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Abstract: A Redox Flow Battery (RFB) is one of the promising energy storage systems in
power grid. An RFB has many advantages such as a quick response, a large capacity, and
a scalability. Due to these advantages, an RFB can operate in mixed time scales. Actually,
it has been demonstrated that an RFB can be used for load leveling, compensating sag, and
smoothing the output of the renewable sources. An analysis on transient behaviors of an RFB
is a key issue for these applications. An RFB is governed by electrical, chemical, and fluid
dynamics. The hybrid structure makes the analysis difficult. To analyze transient behaviors of
an RFB, the exact model is necessary. In this paper, we focus on a change in a concentration of
ions in the electrolyte, and simulate the change with a model which is mainly based on chemical
kinetics. The simulation results introduces transient behaviors of an RFB in a response to a
load variation. There are found three kinds of typical transient behaviors including oscillations.
As results, it is clarified that the complex transient behaviors, due to slow and fast dynamics
in the system, arise by the quick response to load.
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1. Introduction
Power storage is the most important element of power grid to overcome the restriction of simultaneous
power balancing. With an increase of installation of the renewable energy sources, power storage
should inevitably absorb the fluctuation. Power storage has advantages as a large capacity and a quick
response [1]. The large capacity is necessary for applications like load leveling, and the quick response
is necessary for applications like compensating sag and smoothing of the output of renewable sources.
Among the possible storage systems, a Redox Flow Battery (RFB) has a feature of scalability [2, 3].
The feature is beneficial when installing the RFB in a various capacities of power grid. The feasibility
of a Vanadium RFB for the load leveling was studied in Ohio [4]. A Vanadium RFB was applied for
the compensating of the momentum voltage sag in a semiconductor factory in Japan [5]. A Vanadium
RFB was tested for smoothing the output of the wind farm at Hokkaido, Japan [5, 6].
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An analysis on transient behaviors of an RFB is a key issue for the applications. Transient behaviors
of the RFB deeply depend on the chemical reaction and the flow of the electrolyte. However, the
dynamics of the transient behaviors contain mixed times scale transient dynamics. Moreover, if an
RFB is connected to power grid, it will include the electric circuit restriction. And previous analysis
of RFB is still far from the practical operation.

An ODE model [7] is one of the more helpful tools to analyze the transient behavior. Researchers
have developed several kinds of models such as empirical models, equivalent models, and ODE models
to analyze transient behaviors of an RFB [8]. In [7], an ODE model is proposed mainly based on chem-
ical kinetics. This model represents change in a concentration of ions governing transient behaviors
of the RFB. This model enables us to consider the chemical reaction, the flow of electrolyte, and the
electric circuit restriction. The authors simulate electromotive force (EMF) at charging/discharging
operation under constant current. The simulation results were confirmed by comparing to the exper-
imental results in a constant current setting. The result showed that the model was valid.

We use the model suggested in [7] and research transient behaviors of a Vanadium RFB in a response
to a load variation, and consider the dynamical mechanism of the transient behaviors. In the research,
the transient behaviors shows a non linearity.

2. Current at transient due to load variation
This chapter discusses, transient behaviors of the RFB in a response to a load variation using the model
based on chemical kinetics [7]. After introducing the model, the setting of simulation is explained.
Here are found three types of transient behaviors in the simulations.

2.1 Model equation
A model of the micro RFB was introduced based on chemical kinetics [7]. The model represents a
change in concentration of ions and EMF. Table I shows the nomenclature.

Table I. Nomenclature.

cc Concentration of ions (V2+) in cell mol L−1

ct Concentration of ions (V2+) in tank mol L−1

i Current A
W Flow rate L min−1

αc Volume of cell L
αt Volume of tank L
F Faraday constant C mol−1

cmax Maximum of cc mol L−1

E0
e Eec at cc = cmax/2 V

A change in concentration of ions is modeled by considering the reduction-oxidation reaction and
the electrolyte flow. Figure 1 illustrates the scheme of the Vanadium RFB. The RFB mainly consists
of a cell unit and a tank [3]. In the cell, the chemical energy is converted to electrical energy by
reduction-oxidation reaction. The reaction is represented as following Eqs. (1a) and (1b) [9].

