j−xl )〈â†
j âl〉. (7)

Note that we omit the “TOF” label for simplicity in this
section. We assume that 〈â†

j âl〉 = 〈â†
l â j〉 and

S(kx ) =
∑

j,l

〈â†
j âl〉 cos[kx(x j − xl )]. (8)

Next, we define the kinetic energy −t〈K̂〉x =
−t

∑
〈 j,l〉(〈â†

j âl〉+ c.c.) = ∑
E (kx )〈ĉ†(kx )ĉ(kx )〉, where ĉ(k)

and ĉ†(k) are the annihilation and creation operators of
the Bloch states and ĉ(k) = 1/

√
NL

∑
j â j exp(ik · r j ). The

quasimomentum kx runs over the first Brillouin zone only and
satisfies the periodic boundary condition kx = 2πnx/(NLxdlat )
(nx = 0,±1 ± 2, . . . ). Here NLx is the number of lattice sites
along the X axis and dlat is the lattice spacing (266 nm).
We straightforwardly obtain

∑〈â†
j â j+1〉 through a Fourier

transformation of S(kx ) in the first Brillouin zone, such that

〈K̂〉x = 2
∑

j

〈â†
j â j+1〉 = 2

∑
j

〈â†
j â j−1〉

= dlat

π

∫ π/dlat

−π/dlat

dkxS(kx ) cos (dlatkx ), (9)

where S(kx ) = NLx〈ĉ†(kx )ĉ(kx )〉. Equation (9) implies that the
energy of the lowest Bloch band is E (kx ) = −2t cos(dlatkx ).
Equation (9) has not been explicitly reported to date, despite
its importance and simplicity. In the present work, this simple
relation allows us to successfully evaluate the kinetic energy
from experimental observation.

In the experiment, we obtained a two-dimensional (2D)
atomic-density distribution I (x, z), because the TOF signal
was integrated in the probe direction (which we took to be the
Y axis). From the atomic linear densities along the X and Z
axes, we obtained S(kx ) and S(kz ) by fitting of the S(k)|w̃(k)|2
function, where the Wannier function w̃(k) was obtained by
numerically calculating the lowest band of the optical lattice
for noninteracting atoms. We consider the structure factor of
the form S(k) = ∑19

α=0 Aα cos(αkdlat ), which is depicted in
Fig. 4 (Aα are fitting parameters). Then we obtained the en-
semble averages of the kinetic energy −t〈K̂〉x (−t〈K̂〉z) from
S(kx ) [S(kz )], and assumed that the total-ensemble average of
the kinetic term −t〈K̂〉 was

−t〈K̂〉 = − 3
2 t (〈K̂〉x + 〈K̂〉z ). (10)

Note that it is possible to obtain nonlocal atomic corre-
lations

∑
j〈â†

j â j+n〉 (n = 2, 3, . . . ) using the method shown
here. As a demonstration, we directly determine the coherence
length in Appendix D. In addition, the 2D atomic correlation
can be obtained using the 2D Fourier transformation.

A. Effect of finite TOF

The effect of a finite TOF arises from the exp[−im(r2
j −

r2
l )/(2h̄tTOF)] term in Eq. (6). Instead of adding this effect

to TOF image in order to directly compare the experimental
results [17], we experimentally evaluated the total site number
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FIG. 4. (a) Linear atom density of TOF signal integrated along
vertical axis. Inset: TOF image with identical parameters. The TOF
was 14 ms and ten images were averaged. The lattice depth was 5ER

and the atomic entropy was 0.04 kB. The fitting results using the
S(kx )|w̃(kx )|2 function (red solid line) and squared Wannier func-
tion |w̃(kx )|2 (dotted green line) are also shown. Here kL = π/dlat.
(b) S(k) obtained by fitting data shown in (a).

along the α axis NLα (α = x, z) in order to remove this effect.
Details are given in Appendix C. The basic concept is that it
is possible to evaluate the true value (i.e., the infinite TOF)
from experimental measurements with several TOFs through
extrapolation. In this work we measured the atom correlation
of 〈K̂〉α (tTOF,�l ) = ∑

j〈â†
j â j+�l〉, where �l was 1, 2, 3, 4

and tTOF was set to TOFs of 14 and 18 ms. Then, 〈K̂〉α (∞,�l )
(�l = 1, 2, 3, 4) and the total site number along the α axis
NLα were obtained through fitting using equations similar to
Eq. (C17). For a TOF of 14 (18) ms, a reduction of 6%
(4%) in the value of

∑
j〈â†

j â j+1〉 from its value for an infinite
TOF was estimated. Note that this finite TOF effect was
experimentally checked using data sets for various TOFs, with
the other experimental parameters unchanged, and the validity
of our result was confirmed (see Appendix C). Because the
correction of the finite-TOF effect is model dependent, we
consider estimated deference between the values before and
after the correction as a systematic error.

It is noted that the finite-TOF effect scales as
exp(−imd2

latN
2
L ) for whole sites. However, it scales as

exp(−imd2
latNL ) for neighbor sites, which contribute to the

kinetic energy, and resulted in a highly suppressed finite-TOF
effect for measurement of atom correlation in the neighbor
sites. The corrections itself are estimated to be within 6%
and therefore the selection of the assumption of the density
function is not so critical.
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B. Effect of interatomic interaction during TOF

The discussion above is based on the Wannier states of
noninteracting atoms. Here we discuss the effect of inter-
atomic interaction during TOF. First is the validity of the
Wannier function numerically calculated. The kinetic energy
of noninteracting atoms in the lowest band of the optical
lattice is estimated to be h̄ωL, where ωL is the oscillation
frequency at the bottom of the lattice potential [15]. The ratio
of the interaction energy Un(n − 1)/2 to the kinetic energy
h̄ωL, i.e.,

η = Un(n − 1)

2h̄ωL
, (11)

determines the relative importance of the interatomic interac-
tion during the TOF. The ratio η was mostly far lower than 1
under our experimental conditions. Our calculations indicate
that η takes the maximum value of 0.25 at 7ER depth in
the case of triple occupancy n = 3 for which the population
fraction is less than 0.1 (see Sec. VI). Therefore, the effect of
the interatomic interaction was negligible in our experiment.

The second possible influence of the interatomic interac-
tion on the TOF measurements is the conversion from the
interaction energy, to the kinetic energy after release from the
optical lattice [18]. We discuss it in Sec. VII B.

IV. METHOD TO MEASURE ENSEMBLE AVERAGE OF
INTERACTION TERM: ATOM-NUMBER-PROJECTION

SPECTROSCOPY

We have developed a method of atom-number-projection
spectroscopy, which enables direct measurement of the num-
ber of multiply occupied sites at any optical lattice depth
and, hence, accurate evaluation of the interaction term across
the weakly to strongly interacting regimes. One may wonder
whether such a method is truly necessary, because information
on the numbers of n-occupied sites is straightforwardly ob-
tained through high-resolution spectroscopy for the atoms in
a deep optical lattice. In fact, site-occupancy-resolved spectra
in a deep optical lattice have already been reported in [10] for
the 1S0-3P2 transition, in [19,20] for the 1S0-3P0 transition of
Yb, and in [21] for the 1S0-3P0 transition of strontium (Sr).
In contrast, as shown in Fig. 5(a), a single, broad spectrum
of coexisting SF and normal components was observed in
the case of a shallow optical lattice depth [10]. The hopping
time at small optical lattice depth (0.6 ms for 5ER depth)
is comparable to the excitation time (0.5 ms in the case of
Fig. 5); therefore, the peaks of the observed spectra are not
well separated.

A shorter excitation time is preferable for suppressing
atom hopping during excitation. However, this causes spectral
broadening of the resonance lines, significantly exceeding
the separation between peaks under our conditions. The fre-
quency separation of the peaks is given by the collisional shift:
�νcol = (Uge − Ugg)/h. Here Ugg(= U ) is the on-site two-
body interaction and Uge is the two-body interaction between
the 1S0 state (|g〉) and 3P2 state (|e〉).

