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Many rotational invariants for crystal structure representations have been used to describe the structure-
property relationship by machine learning. The machine learning interatomic potential (MLIP) is one of the
applications of rotational invariants, which provides the relationship between the energy and the crystal structure.
Therefore, the enumeration of rotational invariants should be useful for constructing MLIPs with the desired
accuracy. In this study, we introduce high-order linearly independent rotational invariants up to the sixth order
based on spherical harmonics and apply them to linearized MLIPs for elemental aluminum. A set of rotational
invariants is derived by the general process of reducing the Kronecker products of irreducible representations
for the SO(3) group using a group-theoretical projector method. A high predictive power for a wide range of
structures is accomplished by using high-order invariants with low-order invariants equivalent to pair and angular
structural features.
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I. INTRODUCTION

The machine-learning interatomic potential (MLIP) based
on a large data set generated by density functional theory
(DFT) calculations is beneficial for significantly improving
the accuracy and transferability of interatomic potentials
[1–22]. Applications of MLIP have been increasing for not
only atomistic simulations in large systems but also global
structure optimizations [23–25], which require a high pre-
dictive power over a wide range of configurations. Similarly
to most of conventional interatomic potentials, the MLIP
is based on the idea that the short-range part of the total
energy of a structure may be divided into the energies of the
constituent atoms of a system. In the formulation of MLIPs,
the atomic energy originating from atomic interactions with
neighboring atoms is formulated as a function of a set of nu-
merous quantities depending on its neighboring environment
called structural features or descriptors. A number of models
have been employed to describe a function or a mapping
from structural features to the atomic energy, including arti-
ficial neural network models [1–6], Gaussian process models
[7–11], and linear models [12–18].

Recently, many studies on estimating the structure-
property or compound-property relationship by machine
learning have been reported [26–68]. In such a machine
learning estimation, the invariant properties of a set of target
systems such as translational and rotational invariances play
a key role in generating structural or compound features.
Regarding the structure-energy relationship of an MLIP, the
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total energy of a crystalline system has been modeled as
a function of a wide range of invariant quantities, includ-
ing order parameters depending on pairs and angles among
three atoms [2,69–71], as used in conventional interatomic
potentials, moments derived from the atomic distribution [18],
the power spectrum, the bispectrum, and the smooth over-
lap of atomic positions (SOAPS) kernel based on spherical
harmonics [70,72]. Simultaneously, group-theoretical meth-
ods have long been powerful tools for deriving invariants
based on the symmetry of target systems, and some of
the above invariants have been derived by group-theoretical
methods. Such group-theoretical invariants have been widely
used not only for estimating MLIPs but also for character-
izing and analyzing local structures (e.g., bond-orientational
order parameter (BOP) [73]) and deriving the Landau free
energy based on supergroup-subgroup relationship [74], the
potential energy surface for a molecule as a function of
symmetry-adapted redundant coordinates [75], and the model
Hamiltonian of a crystalline system based on its space
group [76].

In this study, we introduce high-order linearly independent
rotational invariants up to the sixth order based on spher-
ical harmonics into an MLIP framework, i.e., a linearized
MLIP. A set of rotational invariants is enumerated by the
general process of reducing the Kronecker products of ir-
reducible representations (Irreps) for the SO(3) group using
a group-theoretical projector method. The enumeration of
rotational invariants will be useful for constructing MLIPs
with the desired accuracy. As an application of high-order
invariants, we demonstrate a linearized MLIP for elemental
aluminum, formulated by a linear polynomial function of
invariants.
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FIG. 1. Schematic illustration of the neighboring atomic density
around atom i in a structure composed of a single element.

II. POTENTIAL ENERGY MODELS

In this section, we introduce an atomic energy model with
high-order polynomial invariants of the SO(3) group derived
from the neighboring atomic density. The SO(3) group is the
group of all proper rotations in a three dimensional real vector
space. We first give a general formulation of the relationship
between the atomic energy and the neighboring atomic den-
sity including their definitions in Sec. II A. Here, we consider
the neighboring atomic density in a structure composed of
a single element for simplicity. Then, we introduce a linear
polynomial model for the atomic energy with polynomial in-
variants in Sec. II B. In Sec. II C, a group-theoretical approach
to construct linearly independent polynomial invariants of
SO(3) is shown. In Sec. II D, a practical form of radial
functions used to expand the neighboring atomic density is
demonstrated. In Secs. II E and II F, we show two other
models for the atomic energy used for comparison with the
model with high-order polynomial invariants.

A. General formulation of interatomic potentials

To formulate the relationship between a structure and its
total energy, we first define the neighboring atomic density for
a given atom in the structure. The neighboring atomic density
of atom i is defined as the density of atoms within a given
cutoff radius rc from atom i as schematically illustrated in
Fig. 1. In a structure composed of a single element, the neigh-
boring atomic density is written as ρ (i) = ∑

j∈neighbor δ(r −
r j ), where r j denotes the position of neighboring atom j
and the sum is taken over the neighboring atoms within the
cutoff radius. Then, the short-range part of the total energy
may be decomposed as E = ∑

i E (i), where E (i) denotes the
contribution of atom i or the atomic energy. Finally, the atomic
energy is assumed to be written in a functional form of the

neighboring atomic density as

E (i) = F[ρ (i)]. (1)

The neighboring atomic density can be expanded in terms
of a basis set {bn} as

ρ (i)(r) =
∑

n

a(i)
n bn(r), (2)

where a(i)
n are the order parameters. This expansion replaces

the functional form of the atomic energy to a function of
order parameters. Then, let us consider a situation where an
arbitrary rotation is applied to the neighboring atomic density.
We define rotation operator R̂ acting on the basis functions as

R̂b(i)
n (r) =

∑
n′

�n′n(R̂)bn′ (r)

= bn(R̂−1r), (3)

where �(R̂) denotes the matrix representation of rotation R̂ for
the basis set {bn}. This property holds for the atomic density
expressed by a linear combination of the basis functions.
Therefore, the atomic density is transformed by rotation R̂ to

R̂ρ (i)(r) =
∑
n,n′

a(i)
n �n′n(R̂)bn′ (r). (4)

This transformation of the atomic density can be also
viewed as the change of the order parameters from a(i)

n

to
∑

n′ a(i)
n′ �nn′ (R̂). Although an arbitrary rotation generally

changes the neighboring atomic density, it does not change
the atomic energy. This means all elements of the SO(3)
group leave the atomic energy invariant, hence the atomic
energy should be modeled by the invariants of the SO(3) group
derived from {a(i)

n }, {d (i)
n }, as

E (i) = F
(
d (i)

1 , d (i)
2 , · · · ). (5)

This formulation can describe both conventional interatomic
potentials and MLIPs, and {d (i)

n } are called structural features
in the context of the MLIP.

