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The uncertainties in ground motions may result from several factors, e.g., (i) the fault

rupture process, (ii) the wave propagation, (iii) the site amplification from the earthquake

bedrock to the ground surface. The uncertainty in the fault rupture slip is taken as a main

factor of uncertainties in the present paper and the critical fault rupture slip distribution

causing the maximum structural response is found by using the stochastic Green’s

function method as a generator of ground motions. Then, a multi-degree-of-freedom

(MDOF) building structure is introduced as a model structure and an optimal damper

placement problem is discussed for the critical ground motion. The main topic in this

paper is the simultaneous determination of the critical fault rupture slip distribution and

the optimal damper placement. The sequential quadratic programming method is used

in the problem of critical fault rupture slip distribution and a sensitivity-based method is

introduced in the optimal damper placement problem. Furthermore, the robustness for

the maximum interstory drift in MDOF building structures under the uncertainty in fault

rupture slip distributions is presented for resilient building design by using the robustness

function. Since the critical case leads to the most unfavorable structural response, the

proposed method can provide structural designers with a promising tool for resilient

building design.

Keywords: critical ground motion, worst input, stochastic Green’s function method, fault rupture, wave

propagation, optimal damper placement, robustness, resilience

INTRODUCTION

It is well-accepted that earthquake ground motions exhibit diverse aspects, as observed, for
example, in Mexico (1985), Northridge (1994), Kobe (1995), Chi-chi (1999), Tohoku (2011),
Kumamoto (2016). Several models have been introduced to model these ground motions taking
into account their occurrence mechanisms. Recently the main stream of investigations on the
process of ground motion generation is composed of the following three components, (i) the fault
rupture, (ii) the wave propagation to the earthquake bedrock, (iii) the site amplification to the
ground surface. To include these modeling stages, four approaches have been developed in general,
(a) the theoretical approach, (b) the numerical analysis approach, (c) the semi-empirical approach
and (d) the hybrid approach. It is understood that, while the theoretical and numerical analysis
approaches (finite difference method as a representative; see Day, 1982; Makita et al., 2019) are
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appropriate for producing directivity pulses and surface waves
with the predominant period longer than 1–2 s (Bouchon, 1981;
Hisada and Bielak, 2003; Yoshimura et al., 2003; Nickman
et al., 2013), the semi-empirical approach is appropriate
for ground motions with the predominant period shorter
than 1–2 s. The empirical Green’s function (Wennerberg,
1990) and the stochastic Green’s function (Hisada, 2008)
are frequently incorporated into the semi-empirical approach.
In the hybrid approach, the shorter period ground motions
are combined with the longer period waves through a
matching filter.

Due to lack of sufficient observed data and intrinsic variability
of characteristics in underground, it is usually recommended
to treat several parameters as uncertain numbers (aleatory
or epistemic) (Abrahamson et al., 1998; Lawrence Livermore
National Laboratory, 2002; Morikawa et al., 2008; Cotton et al.,
2013).

To investigate the effect of uncertainties in ground motions
on structural response variability, Makita et al. (2018a) treated
a base-isolated, building-connected hybrid structural system
(Murase et al., 2013, 2014; Kasagi et al., 2016; Fukumoto
and Takewaki, 2017) and tackled the effect of the uncertainty
in site amplification. They dealt with the fault as a point
source. On the other hand, the uncertainty in fault rupture
slip is considered in the present paper and a recent one
(Makita et al., 2018b). In modeling the wave propagation
to the earthquake bedrock, the stochastic Green’s function
method is used (Irikura, 1986; Yokoi and Irikura, 1991). The
Fourier amplitude of ground motions at the earthquake bedrock
caused by rupture at a fault element is represented by the
Boore’s model (Boore, 1983) and the phase angle is represented
by the phase difference method (Yamane and Nagahashi,
2008).

