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Abstract

This paper proposes a novel model-based damage identification strategy based on mini-

mum constitutive relation error and sparse regularization using the power spectrum density

data. Firstly, the stationary random vibration problem is transformed into a series of har-

monic vibrations by the pseudo excitation method and the error in constitutive relation is

established by the admissible stress field and admissible displacement field. A much more

general and simpler strategy so as to build the admissible stress field is addressed by requiring

only an extra decomposition of the stiffness matrix. Then, the sparse regularization is added

to the original constitutive relation error objective function to circumvent the ill-posedness

of the inverse problem. Finally, the solution of this nonlinear optimization problem is solved

by the alternating minimization method. The proposed method has the advantage that only

measurement power spectrum density data from few limited sensors are needed in the inverse

analysis. Numerical and experimental results show the effectiveness and robustness of this

approach.

Keywords: damage identification, constitutive relation error, sparse regularization,

power spectrum density, pseudo excitation method

1 Introduction

Methods for damage identification are undergoing increased attention and development in the

last decades [1–3]. Finite element model-based methods treat damage identification as a con-

strained nonlinear optimization problem in which the discrepancy between the test data and

∗Correspondence to: Jia Guo, Email: kaku.ka.25x@st.kyoto-u.ac.jp
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the predictions from the numerical model is minimized. Many researches have shown that the

finite element model-based methods are able to identify the damage location and severity simul-

taneously with suitable measurement data [4, 5]. Three categories of objective functions can

be used for damage identifications: the input residuals, the output residuals and the residual

named the ’Constitutive relation error(CRE)’. The CRE, an energy inner product of the residual

of the constitutive equation connecting the admissible stress field and admissible displacement

field, provides a measure of quality of the updated model using the constitutive relation. The

minimum constitutive relation error (min-CRE) approach is a priori suited for the identification

of all generalized standard materials [6]. It was initially proposed for the identification of elastic

properties [7] and now is being widely adjusted into nonlinear constitutive models, i.e., identi-

fication of heterogeneous elastoplastic properties [8] and strain energy densities [9]. The ability

to include all available experimental information about displacements and stresses to define the

basic identification problem allows this approach to deal with missing/less reliable boundary

conditions efficiently [10]. A comparison between the min-CRE approach and the input/output

residual method was conducted in [11] and the results showed that the min-CRE approach was

more robust in the numerical examples where realistic perturbations were added and it could also

give the same results as the input/output residual method even with less boundary information.

Although the min-CRE approach accommodates full-field displacement measurements in a very

natural way [12], obtaining full-field measurements for large-scale civil engineering structures is

still a challenging issue. As a result, it is highly desirable to develop the min-CRE approach that

could robustly address the ill-posed problem caused by the insufficient amount of measurement

sensors during the identification process. The references [13] and [14] offered a new perspec-

tive on the problem by incorporating sparse regularization into the min-CRE approach to solve

the ill-posed inverse problem due to the incomplete modal data and limited frequency response

function data, respectively. It was shown that the sparse regularization could be added to the

original optimization problem with little computational efforts and improve the effectiveness and

robustness of the min-CRE approach under a relative high level of measurement noise.

This paper is based on the work of [14] and extends the sparse regularized min-CRE ap-

proach to spectrum-driven problems. It is well known that long-span structures or high-rise

buildings can be excited well by non-deterministic random natural disturbances (seismic, wind,

road irregularities, etc.) in their operating environment, making it desirable to use the corre-

sponding random vibration responses as measurement data for damage identification directly. A

description of the input excitation and output response in terms of power spectral density (PSD)

2
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is commonly used for random vibrations [15]. Compared to the usage of the modal data [13] and

the frequency response function data [14], the advantage of using PSD data from a continuous

frequency range without reducing the damage identification process to limited number of reso-

nant frequencies or near resonance frequencies was observed, which could also be found in other

research [16]. Inspired by the work in [17], the pseudo excitation method (PEM) [18, 19] which

transforms a random vibration analysis into a series of harmonic response analysis is introduced,

making the damage identification solvable under the random excitations.

