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We report the momentum-resolved measurement of Bloch bands in an optical Lieb lattice for a Bose-
Einstein condensate (BEC). A BEC in the lattice is transported to a desired quasimomentum by applying a
constant force. The energy dispersion of the lowest band is obtained by integrating measured group
velocities.We alsomeasure the gap from the lowest band to the higher bandswith the same quasimomentum,
which can be extracted from the oscillation of the sublattice populations after preparing a superposition of the
band eigenstates. We show that the experimental results agree with a band calculation based on the
Bogoliubov approximation. It is revealed that the second band, which should be flat in a single-particle
description, is shifted and, in particular, distorted around the Brillouin zone edge as the interaction strength
increases.
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Flat bands possessmacroscopic level degeneracy because
of their dispersionless band. Flat bands appear in various
contexts of condensed-matter physics, ranging from the
Landau levels of two-dimensional electrons [1], the edge
states of graphene [2], to unconventional superconductors
[3]. Intriguingly, such flattened band structure shows a wide
range of many-body phenomena from supersolidity [4] to
flat-band ferromagnetism [5–7]. In addition, flat bands with
nontrivial topological properties have attracted much atten-
tion for their application in realizing a fractional quantum
Hall state without Landau levels [8–10].
In special lattice structures such as kagome, sawtooth,

and Lieb lattices, the destructive interference of the
tunneling induces frustration of kinetic energy and results
in a bulk flat band. For bosonic systems, a fascinating
question has been considered of whether condensation is
stable in a flat band. In a kagome lattice, it is theoretically
investigated that an interaction makes the energy at the K
point, which corresponds to the corner of the hexagonal
first Brillouin zone (BZ), lowest in a flat band [11].
Recently, several lattice structures with a flat band have
been realized in optical lattices [12,13], photonic lattices
[14–16], and a polaritonic system [17]. Above all, ultracold
atoms in optical lattices have great advantages in terms of
their simplicity and dynamical controllability of system
parameters such as the tunneling amplitude and on-site
interaction in the Hubbard regime [18]. In ultracold atom
experiments, a band structure of an optical lattice can be
measured in a momentum-resolved manner by Bragg
spectroscopy [19] and a combination of Bloch oscillation
and Stückelberg interferometry [20]. The former method
requires a continuous change of the angle between the
driving laser beams. In the latter method, only the gap
between the 1st band and 2nd band can be measured.
In this Letter, we report the momentum-resolved meas-

urement of the lowest three Bloch bands for an interacting
array of BEC trapped in an optical Lieb lattice [Fig. 1(a)].

Three-sublattice structure (A, B, and C) of the Lieb lattice
gives rise to three s orbitals described as

jq; 1sti ¼ 1
ffiffiffi
2

p ðjq; Ai þ sin θqjq; Bi þ cos θqjq; CiÞ;

jq; 2ndi ¼ cos θqjq; Bi − sin θqjq; Ci;

jq; 3rdi ¼ 1
ffiffiffi
2

p ðjq; Ai − sin θqjq; Bi − cos θqjq; CiÞ; ð1Þ

FIG. 1. (a) Schematic of Lieb lattice. In our system, the atoms
are weakly trapped along the y direction, and distribute like tubes
as shown in gray in the figure. (b) Band structure of Lieb lattice in
a single-particle description. (c) Method for measuring dispersion
of the lowest band. Red circles indicate the atomic cloud. After
transporting a BEC to a desired quasimomentum, we measure the
group velocity and integrate the results. (d) Method for measuring
a band gap in a momentum-resolved manner. We prepare the
superposition of band eigenstates, transport the atoms to a desired
quasimomentum, and measure an oscillation frequency of the
sublattice population.
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where jq; Si (S ¼ A, B, C) is a plane wave on a sublattice
S with quasimomentum q, and θq satisfies tan θq ¼
cosðqxd=2Þ= cosðqzd=2Þ. The resulting single-particle
energy spectrum has a flat band as the second band and
a Dirac cone at the corner of the Brillouin zone [Fig. 1(b)].
To investigate the dispersion relation, a BEC in the lattice is
transported to various quasimomenta by applying a con-
stant force [21]. The dispersion of the lowest band is
acquired by integrating group velocity measured from
matter-wave interference patterns [Fig. 1(c)]. For the
higher bands, we measure the gap from the lowest band
[Fig. 1(d)]. High controllability of the optical lattice
enables us to prepare the precise superposition of band
eigenstates [13]. Once such a state is introduced into the
Lieb lattice, the sublattice population starts oscillation,
whose frequency corresponds to the band gap. This work
sheds light on the important role of the interaction in
significantly modifying the Bloch band, including a flat
band in the Lieb lattice.
We begin with describing our experimental setup. A

nearly pure condensate of ytterbium (174Yb) is optically
trapped using far-off-resonant trap (FORT) laser beams. An
optical Lieb lattice is then adiabatically ramped up and the
BEC is located at quasimomentum q ¼ 0 (Γ point) of the
lowest band. Our optical Lieb lattice potential is given by