Fig. 1. Scheme of Vanadium RFB.
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{
VO2

+ + 2H+ + e− ⇀↽ VO2+ + H2O (1a)

V2+ ⇀↽ V3+ + e− (1b)

The concentration of VO2
+ or V2+ at the cell governs the reaction. In the tank, the chemical energy

is stored as a form of ion substantial. The electrolyte circulates between the cell and the tanks by
pumps. The circulation makes a flow in the cell to supply the concentration of ions for the continuous
reaction described by Eqs. (1a) and (1b). The phenomena in the RFB make it difficult to describe
the change in the concentration of ions and the voltages. Then, assumptions are needed to simplify
the phenomena. Here we set following assumptions,

• Chemical kinetics is restricted by the current in the external circuit.

• The electrolyte keeps the consistency of ions.

• The time delay of circulation of electrolyte is negligible.

• The concentration of ions (V2+) in the negative half cell is equal to the concentration of ions
(VO2+) in the positive half cell.

The change in the concentration of ions in the RFB is described based on these assumptions as
following Eqs. (2) and (3) [7].

d2cc

dt2
=−W

(
1
αc

+
1
αt

)
dcc

dt
− Wi

αcαtF
− 1

αcF

di

dt
(2)

dct

dt
=−αc

αt

dcc

dt
− i

αtF
(3)

When the RFB is charging/discharging, i is negative/positive respectively.
The model of the EMF is derived based on Nersnst’s equation [10]. Nersnst’s equation gives the

equilibrium potential of the battery. And from experiments in [11], the change in the concentration
of H+ is also small enough to be ignored. Then, the model of the EMF is derived as following.

Eec = E0
e+

2RT

F
ln

cc

cmax − cc
(4)

2.2 Simulation setting
Here explains the setting of the simulation. Figure 2 shows the target system of the simulation. At
t = 0 s, the switch turns on and the load is forced to a step change. The setting enables us to study
the response of the RFB to the load variation. From KVL, following equation is obtained.

di

dt
=− 1

L

{
(r1 + r2)i−

(
E0

e+
2RT

F
ln

cc

cmax − cc

)}
(5)

By using Eqs. (2) and (5), the following equation is derived.

d2cc

dt2
=− W

(
1
αc

+
1
αt

)
dcc

dt
+

(
r1 + r2

L
− W

αt

)
i

αcF
− 1

αcFL

(
E0

e+
2RT

F
ln

cc

cmax − cc

)
(6)

Fig. 2. Target system of simulation which include RFB. The load of RFB
has changed in a step at t = 0 s.
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Table II. Parameters of RFB connected to circuit (Ref. [7]).

Parameter Value Unit
αc 0.100 L
αt 0.900 L
T 307 K

cmax 1.70 mol L−1

Equations (4)–(6) enable to simulate the transient behaviors of the RFB in this setting. Table II
shows the parameters of the RFB. The initial condition of the simulation is determined by putting
assumptions as followings.

• di/dt = 0 (t → −0).

• cc = ct (t → −0).

In this simulation, forth-order Runge-Kutta method [12] is adopted to solve the ODE. The step size
is fixed at h = 0.001 s.

2.3 Result of simulation
In this section, first, the results of the simulation is explained and the transient behaviors are grouped
into three types. Second, the consumption of the ions in the tank is examined in rate with comparing
the transient behaviors of current.

The simulation reveals that the current depends on the flow rate and behaves by different mechanics.
Figure 3 shows the result of the simulation. The initial value of the concentration of ions in the cell
cc0 is fixed at 0.125 mol L−1. And the flow rate is set at W = 0.050 L min−1, 0.100 L min−1, and
0.200 L min−1. As Figs. 3(a) and 3(b) show, at W = 0.050 L min−1, the current and the EMF show
sharp drops and the discharging simultaneously stops at the drops. We call the mode Case1. On the
other hand, at W = 0.200 L min−1, the current and the EMF show gradual decreases and discharges
slowly. The discharging times are long. We call the mode Case2. At W = 0.100 L min−1, the current
and the EMF show an oscillation. It is called Case3. The transient behaviors due to other initial
conditions are also categorized to the Case1, 2, and 3. There seems to be critical states in Fig. 3.

Fig. 3. Simulated results of transient behaviors of RFB due to load varia-
tion. The initial value of the concentration of ions in the cell (cc0) is fixed
at 0.125mol L−1. The flow rate is set at W = 0.050L min−1, 0.100L min−1,
and 0.200 L min−1. The transient behaviors are categorized into three types
(Case1–3).

