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Abstract

For the small-gain theorem derived by Zames in 1966, the later studies after
a few decades elaborated on its derivation through defining system causality,
which was not assumed by Zames. In connection with the treatment of
causality, however, these studies made some unnecessary assumptions on
the subsystems in feedback connection and failed to handle general systems
described by an input-output relation rather than mapping (which we call
input-intolerant /output-unsolitary systems). On the other hand, although
the treatment by Zames can handle such subsystems, it instead turns out to
lead to larger values for the induced norms of subsystems compared with the
later treatment. This paper is concerned with developing an extended form
of the small-gain theorem through the same induced norms as in the later
studies while dealing with general input-output causal subsystems. Since
causality of subsystems plays a key role in such development, our research
direction strongly motivates us to study how causality should be defined for
general input-output systems. Thus, much of the arguments in this paper
is devoted to such a study, which provides us with profound and thorough
understandings on causality of different restricted classes of general input-
output systems. Mutual relationships among adequate causality definitions
for different classes are also clarified, which should be important in its own
right. After deriving an extended form of the small-gain theorem, an example
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illustrates the importance of dealing with such general subsystems, as well
as usefulness of the extension.

Keywords: causality, small-gain theorem, input-intolerant systems,
output-unsolitary systems, truncation-invariant sets

1. Introduction

The small-gain theorem, which was derived by Zames [1, 2] in 1966 for
the first time, is known as one of the most important instruments for con-
trol theory. Roughly speaking, the discrete-time version of it states that if
the product of the [, induced norms of two subsystems is less than 1, then
the closed-loop system consisting of the subsystems is [, stable. Those later
studies such as [3, 4, 3, 6, [7] dealing with the small gain theorem also elabo-
rate on its derivation through defining system causality, although it was not
assumed in [1, 2].

Relevant to this difference in the original study by Zames and those later
studies is another difference in defining the induced norm of each subsystem.
More precisely, Zames defined the induced norm through the treatment of the
truncated input and output of each subsystem, even though the entire time
horizon was eventually taken into account in the definition. This definition,
however, turns out to possibly lead to a larger value for the induced norm
than the treatment in the later studies, which are free from truncation at
the stage of the induced norm definition. In connection with the treatment
of causality, however, those later studies instead made some unnecessary
assumptions on the subsystems in feedback connection in deriving the small-
gain theorem.

This paper is thus motivated by our interest in reverting to the same as-
sumption on the (causal) subsystems as that made by Zames, while exploiting
improved evaluation of their induced norms in deriving an extended form of
the small-gain theorem. More precisely, we aim at considering the follow-
ing types of subsystems described by the input-output relation [3, 4, 15, 16, (7]
(rather than the input-output mapping) on the product space of the input
space and the output space:

(a) such (sub)systems that possibly fall into a situation in which two or
more signals can be determined as the “corresponding output” under
some input;



(b) such (sub)systems that possibly have some input leading to a situation
in which no signal can be determined as the “corresponding output.”

We say that the systems of type (a) are output-unsolitary, while those
systems that are not output-unsolitary are said to be output—solitar. For
example, let us consider a static system in which a solution to a nonlinear
equation associated with the current input together with some parameters is
regarded as its possible current output. Then, such a system could naturally
be output-unsolitary. Quite importantly, we will also give another example
of output-unsolitary systems resulting from a feedback connection of output-
solitary subsystems. Hence, if we consider a general case of complex systems
where such a feedback connection of subsystems actually has a further inter-
action in a feedback form with a similar kind of feedback connection of other
subsystems, then it is natural for us to study a closed-loop system consisting
of output-unsolitary subsystems. Furthermore, it may be worth noting that
if we take such a standpoint that picking out a state-space system does not
determine its initial state and leaves it completely free, ambiguous or un-
known, then the state-space system viewed as a general input-output system
will naturally be output-unsolitary.