In this paper, the uncertainty in the fault rupture slip is
taken as a main factor of uncertainty in the ground motion
generation and the critical fault rupture slip distribution
is found by using the stochastic Green’s function method
as a generator of ground motions. Then, a multi-degree-
of-freedom (MDOF) building structure is introduced as a
model structure and an optimal damper placement problem
is discussed for the critical ground motion causing the
maximum response (Drenick, 1970; Takewaki, 2007). The
main topic in this paper is the simultaneous determination
of the critical fault rupture slip distribution and the optimal
damper placement (see Domenico et al., 2019 as a recent
review paper). The sequential quadratic programming method
is used in the problem of critical fault rupture slip distributions
and a sensitivity-based method is introduced in the optimal
damper placement problem. Furthermore, the robustness for
the maximum interstory drift in MDOF building structures
under the uncertainty in fault rupture slip distribution is
presented for resilient building design by using the robustness
function (Ben-Haim, 2006). Since the critical case leads to the
most unfavorable structural response, the proposed method can
provide structural designers with a promising tool for resilient
building design.

STOCHASTIC GREEN’S FUNCTION
METHOD FOR GROUND MOTION
GENERATION

The present paper uses the stochastic Green’s function method
based on a plane-source model of the fault rupture to produce
ground motions. Since the detailed explanation was provided
in the reference (Makita et al., 2018b), a concise summary is
presented in this section.

Generation of Ground Motion Using Small
Ground Motions From Sub-fault Elements
The fault plane is divided into multiple fault elements and taking
into account the delay of the fault element rupture initiation.

The fault plane is assumed to consist of NL × NW

fault elements (NL: number of divisions in the longitudinal
direction, NW : number of divisions in the width direction)
and the slip action in one fault element is assumed to be
composed of ND slips. Due to Irikura (1983), the ground
displacement Uij (t) from one fault element is produced by ND

slips uij (t).

Uij (t) = f (t) ∗ uij (t) =

ND
∑

k=1

uij

(

t −
(

k− 1
) τij

ND

)

(1)

where ij refers to the ij sub-element in one fault
element and τij is the rise time of the ij sub-
element. Let f (t) denote the slip correction function
expressed by

f (t) =

ND
∑

k=1

δ

(

t −
(

k− 1
) τij

ND

)

(2)

where δ(t) is the Dirac delta function.
The ground displacement U (t) resulting from the whole fault

may then be given by

U (t) =

NW
∑

i=1

NL
∑

j=1

f
(

t − tij
)

∗ uij (t)

=

NW
∑

i=1

NL
∑

j=1

ND
∑

k=1

uij

(

t − tij −
(

k− 1
) τij

ND

)

(3)

In this paper, the following slip correction function f (t) is used
(Irikura, 1986; Yokoi and Irikura, 1991).

f (t) = δ (t) +
1

n′

(ND−1)n′
∑

k=1

uij

(

t −

(

k− 1
)

τ

(ND − 1) n′

)

(4)

The number n′ of re-division was introduced by Irikura (1986)
to remove the effect of artificial periodicity. Irikura (1994)
introduced the following constraint for n′.

n′ND

τ
> 2fH (fH : upper bound of the effective frequency) (5)

Frontiers in Built Environment | www.frontiersin.org 2 October 2019 | Volume 5 | Article 126

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Kondo and Takewaki Fault Uncertainty and Damper Optimization

The ground displacementU (t) resulting from the whole fault can
finally be given by

U (t) =

NL
∑

i

NW
∑

j

uij
(

t − tij
)

+

NL
∑

i

NW
∑

j

(ND−1)n′
∑

k

1

n′
uij

(

t − tij −

(

k− 1
)

τ

(ND − 1) n′

)

(6)

The concept of the stochastic Green’s function method used in
the present study is illustrated in Figure 1A.

For simplicity, it is assumed here that the fault rupture
propagates concentrically. tij can then be expressed by

tij = tp ij + tr ij =
rij

β
+

ηij

Vr
(7)

where β : the shear wave velocity of the ground, Vr : the slip
propagation speed in the fault, tpij: the propagation time from the
fault element to the recording point, trij: the slip initiation time in
the fault element, rij: the distance between the fault element and
the recording point, ηij: the distance between the slip initiation
point in the whole fault and the fault element.