The difference of the transient behaviors among the cases is corresponds to the consumption rate
of ions in the tank. As showed in Fig. 3(c), almost all the ions in the tank are not consumed at
W = 0.050 L min−1. It suggests that the transient behaviors are allocated to the consumption rate of
the ion in the tank.
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In order to confirm the assumption, the consumption rate of the ions in the tank is calculated for
W = 0.001 L min−1–0.200 L min−1 and cc0 = 0.01 mol L−1–1.00 mol L−1. The consumption rate is
defined as following.

εt =
ct0 − ctf

ct0
(7)

Here, ctf denotes the concentration of ions in the tank at the time when the discharging has finished.
The results are shown in Fig. 4(a). As showed in the figure, a line divides the graph into two regions.
The region above the line represents the complete consumption of ions in the tank, and the below
represents the remaining of ions until the end of discharging. Transient behaviors of current are
simulated under conditions A1–4 as showed in Fig. 4(b). When the conditions are set at A1 and A4,
the current behaves as classified in Case2. When the conditions are set at A2 and A3, the current
behaves as classified in Case1. Transient behaviors of current are also simulated under conditions
L1–12 as showed in Fig. 4(c). When the conditions are set at L1–12, the current behaves as classified
in Case3. Figure 4 shows that the transient behaviors are actually correspond to the consumption of
the ions in the tank.

Fig. 4. Relationship between transient behaviors of current and consumption
rate of ions in tank. Consumption rate εt represents how much ions in the
RFB are consumed by the discharging. (a) Consumption rate of the ions in
the tank. A line divides the graph into two areas. The yellow area represents
conditions for which most of ions are consumed. The purple area represents
conditions for which most of ions are not consumed. Transient behaviors of
current simulated under conditions A1 and A4 (above the line) and A2 and
A3 (below the line). When conditions are set at A1 and A4, the transient
behaviors of current are categorized into Case2, and when conditions are set at
A2 and A3, the transient behaviors of current are categorized into Case1. (c)
Transient behaviors of current simulated under conditions (on the line). When
conditions are set at L1–12, the transient behaviors of current are categorized
into Case3.

3. Dynamical mechanism of transient behaviors
There seems to exist a mechanism which governs the transient behaviors to lead them into three
types. In this chapter, we are going to focus on a dynamical mechanism of the transient behaviors. A
dynamical mechanism of the three types of the transient behaviors is discussed with a dimensionless
model in this chapter. The following discussions are from the view point of local dynamics around
fixed point and global phase structures.

3.1 Analysis around a fixed point
The behavior of the system is described by the evolution of the variables cc, dcc/dτ , and i. The
evolution is modeled by Eqs. (5) and (6). The target system is modeled by following Eqs. (8a)–(8c)
from Eqs. (5) and (6).
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dx1

dτ
=x2 (8a)

dx2

dτ
=−βx2+(1−γ)x3−

(
1 + ε ln

x1

1 − x1

)
(8b)

δ
dx3

dτ
=−x3+1 + ε ln

x1

1 − x1
(8c)

Where x1, x2, and x3 are the dimensionless variables corresponding to cc, dcc/dt, and i with the
constants ĉ, t̂, and î. The variables cc, dcc/dt, and i have the different dimension. Then these variables
must be dimensionless. in order to discuss the dynamical mechanism of the transient behavior. The
constants ĉ, t̂, and î are given by Eq. (9).

ĉ = cmax, t̂ =

√
αcFLcmax

E0
e

, î =
E0

e

r1 + r2
(9)

Where the parameters β, γ, δ, and ε are given by Eq. (10).

β = W

(
1
αc

+
1
αt

)
t̂, γ =

WL

αt(r1 + r2)
, t̂′ =

L

(r1 + r2)
, δ =

t̂′

t̂
, ε =

2RT

FE0
e

(10)

From dx/dτ = 0 (x = [x1 x2 x3]T ), the system has only one fixed point x∗ = [3.51× 10−12 0 0]T . The
fixed point corresponds to the state in which the EMF is 0 V, the rate of change in the concentration
of ions in the cell dcc/dt is 0 mol L−1 s and the current i is 0 A.

The local stability is analyzed with eigen values of a linearlized model of Eqs. (8a)–(8c) [13]. The
linearization around x∗ is described by Eq. (11).

Δx = AΔx (11)

Here, Δx is x − x∗. The matrix associated with the linearized model is given as following Eq. (12).

