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Abstract

For the small-gain theorem derived by Zames in 1966, the later studies after
a few decades elaborated on its derivation through defining system causality,
which was not assumed by Zames. In connection with the treatment of
causality, however, these studies made some unnecessary assumptions on
the subsystems in feedback connection and failed to handle general systems
described by an input-output relation rather than mapping (which we call
input-intolerant/output-unsolitary systems). On the other hand, although
the treatment by Zames can handle such subsystems, it instead turns out to
lead to larger values for the induced norms of subsystems compared with the
later treatment. This paper is concerned with developing an extended form
of the small-gain theorem through the same induced norms as in the later
studies while dealing with general input-output causal subsystems. Since
causality of subsystems plays a key role in such development, our research
direction strongly motivates us to study how causality should be defined for
general input-output systems. Thus, much of the arguments in this paper
is devoted to such a study, which provides us with profound and thorough
understandings on causality of different restricted classes of general input-
output systems. Mutual relationships among adequate causality definitions
for different classes are also clarified, which should be important in its own
right. After deriving an extended form of the small-gain theorem, an example
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illustrates the importance of dealing with such general subsystems, as well
as usefulness of the extension.

Keywords: causality, small-gain theorem, input-intolerant systems,
output-unsolitary systems, truncation-invariant sets

1. Introduction

The small-gain theorem, which was derived by Zames [1, 2] in 1966 for
the first time, is known as one of the most important instruments for con-
trol theory. Roughly speaking, the discrete-time version of it states that if
the product of the lp induced norms of two subsystems is less than 1, then
the closed-loop system consisting of the subsystems is lp stable. Those later
studies such as [3, 4, 5, 6, 7] dealing with the small gain theorem also elabo-
rate on its derivation through defining system causality, although it was not
assumed in [1, 2].

Relevant to this difference in the original study by Zames and those later
studies is another difference in defining the induced norm of each subsystem.
More precisely, Zames defined the induced norm through the treatment of the
truncated input and output of each subsystem, even though the entire time
horizon was eventually taken into account in the definition. This definition,
however, turns out to possibly lead to a larger value for the induced norm
than the treatment in the later studies, which are free from truncation at
the stage of the induced norm definition. In connection with the treatment
of causality, however, those later studies instead made some unnecessary
assumptions on the subsystems in feedback connection in deriving the small-
gain theorem.

This paper is thus motivated by our interest in reverting to the same as-
sumption on the (causal) subsystems as that made by Zames, while exploiting
improved evaluation of their induced norms in deriving an extended form of
the small-gain theorem. More precisely, we aim at considering the follow-
ing types of subsystems described by the input-output relation [3, 4, 5, 6, 7]
(rather than the input-output mapping) on the product space of the input
space and the output space:

(a) such (sub)systems that possibly fall into a situation in which two or
more signals can be determined as the “corresponding output” under
some input;
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(b) such (sub)systems that possibly have some input leading to a situation
in which no signal can be determined as the “corresponding output.”

We say that the systems of type (a) are output-unsolitary, while those
systems that are not output-unsolitary are said to be output-solitary1. For
example, let us consider a static system in which a solution to a nonlinear
equation associated with the current input together with some parameters is
regarded as its possible current output. Then, such a system could naturally
be output-unsolitary. Quite importantly, we will also give another example
of output-unsolitary systems resulting from a feedback connection of output-
solitary subsystems. Hence, if we consider a general case of complex systems
where such a feedback connection of subsystems actually has a further inter-
action in a feedback form with a similar kind of feedback connection of other
subsystems, then it is natural for us to study a closed-loop system consisting
of output-unsolitary subsystems. Furthermore, it may be worth noting that
if we take such a standpoint that picking out a state-space system does not
determine its initial state and leaves it completely free, ambiguous or un-
known, then the state-space system viewed as a general input-output system
will naturally be output-unsolitary.

On the other hand, the implication of the systems of type (b) is that
some input should possibly be ruled out in dealing with such systems so
that we can always talk about the output. In this sense, such systems are
said to be input-intolerant, while those systems that are not input-intolerant
are said to be input-tolerant. As easily seen, the aforementioned example of
nonlinear static systems could also be an example of input-intolerant systems.
Furthermore, such systems in which some nonlinear functions such as the
reciprocal and logarithm functions are applied to each entry of the current
input are simple examples of input-intolerant systems. In connection with
these terms, the class of subsystems dealt with in the aforementioned later
studies is precisely the one consisting of those systems that are both input-
tolerant and output-solitary (i.e., with an input-output mapping).

Accommodating input-intolerant/output-unsolitary input-output systems

1 For convenience, however, we sometimes take a standpoint that output-solitary sys-
tems form a special subclass of output-unsolitary systems (and thus are output-unsolitary,
too). We believe that this would not cause any serious ambiguity in the arguments. Sim-
ilarly for the term of input-tolerant systems with respect to the term of input-intolerant
systems introduced later.
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is quite important in exploiting the full power of the small-gain type of ar-
guments in the stability analysis of complicated systems. As further devel-
opments of stability analysis based on the small-gain theorem, techniques
with multipliers have been studied for many decades [8, 9, 10, 11, 12, 13]. In
particular, the study on integral quadratic constraints has been carried out
intensively in recent years [14, 15, 16, 17]. Deriving the extended small-gain
theorem for general input-output causal systems is expected to contribute in
further enriching multipliers theory.

Since causality of subsystems plays a key role in the development of the
small-gain theorem in the treatment of the aforementioned later studies on
the small-gain theorem [3, 4, 5, 6, 7], our research direction strongly motivates
us to study how causality should be defined for such general input-output
systems. Thus, much of the arguments in this paper is devoted to such a
study, as we will first see in Section 2. There, we begin with the well-known
causality definition of input-tolerant output-solitary systems [3, 4, 5, 6, 7],
from which a series of amendments of definitions will be motivated until we
eventually arrive at an adequate definition applicable to general input-output
systems and some further modified definitions are inspired. After clarifying
some trivial mutual relationships among those definitions, Section 3 uses the
relationships to continue further arguments on causality to provide profound
and thorough understandings on adequate definitions of causality for different
restricted classes of general input-output systems. On the basis of the defini-
tions that eventually turn out to be applicable to the most general and wide
class of input-output systems, Section 4 then establishes the extended small-
gain theorem for closed-loop systems consisting of input-intolerant and/or
output-unsolitary subsystems. In particular, we show that for a general
input-intolerant output-unsolitary system, the definition by Zames can lead
to an arbitrarily larger value for its induced norm compared with the treat-
ment in this paper through the definition in the later studies [3, 4, 5, 6, 7].
This clearly demonstrates the advances in our arguments through the study
on the causality of such general input-output systems. Lastly, we give an ex-
ample illustrating usefulness of the extended small-gain theorem and, at the
same time, importance of accommodating input-intolerant and/or output-
unsolitary systems in stability analysis of complicated systems.

Throughout the paper, N denotes the set of positive integers while N0

denotes that of nonnegative positive integers.
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2. Causality definitions and their trivial relationships

For the discrete-time signal x and K ∈ N0, we denote by x[K] the trun-
cated signal of x defined as

x[K]k =

{

xk (0 ≤ k ≤ K)

0 (k > K),
(1)

where (.)k denotes the value of the signal (.) at time k. The studies such as
[3, 4, 5, 6, 7] elaborate on the derivation of the small gain theorem by defin-
ing system causality through this truncation as follows, under the implicit
standpoint that attention is paid only on input-tolerant and output-solitary
systems (i.e., systems with an input-output mapping): the system G is causal
if, for each pair of the input w and the corresponding output z and for every
K ∈ N0, the output z′ corresponding to the input w[K] satisfies z

′

[K] = z[K].
In deriving an extended form of the small-gain theorem for more gen-

eral input-output systems with input-intolerant as well as output-unsolitary
subsystems, it is hence quite important to first consider generalizing the
above causality definition to accommodate those types of systems. This sec-
tion studies possible directions for such generalization. More precisely, we
start with a rather naive idea for extending the definition and next state its
inadequacy as a general definition. We then proceed to introducing more
appropriate and modified definitions, leading eventually to five “definitions,”
where only some of them are actually adequate as the definition for the most
general (i.e., input-intolerant and output-unsolitary) input-output systems.
Importantly, however, some of the definitions are still adequate if one is
confined to some classes consisting of, e.g., input-tolerant systems and/or
output-solitary systems. The former part of this paper is interested in in-
troducing such definitions for system causality and clarifying their mutual
relationships. In particular, this section is devoted to motivating the serial in-
troduction of such definitions. After summarizing their mutual relationships
that are more or less trivial from the definition statements before closing
this section, further discussions on deeper insight into their relationships will
be carried out in the following section by restricting our attention to some
particular classes of systems.

