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The Cauer ladder network (CLN) method provides an efficient representation of eddy-current fields. This paper proposes a
reformulation of the CLN method that considers expansion points using the magnetic/current vector potential. To cover a wide
range of frequencies, the expansion point may be changed at a later stage of the network. Only a few stages of the ladder network
are required for the eddy-current field to be reconstructed accurately around the target frequency using the expansion points.
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I. INTRODUCTION

THE control of power by high-frequency switching is
widely used these days but requires an efficient analytical

method to calculate the electromagnetic fields present when
handling small skin depths and small time steps. To avoid
direct large-scale computations, model order reduction (MOR)
methods [1]–[4] have been intensively studied recently in
an effort to approximate accurately large-scale systems with
corresponding reduced-scale systems.

The Cauer ladder network (CLN) [5][6] is an efficient MOR
method that replaces eddy-current fields by an equivalent
electric circuit/network based on an orthogonal expansion of
the electric and magnetic fields. Adopting the finite-element
method (FEM), a matrix formulation [7] is derived to clarify
the theoretical aspects of the CLN method. The CLN method
was originally developed with an expansion point at zero
frequency, implying that the number of network stages
becomes large when the target frequency is high.

This paper formulates a CLN method that considers nonzero
expansion points as exploited in other MOR methods [1][2][3].
First, the CLN method with a single expansion point is
developed based on the FEM using the magnetic vector
potential. This CLN method is extended to multiple expansion
points to cover the range of target frequencies with a minimum
number of network elements; here, the expansion point is
changed at a later stage in the network. This paper also
presents another CLN formulation using the current vector
potential that yields a different type of network.

II. FORMULATION OF CLN WITH EXPANSION POINTS

A. Magnetic Vector Potential Formulation

In finite-element space, the magnetic vector potential A and
the electric field E are discretized as prescribed by

A =
∑
i

aiw
1
i , E =

∑
i

eiw
1
i (1)

where w1
i is an edge element [8]. From the coefficients of (1),

coordinate vectors a and e are defined,
a=[a1, a2, . . . ]

T, e=[e1, e2, . . . ]
T. (2)

The reluctivity and conductivity matrices are defined in the
domain Ω as follows:

ν = {νij}, νij =

∫
Ω

1

µ
w2

i ·w2
jdΩ, (3)

σ = {σij}, σij =

∫
Ω

σw1
i ·w1

jdΩ (4)

where µ, σ, and w2
i denote the permeability, conductivity, and

the i-th face element [8].
The governing equation of the eddy-current field using the

A-formulation is represented in the form

CTνCa = −jωσa+ j0, (5)

where C represents an edge–face incident matrix [8], and j0
the discretized source current density. The boundary condition
depends on the power source.

For the CLN method with expansion points, and using
the A-formulation, the orthogonal basis vectors {e2n} and
{a2n+1} are generated by solving recursive equations.

Consider expansion point si = 2πfi; its corresponding
coefficient matrix Ki is defined as

Ki = CTνC + siσ. (6)

Using K0, the CLN procedure for a single expansion point
s0 ̸= 0 is [see Fig. 1] similar to the original CLN with s0 = 0.

A unit voltage/current source is given to start the CLN
procedure. Suppose the electric field −gradφ due to unit
voltage is a source term in a domain of a conductor; the
equation

K0a
′ = −σGφ, (7)

is first solved to determine the initial electric field (8),

e0 = −Gφ− s0a
′ (8)

where φ denotes a vector representing the scalar potential, and
G is the node–edge incidence matrix, which satisfies CG = 0.
When a Dirichlet boundary condition on E or A is given, the
equation for a2n+1 is solved subject to the constraint that the
corresponding boundary components of a2n+1 vanish. When
the current density j0 due to unit current is imposed, the initial
condition is given as e0 = 0 and a1 = K−1

0 j0.
Setting R2n = 1/λ2n and L2n+1 = λ2n+1, the Cauer
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Fig. 1. Flowchart for the A-formulation.

equivalent circuit for the single expansion point s0 is
constructed [Fig. 2] in a similar way to the original CLN [7].

