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Abstract

In the two disjoint shortest paths problem (2-DSPP), the input is a graph (or a digraph) and its vertex pairs (s1, t1) and (s2, t2), and
the objective is to find two vertex-disjoint paths P1 and P2 such that Pi is a shortest path from si to ti for i = 1, 2, if they exist. In
this paper, we give a first polynomial-time algorithm for the undirected version of the 2-DSPP with an arbitrary non-negative edge
length function.
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1. Introduction

The disjoint paths problem is one of the well-studied im-
portant problems in algorithmic graph theory and combinato-
rial optimization. In the problem, given a graph (or a digraph)
G = (V, E) and k vertex pairs (s1, t1), . . . , (sk, tk), we find k pair-
wise vertex-disjoint paths P1, . . . , Pk where Pi is a path from
si to ti for i = 1, . . . , k (if they exist). If k is a part of the in-
put of the problem, then this is one of the classical NP-hard
problems [5], and it remains NP-hard even if the input graph
is constrained to be planar [6]. The disjoint paths problem is
non-trivial even for the case with two terminal pairs. Indeed,
the undirected version of the problem can be solved in polyno-
mial time when k = 2 [8, 9, 10], whereas the directed version is
NP-hard even when k = 2 [3]. For the case when the graph is
undirected and k is a fixed constant, Robertson and Seymour’s
graph minor theory gives a polynomial-time algorithm [7].

In this paper, we consider the problem of finding two disjoint
paths in which each path has to be a shortest path. The problem
is formally described as follows.

Two Disjoint Shortest Paths Problem (2-DSPP)

Input. A graph (or a digraph) G = (V, E) with a length function
` : E → R+ and two pairs of vertices (s1, t1) and (s2, t2) in
G.

Find. Disjoint paths P1 and P2 such that Pi is a shortest path
from si to ti for i = 1, 2, if they exist.

Here, R+ denotes the set of non-negative real numbers. We can
consider both directed and undirected variants of this problem,
which we call the directed 2-DSPP and the undirected 2-DSPP,
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respectively. If the length of each edge is equal to zero, then
this problem amounts to the two disjoint paths problem, which
means that the 2-DSPP is a generalization of the two disjoint
paths problem. With this observation, we can see that the di-
rected 2-DSPP is NP-hard, because the two disjoint paths prob-
lem in digraphs is NP-hard [3]. It is interesting to note that the
tractability of the problem changes if the length of each edge
is restricted to be positive. Indeed, when the length of each
edge is positive, Eilam-Tzoreff [2] devises an algorithm for
the undirected 2-DSPP that is completely different from ones
in [8, 9, 10], and Bérczi and Kobayashi [1] give a polynomial-
time algorithm for the directed 2-DSPP. The polynomial solv-
ability of each case is summarized in Table 1. See [1] for other
related results.

Table 1: Polynomial solvability of the 2-DSPP.

Undirected Directed
` = 0 (Disjoint Paths) P [8, 9, 10] NP-hard [3]
` ≥ 0 P (Our result) NP-hard [3]
` > 0 P [2] P [1]

In this paper, we give a first polynomial-time algorithm for
the undirected 2-DSPP with an arbitrary non-negative edge
length function. That is, our algorithm works without assuming
that each edge has a positive length.

Theorem 1.1. The undirected 2-DSPP with a non-negative
edge length function can be solved in polynomial time.

We note that the polynomial solvability of the edge-disjoint
variant of 2-DSPP is exactly the same as Table 1, because the
edge-disjoint case can be reduced to the vertex-disjoint case by
considering the line graph with an appropriate length function.