We begin with the notation and terms used in this paper. The extended
lp space [1, 2], the set of x such that x[K] ∈ lp whenever K ∈ N0, is denoted
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by2 lpe. Consider the system G = G : (lpe, lqe), by which we mean that the
input and output of G belong to lpe and lqe, respectively (where p, q ∈ [1,∞]
are given independently). The input-output relation of G is denoted by RG.
In other words, the notation

(w, z) ∈ RG (2)

is used to mean that G admits the situation where the given z ∈ lqe may be
the outcome when the given w ∈ lpe is applied to it. Then, we define

Wpe(G) := {w ∈ lpe : ∃ z ∈ lqe s.t. (w, z) ∈ RG} (3)

and call it the admissible input set of G. To rule out meaningless situations,
the condition Wpe(G) 6= ∅ is assumed for every system G dealt with in
this paper. Those studies elaborating on the small gain theorem such as
[3, 4, 5, 6, 7] considered only the case where Wpe(G) = lpe, which in turn
implies that only input-tolerant systems are dealt with and that the condition
w[K] ∈ Wpe(G) is satisfied whenever w ∈ Wpe(G) and K ∈ N0. When this
condition is satisfied, we say that Wpe(G) is truncation-invariant.

As a naive idea for extending the aforementioned definition of causality
for input-tolerant and output-solitary systems and accommodating input-
intolerant and/or output-unsolitary systems, we begin with the following
“definition,” in which the truncated input w[·] plays an important role.

Definition 1. (weak w[·]-causality) The system G : (lpe, lqe) is weakly w[·]-
causal if w[K] ∈ Wpe(G) and the following condition are satisfied for each
w ∈ Wpe(G) and every K ∈ N0.

• For each z ∈ lqe such that (w, z) ∈ RG, there exists z′ ∈ lqe such that
(w[K], z

′) ∈ RG and z′[K] = z[K].

However, Definition 1 turns out to be inadequate for output-unsolitary
systems (even though it will indeed turn out to be an adequate definition for
some class of output-solitary systems). To see this, we provide the following
example.

2As a matter of fact, the extended space lpe does not depend on p in spite of its notation.
However, it should be meaningful to keep the underlying p highlighted because recklessly
dropping the symbol p could rather cause confusion; we must eventually return to the
treatment of lp whenever we are dealing with lpe, and this is why we utilize the notation
lpe rather than “le” throughout this paper.
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Example 1. Let δ denote the impulse signal (1, 0, 0, · · · ). Consider the sys-
tem G : (l2e, l2e) whose input-output relation is described by (δ, 2δ) ∈ RG

and (w,w) ∈ RG for every w ∈ l2e (including w = δ). Clearly, G is output-
unsolitary and input-tolerant (since W2e(G) = l2e). Hence, W2e(G) is obvi-
ously truncation-invariant and thus w[K] ∈ W2e(G) regardless of K ∈ N0 for
each w ∈ W2e(G). Furthermore, it is not hard to confirm that G satisfies
the remaining condition in Definition 1. Hence, the system G here must
be judged to be causal in the sense of Definition 1. Nevertheless, we next
argue that regarding this system to be causal would be inadequate, whose
implication is that Definition 1 should not be employed for general input-
output systems (even though it will turn out, for output-solitary systems, to
be equivalent to an adequate definition in the following arguments). To see
this, let us consider (w, z) := (δ, 2δ) ∈ RG. Then, one can readily conclude
that the specific value at k = 0 for this z (i.e., z0 = 2) is indeed consistent
with the underlying input-output relation of the system G only through the
knowledge that this w satisfies wk = 0 for k > 0, where the knowledge is
impossible to obtain at time k = 0.

Since Example 1 shows that Definition 1 (adequate for some class of
output-solitary systems) is inadequate for output-unsolitary systems, we in-
troduce the following definition by amending Definition 1.

Definition 2. (w[·]-causality) The system G is w[·]-causal if w[K] ∈ Wpe(G)
and the following two conditions are satisfied for each w ∈ Wpe(G) and every
K ∈ N0.

(i) For each z ∈ lqe such that (w, z) ∈ RG, there exists z′ ∈ lqe such that
(w[K], z

′) ∈ RG and z′[K] = z[K].

(ii) For each z′ ∈ lqe such that (w[K], z
′) ∈ RG, there exists z′′ ∈ lqe such

that (w, z′′) ∈ RG and z′′[K] = z′[K].

Note that Definition 2 (as well as Definition 1) obviously leads to requir-
ing that Wpe(G) is truncation-invariant. In this sense, and as we also discuss
shortly, these definitions are not yet fully satisfactory for our ultimate pur-
pose. However, our arguments starting from these definitions are believed
to be quite meaningful in the overall picture on our entire arguments. This
is because removing the assumption on truncation-invariance turns out to
be very closely related with our outperforming the small-gain theorem by
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Zames through the causality treatment (see Remark 6 in Section 4). Def-
inition 2 is stronger than Definition 1 because of the additional condition
(ii) (the condition (i) in Definition 2 is the same as that in Definition 1).
The additional condition plays an important role when there exists z′ ∈ lqe
satisfying (w[K], z

′) ∈ RG as in (i) but z′[K] 6= z[K] unlike in (i). Even though
Definition 1 pays no attention to possible existence of such z′, the condition
(ii) in Definition 2 requires that such z′ may exist only under some rele-
vance to another possible output z′′ of G to the same untruncated input w.
Hence, Definition 2 naturally becomes equivalent to Definition 1 when G is
output-solitary.

However, Definition 2 would still turn out to be unsatisfactory for input-
intolerant systems. To see this, we further provide the following example.

Example 2. Consider the system G : (l2e, l2e) whose input-output relation
is given by

zk =

{

0 (wi = 0 (i = 0, . . . , k))

w−1
k (otherwise).

(4)

This G is input-intolerant since the admissible input set W2e(G) consists of
signals whose value is nonzero except for its leading part of arbitrary time
length consisting of zeros. It is thus easy to see that thisG does not satisfy the
conditions of Definition 2, because for w = (1, 1, · · · ) ∈ W2e(G) and K = 0,
we have w[0] = (1, 0, . . .) 6∈ W2e(G) (more essentially because W2e(G) is not
truncation-invariant). Nevertheless, it is questionable whether we should
actually regard this G to be noncausal because its output at time k can
simply be determined by the value of the input at the same instant without
referring to the future values of the input (as long as the input is assumed to
belong to the admissible set, which would be a natural assumption because
considering a nonadmissible input would usually be nonsense.

The above example suggests that an additional modification is needed for
defining causality. Hence, for w ∈ Wpe(G) and K ∈ N0, let us define

Wpe(w,K) := {w′ ∈ Wpe(G) : w′

[K] = w[K]} ⊂ Wpe(G). (5)

Using this set consisting of signals that are identical with w up to time K,
we introduce the following definition by further amending Definition 2.
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Definition 3. (Wpe(w, ·)-causality) The system G is Wpe(w, ·)-causal if the
following two conditions are satisfied for each w ∈ Wpe(G), every K ∈ N0

and every w′ ∈ Wpe(w,K).

(i) For each z ∈ lqe such that (w, z) ∈ RG, there exists z′ ∈ lqe such that
(w′, z′) ∈ RG and z′[K] = z[K].

(ii) For each z′ ∈ lqe such that (w′, z′) ∈ RG, there exists z′′ ∈ lqe such that
(w, z′′) ∈ RG and z′′[K] = z′[K].