The expansion point may be changed at a later stage of the
circuit. Consider now two expansion points s0 and s1; then
{e2n} and {a2n+1}, which were changed at the M + 1-th
stage, are generated in the following procedure.
Step 1:

Using the procedure in Fig. 1, solve equations with s0
for 0 ≤ n ≤ M − 2 and generate e0, e2, . . . , e2M−2, and
a∗
−1,a1, . . . ,a2M−3.

Step 2:
For n = M − 1, solve

K1a2M−1 −K0a2M−3 =
1

λ2M−2
σe2M−2, (9)

e2M−e2M−2=− 1

λ2M−1
(a2M−1+

M−1∑
i=1

p2i−1a2i−1) (10)

and generate a2M−1 and e2M . λ2M−1 and λ2M are calculated by

λ2M−1 = aT
2M−1K1a2M−1, (11)

λ2M = eT2Mσe2M . (12)

To satisfy the orthogonality between {e2M} and {e2n}
(0≤n≤M−1), p2i−1 (1≤ i≤M−1) is determined as follows:

p2i−1 = − 1

λ2i−1
aT
2M−1K0a2i−1. (13)

Fig. 2. Circuit with single expansion point s0 (A-fomulation).

Fig. 3. Circuit with two expansion points s0 and s1 (A-fomulation).

Step 3:
Replacing K0 by K1 in Fig. 1, solve equations with s1 for

n ≥ M in the loop and generate a2M+1, . . . and e2M+2, . . . .

Using a′
2M−1 defined as

a′
2M−1 = a2M−1 +

M−1∑
i=1

p2i−1a2i−1 (14)

the electromagnetic fields e and a are expanded in the form

e =
∑
n=0

V2ne2n, (15)

a =
∑
n=0

n ̸=M−1

I2n+1a2n+1+I2M−1a
′
2M−1+I−1a

∗
−1. (16)

Given the expansions (15) and (16), a network expression
[Fig. 3] is derived in a similar manner as for the original CLN.
Given that aT

2M−3K1a
′
2M−1 ̸= 0, an additional inductor is

required, the inductance L∗ of which is evaluated using

L∗ = − λ2M−1

(s1 − s0)λ2M−2(λ2M−1 + p2M−3λ2M−3)
. (17)

A further change of the expansion point is possible as
performed similarly in the above.

B. Current Vector Potential Formulation

Next a CLN method is described which uses the current
vector potential to handle only conductive materials for
simplicity. The current vector potential T and magnetic field
H are first discretized,

T =
∑
i

tiw
1
i , H =

∑
i

hiw
1
i . (18)

From the coefficients, coordinate vectors t and h are defined,

t=[t1, t2, . . . ]
T, h=[h1, h2, . . . ]

T. (19)

The resistivity and permeability matrices are defined for the
domain Ω,

ρ = {ρij}, ρij =

∫
Ω

1

σ
w2

i ·w2
jdΩ, (20)

µ = {µij}, µij =

∫
Ω

µw1
i ·w1

jdΩ. (21)

The governing equation of the eddy-current field in the
T-formulation has the form

CTρCt = −jωµt. (22)

The orthogonal basis vectors {t2n} and {h2n+1} are
generated as follows.

Considering expansion point si = 2πfi, the associated
coefficient matrix Ki is defined as

Ki = CTρC + siµ. (23)

Using K0, the CLN procedure for a single expansion point
s0 ̸= 0 is derived in a similar manner as for the original CLN
[see Fig. 4].

With a Neumann boundary condition on T imposed at the
corresponding boundary ∂Ω by the power source, the equation
for t2n is solved subject to the condition

ρC(t2n+2 − t2n) = 0 at ∂Ω. (24)
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Fig. 4. Flowchart for the T-formulation.

A CLN with a single expansion point s0 is constructed
[Fig. 5].