We give a proof of Theorem 1.1 in Section 3. Before going
to technical details, we here describe the outline of our algo-
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rithm. In the algorithm, we first consider the graph induced by
the edges of length zero, and shrink its each connected compo-
nent. Then, we obtain a graph with positive length edges. By
replacing each edge with a pair of oppositely oriented arcs of
the same length, we obtain a digraph with positive length arcs,
and then apply a similar argument to [1]. A difficult point is
how to deal with the vertices newly created by the shrinking
operation. Since such a vertex corresponds to a subgraph, say
H, of the original graph, we have to keep some information of
H. Therefore, we solve the two disjoint paths problem in H
for every choice of terminal pairs with the aid of algorithms
in [8, 9, 10], and use the solution of this problem in our algo-
rithm.

Note that Gottschau, Kaiser, and Waldmann [4] proved The-
orem 1.1 based on the same arguments as ours, independently.

2. Problem with Special Vertex Sets

In this section, we introduce a variant of the two disjoint
paths problem, which is used in our proof of Theorem 1.1. We
show that this problem can be solved in polynomial time if the
input satisfies a certain condition.

Let G = (V, E) be a digraph and let U be a collection of
disjoint vertex subsets of V such that G[U] is a complete di-
graph for each U ∈ U, where G[U] denotes the subgraph of
G induced by U. For notational convenience, we assume that
a complete digraph contains a self-loop incident to each vertex.
That is, the arc set EU of G[U] is equal to U ×U. We say that a
pair of two paths P1 and P2 in G isU-simple if, for each i = 1, 2
and for each U ∈ U, one of the following holds:

• Pi contains exactly two vertices in U and an arc connecting
them,

• Pi contains exactly one vertex in U, or

• Pi contains no vertex in U.

The intersection of Pi and U is represented by either an arc
in EU or the emptyset as follows: it is represented by an arc
connecting distinct vertices in the first case, by a self-loop in
the second case, and by the emptyset in the third case.

For each U ∈ U, suppose we are given a setAU ⊆ (EU∪{∅})2

with (∅, ∅) ∈ AU . For U ∈ U, we say that a pair of two paths
P1 and P2 in G is admissible with respect to AU if there exists
a pair (e1, e2) ∈ AU (possibly ei = ∅) such that the intersection
of Pi and U is represented by ei ∈ EU ∪ {∅} for i = 1, 2. We
say that a pair of two paths P1 and P2 in G is admissible with
respect to {AU}U∈U if they are U-simple and admissible with
respect toAU for every U ∈ U. We now consider the following
problem.

Problem A

Input. A digraph G = (V, E) with a collection U of disjoint
vertex subsets of V such that G[U] is a complete digraph
for each U ∈ U. We are also given a setAU ⊆ (EU ∪ {∅})2

with (∅, ∅) ∈ AU for each U ∈ U, two arc sets E1, E2 ⊆

E \
⋃

U∈U EU , and two pairs of vertices (s1, t1) and (s2, t2)
in G.

Find. Disjoint paths P1 and P2 that are admissible with respect
to {AU}U∈U such that Pi is a path from si to ti and E(Pi) ⊆
Ei ∪
⋃

U∈U EU for i = 1, 2, if they exist.

Note that, for a path P, E(P) denotes the set of edges in P.
Intuitively, this problem is to find two disjoint paths under the
assumption that the possible routings in U ∈ U are known in
advance, whereAU represents the possible combinations of the
end points of the routings in U. The following theorem states
that this problem can be solved in polynomial time if the di-
graph obtained from G by shrinking all the components in U
is acyclic, which plays an important role in our proof of The-
orem 1.1. Here, shrinking a vertex set U is an operation that
replaces U with a single vertex u and removes all the self-loops
incident to u.

Proposition 2.1. Suppose we are given a digraph G = (V, E)
with a collection U of disjoint vertex subsets of V such that
G[U] is a complete digraph for each U ∈ U. Assume that
the digraph obtained from G by shrinking each U ∈ U to a
single vertex is acyclic. Then, Problem A in G can be solved in
polynomial time.