On the other hand, the implication of the systems of type (b) is that
some input should possibly be ruled out in dealing with such systems so
that we can always talk about the output. In this sense, such systems are
said to be input-intolerant, while those systems that are not input-intolerant
are said to be input-tolerant. As easily seen, the aforementioned example of
nonlinear static systems could also be an example of input-intolerant systems.
Furthermore, such systems in which some nonlinear functions such as the
reciprocal and logarithm functions are applied to each entry of the current
input are simple examples of input-intolerant systems. In connection with
these terms, the class of subsystems dealt with in the aforementioned later
studies is precisely the one consisting of those systems that are both input-
tolerant and output-solitary (i.e., with an input-output mapping).

Accommodating input-intolerant /output-unsolitary input-output systems

1 For convenience, however, we sometimes take a standpoint that output-solitary sys-
tems form a special subclass of output-unsolitary systems (and thus are output-unsolitary,
t0o). We believe that this would not cause any serious ambiguity in the arguments. Sim-
ilarly for the term of input-tolerant systems with respect to the term of input-intolerant
systems introduced later.



is quite important in exploiting the full power of the small-gain type of ar-
guments in the stability analysis of complicated systems. As further devel-
opments of stability analysis based on the small-gain theorem, techniques
with multipliers have been studied for many decades [8,19,10, 11,112, 13]. In
particular, the study on integral quadratic constraints has been carried out
intensively in recent years [14, [15, [16, [17]. Deriving the extended small-gain
theorem for general input-output causal systems is expected to contribute in
further enriching multipliers theory.

Since causality of subsystems plays a key role in the development of the
small-gain theorem in the treatment of the aforementioned later studies on
the small-gain theorem [3, 4,5, 16, (7], our research direction strongly motivates
us to study how causality should be defined for such general input-output
systems. Thus, much of the arguments in this paper is devoted to such a
study, as we will first see in Section [2l There, we begin with the well-known
causality definition of input-tolerant output-solitary systems [3, 4, |5, 16, [7],
from which a series of amendments of definitions will be motivated until we
eventually arrive at an adequate definition applicable to general input-output
systems and some further modified definitions are inspired. After clarifying
some trivial mutual relationships among those definitions, Section [3] uses the
relationships to continue further arguments on causality to provide profound
and thorough understandings on adequate definitions of causality for different
restricted classes of general input-output systems. On the basis of the defini-
tions that eventually turn out to be applicable to the most general and wide
class of input-output systems, Section (] then establishes the extended small-
gain theorem for closed-loop systems consisting of input-intolerant and/or
output-unsolitary subsystems. In particular, we show that for a general
input-intolerant output-unsolitary system, the definition by Zames can lead
to an arbitrarily larger value for its induced norm compared with the treat-
ment in this paper through the definition in the later studies [3, 4, |5, 16, [7].
This clearly demonstrates the advances in our arguments through the study
on the causality of such general input-output systems. Lastly, we give an ex-
ample illustrating usefulness of the extended small-gain theorem and, at the
same time, importance of accommodating input-intolerant and/or output-
unsolitary systems in stability analysis of complicated systems.

Throughout the paper, N denotes the set of positive integers while Ny
denotes that of nonnegative positive integers.



2. Causality definitions and their trivial relationships

For the discrete-time signal x and K € Ny, we denote by g the trun-
cated signal of x defined as

k= {o (k> K), (1)

where (.); denotes the value of the signal (.) at time k. The studies such as
[3,14,15, 16, [7] elaborate on the derivation of the small gain theorem by defin-
ing system causality through this truncation as follows, under the implicit
standpoint that attention is paid only on input-tolerant and output-solitary
systems (i.e., systems with an input-output mapping): the system G is causal
if, for each pair of the input w and the corresponding output z and for every
K € Ny, the output 2’ corresponding to the input wix satisfies ZfK} = K]