Furthermore, a difficulty lies in how to obtain the admissible stress field satisfying the equi-

librium constraints when building the CRE. In [14], the force finite element is directly involved

to establish the stress field. This procedure is efficient and convenient with respect to the beam-

type elements but may lead to solving sophistication for other types of elements. To avoid the

recourse to stress/force finite element, this paper gives an alternate and simplified procedure

for stress field building, requiring only an extra decomposition of the stiffness matrix under

consideration. During this decomposition, damage parameters are physically extracted from the

stiffness matrix and the admissible stress field is directly and simply built based on the equilib-

rium equation and the pseudoinverse of the generic matrix decomposed from the stiffness matrix.

It should be noted that the procedure of stiffness matrix decomposition is only conducted at the

initial stage in the proposed method, rather than at each iterative step, making this strategy

efficient in its application.

The remainder of this paper is organized as follows. The basic idea of PEM for forward

problem is reviewed in Section 2.1 and the min-CRE approach for inverse problems is briefly

introduced in Section 2.2. The main solving process for this identification problem in Section

3 is threefold. Firstly, the stress field building strategy is illustrated in Section 3.1. Secondly,

the sparse regularization is added to the original CRE function in Section 3.2 so as to improve

the accuracy and robustness of the proposed approach when measured data are incomplete and

the damage identification problem becomes ill-posed. Large-scale civil engineering structures

contain a great number of elements whereas damage only occurs at limited members, which is

appropriately implicated in the sparse regularization. Finally, in Section 3.3, the efficient alter-

nating minimization (AM) method is applied to get the solution of this nonlinear optimization

problem. The AM method is an iterative procedure for minimum solution of the separately con-

vex objective function and hence no sensitivity analysis is involved during the solution process.

In principle, the AM method tries to get the solution iteratively by alternating minimization

of the objective function over every separated variable in each iteration. Numerical tests and

3
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experimental verification are performed in Section 4 and Section 5 separately. Final conclusions

are drawn in Section 6.

2 Identification problem to be solved

2.1 Pseudo excitation method (PEM) for forward problem

Consider a general finite element model of a linear elastic time-invariant structure subjected to a

single stationary random excitation x0(t) whose power spectral density S0(ω) has been specified.

The equation of motion can be written as

Mü+ Cu̇+ Ku = ax0(t), (1)

where M, K and C are the system mass, stiffness and damping matrices, respectively. C is

assumed to be a Rayleigh damping herein and C = αM + βK (α and β are two constants

determined by two modal frequencies). a is a given constant vector. To solve this problem, let

x0(t) =
√
S0(ω)eiωt, then the above equation of motion is reduced into the following harmonic

equation:

Mü+ Cu̇+ Ku = a
√
S0(ω)eiωt (2)

where
√
S0(ω)eiωt is the so called ’pseudo harmonic excitation’ in the PEM and the correspond-

ing pseudo harmonic response would be

u = Ha
√
S0(ω)eiωt (3)

where H is the frequency response function.

Note that the above equations only consider the cases with stationary random excitation due

to the convenience of computation and the brevity of expression. The non-stationary pseudo

excitation can be simply expressed by the stationary pseudo excitation multiplied by an envelope

function g(t) [20] (or in a more general way the frequency-time modulating function A(t, ω)

[21]). Hence the identification method for structures under non-stationary random excitations

is a natural extension of the present method for stationary random excitations. However, except

for some special cases with simple envelope function g(t), the pseudo responses u in Eq. (3) can

only be calculated by means of the Duhamel integration formula or other numerical integration

methods instead of directly being solved within the frequency domain as proposed in this article,

which leads the overall identification process to high computational efforts. Nevertheless, for

most of the earthquake ground motions, the non-stationary effects can be no trivial and thus

the corresponding solving process merits attention.

4
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2.2 Min-CRE approach for inverse problem

For inverse identification problems, quite often the mass matrix M is considered to be accurate

and only the stiffness matrix K needs to be modified. The basic idea in the damage parameter

identification herein is to express the stiffness K in the form of the following decomposition

K(θ) = LD(θ)R (4)

where D(θ) is a diagonal matrix with the following expression,

D(θ) =


θ1D1 0 · · · 0

0 θ2D2 · · · 0
...