B. Interatomic potential with high-order polynomial invariants

In this study, we expand the atomic density in terms of a
basis set corresponding to the Irreps of SO(3), i.e., spherical
harmonics, using the procedure introduced by Bartók et al.
[70]. Therefore, a rotation of the basis set is represented by
the Irreps of SO(3) known as the Wigner D matrix. A rotation
of products of radial functions { fn} and spherical harmonics
{Ylm} is also represented by the Irreps of SO(3). When we
expand the neighboring atomic density in terms of { fnYlm}, the
neighboring atomic density at a position (r, θ, φ) in spherical
coordinates centered at the position of atom i is expressed as

ρ (i)(r, θ, φ) =
∑
nlm

a(i)
nlm fn(r)Ylm(θ, φ), (6)

where a(i)
nlm are order parameters.

Then, we adopt linearly independent polynomial invariants
of SO(3) generated from order parameters as structural fea-
tures for the atomic energy. A pth-order polynomial invariant
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for given n and {l1, l2, · · · , lp} is defined by a linear combina-
tion of products of p order parameters, expressed as

d (i)
nl1l2···lp,(s) =

∑
m1,m2,··· ,mp

c
l1l2···lp,(s)
m1m2···mp a(i)

nl1m1
a(i)

nl2m2
· · · a(i)

nlpmp
. (7)

As will be shown in Sec. II C, a coefficient set {cl1l2···lp,(s)
m1m2···mp } is

constructed by solving the eigenvalue problem for a projector
matrix, ensuring that the linear combination is invariant for
arbitrary rotation. Since there are no l-positive first-order
invariants, all first-order invariants are identical to radial order
parameters, d (i)

n0 = a(i)
n00. A second-order invariant is identified

by a single value of l because second-order linear combi-
nations are invariant only when l1 = l2, which is a general
feature of product groups [74,77]. In terms of fourth- and
higher-order polynomial invariants, multiple invariants are
linearly independent for most of the set {l1, l2, · · · , lp}, which
are distinguished by index s if necessary.

Finally, the atomic energy may be formulated as a function
of the linearly independent polynomial invariants. We employ
an atomic energy model based on a simple linear polynomial
form of the invariants, written as

E (i) = w0 +
∑

n

wn0d (i)
n0 +

∑
n,l

wnlld
(i)
nll +

∑
n,{l1,l2,l3}

wnl1l2l3 d (i)
nl1l2l3

+
∑

n,{l1,l2,l3,l4},s
wnl1l2l3l4,sd

(i)
nl1l2l3l4,s

+ · · · , (8)

where w0, wn0, wnll , wnl1l2l3 , and wnl1l2l3l4,s are regression
coefficients.

Note that the second- and third-order invariants are equiv-
alent to the angular Fourier series (AFS) and bispectrum
reported in the literature, respectively [70,72]. Therefore, the
formulation of Eq. (8) with up to third-order invariants is
equivalent to spectral neighbor analysis potential (SNAP)
[15]. When excluding radial parts, the second-order invariants
are exactly the same as BOPs [73]. If we restrict the invariants
to third-order symmetrized ones excluding radial parts, they
are exactly the same as third-order BOPs.

C. Group-theoretical projector operation method

A set of polynomial invariants up to the sixth order is
derived by the general process of reducing the Kronecker
products of Irreps. The Kronecker products of Irreps have
been widely used for many purposes in physics and chem-
istry such as the formulation of angular momentum coupling,
the derivation of selection rules and the formulation of the
Landau free energy for phase transitions. We employ the
group-theoretical projection operator method [77] to derive
polynomial invariants of SO(3).

Let us first consider the reduction of products of the same
finite group G. In the projection operator method, the projector
matrix of the Kronecker product of Irreps (μ)�, (ν)�, · · · of the
same finite group G to Irrep σ is defined by

(σ )P =
∑

i

(σ )Pii

= dσ

g

∑
i

∑
R̂∈G

(σ )�−1
ii (R̂)(μ)�(R̂) ⊗ (ν)�(R̂) ⊗ · · · , (9)

where g and dσ denote the order of group G and the dimension
of Irrep σ , respectively. Considering the reduction of the Kro-
necker product to the one-dimensional identity Irrep whose
elements are all unity, the projection matrix is given by

(1)P = 1

g

∑
R̂∈G

(μ)�(R̂) ⊗ (ν)�(R̂) ⊗ · · · . (10)

By solving the eigenvalue problem for the projector matrix of
each combination {μ, ν, · · · }, expressed by

(1)Pu = u, (11)

eigenvector u is obtained. Each eigenvector corresponds to a
set of coefficients identifying a polynomial invariant of group
G in the form of a linear combination of order parameters.

SO(3) is an infinite or continuous group, which has an
infinite number of elements. In such a case, the average
appearing in Eq. (10) is replaced with an integral over contin-
uous parameters [78]. When a rotation is described by Euler
angles {α, β, γ }, the Wigner D-function D(l )(α, β, γ ) is an
Irrep of SO(3). Therefore, the element of the projector matrix
for the decomposition of pth-order Kronecker products into
the identity Irrep is written as

(l=0)P
l1l2···lp

m1m2···mp,m′
1m′

2···m′
p

= 1

8π2

∫ 2π

0
dα

∫ π

0
dβ sin β

∫ 2π

0
dγ D(l1 )

m1m′
1
(α, β, γ )

× D(l2 )
m2m′

2
(α, β, γ ) · · · D

(lp)
mpm′

p
(α, β, γ ), (12)

where integrals are calculated only from Clebsch-Gordan
coefficients for SO(3) or Wigner 3 j symbols as shown in
Appendix A. The projector matrix element has a nonzero
value only when m1 + m2 + · · · + mp = 0 and m′

1 + m′
2 +

· · · + m′
p = 0. Then, a solution of the eigenvalue problem for a

given set {l1, l2, · · · , lp} corresponds to a polynomial invariant
of SO(3).

Note that some of the eigenvectors with nonzero eigenval-
ues correspond to invariants that are linearly dependent on
invariants from the other eigenvectors. This originates from
the fact that we consider Kronecker products of a single
basis set. For the same reason, some of the eigenvectors
correspond to invariants that are constantly zero. Therefore,
they are removed from the set of invariants. In addition, we use
only polynomials that are invariant for an arbitrary improper
rotation. This means that we use polynomial invariants for a
set of {l1, l2, · · · , lp} whose sum is even.

D. Basis functions and order parameters

The order parameters {a(i)
nlm} for atom i of a given struc-

ture are calculated from its neighboring atomic density. If
one chooses an orthonormal set of radial functions, each
of the order parameters is given by the inner product of
the corresponding basis function and the neighboring atomic
density as

a(i)
nlm =

∑
j∈neighbor

fn(ri j )Y
∗

lm(θi j, φi j ), (13)

where (ri j, θi j, φi j ) denotes the spherical coordinates of neigh-
boring atom j centered at the position of atom i.
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We employ a finite basis set with Gaussian-type radial
functions to expand the neighboring atomic density. The
Gaussian-type radial functions are expressed as

fn(r) = exp[−βn(r − rn)2] fc(r), (14)

where βn and rn are given parameters. Values of {βn} and
{rn} are given by finite arithmetic progressions. Considering
the cutoff function fc, we use the following cosine-based
function:

fc(r) =
{ 1

2

[
cos

(
π r

rc

) + 1
]

(r � rc)

0 (r > rc)
, (15)

where rc denotes the cutoff radius. Since the Gaussian-type
radial functions are not orthonormal, the order parameter
a(i)

nlm is given by the linear combination of the inner products
with different n. However, the inner products and their linear
combinations are equivalent in the linear polynomial form
for the atomic energy of Eq. (8). Therefore, we estimate
the order parameters {a(i)

nlm} using Eq. (13) regardless of the
orthonormality of the radial functions.