In deriving an extended form of the small-gain theorem for more gen-
eral input-output systems with input-intolerant as well as output-unsolitary
subsystems, it is hence quite important to first consider generalizing the
above causality definition to accommodate those types of systems. This sec-
tion studies possible directions for such generalization. More precisely, we
start with a rather naive idea for extending the definition and next state its
inadequacy as a general definition. We then proceed to introducing more
appropriate and modified definitions, leading eventually to five “definitions,”
where only some of them are actually adequate as the definition for the most
general (i.e., input-intolerant and output-unsolitary) input-output systems.
Importantly, however, some of the definitions are still adequate if one is
confined to some classes consisting of, e.g., input-tolerant systems and/or
output-solitary systems. The former part of this paper is interested in in-
troducing such definitions for system causality and clarifying their mutual
relationships. In particular, this section is devoted to motivating the serial in-
troduction of such definitions. After summarizing their mutual relationships
that are more or less trivial from the definition statements before closing
this section, further discussions on deeper insight into their relationships will
be carried out in the following section by restricting our attention to some
particular classes of systems.

We begin with the notation and terms used in this paper. The extended
l, space [1, 2], the set of z such that z(x) € [, whenever K € Ny, is denoted



byﬁ lpe. Consider the system G = G : (lye, lse), by which we mean that the
input and output of G belong to l,. and [, respectively (where p, ¢ € [1, o0]
are given independently). The input-output relation of G is denoted by R.
In other words, the notation

(w,z) € Rg (2)

is used to mean that G admits the situation where the given z € [, may be
the outcome when the given w € [, is applied to it. Then, we define

Wie(G) :={w € lpe : I 2 € lye st (w,2) € Rg} (3)

and call it the admissible input set of G. To rule out meaningless situations,
the condition W,.(G) # 0 is assumed for every system G dealt with in
this paper. Those studies elaborating on the small gain theorem such as
13, 4, 13, 16, 7] considered only the case where W,.(G) = l,., which in turn
implies that only input-tolerant systems are dealt with and that the condition
wig] € Whe(G) is satisfied whenever w € W,.(G) and K € Ny. When this
condition is satisfied, we say that W,.(G) is truncation-invariant.

As a naive idea for extending the aforementioned definition of causality
for input-tolerant and output-solitary systems and accommodating input-
intolerant and/or output-unsolitary systems, we begin with the following
“definition,” in which the truncated input w, plays an important role.

Definition 1. (weak wyj-causality) The system G : (lpe,lge) is weakly wy)-
causal if wig € Whye(G) and the following condition are satisfied for each
w € Wye(G) and every K € No.

o For each z € lg such that (w,z) € Rq, there exists 2’ € lg such that
(w[K}, Z/) € Rg and ZfK} = 2|K]-

However, Definition [l turns out to be inadequate for output-unsolitary
systems (even though it will indeed turn out to be an adequate definition for
some class of output-solitary systems). To see this, we provide the following
example.

2 As a matter of fact, the extended space lpe does not depend on p in spite of its notation.
However, it should be meaningful to keep the underlying p highlighted because recklessly
dropping the symbol p could rather cause confusion; we must eventually return to the
treatment of [, whenever we are dealing with [,., and this is why we utilize the notation
lpe Tather than “I,” throughout this paper.



Example 1. Let § denote the impulse signal (1,0,0,---). Consider the sys-
tem G : (lg,lse) whose input-output relation is described by (4,20) € Rg
and (w,w) € Rg for every w € ly, (including w = §). Clearly, G is output-
unsolitary and input-tolerant (since Wh.(G) = ly). Hence, Wh(G) is obvi-
ously truncation-invariant and thus wig) € Wa(G) regardless of K € Ny for
each w € Wh(G). Furthermore, it is not hard to confirm that G satisfies
the remaining condition in Definition [l Hence, the system G here must
be judged to be causal in the sense of Definition [Il Nevertheless, we next
argue that regarding this system to be causal would be inadequate, whose
implication is that Definition [ should not be employed for general input-
output systems (even though it will turn out, for output-solitary systems, to
be equivalent to an adequate definition in the following arguments). To see
this, let us consider (w, z) := (§,20) € Rg. Then, one can readily conclude
that the specific value at k = 0 for this z (i.e., zp = 2) is indeed consistent
with the underlying input-output relation of the system G only through the
knowledge that this w satisfies wy = 0 for £ > 0, where the knowledge is
impossible to obtain at time k& = 0.