...
. . .

...

0 0 · · · θmDm

 (5)

De is obtained from the coefficient matrix of the elastic modulus in elasticity for element e,

e = 1, · · · ,m and θ denotes the damage parameter, with θe = 1 meaning no damage of the

eth element. D(θ) is of size r =
∑m

e=1 re, re = rank(De). L and R are derived from the

strain-displacement matrix as well as numerical integration. The decomposition in Eq. (4) is

not unique. Especially, there is

K(θ)u = Lσ. (6)

and thus the constitutive relation can be formulated in a discrete form as

σ = D(θ)Ru (7)

where σ is a global column matrix assembled by each elemental stress. Different types of

elements correspond to different decomposition. Appendix A.1 provides further insight into the

proposed decomposition, detailed derivation of Eq. (6) as well as specific expressions of D,

L and R for 1D spring element and 2D Euler-Bernoulli beam element used in the following

sections. Moreover, readers are referred to literature [22, 23] for the similar idea of stiffness

matrix decomposition for damage identification problem and literature [24] for the idea of the

stiffness-related parameterization scheme.

For the sake of simplicity, we will work in the frequency domain and employ the same notation

later for the associated amplitudes and the quantities. To define the constitutive relation error

(CRE), consider an admissible pair (ũ, σ̃) which satisfies the kinematic constrains (ũ ∈ U) and

the equilibrium equations (σ̃ ∈ =), respectively. As already known, if the constitutive relation

in Eq. (7) is additionally satisfied with an admissible damage parameter θ ∈ A ⊆ Rm+, the

5
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above admissible solution trio (ũ, σ̃,θ) would be the exact solution (ũex, σ̃ex,θex). As a result,

the CRE for a given frequency range [ωmin, ωmax] is introduced as

eCRE(ũ, σ̃,θ) =
1

2

∫ ωmax

ωmin

(D(θ)Rũ− σ̃)T D(θ)−1 (D(θ)Rũ− σ̃) z(ω)dω

=
1

2

∫ ωmax

ωmin

‖D(θ)−
1
2 (D(θ)Rũ− σ̃) ‖2z(ω)dω,

(8)

where z(ω) is the frequency weighting factor which satisfies∫ ωmax

ωmin

z(ω)dω = 1, z(ω) ≥ 0. (9)

Eq. (8) is known as the CRE objective function for inverse identification problems [25, 26].

The value of z(ω) represents the relative reliability of the measurements at different frequencies

and in this research, z(ω) is set as a constant equal to 1/(ωmax − ωmin), which is generally used

in other publications [25, 26].

Based on the equations above, the damage identification problem can be solved by the

following program (P0)

(P0)
(ũ, σ̃,θ) = arg min eCRE(ũ, σ̃,θ)

subject to ũ ∈ U , σ̃ ∈ =,θ ∈ A, ũ = ũk, k ∈ ℘,
(10)

where ũk is the pseudo harmonic displacement response approximated by the measured dis-

placement/acceleration auto-power spectrum density Skuu/Skaa of the kth structural response

and {k ∈ ℘} is the set of points measured by limited number of sensors. The approximated

pseudo harmonic response ũk at position k can be expressed as

ũk = (c+ di)k
√
Skuu(ω) = (c+ di)k

√
Skaa(ω)/ω4

≈ (H(θ(j))a)k
√
S0(ω) =

([
−ω2M + iωC(θ(j)) + K(θ(j))

]−1
a
)k√

S0(ω)
(11)

where (ck)2+(dk)2 = 1 and the ratio ck/dk is equal to the ratio of the real part to imaginary part

of (H(θ(j))a)k. θ(j) is the value of the damage parameter at jth iteration step. This procedure

is described in detail in Table 1.

3 Basic concept of the identification strategy and main steps of

the method

3.1 Stress field building strategy

Consider an admissible stress field σ̃ which satisfies the equilibrium equation as follows:

Kũ = ω2Mũ− iωCũ+ a
√
S0(ω) = Lσ̃

⇒Lσ̃ = (1 + iωa2)−1
[
(ω2 − iωa1)Mũ+ a

√
S0(ω)

]
.