In the present paper, it is assumed that the slip front
parameters (slip initiation time trij and rise time τij ) are regarded

FIGURE 1 | Ground motion generation method and fault slip model. (A) Concept of stochastic Green’s function method used in the present paper. (B) Concentrically

propagating slip model and uncertainty in slip quantity.
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FIGURE 2 | Simultaneous implementation of critical ground motion generation and optimal damper placement, (A) flow chart, (B) conceptual diagram.
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as certain parameters and the fault slip distribution is treated as a
set of uncertain parameters. The model is explained conceptually
in Figure 1B.

Small Ground Motion From Element Fault
A small ground acceleration at the earthquake bedrock resulting
from the slip of a fault element can be obtained by locating a

FIGURE 3 | Fault plane and three recording points (replotted based on Kato et al., 2011).

TABLE 1 | Soil conditions and source parameters.

(A) Soil conditions

Layer Thickness H (m) Shear wave velocity Vs (m/s) Mass densityρ (kg/m3) Q-value Q (−)

1 1,000 2,000 2,600 -

2 (half-space) - 3,464 2,700 70f1.0

(B) Source parameters

Scaling parameters

Along the Fault Width Direction NW 4

Along the Fault Length Direction NL 8

Along the slip ND 6

Fault parameters Fault element parameters

Fault length W 4 km Area of fault element SS 1 km2

Fault width L 8 km Seismic moment M0S 5.40× 1015 Nm

Area of fault plane S 32 km2 Slip DS 0.167 m

Earthquake focal depth 4 km Stress drop △ σS 13.95 Mpa

Seismic moment M0 1.04× 1018Nm Radiation pattern Rθφ 0.63

Slip D 1 m Cutoff frequency fm 6 Hz

Stress drop △ σL 13.95 Mpa

Rupture velocity Vr 3, 000 m/s
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TABLE 2 | Parameters in building structures.

2-story model 5-story model 10-story model 20-story model

N 2 5 10 20

Mass per story (×103kg) 1,000 1,000 1,000 1,000

Fundamental natural period [s] 0.25 0.5 1.0 2.0

Structural damping ratio 5% 5% 5% 5%

Total added damping coefficient [Ns/m] 0.5× 108 2.8× 108 9.6× 108 3.6× 109

FIGURE 4 | Story stiffness distributions of three building structures. (A) Model with straight lowest natural mode. (B) Model with trapezoidal stiffness distribution.

(C) Model with uniform stiffness distribution.
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FIGURE 5 | Influence of number of skipped steps. (A) Acceleration of ground motions for four numbers of skipped steps. (B) Maximum interstory drift of MDOF

model for four numbers of skipped steps.

Frontiers in Built Environment | www.frontiersin.org 7 October 2019 | Volume 5 | Article 126

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Kondo and Takewaki Fault Uncertainty and Damper Optimization

point source at the center of the fault element (Boore, 1983). The
Fourier amplitude spectrum of the acceleration at the earthquake
bedrock can be given by

∣

∣Fij
S (ω)

∣

∣ = S (ω) · P (ω) (8)

where S (ω): parameter related to the source (fault), P (ω):
parameter related to the wave attenuation in the wave passage
from the fault element to the earthquake bedrock.

In this paper, S (ω) and P (ω) are from Boore (1983) (see
Makita et al., 2018b). Since the phase is not given by Boore
(1983), the phase difference method is introduced for expressing
the phase of ground motion (Yamane and Nagahashi, 2008). The
standard deviation of the phase difference resulting from the fault
element ijcan be given by

σij/π = 0.06+ 0.0003rij (9)

This relation was derived for inland earthquakes (Makita et al.,
2018a). The near-fault ground motion is assumed here in which
the influence of the rupture directivity is small. In the case
where the influence of the rupture directivity is not small, the
relations σij/π = 0.05+ 0.0003rij (in the direction of rupture
propagation) and σij/π = 0.08+ 0.0003rij (in the orthogonal
direction of rupture propagation) are recommended (Yamane
and Nagahashi, 2008). The phase spectrum is then expressed by

φk+1 ij = φk ij + 1φk ij (k = 1, 2, . . . ,N/2− 1)