As an alternative, we have developed a method: atom-
number-projection spectroscopy. In this approach we increase
the optical lattice depth quickly in order to freeze atom
hopping, and then irradiate the atoms with an excitation
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FIG. 5. Atom-number-projection spectroscopy. Three scans are
superimposed after the long-term laser frequency drift is compen-
sated. (a) Single, broad spectra of coexisting SF and normal com-
ponents are observed at a small optical lattice depth (5ER) without
the projection method. (b) Site-occupancy-resolved spectra can be
obtained in the small optical lattice (5ER) using the projection
method of a sudden increase to 15ER in 0.1 ms. The solid red line
is a fitting as a guide for the eye. Up to five-body occupied sites are
observed.

light pulse. The ramp-up time is 0.1 ms from 5ER to 15ER

and is faster than atom hopping, but sufficiently slow to
prevent atom excitation into the higher band of the optical
lattice (∼20 kHz). Figure 5(b) shows spectra obtained using
the atom-number-projection method, and the site-occupancy-
resolved spectrum was indeed acquired for the shallow optical
lattice. Here n occupancies of up to five were distinguished
with a separation of approximately (Ueg − Ugg)/h. The lower
the resonance frequencies, the higher the occupation numbers
n became. Note that our excellent resolution that allows
different site occupancies to be distinguished is obtained by
exploiting the optical transition between the 1S0 and 3P2

(mJ = 0) electronic states of Yb atoms, which have quite
different two-body interactions of Ueg/h = −8.5 kHz and
Ugg/h = 3.2 kHz at 15ER. An additional advantage is that
neither the 1S0 nor 3P2 (mJ = 0) state is sensitive to a magnetic
field, which enables acquisition of narrow spectra free from
possible broadening due to magnetic field inhomogeneity.

Typical spectra are shown in Fig. 6, with the corresponding
TOF images. Naively, the area of each resonance in the
spectrum is thought to be linearly proportional to the atom
population in the corresponding occupancy of the optical
lattice. The excited state population Pn(texc) of the n-occupied
site after the excitation time texc is [22]

Pn(texc) = sin2

(

ntexc

2

)
exp (−texc�n), (12)

where 
n are the (angular) Rabi frequencies and �n are the
decay rates, with both parameters being dependent on n. Note
that resonance frequency shift n�νcol yields excitation of one
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FIG. 6. Typical high-resolution spectra obtained with atom-
number-projection method. Three scans are superimposed after the
long-term laser frequency drift is compensated. Insets: TOF images
with the same experimental parameters. The TOFs are 14 ms. The
total atom number is approximately 1.6 × 103. The solid red lines are
fitting curves with a sinc function, with pulse width fixed at 0.3 ms.
Lattice depths: (a)–(d) 5ER, 10ER, 15ER, and 5ER, respectively, and
atomic entropies per atom: (a)–(d) 0.04, 0.05, 0.06, and 1.12 kB,
respectively.

atom only, even for an n-occupied site. Thus, we must divide
the Pn(texc) by n when we consider the excited state population
per atom. If the spectral width of each resonance is the same,
the area An for the n-occupied site is linearly proportional to

NnPn(texc)/n, (13)

where Nn is the total atom number at the n-occupied site.
In the case of noninteracting atoms, the Rabi frequencies

should be proportional to
√

n because of the superradiance or

bosonic stimulation effect [23,24]:


n = √
n
1. (14)

In addition, when the excitation time is much shorter; i.e.,

ntexc � 1 and �ntexc � 1, we obtain

An ∝ Nn

2

1t2
exc

4
. (15)

Because 
1 and texc were fixed in our experiment, the rela-
tive strengths of the areas indicate the relative atom number
distributions among the sites in the optical lattice.

We experimentally examined the occupancy-dependent
properties of the finite lifetime and transition probability in
order to evaluate the total atom number at the n-occupied
sites accurately. We discuss these properties in the following
subsections. The details of the experimental parameters and
procedures of our atom-number-projection spectroscopy are
described in Appendix E.

A. Occupancy-dependent lifetime measurement

The radiative lifetime of the 3P2 state is approximately
15 s, which introduces negligible atom loss during our atom-
number-projection spectroscopy. Instead, the dominant loss
process is the inelastic collision between the atoms in the
1S0 and 3P2 states, which is induced by the fine-structure,
principal-quantum-number, and Zeeman-state changing col-
lisions [25]. Note that the magnetic sublevel 3P2 (mJ = 0)
we use is not the lowest Zeeman-energy level. Furthermore,
our excitation time of 0.3 ms is not negligible compared to
the occupancy-dependent decay times, as shown in Fig. 7;
therefore, we actually measured the decay time to deter-
mine the correction factors for our atom-number-projection
spectroscopy.

First, approximately 105 BEC atoms were loaded into the
shallow optical lattice (5ER). Then, the lattice depth was
suddenly increased to 15ER in 0.1 ms. Next, we excited the
atoms at the n-occupied sites and measured the number of
atoms remaining in the 3P2 state after a given hold time.
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FIG. 7. Lifetimes. The remaining excited-atom numbers as func-
tions of hold time are measured for peaks in the (a) n = 1, (b) 2,
(c) 3, and (d) 4 occupied sites. The lifetimes of the n-occupied states
(n = 2, 3, 4) are 18(7), 1.4(2), and 1.1(3) ms, respectively. For the
n = 1 sites, we could not find any significant decay.
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FIG. 8. Rabi oscillations. Excited atom numbers as functions of
excitation time measured by resonant peak excitation at (a) n = 1,
(b) 2, (c) 3, and (d) 4 occupied sites. The Rabi frequencies 
n/(2π )
of the n-occupied sites are 1.28(1) (n = 1), 1.65(3) (n = 2), 1.92(3)
(n = 3), and 2.20(4) kHz (n = 4).

The results are shown in Fig. 7. We fit the data with single-
exponential decay curves. The measured decay constants of
the n-occupied states τn (n = 2, 3, 4) were 18(7), 1.4(2), and
1.1(3) ms, respectively. For the n = 1 site, we could not
find any decay within our short hold time. Therefore, it was
necessary to correct the occupied atom number for the cases
of n = 2, n = 3, and n = 4 sites only, for which the correction
factors were 1.02, 1.24, and 1.33, respectively.

B. Occupancy-dependent Rabi oscillation frequency

For the noninteracting cases, the Rabi frequencies 
n/(2π )
should be proportional to

√
n. In the presence of the in-

teratomic interaction, the situation is less simple and the n
dependence of the Rabi frequency is modified in general by
broadening of the Wannier function due to inter-atom inter-
actions [9,19]. Such a modification was indeed observed in
our system [10]. Here we carefully evaluated the n-dependent
Rabi frequency experimentally.

To observe clear Rabi oscillations, we excited the atoms
with a relatively strong laser power of 4 mW, which cor-
responds to approximately 100 W/cm2; the expected Rabi
frequency at n = 1 was approximately 2π × 2 kHz. The
observed Rabi oscillations are shown in Fig. 8. The fitting
lines were drawn by solving the optical Bloch equations
numerically, assuming that the detuning was zero:

dun

dt
= −�n

2
un, (16)

dvn

dt
= 
nwn − �n

2
vn, (17)

dwn

dt
= −
nvn − �n(wn − 1), (18)

where un = ρ12,n + ρ21,n, vn = −i(ρ12,n − ρ21,n), wn = 1 −
2ρ22,n, and ρi j,n is the density matrix of the n-occupied
sites. The Rabi frequencies 
n/(2π ) of the n-occupied sites

were 1.28(1) (n = 1), 1.65(3) (n = 2), 1.92(3) (n = 3), and
2.20(4) kHz (n = 4). The measured relative strength among
the occupancy-dependent Rabi frequencies was used as a
correction factor to estimate the atom-number distribution in
our atom-number-projection spectroscopy.

V. POSSIBILITY OF MEASURING THE ENSEMBLE
AVERAGE OF THE POTENTIAL ENERGY TERM

The third term of Eq. (1), the potential energy term, is from
the inhomogeneous trap potential due to the FORT beams and
optical lattice lasers. Although the spatial distribution of the
atoms in a trap for a single 2D plane can be directly measured
using a high-spatial-resolution in situ imaging technique such
as a quantum gas microscopy [11,26], our imaging resolution
was insufficient to accurately extract the spatial distributions
of the atoms in our 3D optical lattice.

VI. EXPERIMENTAL DETERMINATION
OF BOSE-HUBBARD ENERGIES

Here we present our main experimental results. Figure 9
shows the comprehensive measurements of the kinetic energy
divided by the hopping matrix element t per atom, i.e., the
ensemble average of the term K̂ = ∑

〈 j,l〉(â
†
j âl + H.c.) per

atom for lattice depths from 5 to 18ER across the weakly
to strongly interacting regimes as a function of the atomic
entropy per atom. When the lattice depth was 10.6ER, U/t was
equal to 29.34, which is the critical lattice depth for the SF-MI
transition at n = 1. Note that the 〈K̂〉 per atom must range
between 6 and −6 for the 3D optical lattice. The maximum
and minimum values of 6 and −6 correspond to the atom
condensation at q = 0 and q = ±π/dlat , respectively. Here q
denotes the quasimomentum.