(12)

6
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To obtain the stress field σ̃, the following remark is necessarily invoked.

Remark 1. For A ∈ Rn×r and rank(A) = n (A is of full-row rank), consider a system of

linear equations

Ax = b (13)

If n = r, Eq. (13) admits a unique solution x = A−1b. In general, for n < r, a vector

x that solves the system may not be unique. A computationally simple and accurate way

to solve this equation is by using the SVD. That is, if A = UΣV∗ is the SVD of A, the

solutions of Eq. (13) are all given by

x = A+b+ Zp, (14)

where A+ = VΣ+U∗ is the pseudoninverse of matrix A, p is an arbitrary column vector

of length r − n, Z = ‖A+‖`2V2 and V =
[
(V1)r×n, (V2)r×(r−n)

]
. ‖A+‖`2, denoting the

`2-norm of the matrix A+, is introduced to reduce the possible ill-conditioning.

Combining of Eq. (12) and Eq. (14) and setting A = L, x = σ̃ yields

σ̃ = c2c1A
+Mũ+ c2A

+a
√
S0(ω) + Zp, (15)

where c1 = (ω2 − iωa1) and c2 = (1 + iωa2)−1. It should be pointed out that only the vector p

is unknown in Eq. (15). As a result, to acquire the stress field σ̃ is equal to acquire the vector

p. The objective function could be reformulated into

eCRE(ũ,p,θ) =
1

2

∫ ωmax

ωmin

‖D(θ)−
1
2

(
D(θ)Bũ−

(
c2c1A

+Mũ+ c2A
+a
√
S0(ω) + Zp

))
‖2z(ω)dω.

(16)

3.2 Sparse regularization

Usually, the amount of the measured data Skuu/Skaa is insufficient due to the incomplete finite

sensors and limited sample sources. This drives the inverse problem ill-posed and very sensitive

to the measurement noise. To circumvent the ill-posedness and improve the robustness, the

sparse regularization is used. The main prerequisite for the introduction of sparsity is that

damages occur at a few locations and no other information regarding the damage is required.

7
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By incorporating the sparse regularization into Eq. (10), (P0) can be replaced by (Ps)

(Ps)
(ũ,p,θ) = arg min eCRE(ũ,p,θ) + λ‖θ − θ0‖1`1

subject to ũ ∈ U , σ̃(p) ∈ =,θ ∈ A, ũ = ũk, k ∈ ℘,
(17)

where λ is the non-negative sparse regularization parameter controlling the trade-off between

the sparsity and CRE, ‖θ − θ0‖1`1 =
∑m

e=1 |θe − θ0e| and θ0e := 1 for the eth element of the

initial intact structure. Large value of λ makes the number of the nonzeros in θ − θ0 as scarce

as possible. According to previous research, the ‘threshold setting method’ (TSM) is used to

estimate the optimal regularization parameter where λest = TSM(Λ, lmax, α). For more details,

refer to the work [13].

3.3 Alternating minimization (AM) method

The alternating minimization(AM) method is proposed for the program (Ps) due to the separate

convexity property of the objective function of this problem. To this end, no sensitivity analysis

is required herein. The AM method is an iterative approach and try to find the solution in each

iteration by alternating minimization of the objective function over separated variables. With

an initial guess of the damage parameters θ0, the solving process is described below.

• step 1 (UMF step): Update the mechanical field (ũ,p) with the given damage parameters

θ(j−1)

(ũ(j),p(j)) = arg min
u∈U ,σ(p)∈=,u=ûk,k∈℘

eCRE(ũ,p,θ(j−1)) (18)

• step 2 (UDP step): Update the damage parameters θ by the mechanical fields (ũ(j),p(j))

obtained in step 1.

θ(j) = arg min
θ∈A

eCRE(ũ(j),p(j),θ) + λ‖θ − θ0‖1`1 (19)

For mathematical proof on the convergence of the AM method, the reader is referred to the

reference [27]. The detailed expressions for each step are shown in Appendix.