1φij = −
(

µ + s · σij
)

(10)

where φk ij: the k-th phase spectrum of the fault element, 1φk ij:
the k-th phase difference spectrum of the fault element ij, N: the
number of adopted frequencies, µ: the mean phase difference, s:

FIGURE 6 | Computational analysis time for four numbers of skipped steps.

the Gaussian random number (mean = 0, standard deviation =

1). A constant value ofµ is assumed here in all the fault elements.
The Fourier transform Fij

S (ω) of the acceleration at the
earthquake bedrock resulting from the fault element ij can be
described by

Fij
S (ω) =

∣

∣Fij
S (ω)

∣

∣ · eiφij(ω) (11)

The inverse Fourier transform of Fij
S (ω) provides the

acceleration at the earthquake bedrock resulting from the
fault element ij. The substitution of this into Equation
(6) finally provides the acceleration at the earthquake
bedrock resulting from the whole fault. It is noted that
the difference of displacement and acceleration does
not matter.

CRITICAL SLIP DISTRIBUTION IN FAULT
PLANE MAXIMIZING THE STRUCTURAL
RESPONSE

The sequential quadratic programming method is used in the
problem of critical fault rupture slip distributionsmaximizing the
structural response.

Let x and f (x) denote the uncertain parameters (slip quantities
of fault elements) and the maximum interstory drift with respect
to the total duration of building response and all stories. The
problem of critical fault slip distribution can be described as

Find x

which maximizes f (x)

subject to xlb ≤ x ≤ xub (12)

where xlb and xub are the lower and upper bounds of uncertain
parameters (slips).

In the present paper, viscous dampers are added in the
building. Let cdi and W̄c denote the viscous damping coefficient
in the i-th story and the upper limit of the total quantity
of damping coefficients. The problem of critical fault slip
distribution for a building with added dampers can be
described as

Find x

which maximizes f (x, cd)

subject to xlb ≤ x ≤ xub

N
∑

i=1

cdi ≤ W̄c, cdi ≥ 0 (13)

A further criterion has to be introduced to determine
the damper distribution. For this purpose, the following
problem of minimizing the maximum interstory drift
is posed.

Find x, cd

which minimize
cd

maximize
x

f (x, cd)
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subject to xlb ≤ x ≤ xub

N
∑

i=1

cdi ≤ W̄c, cdi ≥ 0 (14)

A solution procedure of this problem will be presented in the
following section.

SIMULTANEOUS DETERMINATION OF
CRITICAL SLIP DISTRIBUTION IN FAULT
PLANE AND OPTIMAL DAMPER
DISTRIBUTION

The solution procedure of the above final problem may be stated
as follows:

➀ A model with uniform damper distribution for fixed total
amount is defined as a “standard arrangement model,” and one
without damper is set as an initial “adopted model”.

➁ Create “candidate models” of N patterns in which a small
amount of damping coefficient is added to any one of the first
to the Nth stories in the “adopted model” by using a sensitivity-
based method.

➂ Among the “candidate models,” the model with the smallest

maximum interstory displacement is chosen as a new “adopted
model” by using a sensitivity-based method.

➃ Update the critical ground motion in every P step for

damper arrangement by using the SQP method.

➄ Define the final “adopted model” as the “optimal
placement model”.

The flow chart and conceptual diagram are shown
in Figure 2.

FIGURE 7 | Nominal and critical ground surface accelerations of four MDOF models with different number of stories (T1 = 0.25 s, 0.5 s, 1.0 s, 2.0 s) at three points

(Straight lowest natural mode).
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FIGURE 8 | Fourier amplitude spectra of nominal and critical ground surface accelerations of four MDOF models with different number of stories (T1 = 0.25 s, 0.5 s,

1.0 s, 2.0 s) at three points (Straight lowest natural mode).
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NUMERICAL EXAMPLES

Fault Model, Soil Conditions, and
Recording Points
The model S21 in the benchmark test by Kato et al. (2011) was
used for verification of accuracy and reliability of the method
for ground motion generation employed in the present paper.
The result of the verification is shown in Makita et al. (2018b).