Since Example [I] shows that Definition [ (adequate for some class of
output-solitary systems) is inadequate for output-unsolitary systems, we in-
troduce the following definition by amending Definition [l

Definition 2. (wyj-causality) The system G is wyj-causal if wig) € Wie(G)
and the following two conditions are satisfied for each w € W,(G) and every
K € Ny.

(i) For each z € ly such that (w,z) € Rg, there exists 2’ € l,. such that
(w[K}, Z/) € Rg and ZfK} = Z[K]-

(ii) For each 2" € lge such that (wik), 2') € Rg, there exists 2" € lge such
that (w, 2") € Rg and 2 = 2.

Note that Definition [2] (as well as Definition [Il) obviously leads to requir-
ing that W, (G) is truncation-invariant. In this sense, and as we also discuss
shortly, these definitions are not yet fully satisfactory for our ultimate pur-
pose. However, our arguments starting from these definitions are believed
to be quite meaningful in the overall picture on our entire arguments. This
is because removing the assumption on truncation-invariance turns out to
be very closely related with our outperforming the small-gain theorem by



Zames through the causality treatment (see Remark [6] in Section @]). Def-
inition 2 is stronger than Definition [Il because of the additional condition
(ii) (the condition (i) in Definition 2 is the same as that in Definition [II).
The additional condition plays an important role when there exists 2’ € [,
satisfying (wix], 2') € R as in (i) but zj; # z(x) unlike in (i). Even though
Definition [I] pays no attention to possible existence of such 2/, the condition
(ii) in Definition @l requires that such 2z’ may exist only under some rele-
vance to another possible output z” of G to the same untruncated input w.
Hence, Definition @l naturally becomes equivalent to Definition Il when G is
output-solitary.

However, Definition 2] would still turn out to be unsatisfactory for input-
intolerant systems. To see this, we further provide the following example.

Example 2. Consider the system G : (ls, l2.) whose input-output relation
is given by

Zk:{o (w;=0(=0,....k) n

w,'  (otherwise).
This G is input-intolerant since the admissible input set Wh(G) consists of
signals whose value is nonzero except for its leading part of arbitrary time
length consisting of zeros. It is thus easy to see that this G does not satisfy the
conditions of Definition [2] because for w = (1,1,--+) € Wh(G) and K = 0,
we have wig = (1,0,...) € Wh(G) (more essentially because Wh(G) is not
truncation-invariant). Nevertheless, it is questionable whether we should
actually regard this G to be noncausal because its output at time k can
simply be determined by the value of the input at the same instant without
referring to the future values of the input (as long as the input is assumed to
belong to the admissible set, which would be a natural assumption because
considering a nonadmissible input would usually be nonsense.

The above example suggests that an additional modification is needed for
defining causality. Hence, for w € W,.(G) and K € Ny, let us define

Whe(w, K) = {1 € Wpe(G) iy = wise} € WyelG). (5)

Using this set consisting of signals that are identical with w up to time K,
we introduce the following definition by further amending Definition 2l



Definition 3. (W,.(w, -)-causality) The system G is Wy (w, -)-causal if the
following two conditions are satisfied for each w € W,.(G), every K € Ny
and every w' € W (w, K).

(i) For each z € ly such that (w,z) € Rg, there exists 2’ € l,. such that
(w',2") € R and 2 = 2k).

(ii) For each 2" € lye such that (W', 2") € Rg, there exists 2" € 1, such that
(w,2") € R and 2 = 2[y-

The importance of introducing the above definition lies in the point that
the problematic issue of referring to the truncation wg) in Definition 2] has
been avoided with only a modest and natural amendment (most of the struc-
ture of the definition is preserved compared with the preceding definition).
Thus, unlike Definition 2] W,.(G) need not be truncation-invariant under the
requirement of Definition Bl In this sense, Definition 2l may seem “stronger”
than Definition[3l On the other hand, even though only a single input wyg (if
K is fixed) is involved in the conditions in Definition [2, those in Definition Bl
involve all w’ € W,(w, K). It is not always the case that wix) € Wie(w, K)
but it would often be the case that W), (w, K) is an infinite set. In this sense,
Definition Blmay seem “stronger” than Definition[2l The mutual relationship
of these definitions will be made clear in the following section.