The importance of introducing the above definition lies in the point that
the problematic issue of referring to the truncation w[K] in Definition 2 has
been avoided with only a modest and natural amendment (most of the struc-
ture of the definition is preserved compared with the preceding definition).
Thus, unlike Definition 2, Wpe(G) need not be truncation-invariant under the
requirement of Definition 3. In this sense, Definition 2 may seem “stronger”
than Definition 3. On the other hand, even though only a single input w[K] (if
K is fixed) is involved in the conditions in Definition 2, those in Definition 3
involve all w′ ∈ Wpe(w,K). It is not always the case that w[K] ∈ Wpe(w,K)
but it would often be the case that Wpe(w,K) is an infinite set. In this sense,
Definition 3 may seem “stronger” than Definition 2. The mutual relationship
of these definitions will be made clear in the following section.

One of the assertions of this paper is that Definition 3 should be an
adequate definition of causality for general output-unsolitary systems as well
as input-intolerant systems. This is partly supported by the following further
observations about Examples 1 and 2.

Example 1 (continued). Recall that the system G is output-unsolitary
and is a system that should not be regarded as being causal. In accordance
with this situation and as desired, it turns out to fail to satisfy the amended
conditions in Definition 3. To see this, consider w = δ and z = 2δ satisfying
(w, z) ∈ RG. Then, for K = 0 and w′ = (1, 1, 0, · · · ) ∈ W2e(w,K), we have
z′ = (1, 1, 0, · · · ). This obviously implies that z′[0] 6= z[0] and thus G fails to

satisfy the condition (i) in Definition 3 (as well as that in Definition 2).

Example 2 (continued). Recall that the system G is input-intolerant and
is a system that would better be regarded as being causal. To see that G
successfully satisfies the amended conditions in Definition 3, we consider the
following two cases for each K ∈ N0.
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1) Take w = 0 and w′ ∈ W2e(w,K) (= W2e(0, K)). Then, (w, z) ∈ RG

leads to z = 0. On the other hand, it is easy to see that (w′, z′) ∈
RG (z′ ∈ l2e) implies that z′[K] = w′

[K] = 0 = z[K].

2) Take w ∈ W2e(G) \ {0} such that wk = 0 (k < i) for i ∈ N0 and
wk 6= 0 (k ≥ i) and also take w′ ∈ W2e(w,K). For this w, take w−

such that w−

k = 0 (k < i) and w−

k = w−1
k (k ≥ i). Then, z ∈ l2e such

that (w, z) ∈ RG equals to w−. Similarly, w′− is also well-defined for
the signal w′ ∈ W2e(w,K) and the corresponding signal z′ such that
(w′, z′) ∈ RG equals to w′−. For the above z, we have z′[K] = w′−

[K] =

w−

[K] = z[K] regardless of whether i ≥ K or i ≤ K.

The above observations immediately imply that G satisfies the condition (i)
in Definition 3 (as well as that in Definition 2). It also satisfies the condition
(ii) since it is output-solitary (recall the arguments below Definition 3), and
thus G is successfully regarded as being causal in the sense of Definition 3.

To reach more profound and entire understandings on how causality
should and may be defined, let us further consider the following definition
obtained by removing the condition (ii) from Definition 3.

Definition 4. (weak Wpe(w, ·)-causality) The system G is weakly Wpe(w, ·)-
causal if the following condition is satisfied for each w ∈ Wpe(G), every
K ∈ N0 and every w′ ∈ Wpe(w,K).

• For each z ∈ lqe such that (w, z) ∈ RG, there exists z′ ∈ lqe such that
(w′, z′) ∈ RG and z′[K] = z[K].

One might argue that Definition 4 is readily acceptable as a quite natural
definition of causality for general input-output systems and all the preceding
arguments are just redundant. Indeed, it turns out to correspond to the def-
inition of nonanticipation provided in [18], if we interpret our input-output
system in the context of the behavioral framework. Nevertheless, what this
paper precisely aims at deeply investigating is clarifying the mutual relation-
ships among possible definitions and their adequacy/inadequacy for general
and/or some restricted classes of input-output systems. Indeed, Definition 4
is actually revealed to be equivalent to Definition 3. Roughly speaking, this
can be explained as follows: since w and w′ in Definition 4 are taken arbitrar-
ily (within some associated restrictions), they could somehow be mutually
interchanged, and doing so in the condition therein equivalently leads to the
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same condition as (ii) in Definition 3. This leads to equivalence between
Definitions 3 and 4, and the following section indeed shows this rigorously as
Theorem 3. This equivalence of Definition 3 to Definition 4 will further sup-
port the assertion of this paper that the former is also one possible definition
of causality for general input-output systems.

For the sake of further arguments, we now consider comparing Defini-
tions 1 and 4. Unlike Definition 1, Definition 4 does not lead to requiring
that Wpe(G) is truncation-invariant. In this sense, Definition 1 may seem
“stronger” than Definition 4. On the other hand, while a single input w[K]

(if w and K are fixed) is involved in the conditions in Definition 1, the con-
ditions in Definition 4 involve all w′ ∈ Wpe(w,K). In this sense, Definition 4
may seem “stronger” than Definition 1. Even though their mutual relation-
ship is not clear at this stage, it is meaningful to introduce the following
definition obtained by (equivalently) reimposing the condition that Wpe(G)
is truncation-invariant on top of the requirement in Definition 4. Introduc-
ing this definition will be helpful in reaching entire understandings on the
mutual relationships among all the definitions in this section and their ade-
quacy/inadequacy for general and/or some restricted classes of input-output
systems.

Definition 5. (truncation-invariant Wpe(w, ·)-causality) The system G is
truncation-invariant Wpe(w, ·)-causal if w[K] ∈ Wpe(G) and the following
condition are satisfied for each w ∈ Wpe(G), every K ∈ N0 and every
w′ ∈ Wpe(w,K).

• For each z ∈ lqe such that (w, z) ∈ RG, there exists z′ ∈ lqe such that
(w′, z′) ∈ RG and z′[K] = z[K].

Note that when the assumptions of Definition 5 are satisfied, one of w′ ∈
Wpe(w,K) is obviously w[K]. Hence, if the conditions in Definition 5 are
satisfied, then those of Definition 1 are also satisfied.

Before closing this section, we give the following theorem by enumerating
trivial relationships (following readily from their statements as well as our
earlier arguments) among the five “definitions,” which are also illustrated in
Fig. 1 with solid arrows.

Theorem 1. The following relationships hold.

1) If G is w[·]-causal (Definition 2), then it is weakly w[·]-causal (Defini-
tion 1).
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Figure 1: Relationships among the five definitions of causality.

2) If G is Wpe(w, ·)-causal (Definition 3), then it is weakly Wpe(w, ·)-
causal (Definition 4).

3) If G is truncation-invariant Wpe(w, ·)-causal (Definition 5), then it is
weakly
Wpe(w, ·)-causal (Definition 4).

4) If G is truncation-invariant Wpe(w, ·)-causal (Definition 5), then it is
weakly w[·]-causal (Definition 1).

3. Further equivalence relations among causality definitions

The preceding section introduced “five definitions” for causality together
with some trivial mutual relationships of them. This section is devoted to
reaching more profound and entire understandings on their further nontrivial
relationships and adequacy/inadequacy for general and/or some restricted
classes of input-output systems. In particular, the definitions are integrated
into three groups (by integrating mutually equivalent ones as an equivalence
group after the former part of the arguments in this section), and it is shown
that these groups can further be integrated into two groups or even one
group once we introduce some restrictions on the class of systems for which
the definition of causality is sought for.

3.1. General further equivalence relations

We first show that there are actually two pairs of equivalence relations in
the “five definitions.” In particular, Definition 2 is equivalent to Definition 5
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while Definition 3 is to Definition 4, which is illustrated in Fig. 1 with dashed
arrows.

We begin by showing the following first equivalence relation.

Theorem 2. The following two conditions are equivalent.

1. G is w[·]-causal (Definition 2).

2. G is truncation-invariant Wpe(w, ·)-causal (Definition 5).

Proof. 1 ⇒ 2: Suppose G is w[·]-causal. For each pair of w ∈ Wpe(G) and
z ∈ lqe such that (w, z) ∈ RG and for every K ∈ N0, there exists z′ ∈ lqe
such that (w[K], z

′) ∈ RG and z′[K] = z[K] by the condition (i) in Definition 2.