Naturally the expected 〈K̂〉 behaviors were successfully
observed in our experiment data, as shown in Fig. 9. In a
shallow optical lattice at sufficiently low entropy, almost all
atoms should be condensed at q = 0, corresponding to a 〈K̂〉
close to 6; this is clearly apparent for the lower entropy data
shown in Figs. 9(a)–9(c). With increased optical lattice depth,
〈K̂〉 decreases and approaches zero because of the repulsive
interatomic interaction (U > 0); this is also clearly apparent
as a general tendency of the data in Fig. 9. In a deep optical
lattice, all atoms are isolated and there is no phase coherence
in a MI state. The atoms are distributed over the entire first
Brillouin zone, corresponding to 〈K̂〉 = 0; this behavior can
be recognized in the data shown in Figs. 9(j) and 9(k). When
the atomic entropy increases, 〈K̂〉 should decrease because of
the thermal excitation to energetically higher states with larger
q at any lattice depth. Again, this behavior can be clearly
recognized as the general tendency of the data in Fig. 9.

Figure 10 shows the comprehensive measurements of the
interaction energy divided by U/2 per atom; namely, the
ensemble average of the term Ĝ = ∑

j â†
j â

†
j â j â j per atom,

again for lattice depths from 5 to 18ER across the weakly
to strongly interacting regimes as a function of the atomic
entropy per atom.

Again the naturally expected behaviors of 〈Ĝ〉 were suc-
cessfully observed in our experiment data (Fig. 10). In a
shallow optical lattice, the atom hopping process is dominant
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FIG. 9. Measured ensemble averages of K̂ = ∑
〈 j,l〉(â

†
j âl + H.c.) terms per atom as functions of atomic entropy per atom. The dashed blue

(dotted green) shadow lines indicate the results of numerical calculations based on the Gutzwiller (cluster-Gutzwiller) method. Different atom
numbers (1.4 × 103 to 1.8 × 103) are represented by the shaded areas. The TOF images were taken immediately after atom loading onto the
optical lattice. For TOFs of 14 (18) ms, we took 10 (5) images and calculated the ensemble average for each one; then these data were averaged.
Estimated difference between values before and after the correction of the finite-TOF effect is considered as systematic errors. The error bars
indicate standard errors and include both systematic and statistical errors. See the text for details.

and the atoms are delocalized at multiply occupied sites,
although the average filling-factor value is approximately
unity. This case yields a larger value of 〈Ĝ〉, and this is clearly
apparent in Figs. 10(a)–10(c), for example. When the optical
lattice depth is increased, the repulsive interatomic interaction
plays a more important role in suppressing the atom hopping,
yielding a decrease in 〈Ĝ〉. This is clearly apparent as a
general tendency of the data in Fig. 10. In a deep optical
lattice, the atoms are isolated in an MI state with unit filling,
which corresponds to 〈Ĝ〉 = 0, as apparent in the data in

Figs. 10(h)–10(k). In the SF state, 〈Ĝ〉 should decrease when
the atomic entropy increases, because the thermal excitation
yields expansion of the atomic cloud and a decrease in the
multiply occupied sites. This can be clearly recognized again
as the general tendency of the data in Fig. 10.

The population fractions, which could be directly mea-
sured by our atom-number-projection spectroscopy technique,
elucidated further details of the atom number distribution in
an optical lattice site. The population fractions at various
lattice depths as functions of the atomic entropy are shown
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FIG. 10. Measured ensemble averages of Ĝ = ∑
j â†

j â
†
j â j â j per atom as functions of atomic entropy. The dashed blue (dotted green)

shadow lines indicate the results of numerical calculations based on the Gutzwiller (cluster-Gutzwiller) method, with different atom numbers
(1.4 × 103 to 1.8 × 103) being represented by shaded areas. The error bars indicate standard errors.

in Fig. 11. We found n = 3 occupancy, although small, at
small lattice depths only, as shown in Figs. 11(a)–11(c). In
Figs. 11(a)–11(g) decreases in the n = 2 and n = 3 popula-
tions accompanied by an increase in the n = 1 population can
be clearly observed in accordance with the atomic entropy and
lattice depth increase; this can be interpreted as originating
from disappearance of the SF components.

VII. NUMERICAL CALCULATION BENCHMARK

The obtained experimental results can be used as bench-
marks for state-of-the-art numerical methods of quantum
many-body theory. As an illustrative example, in this section,

we compare the measured kinetic and interaction energies
as well as the population fractions of n-occupied sites with
numerical calculations based on the Gutzwiller and cluster-
Gutzwiller approximations.

A. Gutzwiller approximation

In this subsection we explain two numerical methods
based on Gutzwiller approximation. One is a simple finite-
temperature Gutzwiller approximation, where the effects of
boson hopping are approximated as a mean field [10,27].
This is a simple local approximation obtained by solving the
localized Hamiltonian with the exact diagonalization method
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FIG. 11. Population fractions as functions of atomic entropy per atom. The red circles, blue boxes, green triangles, and yellow diamonds
show the normalized areas of n = 1, 2, 3, and 4 occupied sites, respectively. The solid red, dashed blue, dotted green, and dashed-dotted yellow
lines indicate the numerical results for n = 1, 2, 3, and 4 occupied sites, respectively. The error bars show standard errors.

at finite temperature. Local thermodynamic quantities such as
double occupancies can be well approximated by this calcu-
lation [10,27]. Another method is a cluster-type extension of
this local approximation; that is, some of the hopping terms
are included in the exact diagonalization calculation. This
cluster Gutzwiller approximation allows us to consider the
kinetic energy much more effectively than the local approx-
imation.

In a local Gutzwiller approximation, the Bose-Hubbard
Hamiltonian Ĥ is approximated by the set of effective local
Hamiltonians

Ĥloc, j = Fjâ
†
j + F ∗

j â j + (Vj − μ)n̂ j + Uâ†
j â

†
j â j â j, (19)

under a self-consistent condition at thermal equilibrium for
each local Hamiltonian. The mean field Fj is given by

Fj = −
∑

l

t jl al , (20)

where al = 〈âl〉, a∗
l = 〈â†

l 〉, and t jl = t for adjacent j and
l sites, and t jl = 0 otherwise. The Hubbard parameters, in-
cluding t , U , and Vj , are determined ab initio from Wannier
functions. We use the exact diagonalization method to solve
these local NL Hamiltonians at finite temperature, where NL is
the number of lattice sites. Here we solve the finite Hilbert
space by truncating states with a large number of bosons
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(>8) at each lattice site. The truncated states are negligible,
because the on-site interaction suppresses them, even for
shallow lattices.

Under the self-consistent conditions, we calculate the
double occupancy 〈Ĝ〉 = ∑

j〈â†
j â

†
j â j â j〉, potential energy∑

j Vj〈â†
j â j〉, and kinetic energy −t〈K̂〉 = −t〈â†

j〉〈âl〉. A non-

local quantity such as 〈â†
j âl〉 is now approximated as a product

of the local quantities 〈â†
j〉〈âl〉. The kinetic energy under

the local approximation corresponds to the energy of the
condensed bosons

−tKBEC = −
∑

jl

t jl a
∗
j al , (21)

and the energies of the uncondensed normal states (normal
fluid and MI) that appear as a result of the thermal fluctuation
and correlation effects

−t〈K̂NS〉 = −
∑

jl

t jl〈(â†
j − a∗

j )(âl − al )〉, (22)

are completely neglected. Thus, the local Gutzwiller ap-
proximation inevitably underestimates the kinetic energies
at middle-depth lattices. In contrast, local quantities can be
directly calculated using the exact-diagonalization method,
which allows us to properly consider the effects of the normal
states.

In a cluster-Gutzwiller approximation, the local Hamil-
tonians are extended to the two-site cluster Hamiltonians
including a hopping term:

ĤTSC, jl = Ĥloc, j + Ĥloc,l − t jl â
†
j âl + H.c. (23)

We use exact diagonalization to solve the cluster Hamiltonian
by truncating states with more than eight bosons in each
cluster. We also extend two self-consistency conditions in the
cluster Hamiltonian ĤTSC, jl :

Fj = −
∑
α 
=l

t jα〈âα〉, (24)

Fl = −
∑
α 
= j

tlα〈âα〉. (25)

That is, to avoid double counting of the effects of t jl â
†
j âl +

H.c., we subtract this term from the mean fields Fj and Fl . We
solve 3NL cluster Hamiltonians for the 3D cubic lattice, and
local quantities such as 〈â j〉 are obtained from the average
of six clusters ĤTSC, jα for α ∈ sites adjacent to j. Note that,
when the self-consistency conditions are satisfied, the local
quantities for the jth site in the ĤTSC, jα agree well with each
other. For ĤTSC, jl , we can calculate a nonlocal quantity 〈â†

j âl〉,
allowing us to obtain a kinetic energy that includes the effects
of normal states −t〈K̂NS〉.