A =

⎡
⎢⎣ 0 1 0

−f(x∗) −β 1 − γ

f(x∗)/δ 0 −1/δ

⎤
⎥⎦ (12)

Where f(x) is given by Eq. (13).

f(x) =
ε

x1(1 − x1)
(13)

Table III shows eigen values of A for W = 0.050 L min−1, 0.100 L min−1, and 0.200 L min−1. For
these three parameters, the real part of eigen values are negative. Then, the fixed point x∗ is locally

Table III. Eigen values of A for W = 0.050 L min−1, 0.100 L min−1, and
0.200L min−1. The negative real parts secure that the fixed point x∗ is locally
stable. The imaginary parts imply that solutions oscillate around the fixed
point.

W (L min−1) Eigen value of A

−8.70 + 1.49 × 105j
0.050 −8.70 − 1.49 × 105j

−3.17 × 10−2

−8.84 + 1.49 × 105j
0.100 −8.84 − 1.49 × 105j

−6.34 × 10−2

−9.13 + 1.49 × 105j
0.200 −9.13 − 1.49 × 105j

−12.7 × 10−2
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stable, for these W . The stability implies the convergence of the solutions in the neighborhoods of
the fixed point. Moreover while the solutions are approaching the fixed point, the solution oscillates
around the fixed point [13]. That is, the original values also can oscillate around the fixed point.

On the other hand, the dynamics apart from the fixed point is governed by the vector flow of global
phase structure. Figure 5 illustrates the trajectory solutions categorized Case1–3. Figures 5(a)–(d)
show trajectories of the solutions categorized into Case1. The trajectories will not converge to the
fixed point. Figures 5(e)–(h) show the trajectories of the solutions categorized into Case3. They will
not oscillate around the fixed point. The obtained solutions show the features of the global phase
structure which is governed by the non linearity.

Fig. 5. Trajectory solutions classified as Case1–3. (a)–(d) The trajectory
solutions classed as Case1 clearly does not converge to the fixed point x∗ =
[3.51 × 10−12 0 0]T . (e)–(h) Enlarged view of the trajectories. The trajectory
solution categorized into Case3 does not oscillate around the fixed point.

3.2 Global phase structure
This section discusses a part of the global phase structure of the solutions and the vector field. The
global phase structure is magnified at small scale for visualizing the vector field. The approach is
based on the knowledge of fast-slow system [14, 15].

Figure 6(a) shows a part of the solutions for W = 0.100 L min−1. In this figure, the oscillations
are found in a small scale which is x ∼ 10−4. x1 corresponds to cc. Then, oscillations occur at low
concentration of ions at the cell. On the other hand, the scale of changes in x3, corresponding to i, is
much bigger than both x1 and x2. This implies the current is sensitive to the change in concentration
of ions. The scale reveals the magnification characteristics in the battery from ion density to the
current.

The vector field is showed in Figs. 6(b)–(j). Figures 6(b)–(d) show the vector field and the trajecto-
ries of the solutions on the planes x2=−2.0× 10−3, 0, and 2.0 × 10−3. In the figures, the trajectories
converge to the nullcline dx3/dτ=0. When dx3/dτ=0 is established, the RFB is limited by circuit
condition. Fast flows appear along x3, due to the value of δ in Eqs. (8a)–(8c). The value of δ implies
the ratio of time scale of current to that of change in concentration of ions. Figures 6(e)–(g) show
the vector field and the trajectories of the solutions on the planes x3=0.60, 0.66, and 0.70. As the
figures show, the trajectories converge to the nullcline dx1/dτ = 0. Figures 6(h)–(j) show the vector
field and the trajectories of the solutions on the planes x1=0.50 × 10−4, 1.0 × 10−4, and 2.0 × 10−4.
As the figures show, the trajectories converge to the nullcline dx1/dτ = 0. From the vector field, it
is found that the system is fast-slow system. But the system can not be divided into slow-subsystem
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Fig. 6. Global phase structure of solutions and vector field at W =
0.100L min−1. The area where the oscillation occur is focused on. In this
area, the concentration of ions (x1) is low and the current (x3) changes largely
compared to other two variables. (b)–(j) Vector field and nullcline is showed.
Fast flow transverses to the nullcline dx3/dτ = 0.