Whatever w′ ∈ Wpe(w,K) ⊂ Wpe(G) we may take, on the other hand, it
satisfies w′

[K] = w[K] and thus

(w′

[K], z
′) ∈ RG (6)

for the above z′. Furthermore, let us note that the fact w′ ∈ Wpe(G) allows
us to think of the w′ here as one specifically chosen w in Definition 2 (if we
start a fresh and independent look at this definition again), in which case its
condition (ii) (with w replaced by w′) particularly implies that

• For the above z′ ∈ lqe satisfying (6), there exists z′′ ∈ lqe such that
(w′, z′′) ∈ RG and z′′[K] = z′[K] (and thus, z′′[K] = z[K] since z′[K] = z[K] by

the original assumption).

The final key in this part of the proof is to note that we can identify the above
z′′ with z′, whose existence is required (for each w, K and w′) in Definition 5.

2 ⇒ 1: Suppose G is truncation-invariant Wpe(w, ·)-causal. For each pair
of w ∈ Wpe(G) and z ∈ lqe such that (w, z) ∈ RG and for every K ∈ N0,
there exists z′ ∈ lqe such that

(w[K], z
′) ∈ RG and z′[K] = z[K], (7)

because we may take w′ = w[K] as a specific choice of w′ ∈ Wpe(w,K) in the
condition (i) in Definition 5. This precisely implies that the condition (i) in
Definition 2 is satisfied. Next, consider the condition (i) that is obtained by
taking the above w[K] =: w• ∈ Wpe(G) and w =: w⋆ ∈ Wpe(w

•, K) as w and
w′ in Definition 5, respectively, which reads as follows (after z′ is rewritten
as z′′ while z is written as z′ to avoid conflicts of symbols).
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• For each (and thus the above) z′ ∈ lqe satisfying (w•, z′) ∈ RG and
z′[K] = z[K] (i.e., (7)), there exists z′′ ∈ lqe such that (w⋆, z′′) ∈ RG and
z′′[K] = z′[K].

Since this is true (when the conditions of Definition 5 is satisfied) regardless
of z′ satisfying (7) and since the above w⋆ is nothing but the original w
for which (together with z such that (w, z) ∈ RG) the condition (7) was
considered, we see that the conditions of Definition 2 are satisfied. Q.E.D.

We next show the following second equivalence relation.

Theorem 3. The following two conditions are equivalent.

1. G is Wpe(w, ·)-causal (Definition 3).
2. G is weakly Wpe(w, ·)-causal (Definition 4).

Proof. It is sufficient to show 2 ⇒ 1. The condition (i) in Definition 3
is clearly satisfied since it is same as that in Definition 4. For each pair of
w ∈ Wpe(G) and z ∈ lqe such that (w, z) ∈ RG, and for every K ∈ N0 and
every w′ ∈ Wpe(w,K), there exists z′ ∈ lqe such that

(w′, z′) ∈ RG and z′[K] = z[K]. (8)

Next, consider the condition that is obtained by taking the above w′ =: w• ∈
Wpe(G) and w =: w⋆ ∈ Wpe(w

•, K) as w and w′ in Definition 4, which reads
as follows (again after z′ and z are rewritten as z′′ and z′, respectively).

• For each (and thus the above) z′ ∈ lqe such that (w•, z′) ∈ RG, there
exists z′′ ∈ lqe such that (w⋆, z′′) ∈ RG and z′′[K] = z′[K].

Since this is true (when the conditions of Definition 4 are satisfied) regardless
of z′ satisfying (8) and since the above w⋆ is nothing but the original w
for which (together with z such that (w, z) ∈ RG) the condition (8) was
considered, we see that the condition (ii) of Definition 3 is satisfied. Hence,
G satisfies both conditions in Definition 3. Q.E.D.

As a result of Theorems 2 and 3 together with Fig. 1 with the dashed
arrows taken into account, the five definitions of causality in the preceding
section are integrated into three groups A, B and C as shown in Fig. 2 with
solid arrows.
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3.2. Further equivalence relations of causality definitions under restricted
classes of systems

Fig. 2 (with the dashed arrows yet to be established in the rest of this
section and thus ignored for the moment) suggests that the “five definitions”
introduced in the preceding section are not mutually equivalent as far as gen-
eral input-intolerant and output-unsolitary systems are concerned. Indeed,
Example 2 shows that the dashed arrow ∗ in the left direction fails for an
input-intolerant system with the admissible input set being not truncation-
invariant while Example 1 shows that the dashed arrow ∗∗ in the right direc-
tion also fails for an output-unsolitary system. Nevertheless, there could be
chances that either or both of the dashed arrows could hold if the attention
is restricted on some particular classes of systems. The rest of this section
is devoted to establishing that it is indeed the case and thus consequently
showing that there could exist further equivalence relations among the three
groups (called A, B and C) of causality definitions in Fig. 2 if we restrict
ourselves to some classes of systems.

In particular, we consider the two cases below in the following:

(I) The case when Wpe(G) is truncation-invariant (which obviously con-
tains the special case when G is input tolerant);

(II) The case when G is output-solitary.

We first consider case (I), for which we readily have the following theorem,
leading to the dashed arrow ∗ in Fig. 2 in the left direction and inducing a
new grouping of A and (B,C).

Theorem 4. If Wpe(G) is truncation-invariant, then the following two con-
ditions are equivalent.

1. G is weakly Wpe(w, ·)-causal (Definition 4).

Figure 2: Relationships among three groups of causality definitions.
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2. G is truncation-invariant Wpe(w, ·)-causal (Definition 5).

Proof. It suffice to show that 1. implies 2. This, however, is obvious
because Definition 5 is obtained by adding the condition that Wpe(G) is
truncation-invariant to the requirement in Definition 4. Q.E.D.

By Theorems 2–4, we have the following equivalence relation, where each
type of causality in it is qualified for systems whose admissible input set is
truncation-invariant.

Corollary 1. If Wpe(G) is truncation-invariant, then the following four con-
ditions are equivalent.

1. G is w[·]-causal (Definition 2).

2. G is Wpe(w, ·)-causal (Definition 3).

3. G is weakly Wpe(w, ·)-causal (Definition 4).

4. G is truncation-invariant Wpe(w, ·)-causal (Definition 5).

We remark, as stated earlier, that Definition 1 cannot belong to this
equivalence relation as disproved with Example 1.

We next consider case (II), for which we readily have the following the-
orem, leading to the dashed arrow ∗∗ in Fig. 2 in the right direction and
inducing a new grouping of (A,B) and C.

Theorem 5. If G is output-solitary, then the following two conditions are
equivalent.

1. G is weakly w[·]-causal (Definition 1).

2. G is w[·]-causal (Definition 2).

Proof. It suffices to show that 1. implies 2. but this is obvious as noted in
the paragraph below Definition 2. Q.E.D.

By Theorems 2 and 5, we have the following equivalence relation, where
each type of causality in it is qualified for output-solitary systems.
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Corollary 2. If G is output-solitary, then the following three conditions are
equivalent.

1. G is weakly w[·]-causal (Definition 1).
2. G is w[·]-causal (Definition 2).
3. G is truncation-invariant Wpe(w, ·)-causal (Definition 5).

It readily follows that if G is output-solitary and its admissible input
set is truncation-invariant, then all the “five definitions” are equivalent by
Corollaries 1 and 2, even though G could still be input-intolerant under such
assumptions. In [3], Vidyasagar restricted his attention on systems that are
both output-solitary and input-tolerant. He then gave two definitions of
causality corresponding to Definition 1 (which happens to belong to group
A) and Definition 4 (to group C) of this paper and showed their equivalence,
an assertion consistent with the general relationship revealed as Fig. 2. Com-
pared with this earlier study, the advances in the present paper are obvious in
establishing when some equivalence relations are possibly lost if the system
under concern fails to satisfy the implicit assumption by Vidyasagar. Indeed,
the dashed arrows in Fig. 2, which are supported by Examples 1 and 2, do
imply when such a kind of loss could actually occur.