Proof. By adding new source vertices or new sink vertices if
necessary, we may assume that there exist a unique arc esi

leaving si and a unique arc eti entering ti for i = 1, 2. Let
G′ = (V ′, E′) be the acyclic digraph obtained from G by shrink-
ing U to a single vertex for every U ∈ U. Note that E′ can be
identified with E \

⋃
U∈U EU . We construct a new digraph G

whose vertex set is W := E1 × E2 ⊆ E′ × E′ as follows. For
an arc e in G, headG(e) and tailG(e) denote the head and the tail
of e, respectively. For (e1, e2), (e′1, e

′
2) ∈ W, G has an arc from

(e1, e2) to (e′1, e
′
2) if one of the following holds.

• e′1 = e1, headG′ (e2) = tailG′ (e′2) =: v, and there is no path
in G′ from headG′ (e1) to v. Furthermore, if v ∈ V ′ is a
vertex created by shrinking U ∈ U, then (∅, (s′2, t

′
2)) ∈ AU

holds, where s′2 := headG(e2) and t′2 := tailG(e′2).

• e′2 = e2, headG′ (e1) = tailG′ (e′1) =: v, and there is no path
in G′ from headG′ (e2) to v. Furthermore, if v ∈ V ′ is a
vertex created by shrinking U ∈ U, then ((s′1, t

′
1), ∅) ∈ AU

holds, where s′1 := headG(e1) and t′1 := tailG(e′1).

• There exists a vertex v ∈ V ′ created by shrinking U ∈

U such that headG′ (e1) = headG′ (e2) = tailG′ (e′1) =

tailG′ (e′2) =: v and ((s′1, t
′
2), (s′2, t

′
2)) ∈ AU , where s′1 :=

headG(e1), t′1 := tailG(e′1), s′2 := headG(e2) and t′2 :=
tailG(e′2).

Then, we can see that Problem A has a solution if and only
if G contains a path from (es1 , es2 ) to (et1 , et2 ) (see [1]). Since
the size of G is bounded by a polynomial in |E|, Problem A in
G can be solved in polynomial time.

Note that the argument in this proof is essentially the same
as [1, 3].
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3. Proof of Theorem 1.1

In this section, we give a proof of Theorem 1.1, that is, we
show that the undirected 2-DSPP can be solved in polynomial
time if the length of each edge is non-negative. Roughly, we
shrink all the components induced by the edges of length zero,
and then apply the arguments in [1].

We first show that the undirected 2-DSPP can be reduced to
the following problem by shrinking all the edges of length zero.

Problem B

Input. A digraph G = (V, E) with a collection U of disjoint
vertex subsets of V such that G[U] is a complete digraph
for each U ∈ U. We are also given a setAU ⊆ (EU ∪ {∅})2

with (∅, ∅) ∈ AU for each U ∈ U, a length function ` :
E → R+, and two pairs of vertices (s1, t1) and (s2, t2) in G.

Find. Disjoint paths P1 and P2 that are admissible with respect
to {AU}U∈U such that Pi is a shortest path from si to ti for
i = 1, 2, if they exist.

Lemma 3.1. The undirected 2-DSPP can be reduced to Prob-
lem B in which `(e) = 0 for any e ∈

⋃
U∈U EU and `(e) > 0 for

any e ∈ E \
⋃

U∈U EU .

Proof. Suppose we are given an instance of the 2-DSPP in an
undirected graph G◦ = (V, E◦). Consider the subgraph of G◦

consisting of all the edges of length zero, and let U be the
collection of the vertex sets of its connected components that
contain at least two vertices.