Vðx; zÞ ¼ −VðxÞ
longcos

2ðkLxÞ − VðzÞ
longcos

2ðkLzÞ
− VðxÞ

shortcos
2ð2kLxÞ − VðzÞ

shortcos
2ð2kLzÞ

− Vdiagcos2½kLðx − zÞ þ π=2�; ð2Þ

where z indicates the direction of gravity. kL ¼ 2π=λ is a
wave number of a long lattice for which we choose
λ ¼ 1064 nm. In the following, we specify each lattice
depth as ðslong; sshort; sdiagÞ ¼ ðV long; Vshort; VdiagÞ=ER,
where ER ¼ ℏ2kL2=ð2mÞ is the recoil energy and m is
the atomic mass of 174Yb. In the y direction, which is
perpendicular to the Lieb lattice plane, the atoms are
weakly confined in a harmonic trap, resulting in 2D array
of 1D tubes as illustrated in Fig. 1(a). To move the atoms in
the reciprocal space, we utilize two kinds of external forces.
One is a gravitational force acting in Γðqx ¼ 0; qz ¼ 0Þ to
the Xðqx ¼ kBZ; qz ¼ 0Þ direction, which can be applied by
turning off the FORT potential, where kBZ ¼ π=d ¼ kL.
The other is a dipole force due to the potential gradient
of a Gaussian beam with the beam waist of about 50 μm
and about 1 GHz red detuning from the resonance
of the 1S0-3P1 transition (λ ¼ 556 nm) acting in Γ to
Mðqx ¼ kBZ; qz ¼ kBZÞ direction.
In the presence of a constant external force F, which is

weak enough not to induce interband transitions, a
given band eigenstate jqð0Þ; ni evolves to jqðtÞ; ni accord-
ing to qðtÞ ¼ qð0Þ þ Ft=ℏ after a time t [21]. The group
velocity in jqðtÞ; ni is related to the band eigenenergy
En½qðtÞ� as [22]

hvin½qðtÞ� ¼
1

ℏ
dEn½qðtÞ�

dq
: ð3Þ

In the following, we reconstruct the dispersion of the
lowest band by integrating the group velocities detected
via time-of-flight (TOF) measurements [23,24]. From a
TOF image, we can observe the velocity distribution of
atomic cloud nðvx; vzÞ, which is once integrated in the
direction perpendicular to the Lieb lattice plane. Using the
velocity distribution, the group velocity is given as hvi ¼R
dvxdvzvnðvx; vzÞ. When extracting the group velocity

from TOF images, we reduce the influence of the back-
ground noise in the region where the atoms are not
populated by restricting the region of integration into
the squares as in Figs. 2(a), 2(b) whose centers correspond
to ℏ(qxðtÞ; qzðtÞ);ℏ(qxðtÞ � 2kL; qzðtÞ � 2kL);ℏ(qxðtÞ;
qzðtÞ � 4kLÞ;ℏ(qxðtÞ � 4kL; qzðtÞ) and the width is
≃ℏkL=3. Measured group velocity at each quasimomen-
tum is integrated in a trapezoidal approximation EðqÞ=ℏ ¼
R q
0 dq0 · hviðq0Þ ∼ Σq0ðiÞ¼q

i¼0 dq0½hviðiþ 1Þ þ hviðiÞ�=2.
When the BEC in the lowest band experiences a weak

external force, the whole condensate occupies a single band
at a single wave number. We compare the experimental data
with Gross-Pitaevskii equation (GPE) in a tight-binding

FIG. 2. (a),(b) Absorption images at quasimomentum
ðqx; qzÞ ¼ ð0; 0Þ and ð0.5; 0.5ÞkBZ, respectively, where kBZ
corresponds to the quasimomentum at the BZ edge. The images
are taken after a TOF of 14 ms. We restrict the integration region
within the white squares in which the atoms are mostly detected.
(c) Dispersion of the 1st band of optical Lieb lattice
ðslong; sshort; sdiagÞ ¼ ð13; 13; 15.5Þ. The experimental data are
denoted as green circles. The inset shows the first BZ. The
dashed black line shows single-particle theory. The dotted blue
line is the calculation for half of the maximum number density.
The solid yellow line is for the maximum number density. The
vertical axis shows the energy difference from the 1st band
energy at Γ for each interaction strength. The error bar indicates
the standard deviation of three independent scans.
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approximation (See S.1 in the Supplemental Material [25]).
Whereas the eigenstates given in Eq. (1) assume that
tunneling occurs only between the nearest neighbors, there
exists tunneling to the next-nearest neighbors or in the
diagonal direction in a shallow optical lattice potential.
We fit the tunneling parameters so that the resulting
tight-binding model reproduces the band calculated by
using optical lattice potentials. The Wannier function is
also determined by the optical lattice potential (see
Refs. [13,25]). We compare the experimental results with
a band calculation with such realistic Hubbard parameters.
Figure 2(c) shows the dispersion of the lowest band for