Remark 1. Since group C consists of the definitions that are valid even
for the most general (i.e., largest) class of systems allowing input-intolerant
output-unsolitary systems, it may be natural to expect that group C leads
to the strongest requirement. In this respect, however, “B ⇒ C” in Fig. 2
actually implies that group B leads to a stronger requirement than group
C. The reason for coming to such a possibly confusing situation can be un-
derstood once we recall that group B consists of such definitions that in-
clude the requirement that Wpe(G) is truncation-invariant. Note that this
requirement, however, is actually unnecessary and overdemanding as a re-
quirement for causality. This makes group B, if it is viewed as definitions
for input-intolerant output-unsolitary systems, unnecessarily stronger than
the adequate requirement by group C. Indeed, recall that Example 2 gave
an example of a causal system (in the sense of group C) for which Wpe(G) is
not truncation-invariant.

4. Small-gain theorem for general input-output systems

This section is devoted to extending the small-gain theorem for closed-
loop systems consisting of two subsystems that are possibly input-intolerant
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and/or output-unsolitary. In the small-gain theorem, the definition of the
induced norm or gain (as well as causality) of subsystems is quite important
from the viewpoint of reducing conservativeness in stability analysis. This
paper uses the definition employed in the later studies [3, 4, 5, 6, 7], which
does not resort to truncation treatment unlike the original study by Zames
and leads to a smaller value as confirmed later with an example. Note that
these later studies only dealt with closed-loop systems consisting of subsys-
tems that are both input-tolerant and output-solitary. Hence, the arguments
in this section corresponds to extension accommodating more general input-
intolerant output-unsolitary input-output subsystems, which is believed to
be significant in exploiting the full power of the small-gain type of argu-
ments. In such extension, causality of subsystems plays a key role as in
those later studies, and Definitions 3 and 4 in group C applicable to input-
intolerant output-unsolitary systems become quite relevant in the arguments.
Usefulness of the extended small-gain theorem will be demonstrated with an
example.

4.1. Problem formulation

For p1, p2 ∈ [1,∞], let p′1 := p2 and p′2 := p1. Consider the closed-loop
system Σ consisting of G1 = G1(lp1e, lp′1e) and G2 = G2(lp2e, lp′2e) in Fig. 3
(which is in positive feedback). We regard u := [u1T , u2T ]T as the input of Σ
while w := [w1T , w2T ]T and z := [z1T , z2T ]T as the output. Furthermore, we
say (u, [wT , zT ]T ) ∈ RΣ to mean that (wi, zi) ∈ RGi

(i = 1, 2), w1 = u1 + z2

and w2 = u2 + z1. As a subspace of Wpe(G), we define

Wp(G) := Wpe(G) ∩ lp (9)

and call it the admissible bounded input set of G.
We assume the following for the system Σ.

✛
u2

✐
+

✛
w2

G2

z2

❄✐
+

✲

u1

+ ✲

w1

G1

z1

✻+

Figure 3: The closed-loop system Σ.
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Assumption 1. The closed-loop system Σ satisfies the following conditions.

1. For i = 1, 2, the admissible input set Wpie(Gi) is closed under addition.

2. Whenever w1 ∈ Wp1e(G1), every z1 ∈ lp′
1
e = lp2e such that (w1, z1) ∈

RG1
belongs to Wp2e(G2) (⊂ lp2e).

3. Whenever w2 ∈ Wp2e(G2), every z2 ∈ lp′
2
e = lp1e such that (w2, z2) ∈

RG2
belongs to Wp1e(G1) (⊂ lp1e).

4. For each pair of u1 ∈ Wp1e(G1) and u2 ∈ Wp2e(G2), there exist w
and z such that (u, [wT , zT ]T ) ∈ RΣ, w

1, z2 ∈ Wp1e(G1) and w2, z1 ∈
Wp2e(G2).

Fig. 4 illustrates the closed-loop system Σ with the assumptions on the signal
spaces explicitly taken into account. Note that [wT , zT ]T is not assumed to
be unique in the last condition in the above assumption, meaning that Σ is
allowed to be output-unsolitary. The external signals ui (i = 1, 2) will be
further restricted to those belonging toWpi(Gi) (i = 1, 2), respectively, in the
arguments of stability and the small-gain theorem for Σ. Roughly speaking,
we say that Σ is stable if wi ∈ lpi (i = 1, 2) and zi ∈ lp′

i
(i = 1, 2) as long as

(u, [wT , zT ]T ) ∈ RΣ for such u = [u1T , u2T ]T . A precise definition for stability
follows shortly.

Remark 2. Assumption 1 corresponds to the well-posedness conditions for
Σ in the context involving input-intolerant and output-unsolitary subsys-
tems. In this connection, Willems [8, p. 105] describes that stability of feed-
back systems could very well be defined without requiring well-posedness in
the sense that such a fundamental property should be verified anyway as a
prerequisite before tackling the stability issue so that physically meaningless
considerations could be avoided. This is because the lack of well-posedness
implies that the subsystems do not in fact adequately describe the physical
phenomena, and once the descriptions of the subsystems are modified, then
it would very well lead to altering such fundamental properties of the closed-
loop system as stability properties. If we were also to take such a position,
Assumption 1 would become unnecessary in the latter arguments.

The problem setting under pi = p ∈ [1,∞] reduces to that in [1, 2].
In addition, the problem setting under pi = p ∈ [1,∞] and Wpi(Gi) = lp
(i = 1, 2) together with the assumption that Gi (i = 1, 2) are input-tolerant
and output-solitary reduces to that in [3, 4, 5, 6, 7]; under this situation, the
conditions in Assumption 1 are satisfied except for the last, corresponding to
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the standard well-posedness assumption. In contrast, this paper obviously
considers more general cases such as the treatment of input-intolerant sub-
systems, by which we can consider, e.g., such closed-loop systems consisting
of subsystems whose input and output take only positive values.

We are now in a position to define stability of Σ, for which we begin by
defining stability of Gi (i = 1, 2), where ‖ · ‖p denotes the lp norm.

Definition 6. For i = 1, 2, the system Gi is lp′
i
/Wpi(Gi) stable if there exist

γi ≥ 0 and βi ≥ 0 satisfying the following conditions.

• Whenever w ∈ Wpi(Gi), every z ∈ lp′
i
e such that (w, z) ∈ RGi

belongs
to lp′

i
, and

• satisfies

‖z‖p′
i
≤ γi‖w‖pi + βi (10)

For lp′
i
/Wpi(Gi) stable Gi, its gain is defined as

γp′
i
/pi(Gi) := inf{γi ≥ 0 : ∃βi ≥ 0 s.t. (10)}. (11)

We then define the input-output stability of Σ as follows.

Definition 7. The closed-loop system Σ is (Wp1(G1),Wp2(G2)) stable if there
exist γ ≥ 0 and β ≥ 0 satisfying the following conditions.

• Whenever u = [u1T , u2T ]T satisfies ui ∈ Wpi(Gi) (i = 1, 2), every
quadruple of wi ∈ lpie (i = 1, 2) and zi ∈ lp′

i
e (i = 1, 2) such that

(u, [wT , zT ]T ) ∈ RΣ satisfies wi ∈ Wpi(Gi) (i = 1, 2), z1 ∈ Wp2(G2)
and z2 ∈ Wp1(G1), and

✛
u2 ∈ Wp2e(G2)

✐
+

✛
w2 ∈ Wp2e(G2)

G2

z2 ∈ Wp1e(G1)

❄✐
+

✲

u1 ∈ Wp1e(G1)

+ ✲

w1 ∈ Wp1e(G1)

G1

z1 ∈ Wp2e(G2)

✻+

Figure 4: The closed-loop system Σ with the signal space explicitly referred to.
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• satisfies

max{‖[w1T , z2T ]T‖p1, ‖[w
2T , z1T ]T‖p2} ≤ γ(‖u1‖p1 + ‖u2‖p2) + β

(12)

4.2. Small-gain theorem

We are in a position to extend the small-gain theorem so that it can also
handle subsystems that are input-intolerant and/or output-unsolitary while
exploiting the induced norm definition in [3, 4, 5, 6, 7]. As in the derivation
of the small-gain theorem for such systems, causality of subsystems that are
in feedback connection should somehow be exploited. In this respect, it is
quite important to note that the definitions of causality adequate for the
most general input-intolerant output-unsolitary systems (i.e., Definitions 3
and 4) are, unlike the standard definition for input-tolerant output-solitary
systems, not based on mere truncation of input signals. Instead, they require
us to consider the input set Wpe(w,K) introduced in (5). To circumvent
the associated difficulty in the derivation of the small-gain theorem for the
input-intolerant output-unsolitary case, the following additional assumption
is introduced for the subsystems Gi (i = 1, 2).