B. Comparison of experiment and theory

We compared the measured kinetic and interaction energies
as well as the population fractions of n-occupied sites with nu-
merical calculations of the Gutzwiller and cluster-Gutzwiller
approximations in finite entropy (finite temperature). Note
that the trap potentials and particle numbers in the calculations

were the same as those of the experiments and there were no
fitting parameters in the calculation.

The dashed blue and dotted green lines in Fig. 9 represent
the numerical results for the 〈K̂〉 term obtained using the
Gutzwiller and cluster-Gutzwiller methods, respectively, with
different atom numbers (1.4 × 103 to 1.8 × 103) being repre-
sented by the shaded areas. Although we can observe over-
all agreement between the experimental data and numerical
calculations for the overall lattice depth and atomic entropy,
our measurement was highly consistent with the numerical
calculation using the cluster-Gutzwiller method.

We discuss here possible origins of slight deference be-
tween the measured and numerical values appeared at the
shallow optical lattice. One of the possibility is imaging
resolution of TOF images. We consider the condensate atoms
with zero momentum for simple explanation, which has a
〈K̂〉 = 6 by definition. The finite imaging resolution broadens
the measured momentum distribution around the zero mo-
mentum. We consider a Gaussian point-spread function of
(1/

√
2π�k) exp(−k2/(2�k2)) as the structure factor S(k),

where �k = mσ/(h̄tTOF) and σ is a resolution and assume
�kdlat � π . By simple calculation, the measured 〈K̂〉 should
be K ′ = 6 exp(−�k2d2

lat/2). If σ = 5 μm, K ′ ∼ 5.7 and
therefore the finite resolution is not negligible when lattice
depth is shallow and the system has large 〈K̂〉. Similar
broadening might also occur when the interaction energy
is transferred to the kinetic energy, which is discussed in
Ref. [18], where hydrodynamic expansion occurs around low-
momentum part and results in peak broadening.

Both Gutzwiller methods exhibited similar results at shal-
low lattice depths, but differences emerged at deeper lattice
depths and in the large-atomic-entropy regime. The techni-
cal difference between the Gutzwiller and cluster-Gutzwiller
methods lies in the handling of the atomic correlation of the
nearest-neighbor sites. In the case of the Gutzwiller method,
the atomic correlation between the nearest-neighbor sites
is from the SF component; thus, the atomic correlation of
the thermal component is not considered. Therefore, testing
with our experimental data revealed that the atomic correla-
tion between the nearest-neighbor sites from thermal fluctua-
tion is indeed important in higher-entropy and deeper-lattice
cases.

The dashed blue and dotted green lines in Fig. 10 represent
the numerical results for the 〈Ĝ〉 term obtained using the
Gutzwiller and cluster-Gutzwiller methods, respectively, with
different atom numbers (1.4 × 103 to 1.8 × 103) being repre-
sented by the shaded areas. In contrast to the 〈K̂〉 term, the nu-
merical results obtained using both the Gutzwiller and cluster-
Gutzwiller methods were similar. Again, overall agreement
between the experimental data and numerical calculations was
obtained for almost all lattice depths and atomic entropy.
However, differences between the measured and numerical
values appeared when the optical lattice was deeper, as shown
in Figs. 10(g)–10(k). Although we are uncertain of the origin
of these differences, we suspect that double occupancy may
have occurred in the deeper optical lattice regime, because of
the slight breaking of the adiabatic condition during lattice
loading [28–30]. Our ramp-up time of approximately 200 ms
should be sufficient to reach local thermalization, but may
be too short for global-mass redistribution in the deep-lattice
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FIG. 12. Total internal energies (i.e., the sum of the kinetic and interaction energies) per atom as functions of atomic entropy. The dashed
blue (dotted green) shadow lines indicate the results of numerical calculations based on the Gutzwiller (cluster-Gutzwiller) method, with
different atom numbers (1.4 × 103 to 1.8 × 103) being represented by the shaded areas. The error bars indicate standard errors.

case. Note that the non-negligible atomic heating and loss
observed for longer loading times limits us to this ramp-up
time.

Numerical calculation of the population fractions as func-
tions of the atomic entropy per atom was also performed,
at various lattice depths. The solid red, dashed blue, dotted
green, and dashed-dotted yellow solid lines in Fig. 11 show
the numerical results for the normalized areas of n = 1,
2, 3, and 4 occupied sites, respectively. Here the total of
the normalized areas is equal to unity. We found excellent
agreement between the experiment and numerical calcula-
tions, especially up to the critical lattice depth of 11ER

[Figs. 11(a)–11(f)], but a certain disagreement at deeper

lattice depth [Figs. 11(g)–11(k)], which can be attributed to
the same reason discussed with regard to the disagreement for
〈Ĝ〉 above.

We also investigated the total internal energy per atom (i.e.,
the sum of the kinetic and interaction energies) at various
lattice depths as a function of atomic entropy (Fig. 12). The
numerical results obtained using both Gutzwiller and cluster-
Gutzwiller methods were similar. The difference between the
two numerical calculations of 〈K̂〉 was not small at deeper
lattice depth; however, the calculated kinetic energies of
−t〈K̂〉 were almost identical because of the small values of
t at deeper lattice depth. The measured values were consistent
with the numerical results.
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VIII. CONCLUSIONS AND FUTURE PROSPECTS

We have presented measurements of the ensemble av-
erages of both the kinetic and interaction energies of the
3D Bose-Hubbard model at finite temperature and various
optical lattice depths by establishing a protocol to accurately
extract the ensemble average of the kinetic energy from a
TOF signal and by developing a method of atom-number-
projection spectroscopy to accurately evaluate the interaction
term across the weakly to strongly interacting regimes. Our
measurements showed rather strong dependence on the atomic
entropy, except in the strongly correlated region. This implies
that information on the equilibrium state of the Bose-Hubbard
system can be obtained from these measurements. In addition,
our atom-number-projection spectroscopy method offers in-
formation on the relative populations of the multiply occupied
sites from the population fractions. In this study, using these
population fractions, we observed a decrease in the n = 2
and n = 3 populations when the atomic entropy and lattice
depth increased; this behavior should be due to the disap-
pearance of the SF components. The obtained experimental
results for the internal energies as well as the population
fractions were compared with numerical calculations based on
finite-temperature Gutzwiller and cluster-Gutzwiller methods;
hence, we obtained agreement between the experiment and
cluster-Gutzwiller calculation without fitting parameters. This
indicates the important role of the atomic correlation between
the nearest-neighbor sites through thermal fluctuation, espe-
cially in higher-entropy and deeper-lattice cases.

Measurement of the internal energy for various entropies
offers a novel possibility of estimating the atomic temperature
in a lattice, which is the most important parameter governing
the thermal equilibrium state. If the total internal energies,
i.e., the kinetic, interaction, and potential terms, are measured
experimentally, one can determine the temperature T using
the thermodynamic relation T = ∂E/∂S, where E is the total
internal energy and S is the atomic entropy. We have checked
this proposal numerically (see Appendix F). This possibility
is important, because the temperature in an optical lattice has
only been estimated indirectly to date, through comparison of
the experimental results and theoretical calculation. Finally,
the methods demonstrated here are not particular to Bose
gases in equilibrium, but can be applied to Fermi gases, Bose-
Fermi mixtures, and even nonequilibrium states.

This paper is a report of experimental determination of
both the kinetic and interaction energies of quantum many-
body systems. This study offers a unique advantage of cold
atom system for “quantum simulators.”
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FIG. 13. Schematic energy diagram (not scaled) of Yb relevant
to the experiment.

APPENDIX A: ENERGY DIAGRAM AND SCATTERING
LENGTH OF Yb

Figure 13 shows the Yb schematic energy diagram (not
scaled) relevant to the experiment. Throughout this paper, we
used the value of the scattering length of 174Yb of 5.55 nm
[31].