E. Pair functional model

For comparison with the atomic energy model with high-
order polynomial invariants, we use the pair functional model
introduced in Ref. [71]. This model was reported to be capable
of predicting the energy within a root mean square (RMS)
error of 2.7 meV/atom for data sets derived from simple
structure generators, which were averaged over 31 elemental
metals including transition metals [71]. We use the second-
order approximation of the pair functional model described as

E (i) = w0 +
∑

n

wn0d (i)
n0 +

∑
n,n′

wn0,n′0d (i)
n0 d (i)

n′0. (16)

Because MLIPs are generally regarded as extensions of
conventional interatomic potentials, a classification rule of
conventional interatomic potentials based on the type of struc-
tural features [79] is applicable to MLIPs. This model is
classified into a pair functional potential; hence, we call this
model a pair functional MLIP hereafter.

F. Cluster functional model

A cluster functional model with AFS structural features is
also introduced for comparison. The AFS is given by

d (i)
nl =

∑
j,k∈neighbor

fn(ri j ) fn(rik ) cos(lθi jk ), (17)

where θi jk denotes the bond angle among atom i and its
neighboring two atoms. When AFSs are used as structural
features in the linear polynomial model of Eq. (8), they are
derived to be equivalent to second-order polynomial invariants
using the addition theorem of spherical harmonics [70].

Here, we employ a second-order polynomial approxima-
tion with AFS structural features written as

E (i) = w0 +
∑
n,l

wnld
(i)
nl +

∑
n,l,n′,l ′

wnl,n′l ′d
(i)
nl d (i)

n′l ′ , (18)

where Gaussian-type radial functions are adopted. This model
was also applied to the 31 elemental metals using the data set
mentioned in Sec. II E [71]. The RMS error averaged over the
31 elemental metals was reported to be 0.5 meV/atom [71].
We call this model a cluster functional MLIP because it is
classified as a cluster functional potential.

III. ESTIMATION OF POTENTIAL ENERGY MODELS

A. Data sets

Training and test data sets are constructed from DFT
calculations. The test data set is used to estimate the predictive
power for structures that are not included in the training data
set. To generate a wide range of structures for the training
and test data sets, we adopt prototype structures reported
in the Inorganic Crystal Structure Database (ICSD) [80] as
structure generators. We restrict all ICSD entries to those
with the ANX formula of “N” and eliminate duplicate entries
that have the same ICSD structure type. In other words, we
employ only unique ICSD prototype structures composed of
single elements with zero oxidation state. The total number of
structure generators is 86 and a list of structure generators is
shown in Appendix B.

First, the atomic positions and lattice constants of the
structure generators are fully optimized by DFT calculation to
obtain their equilibrium structures. Then, a candidate structure
used in each of the data sets is constructed by random lattice
expansion, random lattice distortion, and random atomic dis-
placements into a supercell of each of the structure generators.
For a given parameter ε controlling the degree of lattice
expansion, lattice distortion, and atomic displacements, the
lattice vectors of the candidate structure are expressed by

A′ = A + εR, (19)

where A and A′ denote the matrix representations of the
lattice vectors of the supercell of the structure generator and
the candidate structure, respectively. The (3 × 3) matrix R is
composed of uniform random numbers ranging from −1 to 1.
The displacement of an atom is described by the change of its
fractional coordinates as

f ′ = f + εA′−1η, (20)

where f and f ′ denote the fractional coordinates of the atom
in the supercell of the structure generator and the candidate
structure, respectively. The three-dimensional vector η con-
sists of uniform random numbers ranging from −1 to 1.

We generate a wide range of candidate structures using
multiple values of ε. When we generate Nst structures from
a structure generator, the value of ε for the N th structure, εN ,
is given by the finite arithmetic progression of length Nst as
εN = 0.5N/Nst Å. Therefore, it is worth emphasizing that the
given displacements are much larger than the small displace-
ments required to compute harmonic phonon force constants.
Applying this procedure to all the structure generators, a total
of 4 30 000 candidate structures are generated.

We sample 10 000 structures used for DFT calculations
from the pool of candidate structures so that the variance or
the uncertainty of the predicted energy becomes small in a
similar manner to structure selection procedures used in the
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cluster expansion for alloy systems [81–83]. We decrease the
uncertainty more efficiently than a random structure selection
using the following procedure. A DFT structure set composed
of randomly selected 1000 structures is first prepared. Then
20 trial sets of additional ten structures are randomly selected
from the pool of candidate structures. For each of the trial sets,
the trace of the precision matrix, Tr[(X�X )

−1
], is computed,

where X contains structural features for the combination of
the DFT structure set and the trial set. In the process of
the structure selection, we use a set of first- and second-
order polynomial invariants as structure features. Among the
20 trials, the trial set showing the lowest trace of the precision
matrix is added to the DFT structure set. They are repeated
until the size of the DFT structure set reaches 10 000. We then
split the DFT structure set into a set of 9000 structures and the
other set of 1000 structures randomly for the training and test
data sets, respectively.

For the total of 10 000 structures, DFT calculations were
performed using the plane-wave-basis projector augmented
wave (PAW) method [84] within the Perdew-Burke-Ernzerhof
exchange-correlation functional [85] as implemented in the
VASP code [86–88]. The cutoff energy was set to 400 eV. The
total energies converged to less than 10−3 meV/supercell.
The atomic positions and lattice constants were optimized for
the structure generators until the residual forces were less than
10−2 eV/Å.

B. Regression

Regarding the training data, the total energy, the forces
acting on atoms and the stress tensor computed by DFT
calculations are available since they are all expressed by linear
equations with the same regression coefficients. When we es-
timate the regression coefficients from all of the total energies,
forces and stress tensors, the predictor matrix X is divided into
three submatrices X energy, X force, and X stress, which contain
the structural features for the total energies, the forces acting
on atoms and the stress tensors of structures in the training
data set, respectively. The structural features for the forces
are derived in Appendix C, and the structural features for the
stress tensors can be easily derived in a similar manner to
the derivation of the structural features for the forces. The
observation vector also has three components of the total
energy yenergy, forces yforce and stress tensor ystress of structures
in the training data set, obtained by DFT calculations. The
predictor matrix and observation vector are simply written in
a submatrix form as

X =
⎡
⎣X energy

X force

X stress

⎤
⎦, y =

⎡
⎣yenergy

yforce
ystress

⎤
⎦. (21)

Finally, the total number of training data reached 1 377 769.
The regression coefficients of a model for the atomic

energy, which comprise the coefficient vector w, are esti-
mated by linear ridge regression. The optimal ridge coeffi-
cients minimize the penalized residual sum of squares expres-
sed as

L(w) = ||Xw − y||22 + λ||w||22, (22)

where X and y denote the predictor matrix and observation
vector, respectively. The regularization parameter λ controls
the magnitude of the penalty. It is also beneficial to use sparse
linear regressions such as the least absolute shrinkage and se-
lection operator (Lasso) to decrease the cost of computing the
energy and forces, while we adopt the linear ridge regression
to estimate the regression coefficients rapidly and stably in
this study.