While the benchmark test uses an empirical envelope function
of acceleration time histories, the method used in Makita et al.

(2018b) and this paper employs the phase difference method for

expressing the phase. Since the same fault model is used in the
present paper, the fault model, soil conditions, and recording
points are explained here again.

The fault plane and three recording points used in the
reference (Kato et al., 2011) are shown in Figure 3. The number
of fault elements (NL, NW) follows (Kato et al., 2011). Several
convergence investigations on the number of fault elements were
done in the previous research (Irikura, 1994; Kato et al., 2011)
together with the consideration of reasonable analysis time. The
well-known scaling law (Irikura, 1983; Makita et al., 2018b)
provides the suggestion on the selection of NL, NW , ND. It seems
interesting to investigate how the critical fault distribution can be
affected by the number of fault elements. However, this requires
further computation which cannot be achieved in the framework
of the present paper. This investigation will be conducted in the
future. The recording points are three points (a), (b), (c). The
point (b) corresponds to the epicenter. It is assumed that the

FIGURE 9 | Nominal and critical maximum interstory drift distributions of four MDOF models with different number of stories (T1 = 0.25 s, 0.5 s, 1.0 s, 2.0 s) at three

points (Straight lowest natural mode).

Frontiers in Built Environment | www.frontiersin.org 11 October 2019 | Volume 5 | Article 126

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Kondo and Takewaki Fault Uncertainty and Damper Optimization

fault plane is vertical and the fault type is the right-lateral strike-
slip fault. The detailed fault parameters are as follows: the fault
length = 8,000m, width = 4,000m, slip = 1m, seismic moment
=M0 = 1.04× 1018Nm, strike, dip, and rake angles are θ = 90◦,
δ = 90◦, and λ = 180◦, respectively. The hypocenter is located at
the point (0, 1,000m, 4,000m) and the fault rupture propagates
concentrically with rupture velocity Vr = 3, 000 (m/s). The
hypocenter of each sub-fault is assumed to be located at its center.

Following the investigations by Somerville et al. (1999),
Eshelby (1957), and Brune (1970), it is assumed that the stress
drop 1σ of large earthquakes and the corner frequency fc are
given by the following equations:

1σ =
7

16

M0

R3
× 10−14 (15)

fc = 4.9 · 106Vs

(

1σ

M0

)1/3

(16)

where R (km) is the effective radius of the fault (S =

πR2, S : fault area). In these equations, the unit of Vs is km/s, that
of 1σ is bar and that ofM0 is dyne-cm.

From Equations (15), (16), 1σ = 13.95 (Mpa) and fc =

0.404 (Hz) are derived. In this case, τ = 2/fc ≈ 5.0 (s) is
obtained from Boore (1983). The soil conditions are shown in
Table 1A and the amplification of ground motion is described by
one-dimensional wave propagation theory.

The division of the fault plane is NW × NL, i.e., NW = 4:
fault width direction and NL = 8: fault length direction. The area
of sub-fault is given by SS = 1 (km2). The seismic moment in
each fault element (M0S) is 5.40 × 1015Nm and the stress drop
(1σS) in each fault element is assumed to be 13.95 (Mpa). The
slip DS of each sub-fault is given by 0.167 (m) from M0S =

µSSDS and ND = 6 from the ratio of fault plane to sub-fault
(1 m/0.167m). The seismic moment after superimposing the
small earthquakes (M0

′) is calculated as M0
′ = NW · NL · ND ·

M0S ≈ 1.04 × 1018 (Nm), which is the same as M0. The corner
frequency fcS = 2.33Hz (Equation 16). As for the phase angle,
the standard deviation of phase differences (σij/π) are obtained
from Equation (10) and its mean µ/π in each point is given by
−0.140 at Point (a), −0.125 at Point (b) and −0.130 at Point (c).
It is assumed that the horizontal component of superimposing
wave is considered and only the SH wave is generated.
Each small earthquake is produced by disassembling into the

FIGURE 10 | Critical fault slip distribution of four MDOF models with different number of stories (T1 = 0.25 s, 0.5 s, 1.0 s, 2.0 s) at three points (Straight lowest natural

mode).
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NS direction component and the EW direction component.
Table 1B indicates the source parameters of the fault plane
and sub-faults.