APPENDIX B: ADDITIONAL INFORMATION OF OUR
EXPERIMENTAL SETUP AND PROCEDURE

The beam waists (1/e2 radii) of the horizontal FORT were
approximately 15 and 33 μm and the short axes of the ellipses
were oriented along the Z axis. The beam waists of the vertical
FORT were approximately 43 and 126 μm, and the short axes
of the ellipses were oriented along the X ′ axis, where the
X ′ axis formed an angle of 45 deg relative to both the X
and Y axes. The beam waists of the lattice beams were ap-
proximately 100 μm. The FORT trap frequencies were 27.9,
130, and 162.5 Hz after the lattice loading.

The measurement procedure for the entropy and atom
number after adiabatically ramping down the optical lattice
in reverse order is shown in Fig. 14.

FIG. 14. Schematic time sequence (not scaled) for entropy mea-
surements. Here t1 = 10(V0/ER − 5) (ms). The double-sided arrows
indicate variable parameters (see text for details).
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The optical lattice depth is calibrated by a pulsed optical
lattice method (see also [10,32]).

APPENDIX C: KINETIC TERM

In this Appendix we label the atom momentum kTOF as k
for simplicity. The atomic density distribution after the TOF
tTOF, i.e., n(k, tTOF), is

n(k, tTOF) =
(

m

h̄tTOF

)3

|w̃0(k)|2S(k, tTOF). (C1)

The atomic momentum after the TOF is calculated from the
positions of the atoms rTOF and k = mrTOF/h̄tTOF. Here w̃0(k)
is the Fourier transformation of the Wannier function in the
lowest Bloch band w0(r) and

w̃0(k) =
∫∫∫

w0(r)eik·rdr

=
∫

w0(x)eixkx dx
∫

w0(y)eiyky dy
∫

w0(z)eizkz dz.

(C2)

The structure factor S(k) is

S(k, tTOF) =
∑

j,l

eik·(r j−rl )−i( m
2h̄tTOF

)(r2
j −r2

l )〈â†
j âl〉. (C3)

First, we consider the integral of n(k = mrTOF/h̄tTOF, tTOF)
along the Y axis in position space:∫

n

(
k = mrTOF

h̄tTOF
, tTOF

)
dyTOF = h̄tTOF

m

∫
n(k, tTOF)dky

= A2
∫

dky|w̃0(k)|2
∑

j,l

eik·(r j−rl )−i( m
2h̄tTOF

)(r2
j −r2

l )〈â†
j âl〉

= A2|w̃0(k⊥)|2
∑

j,l

〈â†
j âl〉eik⊥·(r⊥, j−r⊥,l )−i( m

2h̄tTOF
)(r2

j −r2
l )

×
∫

dky|w̃0(ky)|2eiky (y j−yl ), (C4)

where A = m/(h̄tTOF), r⊥ = (x, z), and k⊥ = (kx, kz ). Then∫
dky|w̃0(ky)|2eiky (y j−yl )

=
∫

dky

∫
du′w∗

0 (u′)e−ikyu′
∫

duw0(u)eikyueiky (y j−yl )

=
∫

du
∫

du′w∗
0 (u′)w0(u)

∫
dkyeiky (u−u′+y j−yl )

=
∫

du
∫

du′w∗
0 (u′)w0(u)δ(u − u′ + y j − yl )

=
∫

w∗
0 (u + y j − yl )w0(u)du

=
{

1 (y j = yl ),

0 otherwise,
(C5)

where we use the orthogonality of the Wannier functions,∫
w∗

0 (u + ndlat )w0(u)du =
{

1 (n = 0),
0 otherwise,

(C6)

with n = 0, ±1, ±2, . . . , and dlat being the lattice spacing.

By applying Eq. (C5) to Eq. (C4) we obtain∫
n

(
k = mrTOF

h̄tTOF
, tTOF

)
dyTOF

= A2|w̃0(k⊥)|2
∑

j,l

〈â†
j âl〉eik⊥·(r⊥, j−r⊥,l )−i( m

2h̄tTOF
)(r2

⊥, j−r2
⊥,l )

× δy j ,yl , (C7)

where δx,y is the Kronecker delta. That is, δx,y = 1 if and only
if x = y; otherwise, δx,y = 0.

Similarly, we obtain the linear atomic density n(kx ) is∫∫
n

(
k = mrTOF

h̄tTOF
, tTOF

)
dyTOFdzTOF

= A|w̃0(kx )|2
∑

j,l

〈â†
j âl〉eikx (x j−xl )−i( m

2h̄tTOF
)(x2

j −x2
l )

× δy j ,yl δz j ,zl (C8)

and ∫∫∫
n

(
k = mrTOF

h̄tTOF
, tTOF

)
dxTOFdyTOFdzTOF

=
∑

j,l

〈â†
j âl〉δx j ,xl δy j ,yl δz j ,zl =

∑
j

〈â†
j â j〉 = N, (C9)

where N is the total number of atoms.

1. Case I: Infinite TOF

First, for simplicity, we consider the case in which the TOF
is infinite and the Fresnel term exp[−im(r2

j − r2
l )/(2h̄tTOF)] is

negligible. In this case, the linear atomic density n(kx ) is [see
also Eq. (C8)] as follows:

n(kx ) = A|w̃0(kx )|2
∑

j,l

〈â†
j âl〉eikx (x j−xl )δy j ,yl δz j ,zl . (C10)

Therefore, the ensemble average of the atomic correlations of
nearest-neighbor sites

∑
〈 j,l〉〈â†

j âl〉 is obtained using Fourier
transformation in the first Brillouin zone, where

dlat

2π

∫ π/dlat

−π/dlat

n(kx )

A|w̃0(kx )|2 eidlatkx dkx

= dlat

2π

∑
j,l

〈â†
j âl〉δy j ,yl δz j ,zl

∫ π/dlat

−π/dlat

eikx (x j−xl +dlat )dkx

=
∑

j,l

〈â†
j âl〉δx j ,xl −dlatδy j ,yl δz j ,zl =

∑
j

〈â†
j â j+1〉. (C11)

Similarly,

dlat

2π

∫ π/dlat

−π/dlat

n(kx )

A|w̃0(kx )|2 e−idlatkx dkx

=
∑

j,l

〈â†
j âl〉δy j ,yl δz j ,zl δx j ,xl −dlat . (C12)

Noted that if TOF images are symmetric with respect to
the k = 0, 〈â†

j âl〉 = 〈â†
l â j〉 and therefore

∑
〈 j,l〉〈â†

j âl〉 is real.
This is valid if the hopping matrix element t is real and the
system is in equilibrium states (strictly speaking, if the sys-
tem has time-reversal symmetry), because the kinetic energy
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−t
∑

〈 j,l〉〈â†
j âl〉 itself is required to be real. This assumption is

invalid for some special cases, for example, nonequilibrium
states with nonzero total quasimomentum, and equilibrium
states with an artificial gauge field (complex hopping matrix
elements) [33]. In these cases, however,

∑
〈 j,l〉〈â†

j âl〉 must
be complex and we believe that the kinetic energy can be
obtained using the above procedure, if the Wannier functions
are well defined.

Similarly,

dlat

2π

∫ π/dlat

−π/dlat

n(kx )

A|w̃0(kx )|2 dkx

= dlat

2π

∑
j,l

〈â†
j âl〉δy j ,yl δz j ,zl

∫ π/dlat

−π/dlat

eikx (x j−xl )dkx

=
∑

j,l

〈â†
j âl〉δx j ,xl δy j ,yl δz j ,zl =

∑
j

〈â†
j â j〉 = N. (C13)

2. Case II: Finite TOF

Under our experimental conditions, the Fresnel term is
non-negligible because there is a finite TOF. However, the
effect is small; therefore, we can consider it to be a correction
factor:

dlat

2π

∫ π/dlat

−π/dlat

n(kx )

A|w̃0(kx )|2 eidlatkx dkx

= dlat

2π

∑
j,l

〈â†
j âl〉δy j ,yl δz j ,zl e

−i( m
2h̄tTOF

)(x2
j −x2

l )

×
∫ π/dlat

−π/dlat

eikx (x j−xl +dlat )dkx

=
∑

j,l

〈â†
j âl〉δy j ,yl δz j ,zl δx j ,xl −dlat e

−i( m
2h̄tTOF

)(x2
j −x2

l )

=
NL∑
j=1

〈â†
j â j+1〉ei( m

2h̄tTOF
)(d2

lat+2dlatx j ). (C14)