IV. RESULTS AND DISCUSSION

A. Number of invariants

The number of polynomial invariants that occur in the
decomposition of the Kronecker product of the Irreps of
the SO(3) group is obtained only from their characters.
The number of pth-order polynomial invariants for the set
{l1, l2, · · · , lp} is calculated using the following equation:

nl1,l2,··· ,lp

= 1

8π2

∫ 2π

0
dα

∫ π

0
dβ sin β

×
∫ 2π

0
dγχ (l1 )(α, β, γ )χ (l2 )(α, β, γ )

· · · χ (lp)(α, β, γ ), (23)

where χ (l )(α, β, γ ) denotes the character of Irrep l for a
rotation described by Euler angles {α, β, γ }. In a practical
enumeration of invariants, the explicit forms of characters
described by its rotation axis φ and rotation angle ω are
more convenient than those described by Euler angles. When
specifying the rotation in this manner, the character of Irrep l
for rotation R̂ is simply expressed as

χ (l )(R̂) = χ (l )(ω) = sin [(2l + 1)ω/2]

sin [ω/2]
. (24)

Therefore, the number of pth-order polynomial invariants is
computed as

nl1,l2,··· ,lp = 1

4π2

∫ 2π

0
dω sin2 ω

2

∫ π

0
dθ sin θ

×
∫ 2π

0
dφχ (l1 )(ω)χ (l2 )(ω) · · ·χ (lp)(ω), (25)

where θ and φ identify the rotation axes.
Table I shows the number of pth-order invariants satisfy-

ing l1 � lmax, l2 � lmax, · · · , lp � lmax for a given lmax. The
integer sequences for second- and third-order invariants may
correspond to the On-Line Encyclopedia of Integer Sequences
(OEISs) A000027 and A002623, respectively [89]. Nonethe-
less, as described above, these numbers include linearly de-
pendent and constantly zero invariants derived from a single
basis set. Therefore, the number of available invariants shown
in Table II is obtained by solving the eigenvalue problems for
the projector matrix and removing such invariants.

Although we have considered invariants for all possible
combinations of l thus far, we are also allowed to restrict them
to symmetrized invariants, which are derived by reducing the
pth power of Irrep l [77]. The symmetrized power of an Irrep
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TABLE I. Cumulative number of SO(3) invariants for a given
value of maximum l .

Order of polynomial invariant

lmax 2 3 4 5 6

0 1 1 1 1 1
1 2 3 6 12 27
2 3 7 23 79 295
3 4 13 65 336 1841
4 5 22 153 1102 8222
5 6 34 317 3019 29274
6 7 50 598 7257 88402
7 8 70 1049 15778 235439
8 9 95 1738 31692 567795
9 10 125 2748 59688 1263347
10 11 161 4180 106580 2629421
11 12 203 6154 181947 5173123
12 13 252 8811 298910 9699354
13 14 308 12314 475021 17443960
14 15 372 16851 733313 30250729
15 16 444 22635 1103478 50802227
16 17 525 29907 1623230 82915955
17 18 615 38937 2339815 131918757
18 19 715 50026 3311727 205114070
19 20 825 63507 4610589 312358280
20 21 946 79748 6323265 466764285

has played an important role in many subjects such as the
construction of symmetrized tensors and the Landau theory

TABLE II. Cumulative number of nonzero linearly independent
SO(3) invariants of Eq. (7) for each n. Cumulative number of
invariants for an arbitrary improper rotation among them is also
shown in parentheses.

Order of polynomial invariant

lmax 2 3 4 5 6

0 1 1 (1) 1 (1) 1 (1) 1 (1)
1 2 2 (2) 3 (3) 3 (3) 4 (4)
2 3 5 (5) 9 (9) 13 (13) 23 (22)
3 4 8 (8) 26 (23) 53 (45) 146 (110)
4 5 15 (14) 64 (50) 218 (153) –
5 6 22 (20) 136 (99) 681 (429) –
6 7 35 (30) 273 (185) 1919 (1121) –
7 8 48 (40) 500 (322) – –
8 9 69 (55) 864 (534) – –
9 10 90 (70) 1423 (852) – –
10 11 121 (91) 2246 (1309) – –
11 12 152 (112) – – –
12 13 195 (140) – – –
13 14 238 (168) – – –
14 15 295 (204) – – –
15 16 352 (240) – – –
16 17 425 (285) – – –
17 18 498 (330) – – –
18 19 589 (385) – – –
19 20 680 (440) – – –
20 21 791 (506) – – –

TABLE III. Cumulative number of symmetrized invariants for a
given value of maximum l , lmax.

Order of polynomial invariant

lmax 2 3 4 5 6

0 1 1 1 1 1
1 2 1 2 1 2
2 3 2 3 2 4
3 4 2 5 2 7
4 5 3 7 4 11
5 6 3 9 4 17
6 7 4 12 7 25
7 8 4 15 7 35
8 9 5 18 11 48
9 10 5 22 12 64
10 11 6 26 17 84
11 12 6 30 18 108
12 13 7 35 25 137
13 14 7 40 27 171
14 15 8 45 35 211
15 16 8 51 38 258
16 17 9 57 48 312
17 18 9 63 52 374
18 19 10 70 64 445
19 20 10 77 69 525
20 21 11 84 83 616

of phase transitions. The number of pth-order symmetrized
invariants is expressed as

nsym
l,p = 1

4π2

∫ 2π

0
dω sin2 ω

2

∫ π

0
dθ sin θ

∫ 2π

0
dφχ [D(l )(ω)p],

(26)
where χ [D(l )(ω)p] denotes the character of the symmetrized
pth power of Irrep l . Appendix D presents the relationship
between the character of an Irrep and that of the symmetrized
pth power of the Irrep.

Table III shows the cumulative number of symmetrized
invariants up to a given maximum l . The integer sequences
for second- and third-order invariants correspond to OEISs
A000027 and A008619, respectively [89]. The increments
of the integer sequences for second-, third-, fourth-, fifth-,
and sixth-order invariants also correspond to the first 20 ele-
ments of OEIS A000012, A059841, A008620, A008743, and
A008669, respectively [89]. The increment from lmax − 1 to
lmax for order p is consistent with the number of symmetrized
invariants derived from the pth power of Irrep lmax.