One of the assertions of this paper is that Definition B should be an
adequate definition of causality for general output-unsolitary systems as well
as input-intolerant systems. This is partly supported by the following further
observations about Examples [I] and 2l

Example 1 (continued). Recall that the system G is output-unsolitary
and is a system that should not be regarded as being causal. In accordance
with this situation and as desired, it turns out to fail to satisfy the amended
conditions in Definition Bl To see this, consider w = § and z = 26 satisfying
(w, z) € Rg. Then, for K =0 and v’ = (1,1,0,--+) € Whe(w, K), we have
2/ =(1,1,0,---). This obviously implies that Zfo} # 2] and thus G fails to
satisfy the condition (i) in Definition Bl (as well as that in Definition [2I).

Example 2 (continued). Recall that the system G is input-intolerant and
is a system that would better be regarded as being causal. To see that G
successfully satisfies the amended conditions in Definition [3] we consider the
following two cases for each K € Njy.



1) Take w = 0 and w' € Whe(w, K) (= Ws(0, K)). Then, (w,z) € Rg
leads to z = 0. On the other hand, it is easy to see that (w’,2') €
Rg (2 € lye) implies that sz] = wa] =0 = 2]

2) Take w € Whe(G) \ {0} such that w, = 0 (k < i) for i € Ng and
wy # 0 (K > 4) and also take w’ € Wh(w, K). For this w, take w™
such that w;, = 0 (k < i) and w, = w; ' (k > ). Then, 2 € Iy, such
that (w, z) € Rg equals to w™. Similarly, w'™ is also well-defined for
the signal w’ € Ws(w, K) and the corresponding signal 2z’ such that

/

(w',2) € Re equals to w'™. For the above z, we have z{;) = w'|x) =
w[}q = z|x) regardless of whether 1 > K or i < K.

The above observations immediately imply that G satisfies the condition (i)
in Definition B (as well as that in Definition [2). It also satisfies the condition
(ii) since it is output-solitary (recall the arguments below Definition B]), and
thus G is successfully regarded as being causal in the sense of Definition [3

To reach more profound and entire understandings on how causality
should and may be defined, let us further consider the following definition
obtained by removing the condition (ii) from Definition Bl

Definition 4. (weak W,.(w, -)-causality) The system G is weakly Whye(w, -)-
causal if the following condition is satisfied for each w € W,.(G), every
K € Ny and every w' € Wye(w, K).

o For each z € lg such that (w,z) € Rq, there exists 2’ € lg such that
(w',2") € Re and 2, = 2K

One might argue that Definition Mlis readily acceptable as a quite natural
definition of causality for general input-output systems and all the preceding
arguments are just redundant. Indeed, it turns out to correspond to the def-
inition of nonanticipation provided in [18], if we interpret our input-output
system in the context of the behavioral framework. Nevertheless, what this
paper precisely aims at deeply investigating is clarifying the mutual relation-
ships among possible definitions and their adequacy/inadequacy for general
and/or some restricted classes of input-output systems. Indeed, Definition @l
is actually revealed to be equivalent to Definition Bl Roughly speaking, this
can be explained as follows: since w and w’ in Definition 4] are taken arbitrar-
ily (within some associated restrictions), they could somehow be mutually
interchanged, and doing so in the condition therein equivalently leads to the

10



same condition as (ii) in Definition Bl This leads to equivalence between
Definitions [3] and [, and the following section indeed shows this rigorously as
Theorem Bl This equivalence of Definition [ to Definition ll will further sup-
port the assertion of this paper that the former is also one possible definition
of causality for general input-output systems.