Now we assume that 〈â†
j â j+1〉 is independent of site index j

and have a average value 〈â†
j â j+1〉, and the summation is from

x1 = −N ′
Ldlat to xNL−1 = (N ′

L − 1)dlat and NL = 2N ′
L + 1,

(C14) ∼ 〈â†
j â j+1〉

NL−1∑
j=1

ei( m
2h̄tTOF

)(d2
lat+2dlatx j )

= 〈â†
j â j+1〉 ei(

md2
lat

2h̄tTOF
)

N ′
L−1∑

j=−N ′
L

ei(
md2

lat j

h̄tTOF
)

= 〈â†
j â j+1〉e(iz/2−izN ′

L ) 1 − e2iN ′
Lz

1 − eiz
, (C15)

where z = md2
lat

h̄tTOF
. We here defined the correction factor C1 as

1

C1
= 1

2N ′
L

Re

[
e(iz/2−izN ′

L ) 1 − e2iN ′
Lz

1 − eiz

]
, (C16)

where we assume that 〈â†
j â j+1〉 is real and therefore the

correction factor is also real. Similarly, we obtain the relation

FIG. 15. Measured long-range atomic correlations
∑〈â†

j âl〉 with
lattice separations �l and their finite TOF corrections. The solid blue
and dotted green lines indicate the fitting Eq. (C17) and the corrected
values at infinite TOF, respectively. Because the data shown in this
graph were used for the check of our compensation method, the atom
number was 5 × 104, different from the experimental value shown in
the main text. The lattice depth was V0 = 5ER. �l: (a) 1, (b) 2, (c) 3,
and (d) 4.

on the long-range atomic correlation
∑〈â†

j â j+�l〉 with the
lattice separation |r j − rl | = dlat�l ,

dlat

2π

∫ π/dlat

−π/dlat

n(kx )

A|w̃0(kx )|2 ei�ldlatkx dkx

∼ 〈â†
j â j+�l〉ei(

md2
lat�l2

2h̄tTOF
)

N ′
L−�l∑

j=−N ′
L

ei(
md2

lat j�l

h̄tTOF
)

= 〈â†
j â j+�l〉e(iz�l2/2−izN ′

L�l ) 1 − ei(2N ′
L−�l+1)z�l

1 − eiz�l
. (C17)

The total site number NL and 〈â†
j âl〉 are obtained by fitting the

long-range atomic correlation
∑〈â†

j â j+�l〉 by use of the ex-
perimental data with various lattice separation �l = 1, 2, 3, 4
and several TOFs. In our experiment to measure the ensemble
average of the kinetic term, the TOFs were 14 and 18 ms.
Figure 15 shows our typical measured long-range atomic
correlation

∑〈â†
j â j+�l〉 and the fitting curves obtained using

Eq. (C17). Finally, by fitting 〈â†
j âl〉 with Eq. (D3), we obtain

the coherence length ξ .
The correction factor C1 is shown in Fig. 16 as the solid

red line using our experimental parameters. The deviation by
the Fresnel effect is estimated to be about 6% (4%) for 14 ms
(18 ms) TOF. It is to be noted that the correction factor also
depends on total atom size NL and monotonically decrease
with the limit NL → 0.

Here we assume that the atom correlation have the average

value of 〈â†
j âl〉 and unique atom density, which is valid for a

Mott insulating case. However, this is not a unique possible
assumption and the calculated correction factor depends on
models. For reference, we calculated a correction factor C′
based on the assumption of 〈â†

j âl〉=√
n jnl exp(−(x j−xl )/ξ ′)
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FIG. 16. Correction factors as a function of time of flight. The
red solid line shows the correction factor C1 calculated using the
method we used for data analysis. Here we used NL = 81. For refer-
ence we show another correction factor C′ based on the assumption
of 〈â†

j âl〉 = √
njnl exp(−(x j − xl )/ξ ′) is shown as the blue dotted

line. We assumed ξ ′ = 10dlat, which is estimated by use of fitting
results using our experimental data.

and is shown in Fig. 16 as the blue dotted line, where we
assumed that density distribution is given by the Gaussian
function and the ξ ′ is a correlation length [34]. In this model,
because of large atom density around the center of the trap,
effective size of atoms are small compared to the model with
unique atom density, and therefore small correction factor
obtained. Apart from nonrealistic cases (namely, atom density
around the edge of the trap is large compared to the one
in the center), atoms with unique density have the largest
effective size, and it results in the largest correction factor.
These estimations show that the maximum of the correction
factor may obtain from the model with unique atom density.
Therefore we also use estimated difference between the values
before and after the correction as systematic errors in order
to cover the uncertainty of atoms density distribution in the
trap. In a coexistence case of SF-Mott phase, the correction
are expected within the systematic errors.

APPENDIX D: MEASUREMENT OF VISIBILITY, WIDTH,
AND COHERENCE LENGTH

The widely used experimental observables from the TOF
images are the visibility (Fig. 17) and peak width (Fig. 18).
Figures 17(a)–17(k) show the visibilities as functions of
atomic entropy. The visibilityV is defined as [35,36]

V = nmax − nmin

nmax + nmin
, (D1)

where nmax is the maximum density at the first interference
peak. The minimum density nmin is measured at the same
distance, but in a diagonal direction from the central peak
[see also Fig. 17(l)]. It is clearly apparent that the visibility is
large at small lattice depth and decreases as the lattice depth
increases. The dependence of the visibility on the atomic
entropy is small.

Figure 18 shows the widths of the central peaks as func-
tions of the atomic entropy. The central peak width is one of
the most commonly used parameters to evaluate the phase

coherence. If the TOF is sufficiently long to neglect the
Fresnel effect [see Eq. (7)], the structure factor S(k = 0) is

S(k = 0) =
∑

j,l

〈â†
j âl〉

= 〈â†
0â0〉 + 〈â†

0â1〉 + 〈â†
0â2〉 + · · ·

+〈â†
1â0〉 + 〈â†

1â1〉 + 〈â†
1â2〉 + · · ·

+ · · ·
= 〈(â†

0 + â†
1 + · · · )(â0 + â1 + · · · )〉

= 〈ĉ†(k = 0)ĉ(k = 0)〉
= NL|φ|2, (D2)

where φ is the wave function of the SF component. It is
naturally expected that a larger phase coherence corresponds
to a sharper peak width. One can clearly see that the central
peak is sharp at shallow lattice depth and increases with
lattice depth. The dependence of the peak width on the atomic
entropy is small.

While these measurements have been standard methods in
the study of the SF-MI transition, the new internal energy
measurements of the Bose-Hubbard system demonstrated in
this work provide a useful method of investigating the SF-MI
transition, as shown in the main text.

Figure 19 shows the coherence lengths ξ as functions of the
atomic entropy. Our Fourier transformation method enables us
to consider the long-range atomic correlation of more than just
the nearest-neighbor sites. Here ξ is defined as [34]

〈â†
j âl〉 = √

n j
√

nl exp

(
−|r j − rl |

ξ

)
, (D3)

where n j is the atomic density at site j. The value of ξ is
obtained by fitting Eq. (D3) to our measured ensemble average

of the long-range atomic correlation 〈â†
j âl〉 (see Appendix C).

Note that ξ is large at a small lattice depth and decreases
with increased lattice depth. As expected, ξ is near one lat-
tice spacing around the quantum critical point (sc = 10.6 for
n = 1). This behavior also shows the quantum phase transition
between SF and MI.

APPENDIX E: ATOM-NUMBER-PROJECTION
SPECTROSCOPY PROCEDURE

We used the transition from the (6s2) 1S0 state to the
(6s6p)3P2 (mJ = 0) state for high-resolution spectroscopy.
Neither the 1S0 nor the 3P2 (mJ = 0) state is sensitive to mag-
netic fields, because 174Yb lacks a nuclear spin; this enabled
us to obtain narrow spectra in the absence of inhomogeneous
broadening resulting from an external magnetic field.

Light for the excitation was generated through fre-
quency doubling of an external-cavity laser diode at 1014
nm, locked to an ultralow expansion cavity, which had
slow-frequency drift with a typical rate of approximately
1 kHz/h. The linewidth of the excitation laser was less than
1 kHz.

After atom projection to a large optical depth of 15ER, as
described above, we applied an excitation pulse. The pulse
width was 0.3 ms. The incident power was approximately
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FIG. 17. (a)–(k) Visibilities as functions of atomic entropy. The error bars show standard errors. The yellow lines are a guide for the eye.
(l) Interference pattern. The maxima of the interference pattern peak appear at the first peaks (red circles), and the minima appear at diagonal
with the same distance from the central peak (black circles). The sum of the signals in the red (black) circles is nmax (nmin) (see text for details).