3.4 Summary of the proposed damage identification approach

By combining the UMF step and the UDP step in Section 3.3 and using the threshold setting

method so as to estimate the optimal regularization parameter λ, the damage identification

algorithm by min-CRE and sparse regularization based on power spectrum density data can be

established, as shown in Table 1.

8
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Table 1 Summery of the proposed AM method

Initial algorithm setting

-set initial damage parameters θ(0) = θ0 as those of the intact structure

-set values of the maximum threshold setting rank lmax and the discriminating ratio

α for the threshold setting method [13]

-define the convergence tolerance TOL and the maximum number of iterations Zmax

-load the measured response power spectrum density data Skuu/Skaa as well as the

excitation power spectrum density data S0(ω)

-construct the pseudo harmonic excitation a
√
S0(ω) (section 2.1)

-assemble the matrix L and R and refer to Remark 1 to get the matrices A and Z

Alternating minimization approach (for j = 1 : Zmax)

-assemble the mass, stiffness and frequency response matrices M,K and H using

current value of θ(j−1)

-obtain the approximated pseudo harmonic response uk(j) = (c+ di)k
√
Skuu(ω) (sec-

tion 2.2)

-refer to the UMF step to obtain the updating mechanical field (section 3.3, Ap-

pendix A.2) ũ(j)

p(j)

 =

 ũk(j)

(RUU )−1(SU −RUM ũk(j))


-choose the optimal regularization parameter λ according to the threshold setting

method [13]

-refer to the UDP step to obtain the updating damage parameter θe(j), e = 1, · · · ,m

(section 3.3, Appendix A.3):

• if λ < 1
2

(
be
θ20e
− ae

)
, then θe(j) =

√
be

ae+2λ ,

• else if λ < 1
2

(
ae − be

θ20e

)
, then θe(j) =

√
be

ae−2λ ,

• else θe(j) = θe0 = 1

-Convergence criterion

• if ‖ θ̃(j) − θ̃(j−1) ‖ / ‖ θ̃(0) ‖≤ TOL break

9
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(a)

D1: single damage D2: multiple damages

20%

2m

2k

1k

4k

12k
12m

4m

1m

(b)

3m

3k

15%

20%

Figure 1 Overview of the numerical model

4 Numerical verification

A 12-story shear building structure as shown in Figure 1 is used to test the proposed damage

identification approach first (see reference [28] for details of the structure). The mass and

stiffness parameters of the intact system are m1 = m2 = · · · = m12 = 1.0 × 105kg, k1 = k2 =

· · · = k12 = 2.0 × 108N/m. The Rayleigh damping model is adopted with the damping ratios

taken equal to 5% and the Rayleigh coefficients α and β are 0.506 and 1.073×10−4, respectively.

Two damage cases are considered: Single damage (D1), the stiffness of the 6th story is reduced

by 20% (θ6 = 0.8/stiffness reduction=0.2); Multiple damages (D2), the stiffness of 2nd story

and 4th story is reduced by 5% and 15% (θ2 = 0.95, θ4 = 0.85/stiffness reduction=0.05, 0.15),

respectively.

Assume that the structure is subjected to a stationary acceleration excitation of white noise

from the ground. The measured accelerations of the 1st and 2nd stories (a1 and a2) are taken

from the results of numerical simulation during the time period [0, 60s] with a sampling rate of

500Hz and polluted by a standard normally distributed random noise of 10% level (Figure 2).

Figure 3 shows the comparison of the power spectrum density between the initial (undamaged)

model and the damaged model at the 2nd story for D1.

Identification results for respective damage scenarios of the proposed approach are summa-

rized in Figure 4 (a) and (b). As can be seen, damage is identified successfully for the single

damage case D1 with an optimal value of regularization parameter λ = 1.211×10−11. Regarding
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Figure 2 Response at 2nd floor for D1
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Figure 4 Identification results with 10% noise: (a) D1 with sparsity, (b) D2 with sparsity, (c)

D1 without sparsity and (d) D2 without sparsity

the case D2, the multiple damages case seems to be more sensitive to the noise: some unwanted

yet acceptable stiffness change at the 1st story was also observed. This phenomenon is due to

the different effectiveness of the sparse regularization [13]. Sparsity obviously has a pronounced

effect on less number of damages while multiple damages reduce sparsity in intensity. The op-

timal sparse regularization parameter is found to be 1.018 × 10−11 for D2. Figure 4 (c) and

(d) demonstrate the identification results for D1 and D2 without the enforcement of sparsity.