and fast-subsystem clearly.
The mechanism of the oscillations can be discussed by linearization with taking a plane perpendic-

ular to a slow variable. x1 is one of the slow variables. The values of x1 are swapped in f(x) from
x1=0.0000010 to x1 =0.005. And the eigen values on each planes are shown in Figs. 7(a) and 7(b).
In the figures, all of the eigen values are located on complex plane with Re[λi]<0 (i = 1, 2, 3). Then,
a bifurcation appears at x1=5.72 × 10−4. As shown in x1 > 5.72 × 10−4, the eigen values become
real. It implies that there does not appear any oscillatory transient behaviors in x1 > 5.72 × 10−4.
And λ1 and λ2 come close to each other as x1 decreases. At x1 = 5.72 × 10−4 they conjoint. After
the conjoint by x1 decreasing, for x1 < 5.72 × 10−4, λ1 and λ2 apart with imaginary parts, and the
values increase as x1 decreases. This clearly shows the appearance of oscillation in x1 < 5.72× 10−4.
Figure 7(c) shows the phase lags of λi (i = 1, 2, 3). x1 → 0, the lags converge to 90◦, 90◦, and 180◦.
Then, the phase lags of the oscillations are also expected to converge 90◦, 90◦, and 180◦. Actually,
in Figs. 5(b)–(j), the oscillation in x1 has about 90◦ phase lag to x2 and x3, and the oscillation in
x2 has about 180◦ phase lag to x3. The eigen values in Fig. 7 certainly shows the mechanism of the
oscillation.

3.3 Behavior in the original variables
The analysis in Sec. 3.1, and 3.2 exlaines the behavior of the system. The validity is given by Fig. 8.
This figure shows the evolution of the variables in the original scale.

Figure 5 denies the effect of the fixed point to the phenomena denoted in Chap. 2. At the fixed
point, cc = 5.97 mol L−1, dcc/dt = 0 mol L−1 s−1, and i = 0 A, and the variables do not change.
Figures 8(a)–(c) show that the fixed point also does not secure the convergence of a part of the
solutions in the original scale same as Figs. 5(a)–(d). As explained in Chap. 2, for this case, the
discharging is forcedly stopped due to the rapid comsumption of the ions in the cell despite the
exisistence of the ions in the tank. The conditions of the oscillation also implies that fixed point
does not decide the behavior of the system. For Case2, as Figs. 5(e) and 5(h) show, the solution
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Fig. 7. (a)(b) Eigen values of Jacobin matrix A. A bifurcation appears at
x1=5.72 × 10−4. In x1 < 5.72 × 10−4, appearance of oscillations is showed by
imaginary part of eigen values. (c) Phase lags of eigen values λi (i = 1, 2, 3).
Phase lags of oscillations are expected to converge to 90◦, 90◦, and 180◦.

oscillates apart from the fixed point. For original scale, as Fig. 8 shows, the oscillation occurs for
cc ∼ 10−5 − 10−4 mol L−1 and i ∼ 10A.

Figure 6 shows that this system is a slow-fast system. Due to δ, x3 behaves as a fast variable.
As showed in Fig. 8(d) Then di/dt = 0 A s−1 is satisfied in most of the period. And when the i is
oscillating, the value of di/dt is larger than that of dcc/dt.

Fig. 8. Behavior of solutions in original scale. The behavior verifies the
discussion in the phase space. cc, dcc/dt, and i are correspond to x1, x2,
and x3. Some solutions classfied as Case 1 do not approach the fixed point.
Solutions oscillates for cc ∼ 10−5 − 10−4 mol L−1. This area is apart from the
fixed point. i is a fast variable and di/dt = 0 A s−1 is satisfied for most of the
period.
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4. Conclusion
We discussed the transient behaviors of the RFB in a response to a load variation, and we found the
dynamical mechanism of the transient behaviors. Results are summarized as followings.

1. Three types of transient behaviors appear and one of them causes oscillations. The transient
behaviors depend on the value of flow rate and the initial value of the concentration of ions.

2. The global phase structure determines the transient behaviors. From the global phase structure,
it is clarified that the behaviors are limited by electrical circuit restriction due to the value of a
parameter which corresponds to the time scale ratio of current to the changing ratio in concen-
tration of ions. It is also clarified that a necessary condition for occurrence of the oscillations
are governed by the low concentration of ions.

The results show that several kinds of phenomena appear in transient behaviors of single RFB,
when the RFB is connected to power grid. According to flow rates or initial values of concentration
of ions, the discharging of the RFB stops before it consumes all of the ions. On the other hand,
there are conditions which arise oscillations. In the worst case, it may cause resonances with external
systems. To avoid these anomalous phenomena, a control method of multi layer must be developed
with considering chemical, fluid dynamics, and electrical circuit restriction.

The transient behaviors in the wide range are based on the global dynamics, so that the control
method must pay attention to the mechanism. However, the whole dynamical structure has not been
figured out through the simulations. This paper brought us an interesting dynamical behavior with
a difficulty of a mixed time scales system because of the global phase structure along the slowest
variable.
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