Assumption 2. For i = 1, 2, the subsystem Gi satisfies the following con-
ditions.

1. Wpi(Gi) 6= ∅.
2. There exists δi ≥ 0 such that whenever w ∈ Wpie(Gi) and K ∈ N0, one

can find w′ ∈ Wpie(w,K) ∩Wpi(Gi) satisfying

‖w′‖pi ≤ ‖w′

[K]‖pi + δi (= ‖w[K]‖pi + δi). (13)

Roughly speaking, what the above assumption says is as follows: even though
an admissible input of Gi may become inadmissible if it is exactly truncated
at some K, one can always consider some “approximate truncation” (as long
as the trailing part of the input is concerned) within the admissible (bounded)
input set. Another rough rephrasing would be that there always exists an
admissible w′ close to the exact truncation in the sense that w′ belongs to
Wpi(Gi) ⊂ lpi (as in the exact truncation) and its lpi norm increases only
by δi at most compared with the norm of the (possibly inadmissible) exact
truncation of the admissible input. This assumption is believed to be weak
enough because δi is not required to be small and it would be possible, in most
systems, to cease applying the input at least gradually, if not immediately.
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Remark 3. The study [16], which develops the integral quadratic constraints
framework for stability analysis based on the small-gain theorem, also dis-
cusses “approximate truncation” by introducing a condition similar to (13):

‖w′‖pi ≤ (1 + δi)‖w
′

[K]‖pi. (14)

However, we note that the above study is actually under the assumption that
Wpie(Gi) = lpie. This implies that Wpie(Gi) is truncation invariant and thus
we could take δi = 0 and thus exact truncation if we were to consider such
Wpie(Gi) in our present context. What this suggests is that the circumstance
of introducing the idea of “approximate truncation” in [16] is considerably
different from that in this paper.

Remark 4. Regarding Assumption 2, we may replace (13) with

‖w′‖pi ≤ µi‖w
′

[K]‖pi + δi (15)

where µi ≥ 1 is also required to exist. This µi relaxes the assumption and
thus enables us to deal with a wider class of subsystems G1 and G2. However,
the correspondingly modified version of Theorem 7 (to be given below as one
of the main results in this paper) will be obtained only at the sacrifice of
a more demanding small-gain condition due to µi, and thus the details are
omitted.

The above assumption readily leads us to the following lemma as in [3],
successfully relating the norms of the truncated versions of w (not necessarily
in Wpi(Gi)) and z such that (w, z) ∈ RGi

.

Lemma 1. For i = 1, 2, let pi, p
′

i ∈ [1,∞] and suppose Gi : (lpie, lp′ie) is
lp′

i
/Wpi(Gi) stable and weakly Wpie(w, ·)-causal. Whenever w ∈ Wpie(Gi)

and z ∈ lp′
i
e satisfy (w, z) ∈ RGi

, we have

‖z[K]‖p′
i
≤ γi‖w[K]‖pi + ζi (∀K ∈ N0), (16)

where ζi is given by γiδi + βi for δi ≥ 0 satisfying (13) together with γi ≥ 0
and βi ≥ 0 satisfying (10).

Proof. Fix i ∈ {1, 2}. Take w ∈ Wpie(Gi) and z ∈ lp′
i
e such that (w, z) ∈
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RGi
, and also take K ∈ N0. By Assumption 2, we can take δi ≥ 0 such that

there exists w′ ∈ Wpie(w,K) ∩Wpi(Gi) satisfying

‖w′‖pi ≤ ‖w′

[K]‖pi + δi (= ‖w[K]‖pi + δi). (17)

Since Gi is weakly Wpie(w, ·)-causal, there exists z
′ ∈ lp′

i
e such that (w′, z′) ∈

RG and z′[K] = z[K]. In addition, since Gi is lp′
i
/Wpi(Gi) stable, this z

′ in fact
satisfies z′ ∈ lp′

i
and

‖z′‖p′
i
≤ γi‖w

′‖pi + βi. (18)

By (17), (18) and ‖z′‖p′
i
≥ ‖z′[K]‖p′i = ‖z[K]‖p′

i
, we have

‖z[K]‖p′
i
≤ γi‖w[K]‖pi + ζi (19)

where ζi = γiδi + βi. Since this is true for every K ∈ N0, this completes the
proof. Q.E.D.

We are in a position to give a very important result on the relation be-
tween the gain of the subsystem Gi defined in (11) and that defined by Zames
in [1, 2] (assuming pi = p′i); roughly speaking, the truncated versions of w
and z such that (w, z) ∈ RG were considered there, and the inequality (16)
without the bias term ζi was considered. The gain defined by Zames may be
rephrased and generalized as follows3:

γ⋆
p′
i
/pi

(Gi) := inf{γi ≥ 0 : (16) holds under ζi = 0}. (20)

For the sake of deeper understanding, let us further consider the case where
the bias term βi in Definition 6 is prohibited to be positive and thus the
definition of the gain is modified accordingly in (11) with βi = 0, which
we denote by γp′

i
/pi

(Gi) (≥ γp′
i
/pi(Gi)). The following theorem plays a key

role in our assertion that the extension of the small-gain theorem provided
shortly indeed contains meaningful advances over the arguments by Zames in
reducing conservativeness in stability analysis (as long as feedback systems
consisting of causal subsystems are concerned).

3We admit the case with pi 6= p′i, and also allow such a case that Wpie(Gi) = {0},
which is rather abnormal but leads to a situation that the gain becomes undefinable in
the treatment of Zames.
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Theorem 6. If γ⋆
p′
i
/pi

(Gi) < ∞, then Gi is lp′
i
/Wpi(Gi) stable (with βi = 0

in (10)) and

γp′
i
/pi(Gi) ≤ γp′

i
/pi

(Gi) ≤ γ⋆
p′
i
/pi

(Gi) (21)

If Gi is weakly Wpie(w, ·)-causal and Wpie(Gi) is truncation-invariant in ad-
dition to the above assumption, then

γp′
i
/pi(Gi) ≤ γp′

i
/pi

(Gi) = γ⋆
p′
i
/pi

(Gi). (22)

Proof. The fact that γ⋆
p′
i
/pi

(Gi) < ∞ implies lp′
i
/Wpi(Gi) stability of

Gi (with βi = 0 in (10)) and the second inequality in (21) are shown in
[1] while the first inequality is obvious. Hence, it suffices to show that
γp′

i
/pi

(Gi) = γ⋆
p′
i
/pi

(Gi) if Gi is weakly Wpie(w, ·)-causal and Wpie(Gi) is

truncation-invariant. To show this, we first note that we can take δi = 0
in (13) since Wpie(Gi) is truncation-invariant. We also note from the def-
inition of γp′

i
/pi

(Gi) that for every ǫ > 0, the inequality (10) with βi = 0
holds for γi = γp′

i
/pi(Gi) + ǫ. Hence, by Lemma 1, we are led to the in-

equality (16) with ζi = 0 under the same γi = γp′
i
/pi(Gi) + ǫ. Since this is

true for whatever small ǫ > 0, it follows from the definition of γ⋆
p′
i
/pi

(Gi) that

γ⋆
p′
i
/pi

(Gi) ≤ γp′
i
/pi(Gi). This completes the proof. Q.E.D.

Example 3. Let us denote by n(w) the number of k such that wk 6= 0.
Consider G = G(l1e, l1e) such that (i) the admissible input set W1e(G) is the
set of w such that either n(w) = 0 or n(w) = 2, and wk = 1 whenever wk 6= 0;
(ii) (0, z) ∈ RG if and only if z = 0; (iii) for nonzero w ∈ W1e(G) such that
wk̄ = 1 and wk = 0 (0 ≤ k < k̄), the only z satisfying (w, z) ∈ RG is given by
zk̄ = 1 and zk = 0 (k 6= k̄). It is easy to see that G is weakly W1e(w, ·)-causal
and l1/W1(G) stable. For this system, we can readily see that γ1/1(G) = 1/2
while γ⋆

1/1(G) = 1, and thus the equality in (22) fails. This is consistent

with the assertion of Theorem 6 because we readily see that W1e(G) is not
truncation-invariant. It is also easy to see that γ1/1(G) = 0.