For each U ∈ U, consider the subgraph G◦[U] of G◦ induced
by U. We remove all the edges of positive length in G◦[U],
since such edges cannot be used in shortest paths. Then, define
AU ⊆ (EU ∪ {∅})2 so that (e1, e2) ∈ AU if and only if (1) e1 =

∅, (2) e2 = ∅, or (3) e1 = (s′1, t
′
1), e2 = (s′2, t

′
2), and G◦[U]

contains both an s′1-t′1 path and an s′2-t′2 path that are disjoint
(each path might be a single vertex). Note that we can compute
AU by solving the two disjoint paths problem for each choice
of s′1, t

′
1, s
′
2, and t′2, which can be done in polynomial time [8, 9,

10].
Let G = (V, E) be the digraph obtained from G◦ by replacing

each edge with a pair of oppositely oriented arcs of the same
length and by adding the arcs of length zero in

⋃
U∈U EU (see

Figures 1 and 2). Then, we have that `(e) = 0 for any e ∈⋃
U∈U EU and `(e) > 0 for any e ∈ E \

⋃
U∈U EU . We now show

that the 2-DSPP in G◦ = (V, E◦) is equivalent to Problem B in
G = (V, E).

Suppose that there exist paths P◦1 and P◦2 that form a solution
of the 2-DSPP in G◦ = (V, E◦). For U ∈ U and for i = 1, 2, the
intersection of P◦i and G◦[U] is a single connected component
unless it is empty, because P◦i is a shortest si-ti path. If the
intersection of P◦i and G◦[U] forms a subpath connecting s′i ∈ U
and t′i ∈ U, then we replace it with an edge between s′i and t′i .
Then, by orienting all the edges in P◦i appropriately, we obtain
an si-ti path Pi for i = 1, 2. We can easily see that each Pi is
a shortest si-ti path, and P1 and P2 are admissible with respect
to {AU}U∈U . Thus, there exists a solution of Problem B in G =

(V, E).
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Figure 1: Graph G◦ = (V, E◦).
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Figure 2: Construction of G = (V, E).

Conversely, suppose that there exist paths P1 and P2 that
form a solution of Problem B in G = (V, E). We ignore the
direction of the arcs. For each U ∈ U and for i = 1, 2,
if E(Pi) ∩ EU = (s′i , t

′
i ), then we replace (s′i , t

′
i ) with an s′i-t

′
i

path in G◦[U] based on the definition of AU . For example, if
E(Pi) ∩ EU = (s′i , t

′
i ) for i = 1, 2, then G◦[U] contains an s′1-t′1

path Q1 and s′2-t′2 path Q2 that are disjoint, and hence we replace
an arc (s′i , t

′
i ) with Qi for i = 1, 2. By applying this procedure

for every U ∈ U, we obtain an si-ti path P◦i in G◦ for i = 1, 2.
We can easily see that each P◦i is a shortest si-ti path, and P◦1
and P◦2 are disjoint. Thus, there exists a solution of the 2-DSPP
in G◦ = (V, E◦).

Therefore, the 2-DSPP in G◦ = (V, E◦) is equivalent to Prob-
lem B in G = (V, E).

In what follows, we consider an instance of Problem B in
which `(e) = 0 for any e ∈

⋃
U∈U EU and `(e) > 0 for any

e ∈ E \
⋃

U∈U EU .
Let G′ = (V ′, E′) be the digraph obtained from G by shrink-

ing each U ∈ U to a single vertex (see Figure 3). Then, we can
identify E′ with E \

⋃
U∈U EU . For i = 1, 2, let Ei be the set of

edges in E′ = E \
⋃

U∈U EU that are contained in some shortest
si-ti path (see Figure 4). Note that Ei can be computed in poly-
nomial time by shortest path algorithms. Since `(e) = 0 for any
e ∈
⋃

U∈U EU , for i = 1, 2, we can observe that an si-ti path Pi

in G is a shortest si-ti path if and only if E(Pi) \
⋃

U∈U EU ⊆ Ei.
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Figure 3: G′ = (V′, E′).
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Figure 4: E1 and E2.