B. Application to elemental aluminum

We first demonstrate a procedure to construct an opti-
mal MLIP with polynomial invariants for elemental Al. An
MLIP is identified by a given maximum value of order p,
pmax, and a given set of maximum values of l for order
p, {l (2)

max, l (3)
max, · · · , l (pmax )

max }. This means that all polynomial
invariants satisfying p � pmax and l1 � l (p)

max, l2 � l (p)
max, · · · ,

lp � l (p)
max are included in the set of structural features for a

given pmax and {l (2)
max, l (3)

max, · · · , l (pmax )
max }. We hereafter describe

an MLIP as (l (2)
max-l (3)

max- · · · -l (pmax )
max ). To find an optimal MLIP,

214108-6



GROUP-THEORETICAL HIGH-ORDER ROTATIONAL … PHYSICAL REVIEW B 99, 214108 (2019)

(a)

(b)

Maximum order of invariants, pmax

MLIP with only 
symmetrized
invariants

MLIP with 
all invariants

 0

 2

 4

 6

 8

 10

 12

 14

 2  3  4  5  6

R
M

S
 e

rr
or

 (
en

er
gy

) 
(m

eV
/a

to
m

)

 0

 0.1

 2  3  4  5  6

R
M

S
 e

rr
or

 (
fo

rc
e)

 (
eV

/Å
)

 0

 0.5

 2  3  4  5  6

R
M

S
 e

rr
or

 (
st

re
ss

) 
(G

P
a)

)d()c(

pmax = 6
pmax = 5
pmax = 4
pmax = 3
pmax = 2

 0

 5

 10

 15

 20

 25

 30

 0  500  1000  1500  2000  2500

R
M

S
 e

rr
or

 (
m

eV
/a

to
m

)

Number of invariants

FIG. 2. (a) Dependence of the RMS error on the number of
invariants for Al. The dependence of the RMS error for predicting
(b) the energy, (c) the force component, and (d) the stress tensor
component on the maximum order of invariants is also shown. Error
bars indicate standard deviations of RMS errors for structure groups.
The RMS errors of MLIPs composed of all invariants and those
of MLIPs composed of only symmetrized invariants are shown by
purple closed circles and green closed squares, respectively.

we consider l (p)
max up to nine for the second order, seven for

the third order, three for the fourth order, and two for both
the fifth and sixth orders. For symmetrized invariants, l (p)

max up
to nine for the second order, eight for the third order, eight
for the fourth order, four for the fifth order, and three for
the sixth order are taken into account. In the optimization of
{l (2)

max, l (3)
max, · · · , l (pmax )

max } and pmax, we use the number of radial
functions, the parameters in the radial functions and the cutoff
radius that are optimized by trial and error. This means that we
use 22 sets of parameters βn and rn corresponding to all com-
binations of finite arithmetic progressions of βn = {0.25, 0.5}
and rn = {0, 1, · · · , 10}. The cutoff radius is set to 10 Å.

Figure 2(a) shows the dependence of the RMS error
for the test data on the number of invariants. Each
data point corresponds to the RMS error of an MLIP
(l (2)

max, l (3)
max, · · · , l (pmax )

max ). As can be seen in Fig. 2(a), the RMS
error decreases as the number of invariants increases. The
MLIP with the lowest RMS error of 2.27 meV/atom is
composed of 2399 invariants (9-7-3-2-2). The fitting error for

the training data of 2.23 meV/atom is almost the same as the
RMS error for the test data.

On the other hand, the pair functional MLIP has a large
RMS error of 19.88 meV/atom although it was reported
to have an RMS error of 0.89 meV/atom for the test data
constructed from simple structure generators such as fcc-,
bcc-, and hcp-type structures [71]. The pair functional MLIP
is composed of 276 regression coefficients (22 invariants),
and its RMS error is a converged one with respect to the
number of invariants. Clearly, the difference in RMS error
originates from the different structures used to estimate the
prediction error, because the present test data is obtained from
a wide range of structure generators as shown in Sec. III A.
Therefore, the pair functional MLIP provides an accurate
description of the atomic interactions in simple structures,
whereas it has no power to describe the atomic interactions for
a wide range of structures. This limitation of the transferabil-
ity has also long been recognized in conventional pair func-
tional interatomic potentials such as embedded atom method
(EAM) potentials, which are regarded as reductions of the pair
functional MLIP. Although the use of many pairwise structure
features in the pair functional MLIP improves the descriptive
power of the pair functional model for simple structures, this
result indicates that systematically increasing the number of
pairwise structural features is not a useful way of increasing
the transferability to a wide range of structures.

Figure 2(b) shows the dependence of the RMS error on
the maximum order of the invariants. Only the MLIP with the
lowest RMS error among all MLIPs identified by a value of
pmax is shown in Fig. 2(b). The best MLIP composed of only
second-order invariants, which is equivalent to an MLIP with
AFS structural features, has an RMS error of 7.72 meV/atom.
Using both second- and third-order invariants, the RMS er-
ror significantly decreases to 2.83 meV/atom. Upon adding
higher-order invariants, the RMS error gradually decreases
and MLIP (9-7-3-2-2) exhibits the lowest RMS error of 2.10
meV/atom. Even when restricting the invariants to sym-
metrized ones, the RMS error decreases with increasing max-
imum order of the invariants. MLIP (9-8-8-4-3) composed
of only symmetrized invariants has an RMS error of 3.77
meV/atom, which is the lowest among the MLIPs with only
symmetrized invariants.

However, the RMS error almost converges at pmax = 4. To
further increase the accuracy of the MLIP, both a large number
of additional high-order invariants and a large number of ad-
ditional training data may be required, because the RMS error
decreases very slowly as the number of invariants increases
as shown in Fig. 2(a). In addition, the potential performance
of higher-order invariants may be evaluated more accurately
simply by significantly increasing the number of training data
and high-order invariants.

We measure in more detail the accuracy for a structure
group, which is defined as a set of structures derived from
a structure generator. Figure 3 shows the dependence of
the RMS error on the structure group of MLIP (9-7-3-2-2)
in comparison with that of the pair functional MLIP. The
RMS error for a structure group is averaged over the struc-
tures in the group. The pair functional MLIP exhibits large
errors for some structure groups, such as high-pressure and
covalent structures, and shows relatively small errors for
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FIG. 3. Dependence of fitting error on the structure group for Al for the pair functional MLIP and MLIP (9-7-3-2-2) shown by purple and
green bars, respectively. The prediction error for test data also shows a similar behavior to the fitting error. The structure group is identified by
ICSD-ID and the structure type listed in the long view of the ICSD.

the other structure groups. On the other hand, the use of
high-order polynomial invariants significantly improves the
accuracy for the whole range of structure groups. Figure 2(b)
also shows the standard deviation of the errors for the struc-
ture groups. Figure 2(b) indicates that high-order polyno-
mial invariants decrease not only the error averaged over
all structures but also the structure group dependence of the
error. In addition to the energy, the other physical proper-
ties depending on the structure group are predicted with a
higher accuracy by MLIP (9-7-3-2-2) as shown in Figs. 2(c)
and 2(d).