Remark 5. It is easy to see that the example can be modified, with an arbi-
trary integer N (≥ 2), to an example such that n(w) = N for every nonzero
w ∈ W1e(G). From this observation, it is obvious that the magnification
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factor of γ⋆
1/1(G) relative to γ1/1(G) (which is equal to N in such an exam-

ple) can be arbitrarily large. Note that the admissible input set W1e(G) still
fails to be truncation-invariant in such a modified example. This suggests
that as long as our interest is restricted to causal subsystems, our study
would outperform that of the original study by Zames at least when either of
Wpie(Gi) (i = 1, 2) is not truncation-invariant (as suggested by Theorem 6).
Indeed, the magnification factor of γ⋆

1/1(G) relative to γ1/1(G) (rather than

γ1/1(G)) is infinity in the modified (as well as the above) example because
γ1/1(G) = 0. As a side remark, we can further construct a similar exam-
ple with W1e(G) such that 2 ≤ n(w) < ∞ for every nonzero w ∈ W1e(G)
and wk ≥ 1 whenever wk 6= 0. In this case, W1e(G) becomes closed under
addition while γ⋆

1/1(G) > γ1/1(G) remains true.

We are in a position to state and prove the following extended small-
gain theorem that can handle subsystems that are input-intolerant and/or
output-unsolitary while using the improved gain evaluation γp′

i
/pi(Gi).

Theorem 7. Suppose the closed-loop system Σ in Fig. 4 satisfies Assump-
tion 1, Gi : (lpie, lp′ie) is lp′

i
/Wpi(Gi) stable and weakly Wpie(w, ·)-causal, and

satisfies Assumption 2 for each i = 1, 2. If γp′
1
/p1(G1)γp′

2
/p2(G2) < 1, then Σ

is (Wp1(G1),Wp2(G2)) stable.

Proof. Let ui ∈ Wpi(Gi) (i = 1, 2), and consider whatever quadruple of
wi ∈ lpie (i = 1, 2) and zi ∈ lp

i′e
(i = 1, 2) such that (u, [wT , zT ]T ) ∈ RΣ

(whose existence is ensured by Assumption 1).
Before proceeding, we first take a sufficiently small ǫ such that γ1γ2 < 1,

where γi := γp′
i
/pi(Gi) + ǫ (i = 1, 2). This is helpful because it can alleviate

a subtle issue relevant to the gain of Gi defined in (11) through the use of
infimum; the above γi together with an appropriate βi ≥ 0 does satisfy (10).
Hence, by Lemma 1, the following inequalities hold for the above quadruple.

‖z1[K]‖p2 ≤ γ1‖w
1
[K]‖p1 + ζ1, ‖z2[K]‖p1 ≤ γ2‖w

2
[K]‖p2 + ζ2 (∀K ∈ N0) (23)

It is also obvious that

‖w1
[K]‖p1 ≤ ‖u1

[K]‖p1 + ‖z2[K]‖p1 ,

‖w2
[K]‖p2 ≤ ‖u2

[K]‖p2 + ‖z1[K]‖p2 . (24)
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By (23), (24) and 1− γ1γ2 > 0, we obtain

[
‖w1

[K]‖p1
‖w2

[K]‖p2

]

≤
1

1− γ1γ2

[
1 γ2
γ1 1

] [
‖u1

[K]‖p1
‖u2

[K]‖p2

]

+
1

1− γ1γ2

[
γ2ζ1 + ζ2
γ1ζ2 + ζ1

]

(∀K ∈ N0)

(25)

where the inequality is elementwise. Since u1 ∈ Wp1(G1) and u2 ∈ Wp2(G2),
we have
[
‖w1

[K]‖p1
‖w2

[K]‖p2

]

≤
1

1− γ1γ2

[
1 γ2
γ1 1

] [
‖u1‖p1
‖u2‖p2

]

+
1

1− γ1γ2

[
γ2ζ1 + ζ2
γ1ζ2 + ζ1

]

(∀K ∈ N0).

(26)

In addition, by (23) and (26), we have

[
‖z1[K]‖p2
‖z2[K]‖p1

]

≤
1

1− γ1γ2

[
γ1 γ1γ2
γ1γ2 γ2

] [
‖u1‖p1
‖u2‖p2

]

+
1

1− γ1γ2

[
ζ1 + γ1ζ2
ζ2 + γ2ζ1

]

(∀K ∈ N0).

(27)

Hence, (26) and (27) further lead us to

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

[
w1

z2

]

[K]

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
p1

≤
1 + γ1γ2
1− γ1γ2

‖u1‖p1 +
2γ2

1− γ1γ2
‖u2‖p2 +

2(γ2ζ1 + ζ2)

1− γ1γ2
, (28)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

[
w2

z1

]

[K]

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
p2

≤
2γ1

1− γ1γ2
‖u1‖p1 +

1 + γ1γ2
1− γ1γ2

‖u2‖p2 +
2(γ1ζ2 + ζ1)

1− γ1γ2
(29)

for all K ∈ N0. Therefore, [w1T , z2T ]T ∈ lp1 and [w2T , z1T ]T ∈ lp2, and the
proof is completed by taking

γ =
max{2γ1, 1 + γ1γ2, 2γ2}

1− γ1γ2
, β =

2max{γ2ζ1 + ζ2, γ1ζ2 + ζ1}

1− γ1γ2
. (30)

Q.E.D.

The above theorem is for the closed-loop system Σ consisting of input-
intolerant and/or output-unsolitary causal subsystems in the sense of group
C and also group B because of “B ⇒ C” in Fig. 2. Similarly, since “A ⇒ B”
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in Fig. 2 if Gi is output-solitary, this theorem applies also to Σ consisting of
input-tolerant and output-solitary causal subsystems in the sense of group
A. This assertion is actually nothing but the well-known small-gain theorem,
but what is suggested as a converse of the above observation is that the well-
known theorem would not hold as it is when it is applied to the case with
input-tolerant and output-unsolitary causal subsystems in the sense of group
A.

Remark 6. If Gi (i = 1, 2) satisfy the requirements in the modified version
of Definition 6 with βi = 0, then the statement of the above theorem remains
true even if γp′

i
/pi(Gi) is replaced by γp′

i
/pi

(Gi) (i = 1, 2) (whose proof pro-
ceeds under βi = 0 (i = 1, 2)). Since γp′

i
/pi(Gi) ≥ γp′

i
/pi(Gi), however, such

an alternative assertion is virtually meaningless unless some extra desirable
consequence follows the use of γp′

i
/pi

(Gi) as a meaningful price. This is in-
deed the case when Wpie(Gi) (i = 1, 2) are truncation-invariant, in which
case we can take δi = 0 (i = 1, 2) in Assumption 2. Then, both ζ1 and ζ2 in
Lemma 1 become 0 and thus β given by (30) also becomes 0. This implies
that the stability of Σ can be ensured in such a way that the bias term β
is not necessary in (12). Nevertheless, Theorem 6 implies that the resulting
arguments (with such restriction to βi = 0) reduce exactly to those in the
original study by Zames (if pi = p′i). To put it conversely, our extended form
of the small-gain theorem is indeed an improvement over the original one
by Zames when either of Wpie(Gi) (i = 1, 2) is not truncation-invariant (or
when the induced norm of Gi is allowed to be evaluated with a nonzero bias
βi).

Before closing the theoretical part of this paper, we stress that our ar-
guments have been consistently based on the standing assumption that the
subsystems G1 and G2 are causal, unlike the recent study in [19] (which deal
only with input-tolerant output-solitary systems) as well as the original study
by Zames. In this connection, it would be worth remarking that, in spite of
the understanding by the authors of the aforementioned recent study, the
original study by Zames does not assume causality (even implicitly) on the
subsystems G1 and G2. More precisely, the fact that γ⋆

p′
i
/pi

(Gi) < ∞ does

not imply that Gi is (weakly Wpie(w, ·)-)causal. This can be confirmed by
the following example.