For the sake of further arguments, we now consider comparing Defini-
tions [Il and Ml Unlike Definition [I Definition dl does not lead to requiring
that W),.(G) is truncation-invariant. In this sense, Definition [l may seem
“stronger” than Definition @l On the other hand, while a single input wigj
(if w and K are fixed) is involved in the conditions in Definition [ the con-
ditions in Definition M involve all w" € W), (w, K). In this sense, Definition [
may seem “stronger” than Definition [II Even though their mutual relation-
ship is not clear at this stage, it is meaningful to introduce the following
definition obtained by (equivalently) reimposing the condition that W,.(G)
is truncation-invariant on top of the requirement in Definition @ Introduc-
ing this definition will be helpful in reaching entire understandings on the
mutual relationships among all the definitions in this section and their ade-
quacy/inadequacy for general and/or some restricted classes of input-output
systems.

Definition 5. (truncation-invariant Wye(w, -)-causality) The system G is
truncation-invariant Wye(w, -)-causal if wix) € Whe(G) and the following
condition are satisfied for each w € W,.(G), every K € Ny and every
w' € Whe(w, K).

o For each z € lg such that (w,z) € Rq, there exists 2’ € lg such that
(w',2') € R and 2 = 2k).

Note that when the assumptions of Definition [l are satisfied, one of w’ €
Woe(w, K) is obviously wig). Hence, if the conditions in Definition [ are
satisfied, then those of Definition [Il are also satisfied.

Before closing this section, we give the following theorem by enumerating
trivial relationships (following readily from their statements as well as our
earlier arguments) among the five “definitions,” which are also illustrated in
Fig. [l with solid arrows.

Theorem 1. The following relationships hold.

1) If G is wyj-causal (Definition[2), then it is weakly wy,-causal (Defini-
tion [1).

11



Def. 1 Def. 2 Def. 3
weak W[ -causality W|.] -causality We(w, -) -causality
\ l Th.2 ﬂ | Th.s
Def. 5 — Def. 4
truncation-invariant ) weak )
We(w, ") -causality W,e(w, -) -causality

Figure 1: Relationships among the five definitions of causality.

2) If G is Wye(w,-)-causal (Definition [3), then it is weakly Wye(w, -)-
causal (Definition [{]).

3) If G is truncation-invariant W,e(w, -)-causal (Definition[3), then it is
weakly
Wpe(w, -)-causal (Definition [})).

4) If G is truncation-invariant W,e(w, -)-causal (Definition[d), then it is
weakly wy)-causal (Definition ).

3. Further equivalence relations among causality definitions

The preceding section introduced “five definitions” for causality together
with some trivial mutual relationships of them. This section is devoted to
reaching more profound and entire understandings on their further nontrivial
relationships and adequacy/inadequacy for general and/or some restricted
classes of input-output systems. In particular, the definitions are integrated
into three groups (by integrating mutually equivalent ones as an equivalence
group after the former part of the arguments in this section), and it is shown
that these groups can further be integrated into two groups or even one
group once we introduce some restrictions on the class of systems for which
the definition of causality is sought for.

3.1. General further equivalence relations

We first show that there are actually two pairs of equivalence relations in
the “five definitions.” In particular, Definition 2] is equivalent to Definition

12



while Definition [3lis to Definition [, which is illustrated in Fig. [l with dashed
arrows.
We begin by showing the following first equivalence relation.

Theorem 2. The following two conditions are equivalent.

1. G is wyj-causal (Definition[3).
2. G is truncation-invariant W (w, -)-causal (Definition [3).

Proof. 1= 2: Suppose G is wyj-causal. For each pair of w € W,.(G) and
z € lg such that (w,z) € Rg and for every K € Ny, there exists 2/ € [,
such that (w(x], 2') € Re and z{, = 2(x] by the condition (i) in Definition 21
Whatever v’ € W, (w, K) C W,.(G) we may take, on the other hand, it
satisfies wa] = wg] and thus

(wa}, Z/> c RG (6)

for the above z’. Furthermore, let us note that the fact w’ € W,(G) allows
us to think of the w’ here as one specifically chosen w in Definition 2 (if we
start a fresh and independent look at this definition again), in which case its
condition (ii) (with w replaced by w’) particularly implies that

e For the above 2/ € [, satisfying (G)), there exists 2" € [, such that
(w',2") € Rg and 2 = 2(g; (and thus, z{}; = z(x] since 2 = k) by
the original assumption).