the lattice depth of ðslong; sshort; sdiagÞ ¼ ð13; 13; 15.5Þ. At
this lattice depth, the atoms are in a superfluid state and not
in a Mott-insulating state. In our system, an atom density
has spatial dependence due to a weak harmonic confine-
ment by laser beams. The trap frequencies of FORT and
optical lattice are ðωx;ωy;ωzÞ=2π ¼ ð129; 46.2; 151Þ Hz.
Assuming a local density approximation, we can calculate
the density distribution of atoms nðμ; rÞ in the optical
lattice by determining chemical potential μ from the total
atom number, which is N ¼ 2.1ð1Þ × 104 (See S.3 in
Ref. [25]). The Thomas-Fermi radii are ðrx; ry; rzÞ ¼
ð3.07; 8.58; 2.62Þ μm. At the trap center, the mean-field
interaction amounts to nUA=J ¼ 8.06, where UA is the
interaction strength on the A sublattice. In Fig. 2(c), band
calculations for the maximum density and half of it are
plotted in addition to a single-particle theory. Note that the
1st band energy at Γ (EΓ

1st) of each interaction strength is
subtracted to adjust the energy offset. The experimental
data are in excellent agreement with the theoretical analy-
sis. While the band dispersion along the Γ-M is robust
against interaction, the band energy is slightly shifted up
around the X point compared with the noninteracting case.
This can be accounted for by the concentration of the wave
function on the A and B sites at this point.
Next, we describe the band gap measurement. Initially, a

BEC is prepared as a superposition of eigenstates for the
optical Lieb lattice of ðslong; sshort; sdiagÞ ¼ ð13; 13; 15.5Þ.
The overlap between the initial state and the eigenstates of
higher bands is set to 10%, which is small enough for the
measured band gap not to depend on the higher band
fraction (See S.4 in Ref. [25]). The initial lattice depths
are ½ðsxlong; szlongÞ; sshort; sdiag� ¼ ½ð12.31; 14.01Þ; 6.84;15.24�
for the 1st to 2nd band gap (E2−1) measurement and
ðslong ¼ sxlong ¼ szlong; sshort; sdiagÞ ¼ ð12.49; 13.08; 17.82Þ
for the 1st to 3rd band gap (E3−1) measurement. After
changing the lattice configuration into the Lieb lattice
suddenly, we move the BEC in the reciprocal space by
applying a constant force. During the subsequent holding
time, the relative phase between band eigenstates evolves at
the frequency of the band gap, resulting in oscillations of the
sublattice populations. To observe the real-space dynamics,
we perform projection measurement of the occupation
number in each sublattice, which we call sublattice mapping

[13]. In this method, we change the lattice potential to
ðslong; sshort; sdiagÞ ¼ ð8; 20; 0Þ, where the lowest three bands
consist of theA,B, andC sublattice, respectively. This maps
out sublattice occupations to band occupations, which can
be measured by the band mapping technique.
When the superposition of the 1st and 3rd bands is

prepared as an initial state, all of the sublattice population
oscillate because the wave functions of the 1st and 3rd
bands spread over all the sublattices. On the other band,
since the eigenstate of the 2nd band has no amplitude on the
A sublattice, only the B- and C-sublattice populations
oscillate in the case of the superposition of the 1st and
2nd bands as an initial state. Therefore, we extract the band
gap E3−1 from the frequency of the A-sublattice oscillation
[Fig. 3(a)] and E2−1 from the mean of frequencies of the B-
and C-sublattice oscillations [Fig. 3(b)]. Note that the
populations at the B and C sublattices in Fig. 3(a) evolve
in the same way, because both jΓ; Bi and jΓ; Ci always
have the same coefficient in the superposed state. We fit the
oscillation of the sublattice population with our empirical
model function

FðtÞ ¼ ae−t=τ sin ð2πftþ bÞ þ c; ð4Þ
where a, b, c, f, τ are the fitting parameters.
In Fig. 3(c) we show the experimentally determined band