One can find that it is almost impossible to get to the reasonable identification results when

measurement data are limited and noise level is relatively high. To this end, the effectiveness of

the sparse regularization has been proved.

To further validate the proposed approach, two generally used identification techniques: the

sensitivity-based algorithm with Tikhonov regularization (`2 norm) and the Unscented Kalman

Filter (UKF) are additionally conducted for the damage case D1 as comparisons in the following.

Acceleration/Displacement measurements in time domain are directly used for identification in

both of these methods. Detailed discussion of the theoretical background of these two methods is

beyond the scope of this paper. Table 2 briefly outlines the basic information of these methods.
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Table 2 Basic information of the sensitivity-based algorithm with Tikhonov regularization and

the UKF

Sensitivity-based algorithm with `2 norm

objective function: ‖ ∆R(θ̄)− S(θ̄)∆θ ‖2W +λ ‖ ∆θ ‖22
solution method: ∆θ =

[
S(θ̄)TWS(θ̄) + λI

]−1
S(θ̄)TW∆R(θ̄)

regularization parameter estimation: L-curve method

measurement: a1, a2 (same as the min-CRE approach)

noise level: 10% (same as the min-CRE approach)

UKF

state vector: x̄ = [u, u̇,θ]

state-space equation: ˙̄x = f (x̄(t), x0(t)) +w(t)

f (x̄(t), x0(t)) =


u̇

M−1 (ax0 −K(θ)u−Cu̇)

012×1


measurement equation: y = h(x̄, x0(t)) + v(t)

measurement: a1, a2, u3, u4, u5, u9, u11

noise level: 3%

More technical details can be found in [2, 29] and [30, 31] respectively.

The results presented in Figure 5 show the successful performance of both of the two meth-

ods. On one hand, the sensitivity-based algorithm could well identify the damage location and

extent using the same limited measurements at the same noise level, as the proposed min-CRE

approach. The difference lies in the effects of different regularization enforcements. Attention

should be paid on that damages can be observed at some false positions with minor degree (Fig-

ure 5(a): element 7, 9, 10, 12) for the use of Tikhonov regularization. This is due to the fact

that the sparse regularization finds the correct sparse solution while the Tikhonov regularization

tends to produce a smoother but not accurate enough solution. For comprehensive study about

this difference, the reader is referred to [32].

One the other hand, measurement positions have to be increased while noise level goes down

so that the UKF could give satisfied identification results, as shown in Table 2. The fact that

newly added measurements are chosen to be displacements (u3, u4, u5, u9, u11) instead of accel-

erations is due to the reason that identification results from the UKF could be much improved

when fusing displacement measurements are included [30]. Performance of the parameter esti-

mation changed with time is plotted in Figure 6. Despite of the aforementioned limitations, the
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Figure 5 Identification results using different methods: (a) sensitivity-based algorithm, (b)

UKF

Figure 6 Parameter estimation performance using UKF

UKF is still proven to be an attracting method because of its ability to quantify the uncertainty

in the parameters, convenience in the process of equating as well as the on-line tracking nature.

5 Experimental verification

In this section, the experimental verification of using the proposed min-CRE approach for dam-

age identification will be further presented for a laboratory plane frame structure. The ex-

perimental set up, data generation, numerical models and damage identification results will be

described in details in the following.