It seems interesting to investigate the relation between the
number of slips ND and the number of fault elements and
the balance between the slips size and the elements size as
well as between them and the slip initiation and rise times
(Irikura, 1994; Kato et al., 2011). If necessary, the influence
of the introduction of re-division of fault elements may be
possible by using the condition on the expressibility of fault
rupture processes (Irikura, 1994; Kato et al., 2011). However,
these requires further computation which cannot be achieved in
the framework of the present paper.

Setting of Uncertain Fault Slip Distribution
Let regard the fault slip distribution D as a set of uncertain
parameters. If the nominal value of D, the base quantities of
variation of D (toward decreasing side and increasing side) and
the degree of variability are denoted by Dij

C, 1D
−
ij
, 1D̄ij, and α,

the interval parameter expression can be given by

DI =

{[

Dij
C − α1D

−
ij
,Dij

C + α1D̄ij

]}

(

i = 1, · · ·NW, j = 1, · · ·NL
)

(17)

In this paper, α = 0.3, 1D
−
ij
= 1D̄ij = Dij

C are given.

Setting of Building Structures
A shear-type building structure is employed as the super building
model. 2-, 5-, 10-, and 20-story buildings are considered. The
floor mass, fundamental natural period, structural damping ratio
and total added damping coefficient are shown in Table 2.
The total damping coefficient corresponds approximately to

the damping ratio 0.2. Three story stiffness distributions are
treated, i.e., model with straight lowest natural mode, model
with trapezoidal stiffness distribution, model with uniform
stiffness distribution. These story stiffness distributions are
shown in Figure 4.

Computational Time Saving by Skipping
the Procedure for Updating Critical Fault
Slip Distribution and Its Accuracy
Verification
The sequential quadratic programming method for the problem
of critical fault slip and the sensitivity-based method for the
problem of optimal damper placement are time-consuming.
Especially, the sequential quadratic programming method for
the problem of critical fault slip needs a lot of computational
time. Therefore, a method for reducing the computational load
is desired. For this purpose, a method of skipping some steps for
updating the critical fault slip in simultaneous analysis of critical
fault slip and optimal damper placement is proposed here which
was explained in Figure 2.

Figure 5 shows the influence of number of skipped steps
on the results of the 10-story MDOF model with straight
lowest natural mode. Figure 5A indicates accelerations of ground
motions for four numbers of skipped steps (1, 5, 10, 20)
and Figure 5B presents the maximum interstory drift. In these
figures, the nominal case and critical case are treated. In
Figure 5B, both the model with damping and the model without
damping are investigated. It can be observed that no obvious
difference can be seen in case that the number of skipped steps
is smaller than 20. This means that the number of skipped
steps smaller than 20 can save the computational time without
deterioration of accuracy.

Figure 6 shows the computational analysis time for four
numbers of skipped steps. The computer system is CPU: Core

FIGURE 11 | Critical damping coefficient distributions of four MDOF models with different number of stories (T1 = 0.25 s, 0.5 s, 1.0 s, 2.0 s) at three points. (A) Model

with straight lowest natural mode. (B) Model with trapezoidal stiffness distribution. (C) Model with uniform stiffness distribution.
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i5-6500 (3.2 GHz), RAM: 32.0 GB (DDR4-2132), OS: Windows
10 Pro (64 bit). It can be found that remarkable reduction of
analysis time is possible by skipping some steps for updating the
critical fault slip. For example, in the case where the fault rupture
distribution is fixed (uncertainty level α = 0 in the robustness
function analysis explained later), the computational time only
for optimization with respect to viscous damper distribution is
3min. This is 1/14 of the overall computational time (43min in
Figure 6 for 20 skipped steps) including the robustness function
analysis (α = 0, 0.1, 0.2, 0.3).