100 μW and the beam waist was approximately 50 μm. The
intensity was 2.5 W/cm2 and the Rabi frequency was approxi-
mately 0.3 kHz. To excite the 1S0-3P2 (mJ = 0) transition, the
excitation light propagating along the Y axis was polarized
along the Z axis and we applied a magnetic field of 100 mG
in the −X + Y direction.

After applying the excitation light, we removed the
remaining atoms in the 1S0 state with a light that resonated
with the 1S0-(6s6p)1P1 transition for 0.3 ms. Then, atoms
in the 3P2 state were transferred to the 1S0 state with
two repumping lights resonant with the 3P2-(6s7s)3S1 and
(6s6p)3P0-(6s7s)3S1 transitions. Finally, the number of atoms
in the 1S0 state was measured using a fluorescence imaging

technique employing a magneto-optical trap with the 1S0-1P1

transition.
Typical spectra have already been shown in Figs. 5(b) and

6. Our spectra were obtained after projection into the lattice
depth of 15ER; thus, the positions of each peak relative to the
n = 1 peak were fixed. Therefore, our spectra covered four
peaks corresponding to n = 1–4.

The spectral areas were obtained by fitting using a sinc
function, because our excitation light pulse was rectangular
and the resulting broadening from Fourier transformation of
the rectangular function was dominant. The correction factors
from the reduced Rabi frequencies and finite lifetimes of
atoms in the 3P2 state (n = 2, 3, 4) were considered. We took
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FIG. 18. Widths of central peaks as functions of atomic entropy. The yellow lines are a guide for the eye. The error bars show standard
errors.

three or more spectra and calculated the atomic distribution
for each one; then, these data were averaged. To save time
on our experiment, only several data points in the vicinities
of peaks were taken. A period of approximately 20 min was
required to obtain one spectrum and the long-term drift was
negligible for the timescale.

APPENDIX F: POSSIBLE TEMPERATURE ESTIMATION
FROM ENERGY MEASUREMENTS

Although the atomic temperature in an optical trap without
an optical lattice can be easily measured using a TOF method,
the atomic temperature in an optical lattice is estimated only
indirectly through comparison of the experimental results
and theoretical calculation. In the higher-temperature region,

estimation of the atom temperature from the in situ atom
distribution [37] and spin-gradient thermometry [38] has been
demonstrated, as well as use of quantum gas microscopy [37].

Alternatively, however, if the total internal energies are
measured experimentally, one can determine the temperature
T using the thermodynamic relation

T = ∂E

∂S
, (F1)

where E is the total internal energy and S is the atomic
entropy. In our experiment, evaluation of the potential energy
is difficult, as mentioned.

Figure 20(a) shows the temperature estimated using the
relation T = ∂E/∂S. The ensemble averages of the kinetic,
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FIG. 19. Coherence lengths ξ as functions of atomic entropy. The Y axis is the log scale and d is the lattice spacing. The yellow lines are
guides for the eye. The error bars show standard errors.

interaction, and potential terms for estimation were obtained
from the Gutzwiller approximation. This result is consistent
with the temperature directly obtained using numerical cal-
culation with the Gutzwiller approximation and shown in
Fig. 20(b).

The contribution of the potential term comes from the
trap potentials and the Gaussian envelope of the opti-
cal lattice lasers. This is because both external potentials
are quadratic terms with respect to the lattice index; that
is, Vj = mω2(V0)(r j − r0)2/2, where ω(V0) is the over-
all (mean) trap frequency as a function of lattice depth
V0 and r0 is the central position of the overall external
potential.

Therefore, the Bose-Hubbard-model Hamiltonian is ex-
pressed as

Ĥ = −t (V0)
∑
〈 j,l〉

(â†
j âl + H.c.) + U (V0)

2

∑
j

â†
j â

†
j â j â j

+ P(V0)
∑

j

(r j − r0)2â†
j â j − μN, (F2)

where N is the total atom number and P(V0) = mω2(V0)/2.
Note that t (V0), U (V0), and P(V0) are known functions that
depend only on V0.
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FIG. 20. (a) Estimated temperature using relation T = ∂E/∂S.
The ensemble averages of the kinetic, interaction, and potential terms
for estimation were obtained from the Gutzwiller approximation.
(b) Temperature value obtained using numerical calculations with
Gutzwiller approximation. For both cases, the total atom number was
1.4 × 104 and we used the same trap conditions as in the main text.

We apply the Hellmann-Feynman theorem [39,40] to the
ensemble average of the Hamiltonian E (V0, SOL) = 〈Ĥ〉:

∂

∂V0
E (V0, SOL) =

〈
dĤ

dV0

〉
, (F3)

where SOL is the atomic entropy in the optical lattice and

∂

∂V0
E (V0, SOL)

= −dt (V0)

dV0

∑
〈 j,l〉

〈â†
j âl〉 + 1

2

dU (V0)

dV0

∑
j

〈â†
j â

†
j â j â j〉

+ dP(V0)

dV0

∑
j

(r j − r0)2〈â†
j â j〉

= −dt (V0)

dV0
K (V0, SOL) + 1

2

dU (V0)

dV0
G(V0, SOL)

+ dP(V0)

dV0
L(V0, SOL). (F4)

The values of K (V0, SOL), G(V0, SOL), and L(V0, SOL) are
experimentally observed and given by

K (V0, SOL) =
∑
〈 j,l〉

〈â†
j âl〉, (F5)

G(V0, SOL) =
∑

j

〈â†
j â

†
j â j â j〉, (F6)

L(V0, SOL) =
∑

j

(r j − r0)2〈â†
j â j〉, (F7)

and we omit 〈·̂〉 for simplicity in this Appendix (that is, K
instead of 〈K̂〉). Therefore,

∂T (V0, SOL)

∂V0

= ∂

∂V0

∂

∂SOL
E (V0, SOL) = ∂

∂SOL

∂

∂V0
E (V0, SOL)

= −dt (V0)

dV0

∂K (V0, SOL)

∂SOL
+ 1

2

dU (V0)

dV0

∂G(V0, SOL)

∂SOL

+ dP(V0)

dV0

∂L(V0, SOL)

∂SOL
, (F8)

where T (V0, SOL) is the atomic temperature.
Even if the ensemble average of the potential terms is

unavailable, the atomic temperature can be estimated. To
demonstrate this, we consider the normalized operator Ĥ ′ =
Ĥ/P(V0) and its ensemble average:

∂

∂V0

(
E (V0, SOL)

P(V0)

)
=

〈
d

dV0

(
Ĥ

P(V0)

)〉

= − d

dV0

(
t (V0)

P(V0)

)∑
〈 j,l〉

〈â†
j âl〉

+ 1

2

d

dV0

(
U (V0)

P(V0)

)∑
j

〈â†
j â

†
j â j â j〉

= − K (V0, SOL)
d

dV0

(
t (V0)

P(V0)

)

+ 1

2
G(V0, SOL)

d

dV0

(
U (V0)

P(V0)

)
. (F9)

In contrast,

〈
Ĥ ′〉 =

〈
Ĥ

P(V0)

〉
=

〈
Ĥ

〉
P(V0)

= E (V0, SOL)

P(V0)
. (F10)

Because
T (V0, SOL)

P(V0)
= ∂

∂SOL

E (V0, SOL)

P(V0)
, (F11)

the dependence of T on V0 is

∂

∂V0

(
T (V0, SOL)

P(V0)

)
= ∂

∂V0

∂

∂SOL

(
E (V0, SOL)

P(V0)

)

= ∂

∂SOL

∂

∂V0

(
E (V0, SOL)

P(V0)

)
. (F12)
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Using Eq. (F9),

∂

∂V0

(
T (V0, SOL)

P(V0)

)
= − ∂K (V0, SOL)

∂SOL

d

dV0

(
t (V0)

P(V0)

)

+ 1

2

∂G(V0, SOL)

∂SOL

d

dV0

(
U (V0)

P(V0)

)
.

(F13)

Equation (F13) shows that we must obtain the dependencies of
K (V0, SOL) and G(V0, SOL) on the atom entropy SOL because
t (V0), U (V0), and P(V0) are all known functions. Therefore,
direct measurement of the potential term L(V0, SOL) is not
necessary to estimate the atomic-temperature dependence.
When we know the absolute atomic temperature T (V ′

0, SOL) at
a certain lattice depth V ′

0 , we can estimate the other absolute
atomic temperatures through integration of Eq. (F13).
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Phys. 83, 1523 (2011).