Figure 4 shows a comparison of the energy computed
by DFT calculation with those predicted by [Fig. 4(a)] the
pair functional MLIP and [Fig. 4(c)] MLIP (9-7-3-2-2) for
the whole data set combining the training and test data sets.
The energy is measured from the DFT energy of the fcc
equilibrium structure. In the comparison of the pair functional
MLIP with the DFT calculation, a series of structures belong-
ing to structure groups with large errors in Fig. 3 shows a
systematic deviation from the diagonal line indicating that the
MLIP energy is equal to the DFT energy, although most of
the structures are distributed around the diagonal line. The
systematic deviations and related huge errors for covalent
and high-pressure structures originate from their electronic
structures significantly different from those of typical metallic

structures such as fcc structure. On the other hand, no such
systematic deviation is seen in the comparison of MLIP
(9-7-3-2-2) with the DFT calculation. The DFT and MLIP
energies are almost the same for all structures in the energy
scale of Fig. 4(c).

Figure 4 also shows the energy dependence of the error
for [Fig. 4(b)] the pair functional MLIP and [Fig. 4(d)] MLIP
(9-7-3-2-2). It is clearly found that the pair functional MLIP
has a wider error distribution than MLIP (9-7-3-2-2). Al-
though a clear energy dependence of the error is not observed
in Figs. 4(b) and 4(d), the error of the structures with a low
DFT energy is much lower than those of the other structures.
Moreover, there are several other systematic deviations in the
error distribution of the pair functional MLIP in addition to
a clear systematic deviation that can also be recognized in
Fig. 4(a).

Undoubtedly, a useful MLIP requires not only a low pre-
diction error but also predictive power for properties related to
the energies of structures that are not included in the data sets,
i.e., transferability. Here, we evaluate the prediction error for
the phonon frequencies, vacancy formation energy, and grain
boundary energy to estimate the transferability of MLIPs.
Table IV shows the RMS error for the phonon frequencies,
vacancy formation energy, and symmetric tilt grain boundary
(STGB) energy. The RMS error for the phonon frequency is
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FIG. 4. (a) Comparison of energies predicted by the pair func-
tional MLIP with those predicted by DFT calculation. The diagonal
line indicates that the MLIP energy is equal to the DFT energy.
The MLIP and DFT energies of structures in the whole data set are
measured from those of equilibrium fcc structures. (b) Distribution
of the prediction error of the pair functional MLIP for structures in
the whole data set, along with their DFT energy. (c) Comparison of
energies predicted by MLIP (9-7-3-2-2) with those predicted by the
DFT calculation. (d) Distribution of the prediction error of MLIP
(9-7-3-2-2) for structures in the whole data set, along with their DFT
energy.

evaluated as

(RMSphonon)2 = 1

Nkpoints

∑
k,n

(
ωMLIP

k,n − ωDFT
k,n

)2
, (27)

where ωMLIP
k,n and ωDFT

k,n denote the phonon frequencies of band
n at k point k predicted by the MLIP and DFT calculation,
respectively. Table IV indicates that the phonon frequencies

predicted by MLIP (9-7-3-2-2) are very close to those pre-
dicted by DFT calculation. The pair functional MLIP also
has good predictive power for the phonon properties of fcc,
bcc, and hcp structures, although it has large errors ranging
from 5–8 meV/atom for fcc, bcc, and hcp structure groups as
shown in Fig. 3. The high predictive power for the phonon
properties of the pair functional MLIP is ascribed to the
fact that structures with a low DFT energy have very small
prediction errors in the pair functional MLIP as shown in
Fig. 4(b).

We next compare the vacancy formation energies for fcc
and hcp structures predicted by MLIPs with those predicted
by DFT calculation. Supercells are formed by the 3 × 3 × 3
expansions of the conventional unit cells of the fcc and hcp
structures. As shown in Table IV, all MLIPs show similar
predictive powers for the vacancy formation energy. We also
examine the prediction error for grain boundary models not
included in the training and test data sets. Here, we introduce
STGB models with a 〈110〉 tilt direction. They have {113},
{112}, {111}, and {221} grain boundary planes and misori-
entation angles of 50.479, 70.529, 109.471, and 141.058◦,
respectively. They are respectively composed of 880, 284,
384, and 512 atoms including two boundary planes. Starting
from their initial structures taken from Ref. [90], we optimize
the STGB models by using MLIPs and by DFT calculation.
Table IV shows the grain boundary energies of the STGB
models predicted by DFT calculation and MLIPs. As can
be seen in Table IV, all MLIPs predict the grain boundary
energy very accurately. These results are associated with the
above discussion on the high predictive power for the phonon
properties, i.e., structures with a low DFT energy can be
predicted with very small prediction errors in the pair func-
tional MLIP. These results indicate that the pair functional
and cluster functional MLIPs with AFS structure features can
be highly useful for a limited range of applications, although
an MLIP with high-order polynomial invariants shows the
highest predictive power in general.

Finally, we discuss the computational efficiency of MLIP.
Figure 5 shows the distribution of MLIPs in the plane of the
RMS error and the normalized elapsed time to compute the
energy, the forces and the stress tensors of a configuration of

TABLE IV. Transferability of pair functional MLIP, cluster functional MLIP with AFS and MLIP (9-7-3-2-2) in elemental Al.

Cluster func. MLIP
Pair func. (AFS) (9-7-3-2-2) DFT

RMS error in phonon frequency (THz)
FCC 0.118 0.273 0.052 –
BCC 0.282 0.631 0.289 –
HCP 0.185 0.491 0.053 –

Vacancy formation energy (eV)
FCC 0.727 0.663 0.660 0.614
HCP 0.652 0.681 0.681 0.585

Grain boundary energy (mJ/m2), STGB(110)
{113} (50.479◦) 187.5 197.1 187.4 158.4
{112} (70.529◦) 376.6 388.1 379.8 348.3
{111} (109.471◦) 88.8 64.3 57.5 39.2
{221} (141.058◦) 397.0 430.1 421.2 386.0
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FIG. 5. Distribution of MLIPs identified by (l (2)
max-l (3)

max- · · · -l (pmax )
max )

in the plane of the RMS error and the elapsed time to compute
the energy, the forces, and the stress tensors of an STGB model
composed of 284 atoms. We compute them using a single core of
Intel Xeon E5-2695 v4. The elapsed times of MLIPs are normalized
using that of the pair functional MLIP. The closed circles in the top
and bottom panels show the convex hull vertices and Pareto optimal
points of the distribution, respectively. The Pareto optimal points are
obtained using a nondominated sorting algorithm implemented in
PYGMO [91,92].

284 atoms, i.e., a converged structure of STGB model with
{112}-grain boundary plane. We here regard the normalized
elapsed time as a measure of the computational efficiency
of MLIP. In our current implementation, the pair functional
MLIP and the cluster functional MLIP are approximately 300
and 15 times faster than MLIP (9-7-3-2-2), respectively.

As can be seen in Fig. 5, the accuracy and computational
efficiency of MLIP are conflicting properties that should be
optimized. In this multiobjective optimization problem in-
volving several conflicting objectives simultaneously, there
is no single optimal solution and a set of alternatives with
different tradeoffs between the accuracy and the computa-
tional efficiency. Figure 5 also shows the convex hull vertices
and Pareto optimal points of the distribution. They corre-
spond to optimal solutions with different tradeoffs. Besides,
the pair functional MLIP and the cluster functional MLIP
are more Pareto optimal than many of the optimal MLIPs.
This Pareto optimality originates from the fact that the func-
tional MLIPs include second-order polynomials of structural

features, which represent effectively many-body interactions.
The present result implies that one can obtain more Pareto
optimal MLIPs by introducing polynomials of the higher-
order invariants.