Analysis Results
Figure 7 shows the nominal and critical ground surface
accelerations of four MDOF models with different number
of stories, 2, 5, 10, 20 [fundamental natural period, T1 =

0.25, 0.5, 1.0, 2.0 (s)] at three points (a), (b), (c) (stiffness
distribution: Straight lowest natural mode). It can be observed
that the ground motion accelerations corresponding to the
critical case are larger than those corresponding to the nominal
case. The same observation was found for other models
(trapezoidal stiffness distribution, uniform stiffness distribution).

Figure 8 presents the Fourier amplitude spectra of nominal
and critical ground surface accelerations of four MDOF
models with different number of stories, 2, 5, 10, 20 [T1 =

0.25, 0.5, 1.0, 2.0 (s)] at three points (Straight lowest natural
mode). It can also be observed that the Fourier amplitudes of
ground motion accelerations corresponding to the critical case
are larger than those corresponding to the nominal case.

Figure 9 indicates the nominal and critical maximum
interstory drift distributions of fourMDOFmodels with different
number of stories, 2, 5, 10, 20 [T1 = 0.25, 0.5, 1.0, 2.0 (s)] at

three points (Straight lowest natural mode). For comparison,
the cases without damper and with damper are shown. It can
be found that the viscous dampers are extremely effective for
the response reduction and the larger maximum interstory
drifts in upper stories are well-reduced by the effect of viscous
dampers. The structural response (interstory drift) at the point
(b) (above the fault plane) is the maximum with an exception.
Therefore, the optimal damper distribution for the point (b)
is recommended only from the present result. Of course,
when this distribution is adopted for other points (a), (c),
the responses will become larger than those obtained for the
model with the respective optimal damper distribution. On
the other hand, if the optimal damper distribution adopted
for the point (a) or (c) is used for the model at the point
(b), the maximum interstory drift becomes larger than that
evaluated for the optimal damper distribution determined for
the point (b). This indicates the preference of selection of
the optimal damper distribution at the point (b). Further
investigation will be necessary to search the best damper
distribution for guaranteeing the response constraints at all
the points.

Figure 10 shows the critical fault slip distribution of four
MDOF models with different number of stories, 2, 5, 10, 20
[T1 = 0.25, 0.5, 1.0, 2.0 (s)] at three points (Straight lowest
natural mode). It can be understood that, in the critical case, the
large slips are concentrated to the upper side of the fault plane
which is near to the recording point.

Figure 11A presents the critical damping coefficient
distributions of four MDOF models with different number
of stories, 2, 5, 10, 20 [T1 = 0.25, 0.5, 1.0, 2.0 (s)] at three
points (Building model: Straight lowest natural mode). Similarly,

FIGURE 12 | Robustness function α̂ for various uncertainty levels.
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Figure 11B indicates those for the building model with
trapezoidal stiffness distribution and Figure 11C shows those for
the building model with uniform stiffness distribution. It can be
found that the damping coefficients are generally concentrated to
the stories exhibiting larger maximum interstory drifts, i.e., the
upper part for the model with straight lowest natural mode, the

middle part for the model with trapezoidal stiffness distribution,
the lower part for the model with uniform stiffness distribution.
However, some exceptions exist in 2-story models. Because
of the space problem (number of figures), the distribution
of the maximum interstory drifts is shown in Figure 9 only
for the model with straight lowest natural mode. However,

FIGURE 13 | Robustness function α̂ with respect to the maximum interstory drift of four MDOF models with different numbers of stories (T1 = 0.25 s, 0.5 s,

1.0 s, 2.0 s) at three points. (A) Model with straight lowest natural mode. (B) Model with trapezoidal stiffness distribution. (C) Model with uniform stiffness distribution

(solid line: with damper, broken line: without damper).
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the distribution of the maximum interstory drifts has been
derived also for the models with trapezoidal stiffness distribution
and with uniform stiffness distribution. These distributions
demonstrate the conclusion derived just above.