5.1 Experimental setup and data generation

Two two-story testing plane frames, undamaged frame (UF) and damaged frame (DF), are

fabricated in the structure laboratory in Kyoto University, as shown in Figure 7(a). Parameters

of these frames are shown in Table 3.
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Table 3 Characteristics of the two-story testing plane frames

Elastic properties of the frames (UF/DF)

E = 200Gpa, ρ = 7.7× 103kg/m3

Geometric parameters of the frames (UF/DF)

height of the first story H1 = 0.225m

height of the second story H2 = 0.25m

width of each story B = 0.2m

rectangular cross-section of the first story’s beam/column b1 × h1 = 40mm× 1mm

rectangular cross-section of the second story’s beam/column b2 × h2 = 30mm× 1mm

size of the lumped mass 50mm× 50mm× 50mm

size of the L-angles connecting the lumped mass and the beam/column 40mm× 20mm× 2mm

Damage information (DF)

rectangular cross-section of the damaged beam bd × h1 = 20mm× 1mm

In DF, damages are introduced by reducing the rectangular cross section in the area of left

1/2 length of the beam in the first story, from b1×h1 = 40mm×1mm to bd×h1 = 20mm×1mm,

as illustrated in Figure 7(b). As a result, the approximated stiffness reduction (kdamage/k0)

for this area is estimated as 0.5. For the sake of clarity, it should be noted that in this example,

since the mass matrix of the structure is mainly determined by the lumped mass instead of the

beam, only the change of stiffness is identified while the change of mass is ignored.

The frame is bolted on the shaking table and tested using ground excitation (Figure 7(d)).

The sampling frequency is set to 200Hz and nine accelerometers(A0-A8) are installed for this

test (Figure 7(a), Figure 8). Each accelerometer is weighted about 0.02kg∼ 0.03kg. The

horizontal acceleration responses are measured during the time period [0,30]s.

5.2 Numerical baseline model

An initial finite element (FE) model is established according to the geometric and physical prop-

erties of the experimental UF, with 42 planar elements and 42 nodes as shown in Figure 8. Each

node has three DOFs (two transnational displacements and one rotational displacement) and the

system has 126 DOFs in total. The weights of lumped masses are added to the corresponding

nodes and adjacent beam elements are set as rigid link in the FE model.

The UF was tested first using white noise ground excitation. Natural frequencies and mode

shapes of the frame are then determined through the subspace identification algorithm (n4sid).

The subspace approach to state-space modeling offers numerically reliable algorithms for com-
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Figure 7 Overview of the test model: (a) test frame (UF/DF), (b) undamaged and damaged

beam, (c) data acquisition, (d) acceleration of the ground excitation: white noise
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Figure 8 FE Model of plane frame structure
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Table 4 Natural frequencies of the baseline model, experimental UF and Experiment DF

Mode 1 2 3 4 5 6

Baseline 2.795 8.000 27.001 46.704 55.544 70.710

Experimental UF 2.796 8.015 27.027 \ 55.541 70.766

Experimental DF 2.654 8.023 26.563 45.870 53.302 67.362

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

Figure 9 Mode shapes of the experimental UF and the baseline model

puting state-space descriptions directly using measured input-output data. For technical details

on this method, the reader is referred to [33, 34]. The obtained modal data are used to perform

the initial model updating to minimize the difference between the experimental UF and the

FE model by the sensitivity-based method. This procedure was described in detail in reference

[35]. Table 4 and Figure 9 show that the natural frequencies and mode shapes predicted by

the updated FE model (the baseline model) match the experimental test results fairly well. It

should be pointed out that the 4th mode was not identified through the experiment data and

comparisons of this mode could not be conducted consequently.

A further validation of the updated model was performed by comparing the experimental

accelerations and those obtained by the updated FE model (Figure 10). As the FE model is

only identified based on the experimental modal data, the identified damping parameters using

the Rayleigh damping assumption are used in this comparison. The Rayleigh coefficients α and

β are 0.7102 and 6.9325× 10−5, respectively. So far, the accuracy of the FE modal was strongly

verified. This updated FE model is then used as the baseline model in the following damage

identification process.
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Figure 10 Accelerations of the experimental UF model and the baseline model at: (a) A1, (b)
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Figure 11 Measured PSD comparison between the experimental UF and the experimental DF:

(a) A1, (b) A3, (c) A6 and (d) A8
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Figure 12 Identified results: (a) G1 (b) G2 (c) G1 without sparsity (d) stiffness reduction vs

iteration in case G1

5.3 Damage identification

In the next identification step, the experimental DF is further subjected to the white noise exci-

tation from the ground. Accelerations are obtained and then transformed into power spectrum

densities using the Welch’s method. To improve the robustness and efficiency of the identi-

fication approach, data pre-selection is conducted. A specific frequency range of [45,72]Hz is

selected for analysis due to the fact that obvious differences in the power spectrum density data

in A1, A3, A6 and A8 within this frequency range can be observed before and after damage, as

shown in Figure 11.