V. CONCLUSION

In this study, SO(3) polynomial invariants up to the sixth
order representing atomic distributions have been enumer-
ated. We have applied them to construct accurate MLIPs for
elemental Al by formulating the atomic energy as a linear
polynomial form of the polynomial invariants. The high-order
invariants play an essential role in constructing an MLIP with
a high predictive power for a wide range of crystal structures.
The list of invariants and the group-theoretical procedure to
derive the invariants should be useful for constructing not
only MLIPs but also prediction models for the other physical
properties that depend on the crystal structure.
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APPENDIX A: PROJECTOR MATRIX ELEMENTS

In this Appendix, we show the formulation used to com-
pute the projector matrix elements for the decomposition of
the Kronecker product of Irreps into the identity Irrep. The
projector matrix elements for SO(3) invariants are calculated
from integrals involving the Wigner D functions. The projec-
tor matrix elements for the second- and third-order invariants
are expressed [93] as

(1)Pl1l2
m1m2,m′

1m′
2
= 1

8π2

∫ 2π

0
dα

∫ π

0
dβ sin β

∫ 2π

0
dγ D(l1 )

m1m′
1

× (α, β, γ )D(l2 )
m2m′

2
(α, β, γ )

= (−1)m2−m′
2

1

2l2 + 1
δl1l2δ−m1m2δ−m′

1m′
2

(A1)

(1)Pl1l2l3
m1m2m3,m′

1m′
2m′

3
= 1

8π2

∫ 2π

0
dα

∫ π

0
dβ sin β

×
∫ 2π

0
dγ D(l1 )

m1m′
1
(α, β, γ )D(l2 )

m2m′
2
(α, β, γ )

× D(l3 )
m3m′

3
(α, β, γ )

= (−1)m3−m′
3

1

2l3 + 1
Cl3−m3

l1m1l2m2
C

l3−m′
3

l1m′
1l2m′

2
,

(A2)

where Cl3m3
l1m1l2m2

denotes the Clebsch-Gordan coefficient for the
SO(3) group. The projector matrix elements for the fourth-,
fifth-, and sixth-order invariants are reduced to integrals in-
volving products of two or three Wigner D functions using
the Clebsch-Gordan expansion given as

D(l1 )
m1m′

1
(α, β, γ )D(l2 )

m2m′
2
(α, β, γ )

=
l1+l2∑

l=|l1−l2|

∑
mm′

Clm
l1m1l2m2

D(l )
mm′ (α, β, γ )Clm′

l1m′
1l2m′

2
. (A3)
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TABLE V. ICSD IDs and ICSD structure types of structure generators.

ICSD CollCode Structure type ICSD CollCode Structure type ICSD CollCode Structure type

2091 Se3S5 76156 bcc-W 187431 CaHg2

15535 O2(hR2) 76166 U(beta)-CrFe 188336 (Ca8)xCa2
24892 N2 88815 Graphite(oS16) 189436 B(tP50)
26463 S12 88820 Si(HP) 189460 MnP
26482 N2(cP8) 97742 Sb2Te3 189786 Si(oS16)
27249 CO 104296 Hg(LT) 193439 Graphite(2H)
28540 H2 105489 FeB 194468 I2

30101 Wurtzite-ZnS(2H) 108326 Cr3Si 236662 Sn
30606 Se(beta) 108682 Pr(hP6) 236858 O8

31170 C(P63mc) 109012 Li(cI16) 245950 Ge(cF136)
31692 Pu(mP16) 109018 Cs(HP) 245956 Ge
31829 Graphite(3R) 109027 Sr(HP) 246446 Bi(III)
37090 S6 109028 Bi(I4/mcm) 248474 Pu(oF8)
41979 Diamond-C(cF8) 109035 Ca0.15Sn0.85 248500 O2(mS4)
42679 Sb(mP4) 157920 IrV 280872 Ta(tP30)
43058 Mn(alpha)-Mn(cI58) 161381 K(HP) 609832 P(black)
43211 Po(alpha) 162242 Ca(III) 616526 As
43216 Sn(tI2) 162256 Ga 639810 In
43251 S8(Fddd) 165132 B28 642937 Mn(cP20)
43539 Ga(Cmcm) 165725 Co(tP28) 644520 N2(epsilon)
52412 Sc 167204 Ge(hP8) 648333 Pa
52501 Te(mP4) 168172 I(Immm) 652633 Sm
52914 ccp-Cu 173517 Ge(HP) 652876 hcp-Mg
52916 La 181082 C(P1) 653045 Se(gamma)
56503 GaSb 181908 Si(I4/mmm) 653381 U
56897 SmNiSb 182587 Nickeline-NiAs 653719 Bi
57192 Cs(tP8) 182732 BN(P1) 653797 Pu(mS34)
62747 B(hR12) 182760 C(C2/m) 656457 Po(hR1)
76041 U(beta) 185973 C3N2

Therefore, the projector matrix elements for the fourth-, fifth-, and sixth-order invariants are derived as

(1)Pl1l2l3l4
m1m2m3m4,m′

1m′
2m′

3m′
4
= 1

8π2

∫ 2π

0
dα

∫ π

0
dβ sin β

∫ 2π

0
dγ D(l1 )

m1m′
1
D(l2 )

m2m′
2
D(l3 )

m3m′
3
D(l4 )

m4m′
4

= (−1)m4−m′
4

1

2l4 + 1

l1+l2∑
l=|l1−l2|

Cl (m1+m2 )
l1m1l2m2

C
l (m′

1+m′
2 )

l1m′
1l2m′

2
Cl4−m4

l3m3l (m1+m2 )C
l4−m′

4
l3m′

3l (m′
1+m′

2 ) (A4)

(1)Pl1l2l3l4l5
m1m2m3m4m5,m′

1m′
2m′

3m′
4m′

5
= 1

8π2

∫ 2π

0
dα

∫ π

0
dβ sin β

∫ 2π

0
dγ D(l1 )

m1m′
1
D(l2 )

m2m′
2
D(l3 )

m3m′
3
D(l4 )

m4m′
4
D(l5 )

m5m′
5

= (−1)m5−m′
5

1

2l5 + 1

l1+l2∑
l=|l1−l2|

l3+l∑
L=|l3−l|

Cl (m1+m2 )
l1m1l2m2

C
l (m′

1+m′
2 )

l1m′
1l2m′

2
CL(m1+m2+m3 )

l3m3l (m1+m2 )

×C
L(m′

1+m′
2+m′

3 )
l3m′

3l (m′
1+m′

2 ) Cl5−m5
l4m4L(m1+m2+m3 )C

l5−m′
5

l4m′
4L(m′

1+m′
2+m′

3 ) (A5)