Robustness Evaluation for Uncertain Fault
Slip Distribution Using Robustness
Function
To evaluate the robustness of building structures for uncertain
fault slip distribution, the robustness function proposed by
Ben-Haim (2006) is used. Let fc, x

I , x(α) denote the specified
limit value of the maximum interstory drift, the interval
parameters (fault slip distributionD) and the admissible fault slip
distribution for a specified uncertainty level α. x(α) is defined in
Equation (17). The robustness function can be expressed by

α̂(x, fc) = max
{

α
∣

∣ max
{

f (xI)|xI ∈ x(α)
}

< fc
}

(18)

where over-bar denotes the nominal parameter. The conceptual
diagram of the robustness function α̂ for various uncertainty
levels is shown in Figure 12.

Figure 13A shows the robustness function α̂ with respect
to the maximum interstory drift of the MDOF model with
straight lowest natural mode for uncertain fault slip. These
figures show the results for three recording points (a), (b), (c).
Once the value α̂ in the vertical axis is fixed, the corresponding
maximum interstory drift of the MDOF model in the horizontal
axis indicates the maximum value for varied possible uncertain
parameters (quantity of fault rupture slip) prescribed by α̂. It
can be observed that the robustness becomes the smallest for the
model at Point (b) (epicenter). This is because the response of
the MDOF model is the largest at Point (b). The slope of the
robustness function indicates the degree of the robustness. As
the slope becomes steeper, the model becomes more robust (this
indicates that the structural response is insensitive to change of
fault rupture slip).

Figure 13B presents similar ones for the model with
trapezoidal stiffness distribution and Figure 13C indicates those
for the model with uniform stiffness distribution.

Since the robustness is closely related to the resilience, the
presented method using the robustness function seems useful for
the evaluation of resilience of buildings against uncertain fault
slip distribution.

CONCLUSIONS

The uncertainty in the fault rupture slip was taken as a main
source of uncertainty in the present paper and the critical fault
rupture slip distribution producing the maximum structural
response was found by using the stochastic Green’s function
method as a generator of ground motions. A multi-degree-
of-freedom (MDOF) building structure was introduced
as a model structure and an optimal damper placement
problem was investigated for the critical ground motion.
The main feature of this paper is the simultaneous treatment
of the critical fault rupture slip distribution problem and

the optimal damper placement problem. The sequential
quadratic programming method was used in the problem of
critical fault rupture slip distributions and a sensitivity-based
method was introduced in the optimal damper placement
problem. The robustness for the maximum interstory drift
in MDOF building structures under the uncertainty in
fault rupture slip distributions was presented for resilient
building design by using the robustness function. The
main results obtained in this paper may be summarized
as follows.

(1) The ground motion accelerations corresponding to the
critical case are larger than those corresponding to the
nominal case. This can also be confirmed from the Fourier
amplitudes of ground motion accelerations.

(2) In the critical case, the large slips are concentrated to
the upper side of the fault plane which is near to the
recording point.

(3) The ground surface acceleration at the epicenter becomes
larger than that at other recording point. The maximum
interstory drift of the super building at the epicenter also
exhibits the largest value.

(4) Since the sequential quadratic programming method for
the problem of critical fault slip and the sensitivity-based
method for the problem of optimal damper placement
are time-consuming, update of the critical fault slip
distribution in each step of optimal damper placement may
be unreasonable. Remarkable reduction of analysis time is
possible by skipping some steps for updating the critical fault
slip distribution.

(5) The viscous dampers are extremely effective for the response
reduction and the larger maximum interstory drifts in
upper stories are well-reduced by the effect of viscous
dampers. The optimal damper distribution exhibits different
properties depending on the stiffness distribution of super
buildings. Large damper quantities are allocated to the
stories exhibiting large interstory drifts, although some
exceptions exist in two-story models. However, the point, at
which the building is set, does not affect so much the optimal
damper distribution.

(6) From the relation of the robustness function with the
maximum interstory drift, the designers can find the level of
potential robustness with respect to uncertain parameters for
a specified level of the maximum interstory drift.

Even in the case where linear viscous dampers are used,
the simultaneous extremization with respect to fault rupture
distribution and viscous damper distribution requires many
computational cycles and time. Therefore, the extension to
non-linear viscous dampers appears to be the next step
of research.
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