Consider two expansion points s0 and s1 changed at the
M +1-th stage; then {t2n} and {h2n+1} are generated in the
following procedure.
Step 1:

Using the procedure given in Fig. 4, solve equations with
s0 for 0 ≤ n ≤ M − 2 and generate t0, t2, . . . , t2M−2 and
h1,h3, . . . ,h2M−1.
Step 2:

For n = M − 1, solve

K1t2M −K0t2M−2 = − 1

λ2M−1
µh2M−1, (25)

h2M+1 − h2M−1 =
1

λ2M
(t2M +

M−1∑
i=0

p2it2i) (26)

and generate t2M and h2M+1. λ2M and λ2M+1 are calculated
from

λ2M = tT2MK1t2M , (27)

λ2M+1 = hT
2M+1µh2M+1. (28)

For orthogonality to hold between {h2M+1} and {h2n+1}
(0 ≤ n ≤ M − 1), p2i (0 ≤ i ≤ M − 1) must be set to

p2i = − 1

λ2i
tT2MK0t2i. (29)

Fig. 5. Circuit with a single expansion point s0 (T-formulation).

Fig. 6. Circuit with two expansion points s0 and s1 (T-formulation).

Step 3:
Replacing K0 by K1 in Fig. 4, solve equations with s1 for

n ≥ M in the loop and generate t2M+2, . . . and h2M+3, . . . .

Using t′2M defined as

t′2M = t2M +
M−1∑
i=0

p2it2i (30)

the electromagnetic fields t and h are expanded as

t =
∑
n=0
n ̸=M

V2nt2n + V2M t′2M ,
(31)

h =
∑
n=0

I2n+1h2n+1. (32)

With these expansions (31) and (32), a network expression
[Fig. 6] is derived in similar manner to the original CLN.
Because tT2M−2K1t

′
2M ̸= 0, an additional resistor is required

having resistance R∗

R∗ = − (s1 − s0)λ2M−1(λ2M + p2M−2λ2M−2)

λ2M
. (33)

Fig. 7. Iron bar with a rectangular cross-section.

Fig. 8. Real part of the admittance per unit length represented at the 4-th
stage with a single expansion point s0 = 2πf0: (a) A-formulation, and
(b) T-formulation.

Fig. 9. Real part of the admittance per unit length represented by 4-stage
with two expansion points s0 = 0 and s1 = 2πf1: (a) A-formulation, and
(b) T-formulation.
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III. NUMERICAL CALCULATION

A. Iron bar with rectangular cross-section

The CLN methods with both the A- and T-formulations
are applied to an iron bar with rectangular cross-section
[Fig. 7], the conductivity of the bar being 2 × 106 S/m and
the permeability is 0.01 H/m. A unit electric field is given
at the surface of the iron bar. The analytical solution is
obtained by applying a Fourier expansion. The real part of
the admittance per unit length [Fig. 8] is represented by the
4-stage CLN obtained with a single expansion point s0=2πf0,
with f0 = 0, 10 kHz, 100 kHz. The frequency dependence
is reproduced accurately around the expansion points.
The frequency dependence obtained with two expansion
points s0 = 0 and s1 = 2πf1 [Fig. 9] shows the effect
of one expansion point being changed at the third stage to
f1=10 kHz and 100 kHz. A wide frequency range is covered
by the two expansion points.

Fig. 10. Wireless power transfer system.

Fig. 11. Frequency dependence of resistance Re(Z).

Fig. 12. Frequency dependence of inductance Im(Z)/ω.

B. Wireless power transfer system

A wireless power transfer system [Fig. 10] was analyzed.
The primary coil has ten turns and the secondary coil is open.
Its working frequency is 85 kHz. The frequency dependence
of its impedance Z seen from the primary coil was plotted
[Figs. 11 and 12]. When the single expansion point s0 is
zero, the impedance is not accurate even after 100 stages
of the CLN. The single expansion point of 85 kHz achieves
an accurate impedance around the expansion point with a
small number of stages. Using two expansion points of
(s0, s1) = 2π × (0, 85) kHz, an accurate impedance was
obtained from 0 to 1 MHz only with six stages of the CLN,
where the expansion point is changed at the second stage.

IV. CONCLUSION

A CLN method with expansion points was developed using
the magnetic/current vector potential. Multiple expansion
points were introduced by changing them at a later stage of
the circuit while retaining field orthogonality. The proposed
methods accurately replace the eddy-current fields by small
scale CLNs around the expansion points. Because the area
of application of the T-formulation is limited, a T-Ω version
of the CLN method should be developed as well as the A-ϕ
version.
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