The final key in this part of the proof is to note that we can identify the above
2" with 2/, whose existence is required (for each w, K and w’) in Definition bl

2 = 1: Suppose G is truncation-invariant W, (w, -)-causal. For each pair
of w € W,e(G) and z € [, such that (w,z) € Rg and for every K € Ny,
there exists 2’ € [, such that

(wik), 2') € R and sz} = Z[k], (7)

because we may take w’ = wk) as a specific choice of w’ € Wpe(w, K) in the
condition (i) in Definition Bl This precisely implies that the condition (i) in
Definition [ is satisfied. Next, consider the condition (i) that is obtained by
taking the above wix) =: w* € Wp(G) and w =: w* € Wy (w*, K) as w and
w’ in Definition Bl respectively, which reads as follows (after 2’ is rewritten
as 2z while z is written as 2’ to avoid conflicts of symbols).

13



e For each (and thus the above) 2/ € [, satisfying (w*,2') € Rg and
2 = 2k (Le., (@), there exists 2" € loe such that (w*,2") € R and

K] = k)

Since this is true (when the conditions of Definition [{lis satisfied) regardless
of 2/ satisfying () and since the above w* is nothing but the original w
for which (together with z such that (w,z) € Rg) the condition (7)) was
considered, we see that the conditions of Definition 2] are satisfied. Q.E.D.

We next show the following second equivalence relation.

Theorem 3. The following two conditions are equivalent.

1. G is Wye(w, -)-causal (Definition|3).
2. G is weakly Whye(w, -)-causal (Definition [{]).

Proof. It is sufficient to show 2 = 1. The condition (i) in Definition [3]
is clearly satisfied since it is same as that in Definition 4. For each pair of
w € Wpe(G) and z € [, such that (w,z) € Rg, and for every K € Ny and
every w' € W,e(w, K), there exists 2’ € [, such that

(w',2') € Rg and 2k = 2x)- (8)
Next, consider the condition that is obtained by taking the above w’' =: w® €

Wye(G) and w =: w* € W,.(w®, K) as w and w’ in Definition [4] which reads
as follows (again after 2’ and z are rewritten as z” and 2/, respectively).

e For each (and thus the above) 2’ € [, such that (w®,2') € Rg, there
exists 2" € lge such that (w*,2") € Rg and 2z} = (k.

Since this is true (when the conditions of Definition [l are satisfied) regardless
of 2’ satisfying (§) and since the above w* is nothing but the original w
for which (together with z such that (w,z) € Rg) the condition (§) was
considered, we see that the condition (ii) of Definition [B]is satisfied. Hence,
G satisfies both conditions in Definition [3 Q.E.D.

As a result of Theorems 2] and B together with Fig. [ with the dashed
arrows taken into account, the five definitions of causality in the preceding
section are integrated into three groups A, B and C as shown in Fig. 2l with
solid arrows.
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3.2. Further equivalence relations of causality definitions under restricted
classes of systems

Fig. 2 (with the dashed arrows yet to be established in the rest of this
section and thus ignored for the moment) suggests that the “five definitions”
introduced in the preceding section are not mutually equivalent as far as gen-
eral input-intolerant and output-unsolitary systems are concerned. Indeed,
Example 2 shows that the dashed arrow * in the left direction fails for an
input-intolerant system with the admissible input set being not truncation-
invariant while Example [[l shows that the dashed arrow ** in the right direc-
tion also fails for an output-unsolitary system. Nevertheless, there could be
chances that either or both of the dashed arrows could hold if the attention
is restricted on some particular classes of systems. The rest of this section
is devoted to establishing that it is indeed the case and thus consequently
showing that there could exist further equivalence relations among the three
groups (called A, B and C) of causality definitions in Fig. 2] if we restrict
ourselves to some classes of systems.

In particular, we consider the two cases below in the following:

(I) The case when W,.(G) is truncation-invariant (which obviously con-
tains the special c