In order to apply Proposition 2.1, we construct an acyclic
digraph in the same way as [1] as follows. Let E0 = E1 ∩ E2,
E∗1 = E1 \ E0, and E∗2 = E2 \ E0. We remove all the arcs in
E′ \ (E1 ∪ E2) from G′, contract all the arcs in E0, and reverse
all the arcs in E∗2. Then, we obtain a digraph G∗ = (V∗, E∗).
Let V0 ⊆ V∗ be the set of all the vertices in V∗ that are newly

3
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Figure 5: G∗ = (V∗, E∗).

created by contracting E0. For v ∈ V∗, let G′v be the subgraph
of G′ − (E′ \ (E1 ∪E2)) induced by the vertex set corresponding
to v. Note that G′v is a single vertex for v ∈ V∗ \ V0. Then, it is
shown in [1] that G∗ satisfies the following property.

Lemma 3.2 (Bérczi and Kobayashi [1]). Let E0, E1, E2, E∗1,
E∗2,G

∗, and V0 be defined as above. Then, we have the fol-
lowing.

(1) For each v ∈ V0, Gv is an acycilic digraph whose arcs are
in E1 ∩ E2.

(2) G∗ is an acyclic digraph.

By using this lemma, we show the following.

Lemma 3.3. There exists a polynomial-time algorithm for
Problem B in which `(e) = 0 for any e ∈

⋃
U∈U EU and `(e) > 0

for any e ∈ E \
⋃

U∈U EU .

Proof. Let E0, E1, E2, E∗1, E
∗
2,G

∗, and V0 be defined as above.
For v ∈ V∗, let Gv be the digraph obtained from G′v = (V ′v, E

′
v)

by expanding all the vertices corresponding to the elements in
U. By abuse of notation, the restriction of U to Gv is also
denoted byU. Let Uv be the set of vertices in G corresponding
to v for each v ∈ V∗, and define U′ = {Uv | v ∈ V∗, |Uv| ≥ 2}.
Then, for each v ∈ V∗ with |Uv| ≥ 2, defineA′Uv

⊆ (EUv ∪ {∅})
2

so that (e1, e2) ∈ A′Uv
if and only if one of the following holds:

• (e1, e2) = (∅, ∅).

• e1 = (s′1, t
′
1), e2 = ∅, and Gv contains an s′1-t′1 path P1

such that P1 and P2 := ∅ are admissible with respect to
{AU}U∈U .

• e1 = ∅, e2 = (t′2, s
′
2), and Gv contains an s′2-t′2 path P2

such that P1 := ∅ and P2 are admissible with respect to
{AU}U∈U .

• e1 = (s′1, t
′
1), e2 = (t′2, s

′
2), and Gv contains disjoint paths P1

and P2 that are admissible with respect to {AU}U∈U such
that Pi is a path from s′i to t′i for i = 1, 2.

Note that A′Uv
can be computed in polynomial time by Propo-

sition 2.1 and Lemma 3.2 (1).
Consider the digraph obtained from G∗ by expanding each

vertex v ∈ V∗ with |Uv| ≥ 2 to Uv and by adding edges so that
each Uv induces a complete digraph. Then, the edge set of the
obtained digraph can be identified with E∗1 ∪ E∗2 ∪

⋃
U∈U′ EU .

In this digraph, we find disjoint paths P′1 and P′2 that are admis-
sible with respect to {A′U}U∈U′ such that P′1 is a path from s1 to
t1, P′2 is a path from t2 to s2, and and E(P′i) ⊆ E∗i ∪

⋃
U∈U′ EU

for i = 1, 2. This can be done in polynomial time by Proposi-
tion 2.1 and Lemma 3.2 (2). Note that P′2 is a path from t2 to s2
since E∗2 is obtained from E2 \ E0 by reversing all the arcs. By
the definition ofA′Uv

, P′1 and P′2 correspond to disjoint paths P1
and P2 in G that are admissible with respect to {AU}U∈U such
that E(Pi) \

⋃
U∈U EU ⊆ Ei for i = 1, 2, which form a solution

of Problem B.

By Lemmas 3.1 and 3.3, we obtain Theorem 1.1.
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