Example 4. Consider G = G(l1e, l1e) such that
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(i) (w,w) ∈ RG for w = (

k
︷ ︸︸ ︷

1, . . . , 1, 0, 0, . . . ) for all k ∈ N0;

(ii) (w,w) ∈ RG and (w, 2w) ∈ RG for w = (

k
︷ ︸︸ ︷

1, . . . , 1,−1, 0, 0, . . . ) for all
k ∈ N0.

and there are no other (w, z) satisfying (w, z) ∈ RG. We can readily see
that γ⋆

1/1(G) = 2 < ∞ although it is easy to verify that G is not weakly

W1e(G)-causal.

4.3. Example of stability analysis

We now demonstrate that Theorem 7 is useful with the following example.

Example 5. Consider the closed-loop system Σ in Fig. 3 consisting of the
single-input single-output systems Gi = Gi(l2e, l2e) (i = 1, 2). Let l2e+ be the
subset of l2e consisting of positive signals (signals whose value at every k ∈ N0

is positive), which actually coincides with the set of positive signals itself, and
let l2+ be the subset of l2 consisting of positive signals, i.e., l2+ := l2e+ ∩ l2.
Let G1 be the input-intolerant output-solitary system satisfying

G1 : z1k =
2

3
w1

k (31)

for every k ∈ N0, with W2e(G1) given by l2e+, which is not truncation-
invariant. Let G2 be the input-intolerant output-solitary system satisfying

G2 : z2k =







1
2
w2

k (0 < w2
k ≤ 1)

1
2
(w2

k)
2 (1 < w2

k ≤ 2)

w2
k (2 < w2

k)

(32)

for every k ∈ N0, with W2e(G2) also given by l2e+. Note that the closed-
loop system consisting of these subsystems G1 and G2 cannot be dealt with
in [1, 2] since (0, 0) ∈ RGi

(i = 1, 2) is assumed therein. We assume that
ui ∈ W2(Gi) = l2+ (i = 1, 2) and examine whether Σ is (l2+, l2+) stable. More
specifically, we aim at demonstrating that the small-gain theorem derived in
this paper is helpful for such a study.

To this end, we first confirm that Σ indeed has a structure compatible
with those systems that can be handled by the small-gain theorem. We
begin by confirming that Assumption 1 is satisfied. The first and second
conditions in this assumption are obviously satisfied while the third is also
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satisfied essentially by the fact that l2 ⊂ l4. To show that the fourth condition
is also satisfied, we introduce the continuous function

g2(y) :=







1
2

(0 < y ≤ 1)
y
2

(1 < y ≤ 2)

1 (2 < y)

(33)

on the positive real axis, which is relevant to G2 in the sense that (32) can
be represented as z2k = g2(w

2
k)w

2
k. Then, Σ can be represented by

[
1 −g2(w

2
k)

−2
3

1

] [
w1

k

w2
k

]

=

[
u1
k

u2
k

]

(∀k ∈ N0). (34)

In the following, we first consider k = 0 in (34) without loss of generality.
We must first show that it admits a solution [w1

0, w
2
0]

T whenever u1
0 > 0 and

u2
0 > 0. To show this, we first note from (33) that the range of g2 is the

interval [1/2, 1], and thus that of 1 − 2
3
g2 does not contain 0. Hence, we

can equivalently deal with the solution to (34) through the inversion of the
matrix on the left-hand side, which leads to the equivalent equation

w1
0 =

u1
0 + g2(w

2
0)u

2
0

1− 2
3
g2(w2

0)
=: f1(w

2
0, u0), w2

0 =
2
3
u1
0 + u2

0

1− 2
3
g2(w2

0)
=: f2(w

2
0, u0),

(35)

where u0 := [u1
0, u

2
0]
T . Let us fix u1

0 > 0 and u2
0 > 0 and show that the above

equation always admits a solution. We first note that f2 is continuous on the
positive real axis, on which it is uniformly bounded by

f2(·, u0) ≤ 2u1
0 + 3u2

0, (36)

and has a limit as w2
0 → +0, which is positive. Hence, there exist at least one

w2
0 > 0 satisfying the second equation in (35), and thus at least one solution

[w1
0, w

2
0]

T to (35) such that w1
0 > 0 and w2

0 > 0. If we repeat the same
arguments to [w1

k, w
2
k]

T (k ∈ N0) and determine the corresponding z1k > 0
and z2k > 0 (k ∈ N0) by (31) and (32), respectively, then it is obvious that
wi ∈ l2e+ (i = 1, 2), zi ∈ l2e+ (i = 1, 2) and (u, [wT , zT ]) ∈ RΣ. Since we can
take ui ∈ l2e+ (i = 1, 2) arbitrarily within the above arguments, we see that
the fourth condition of Assumption 1 is satisfied.

Next, it is obvious that Assumption 2 is satisfied. Furthermore, it is also
obvious that G1 is l2+ stable with γ2/2(G1) = 2/3 while G2 is also l2+ stable
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(again by l2 ⊂ l4) with γ2/2(G2) = 1 because the range of g2 is [1/2, 1].
Finally, we can directly confirm that they are both W2e(w, ·)-causal, which
is easy since they are output-solitary and static. It follows that Σ fulfills
all the conditions in the extended small-gain theorem, including the decisive
condition γ2/2(G1)γ2/2(G2) < 1. Hence, Σ is ensured to be (l2+, l2+) stable.

In order to show a potential application of Theorem 7, let us further
consider the closed-loop system Σ in Example 5, where G1 is given by a causal
nonlinear dynamical (strictly) positive system with γ2/2(G1) = 2/3, instead
of (31). Here, if we take Willems’ standpoint in Remark 2 and regard that
verifying well-posedness in the modified example is a matter independent
from our stability study itself, then a result similar to Example 5 can be
obtained clearly for such a system, and thus this example provides an outlook
on a potential application of the extended small-gain theorem as long as well-
posedness under a given G1 could be verified.

In addition to this, it would be significant to note that Σ in Example 5 is
actually output-unsolitary even though both G1 and G2 are output-solitary.
To see this, let us reconsider the rearranged input-output relation (35) of Σ,
and consider the case with u1

0 = 1/2 and u2
0 = 1/3; it has two quadruples

of solution given by (w1
0, w

2
0, z

1
0 , z

2
0) = (1, 1, 2/3, 1/2), (5/2, 2, 5/3, 2). This

observation sheds light on the importance of introducing output-unsolitary
systems in the (stability) study of complicated systems. This is because it
could often be the case in quite complicated systems that G1 and/or G2 in Σ
could actually be another feedback connection like Σ itself consisting of other
two subsystems. This implies that even if all the irreducible components in
such complicated systems were assumed to be output-solitary, it would be
quite natural to also introduce and investigate output-unsolitary systems, as
the present paper has done consistently and thoroughly. As such, the small-
gain theorem extended in this paper to the feedback connection of general
input-intolerant and output-unsolitary input-output systems is believed to
be of great importance in the stability analysis of quite complicated systems.

5. Conclusion

This paper dealt with general input-intolerant output-unsolitary input-
output systems, which were dealt with in the study of Zames [1, 2] but not
in the later studies [3, 4, 5, 6, 7] on the small-gain theorem. Our ultimate
goal lied in deriving an extended version of the small-gain theorem over the
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original result in [1, 2], which is based on the definition of the gain of systems
that generally leads to a value larger than that in the treatment in the later
studies. Such a difference in the gain definition is deeply related to the
fact that causality of subsystems in the feedback loop was utilized in the
later studies while the original study did not assume such causality. This
motivated us to first tackle the problem of adequately defining causality for
general input-output systems, which itself is believed to be an important issue
in its own right. We began with reviewing the well-known causality definition
of input-tolerant output-solitary systems, from which a series of amendments
of (possible) definitions were motivated until we arrive at adequate mutually
equivalent definitions for general input-intolerant output-unsolitary systems.
We also clarified the mutual relationship among all the (possible) definitions
as well as the subclass of input-intolerant output-unsolitary systems for which
each of the possible definitions can stand as an indeed adequate definition.
We then proceeded to the ultimate issue on the derivation of an extended
version of the small-gain theorem and its usefulness was demonstrated with
an example.
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