[34] S. Braun, M. Friesdorf, S. S. Hodgman, M. Schreiber, J. P.
Ronzheimer, A. Riera, M. del Rey, I. Bloch, J. Eisert, and U.
Schneider, Proc. Natl. Acad. Sci. USA 112, 3641 (2015).

[35] F. Gerbier, A. Widera, S. Fölling, O. Mandel, T. Gericke, and I.
Bloch, Phys. Rev. Lett. 95, 050404 (2005).

[36] F. Gerbier, S. Foelling, A. Widera, and I. Bloch, arXiv:cond-
mat/0701420.

[37] D. McKay, M. White, and B. DeMarco, Phys. Rev. A 79,
063605 (2009).

[38] D. M. Weld, P. Medley, H. Miyake, D. Hucul, D. E. Pritchard,
and W. Ketterle, Phys. Rev. Lett. 103, 245301 (2009).

[39] H. Hellmann, Einführung in die Quantenchemie (Deuticke,
Leipzig, 1937).

[40] R. P. Feynman, Phys. Rev. 56, 340 (1939).

033609-21

https://doi.org/10.1103/PhysRevB.40.546
https://doi.org/10.1103/PhysRevB.40.546
https://doi.org/10.1103/PhysRevB.40.546
https://doi.org/10.1103/PhysRevB.40.546
https://doi.org/10.1103/PhysRevLett.81.3108
https://doi.org/10.1103/PhysRevLett.81.3108
https://doi.org/10.1103/PhysRevLett.81.3108
https://doi.org/10.1103/PhysRevLett.81.3108
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1038/nphys2259
https://doi.org/10.1038/nphys2259
https://doi.org/10.1038/nphys2259
https://doi.org/10.1038/nphys2259
https://doi.org/10.1038/415039a
https://doi.org/10.1038/415039a
https://doi.org/10.1038/415039a
https://doi.org/10.1038/415039a
https://doi.org/10.1103/PhysRevB.75.134302
https://doi.org/10.1103/PhysRevB.75.134302
https://doi.org/10.1103/PhysRevB.75.134302
https://doi.org/10.1103/PhysRevB.75.134302
https://doi.org/10.1038/nature03500
https://doi.org/10.1038/nature03500
https://doi.org/10.1038/nature03500
https://doi.org/10.1038/nature03500
https://doi.org/10.1126/science.1192368
https://doi.org/10.1126/science.1192368
https://doi.org/10.1126/science.1192368
https://doi.org/10.1126/science.1192368
https://doi.org/10.1126/science.1130365
https://doi.org/10.1126/science.1130365
https://doi.org/10.1126/science.1130365
https://doi.org/10.1126/science.1130365
https://doi.org/10.1038/ncomms11341
https://doi.org/10.1038/ncomms11341
https://doi.org/10.1038/ncomms11341
https://doi.org/10.1038/ncomms11341
https://doi.org/10.1038/nature08482
https://doi.org/10.1038/nature08482
https://doi.org/10.1038/nature08482
https://doi.org/10.1038/nature08482
https://doi.org/10.1016/j.physrep.2015.10.004
https://doi.org/10.1016/j.physrep.2015.10.004
https://doi.org/10.1016/j.physrep.2015.10.004
https://doi.org/10.1016/j.physrep.2015.10.004
https://doi.org/10.1103/PhysRevLett.87.220401
https://doi.org/10.1103/PhysRevLett.87.220401
https://doi.org/10.1103/PhysRevLett.87.220401
https://doi.org/10.1103/PhysRevLett.87.220401
https://doi.org/10.1103/PhysRevLett.101.155303
https://doi.org/10.1103/PhysRevLett.101.155303
https://doi.org/10.1103/PhysRevLett.101.155303
https://doi.org/10.1103/PhysRevLett.101.155303
https://doi.org/10.1103/PhysRevA.78.013627
https://doi.org/10.1103/PhysRevA.78.013627
https://doi.org/10.1103/PhysRevA.78.013627
https://doi.org/10.1103/PhysRevA.78.013627
https://doi.org/10.1103/PhysRevLett.115.175301
https://doi.org/10.1103/PhysRevLett.115.175301
https://doi.org/10.1103/PhysRevLett.115.175301
https://doi.org/10.1103/PhysRevLett.115.175301
https://doi.org/10.1103/PhysRevA.66.031601
https://doi.org/10.1103/PhysRevA.66.031601
https://doi.org/10.1103/PhysRevA.66.031601
https://doi.org/10.1103/PhysRevA.66.031601
https://doi.org/10.1088/1367-2630/aa8fb4
https://doi.org/10.1088/1367-2630/aa8fb4
https://doi.org/10.1088/1367-2630/aa8fb4
https://doi.org/10.1088/1367-2630/aa8fb4
https://doi.org/10.1088/1367-2630/aa8c45
https://doi.org/10.1088/1367-2630/aa8c45
https://doi.org/10.1088/1367-2630/aa8c45
https://doi.org/10.1088/1367-2630/aa8c45
https://doi.org/10.1126/science.aam5538
https://doi.org/10.1126/science.aam5538
https://doi.org/10.1126/science.aam5538
https://doi.org/10.1126/science.aam5538
https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1016/0370-1573(82)90102-8
https://doi.org/10.1016/0370-1573(82)90102-8
https://doi.org/10.1016/0370-1573(82)90102-8
https://doi.org/10.1016/0370-1573(82)90102-8
https://doi.org/10.1103/PhysRevA.86.032712
https://doi.org/10.1103/PhysRevA.86.032712
https://doi.org/10.1103/PhysRevA.86.032712
https://doi.org/10.1103/PhysRevA.86.032712
https://doi.org/10.1038/nature09378
https://doi.org/10.1038/nature09378
https://doi.org/10.1038/nature09378
https://doi.org/10.1038/nature09378
https://doi.org/10.1038/nphys2028
https://doi.org/10.1038/nphys2028
https://doi.org/10.1038/nphys2028
https://doi.org/10.1038/nphys2028
https://doi.org/10.1103/PhysRevA.80.013602
https://doi.org/10.1103/PhysRevA.80.013602
https://doi.org/10.1103/PhysRevA.80.013602
https://doi.org/10.1103/PhysRevA.80.013602
https://doi.org/10.1103/PhysRevLett.104.160403
https://doi.org/10.1103/PhysRevLett.104.160403
https://doi.org/10.1103/PhysRevLett.104.160403
https://doi.org/10.1103/PhysRevLett.104.160403
https://doi.org/10.1103/PhysRevA.91.033407
https://doi.org/10.1103/PhysRevA.91.033407
https://doi.org/10.1103/PhysRevA.91.033407
https://doi.org/10.1103/PhysRevA.91.033407
https://doi.org/10.1103/PhysRevA.77.012719
https://doi.org/10.1103/PhysRevA.77.012719
https://doi.org/10.1103/PhysRevA.77.012719
https://doi.org/10.1103/PhysRevA.77.012719
https://doi.org/10.1088/0953-4075/35/14/307
https://doi.org/10.1088/0953-4075/35/14/307
https://doi.org/10.1088/0953-4075/35/14/307
https://doi.org/10.1088/0953-4075/35/14/307
https://doi.org/10.1103/RevModPhys.83.1523
https://doi.org/10.1103/RevModPhys.83.1523
https://doi.org/10.1103/RevModPhys.83.1523
https://doi.org/10.1103/RevModPhys.83.1523
https://doi.org/10.1073/pnas.1408861112
https://doi.org/10.1073/pnas.1408861112
https://doi.org/10.1073/pnas.1408861112
https://doi.org/10.1073/pnas.1408861112
https://doi.org/10.1103/PhysRevLett.95.050404
https://doi.org/10.1103/PhysRevLett.95.050404
https://doi.org/10.1103/PhysRevLett.95.050404
https://doi.org/10.1103/PhysRevLett.95.050404
http://arxiv.org/abs/arXiv:cond-mat/0701420
https://doi.org/10.1103/PhysRevA.79.063605
https://doi.org/10.1103/PhysRevA.79.063605
https://doi.org/10.1103/PhysRevA.79.063605
https://doi.org/10.1103/PhysRevA.79.063605
https://doi.org/10.1103/PhysRevLett.103.245301
https://doi.org/10.1103/PhysRevLett.103.245301
https://doi.org/10.1103/PhysRevLett.103.245301
https://doi.org/10.1103/PhysRevLett.103.245301
https://doi.org/10.1103/PhysRev.56.340
https://doi.org/10.1103/PhysRev.56.340
https://doi.org/10.1103/PhysRev.56.340
https://doi.org/10.1103/PhysRev.56.340