(1)Pl1l2l3l4l5l6
m1m2m3m4m5m6,m′

1m′
2m′

3m′
4m′

5m′
6
= 1

8π2

∫ 2π

0
dα

∫ π

0
dβ sin β

∫ 2π

0
dγ D(l1 )

m1m′
1
D(l2 )

m2m′
2
D(l3 )

m3m′
3
D(l4 )

m4m′
4
D(l5 )

m5m′
5
D(l6 )

m6m′
6

= (−1)m6−m′
6

1

2l6 + 1

l1+l2∑
l=|l1−l2|

l3+l∑
L=|l3−l|

l4+L∑
S=|l4−L|

Cl (m1+m2 )
l1m1l2m2

C
l (m′

1+m′
2 )

l1m′
1l2m′

2
CL(m1+m2+m3 )

l3m3l (m1+m2 ) C
L(m′

1+m′
2+m′

3 )
l3m′

3l (m′
1+m′

2 )

×CS(m1+m2+m3+m4 )
l4m4L(m1+m2+m3 )C

S(m′
1+m′

2+m′
3+m′

4 )
l4m′

4L(m′
1+m′

2+m′
3 )C

l6−m6
l5m5S(m1+m2+m3+m4 )C

l6−m′
6

l5m′
5S(m′

1+m′
2+m′

3+m′
4 ). (A6)

APPENDIX B: LIST OF STRUCTURE GENERATORS

Table V shows the structure generators used for the training and test data sets in this study.
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APPENDIX C: FORCES ACTING ON ATOMS

In this Appendix, we derive the formulation for the forces acting on atoms from the atomic energy model with high-order
polynomial invariants of Eq. (8) used in this study. The forces acting on atoms are evaluated from the derivatives of the total
energy E with respect to the Cartesian coordinates of the atoms. The Cartesian component α of the force acting on atom k, Fk,α ,
is written as

Fk,α = − ∂E

∂xk,α

, (C1)

where xk,α denotes the α component of the Cartesian coordinates of atom k. Because the total energy is expressed as the sum of
the atomic energies written as Eq. (8), the force component is derived as

Fk,α = −
∑

i

⎡
⎣∑

n

wn0
∂d (i)

n0

∂xk,α

+
∑

nl

wnll
∂d (i)

nll

∂xk,α

+
∑

nl1l2l3

wnl1l2l3

∂d (i)
nl1l2l3

∂xk,α

+ · · ·
⎤
⎦. (C2)

Therefore, the derivatives of polynomial invariants are required to compute the forces. At the same time, the minus sign of the
derivatives of the polynomial invariants corresponds to the structural features for the forces, which are used to estimate regression
coefficients as shown in Sec. III B. The derivative on the pth-order polynomial invariant is expressed as

∂d (i)
nl1l2···lp

∂xk,α

=
∑

m1m2···mp

c
l1l2···lp
m1m2···mp

[
∂a(i)

nl1m1

xk,α

a(i)
nl2m2

· · · a(i)
nlpmp

+ a(i)
nl1m1

∂a(i)
nl2m2

∂xk,α

· · · a(i)
nlpmp

+ · · · + a(i)
nl1m1

a(i)
nl2m2

· · ·
∂a(i)

nlpmp

∂xk,α

]
, (C3)

where the derivative of a(i)
nlm is given by

∂a(i)
nlm

∂xk,α

=
∑

j∈neighbor

∂

∂xk,α

[ fn(ri j )Y
∗

lm(θi j, φi j )]. (C4)

The derivative of the right side has a nonzero value when k = j or k = i. When k = j, the derivative is computed using the
following set of equations:

∂

∂r j,x
[ fn(r)Ylm(θ, φ)] = x j − xi

r
f ′
n(r)Ylm(θ, φ) + fn(r)

[
cos θ cos φ

r

∂Ylm(θ, φ)

∂θ
− sin φ

r sin θ

∂Ylm(θ, φ)

∂φ

]
(C5)

∂

∂r j,y
[ fn(r)Ylm(θ, φ)] = y j − yi

r
f ′
n(r)Ylm(θ, φ) + fn(r)

[
cos θ sin φ

r

∂Ylm(θ, φ)

∂θ
+ cos φ

r sin θ

∂Ylm(θ, φ)

∂φ

]
(C6)

∂

∂r j,z
[ fn(r)Ylm(θ, φ)] = z j − zi

r
f ′
n(r)Ylm(θ, φ) + fn(r)

[
− sin θ

r

∂Ylm(θ, φ)

∂θ

]
, (C7)

where the derivative of spherical harmonics with respect to θ and φ is given by

∂Ylm(θ, φ)

∂θ
= m cot θYlm(θ, φ) +

√
(l − m)(l + m + 1)e−iφYl (m+1)(θ, φ)

∂Ylm(θ, φ)

∂φ
= imYlm(θ, φ). (C8)

When k = i, the derivatives are given as the minus signs of Eqs. (C5)–(C7).

APPENDIX D: CHARACTER OF SYMMETRIZED pth POWER OF AN Irrep

The pth tensor product of an Irrep is reducible into symmetrized and antisymmetrized representations. The symmetrized pth
power of Irrep (μ)� and its character are denoted as [(μ)�p(R̂)] and χ [(μ)�p(R̂)], respectively, for an arbitrary operation R̂ of a
group. The character of an operator R̂ in the symmetrized pth power of Irrep μ is expressed as

χ [(μ)�2(R̂)] = 1
2

(μ)χ2(R̂) + 1
2

(μ)χ (R̂2)

χ [(μ)�3(R̂)] = 1
6

(μ)χ3(R̂) + 1
2

(μ)χ (R̂)(μ)χ (R̂2) + 1
3

(μ)χ (R̂3)

χ [(μ)�4(R̂)] = 1
24

(μ)χ4(R̂) + 1
4

(μ)χ2(R̂)(μ)χ (R̂2) + 1
3

(μ)χ (R̂)(μ)χ (R̂3) + 1
8

(μ)χ2(R̂2) + 1
4

(μ)χ (R̂4)

χ [(μ)�5(R̂)] = 1
120

(μ)χ5(R̂) + 1
12

(μ)χ3(R̂)(μ)χ (R̂2) + 1
8

(μ)χ (R̂)(μ)χ2(R̂2)

+ 1
6

(μ)χ2(R̂)(μ)χ (R̂3) + 1
6

(μ)χ (R̂2)(μ)χ (R̂3) + 1
4

(μ)χ (R̂)(μ)χ (R̂4) + 1
5

(μ)χ (R̂5)
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χ [(μ)�6(R̂)] = 1
720

(μ)χ6(R̂) + 1
48

(μ)χ4(R̂)(μ)χ (R̂2) + 1
16

(μ)χ2(R̂)(μ)χ2(R̂2) + 1
48

(μ)χ3(R̂2) + 1
18

(μ)χ3(R̂)(μ)χ (R̂3)

+ 1
6

(μ)χ (R̂)(μ)χ (R̂2)(μ)χ (R̂3) + 1
18

(μ)χ2(R̂3) + 1
8

(μ)χ2(R̂)(μ)χ (R̂4) + 1
8

(μ)χ (R̂2)(μ)χ (R̂4) + 1
5

(μ)χ (R̂)(μ)χ (R̂5)

+ 1
6

(μ)χ (R̂6).
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