energies (solid circles) in the optical Lieb lattice. The
higher band energies are obtained from the combination of
the energy gaps and the energy of the lowest band described
above. The dashed lines are the results of the calculations
based on a single particle theory. It is clear that the
experimentally determined energies are significantly devi-
ated, in particular, up-shifted and distorted, from the
calculated bands, which should be ascribed as the inter-
action-driven effect. Note that a direct tunneling between B
and C sublattices, which exists in our Lieb lattice system,
distorts the flat band even in the single-particle limit.
Theoretically, a Bloch state with a small fraction of higher
bands is regarded as the state after the weak excitation from
the lowest band. Therefore, we use the Bogoliubov–de
Gennes equation (BdGE) to estimate the interaction effect
on the energy gap (See S.2 in Ref. [25]). The dotted and
solid curves show the results of the calculations with two
different interaction strengths, respectively. Our calculation
shows, in particular, that the band gaps or excitation
energies around the center of the BZ become larger as
the interaction increases. On the contrary, the gap to the 2nd
band becomes closed around the BZ edge of the X point as
the interaction increases. We interpret this behavior as
follows. At the X point, cosðθXÞ ¼ 0 and sinðθXÞ ¼ 1, and
thus the Bloch wave function of the 1st band has no spatial
overlap with that of the 2nd band. Therefore, the excited
atoms do not interact with the atoms in the lowest band,
resulting in the smaller band gap as the interaction energy
increases in the lowest band. On the other hand, because the
3rd band has large spatial overlap with the 1st band, the
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energy necessary to excite a particle to the 3rd band gets
larger as the interaction increases. Note that along the Γ-M
direction, cosðθqÞ ¼ sinðθqÞ ¼ 1=

ffiffiffi
2

p
, and thus the 2nd

band remains flat because the sublattice distribution does

not change. The experimental data certainly indicate this
tendency. Note that due to decoherence caused possibly by
the interaction, the oscillations of sublattice populations are
damped, which makes it difficult to measure the frequency
around the exact BZ edge.
Finally, we experimentally investigate dependence of the

band gap on the interaction. The gap energies are measured
with various atom numbers. Here, we focus on E2−1 along
the Γ-X direction [see Fig. 4(a)]. For a uniform, weakly
interacting BEC, the chemical potential has linear depend-
ence on the atomic density, leading to N2=5 dependence of
the central density. Therefore, we plot the observed
oscillation frequency as a function of N2=5 in Figs. 4(b),
4(c), and 4(d). The data are in good agreement with the
calculations for the atom density with half of the maximum
value. By extrapolating the experimental data to a small
atom number limit, it is also confirmed that the band gap at
each quasimomentum approaches the prediction of a
single-particle theory.
In conclusion, we have studied an interaction effect on

the Bloch bands for superfluids in an optical Lieb lattice.
We observed that the 2nd band, which is a flat band in a
single-particle description, is significantly shifted and

FIG. 3. (a),(b) Oscillation of the sublattice population at the Γ
point according to (a)E3−1 and (b) E2−1, respectively. First, we
load a BEC into an optical lattice the configuration of which is
different from that of a Lieb lattice. In this way, we create a
superposition of (a) the 1st and 3rd or (b) the 1st and 2nd band
eigenstates of the Lieb lattice. Next, we suddenly change the
lattice configuration into the Lieb lattice, and take various hold
time. We observe the temporal change of the sublattice pop-
ulations obtained by the projection measurement described in the
text. Each sublattice occupancy is normalized by the summation
over all of the sublattice occupancy. Green, blue, and red circles
show the A-, B-, and C-sublattice population, respectively. The
error bar shows the standard deviation of three independent scans.
Solid lines are fits to the data with damped sine functions(4).
(c) The lowest three bands in the optical Lieb lattice of
ðslong; sshort; sdiagÞ ¼ ð13; 13; 15.5Þ. Red and blue circles are the
reconstructed 2nd and 3rd band energies, respectively. Error bars
mean the fitting errors. Dashed lines are the predictions based on
a single-particle theory. The dotted and solid lines are the
calculations including the interaction based on the BdGE with
the half and maximum densities, respectively.

FIG. 4. (a) Band gaps from the lowest band to the 2nd band.
Dashed black line is the prediction on the single particle theory of
the Lieb lattice potential ðslong; sshort; sdiagÞ ¼ ð13; 13; 15.5Þ.
Solid yellow line is the calculation including the interaction
based on the BdGE. Thick red, green, and blue lines, respectively,
show the quasimomenta qz ¼ 0.74kBZ, 0.37kBZ, and 0 at which
we have investigated the density dependence of the band gaps.
(b),(c),(d) Band gap versus the atom number for qz ¼ 0.74kBZ,
0.37kBZ, 0, respectively. Solid and dotted lines show the
calculations including the interaction based on the BdGE for
the maximum and half densities, respectively. Error bars indicate
the fitting errors.
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distorted along the Γ − X direction by the interaction.
Further applications of our method include the study of
an artificial gauge field, which induces the modification of
an energy spectrum and a topologically nontrivial phase for
fermions in a Lieb lattice [28]. In addition, our technique
demonstrated for an optical Lieb lattice should be used to
create and observe an interesting interaction-driven effect
such as a swallow tail [29], in which the strong interaction
compared with a band gap induces the loop structure in the
energy band.
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