Using the measured data from the accelerometers installed at all positions is not necessary

for the proposed identification approach. As a result, only accelerometers A1, A3, A6 and A8

are used for damage identification. To investigate the data from which accelerometers are more

efficient for identification, the accelerometers are divided into two groups: (1) G1: A1&A8 and

(2) G2: A3&A6.

Identification results are shown in Figure 12. As could be seen, the proposed approach

with sparse regularization could identify the damage location (Element 12) clearly. Compared

to G1, G2 results in more satisfactory damage extent assessment. The optimal regularization

parameters are λ = 3.074 × 10−12 for G1 and λ = 1.980 × 10−12 for G2. Figure 12(c) is
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Figure 13 Power spectrum density of acceleration at: (a)A1, (b)A2, (c)A3 and (d)A4

concerned with the identified results without any sparse regularization for G1. As is observed,

neither damage location nor damage extent could be appropriately identified in such situation.

Sparse regularization has demonstrated a pronounced effect on the accuracy and robustness for

the identification process. To testify the convergence of the proposed approach, the number of

iterations is illustrated in Figure 12(d). One can find that damage is clearly identified after

100 steps. This result verifies the convergence of the proposed method.

Although the proposed identification approach is a procedure of updating damage parameter

of the identified model to best fit the constitutive relation, rather than the dynamic response of

the experimental structure, the power spectrum densities of the baseline beam model, identified

model and experimental DF at A1-A4 are depicted in Figure 13. One can find that the power

spectrum density of the identified model corresponds with the experimental DF well. This

case shows that the proposed approach is as effective to identify the damage parameters as

those methods which measure the response discrepancies between the numerical model and the

dynamic test results.

6 Conclusions

Usage of the error in constitutive relation for damage identification has gained increasing atten-

tion from many engineers recently. An effective and simple solution procedure so as to use the

CRE as the objective function is crucial to the development of this technique. A spectrum-driven

damage identification strategy based on the min-CRE approach was proposed in this paper. The

20



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

sparse regularization has been enforced to enhance the robustness of this approach with intro-

ducing little additionally computational effort due to the favorable mathematical features of

the CRE objective function. The AM method was used to get the solution to this nonlinear

optimization problem. The proposed method has the advantage that only measurement power

spectrum density data from few limited sensors are needed for damage identification. Numerical

and experimental verification examples show that the proposed method is insensitive to mea-

surement noise and effective for both small and large damage identifications. Structures with

damages occurring at less locations are recommended for the proposed approach. Extending

this method to the large scale practical strictures will be discussed in the further research.
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APPENDIX

A.1 Decomposition of the stiffness matrix

Consider a structure occupying the domain Ω which is divided into m elements, for each element

e in the field of Ωe, the element stiffness matrix can be written as

Ke =

∫
Ωe

BeD
′
eBedΩ = LeDeRe (A-1)

The specific decomposition of the element stiffness matrix for 1D spring element and 2D Euler-

Bernoulli beam element are given below.

• 1D spring element where ki denotes the stiffness of the ith spring

De = ke, Re =
(

1 −1
)

= LT
e . (A-2)

• 2D Euler-Bernoulli beam element with length h, Young’s modulus E, cross-sectional area

A and inertial moment I

Le =



1 0 0

0 0 2
√

3
h

0 1
√

3

−1 0 0

0 0 −2
√

3
h

0 −1
√

3


,

De =


EA 0 0

0 EI 0

0 0 EI

 ,

Re =


1
h 0 0 − 1

h 0 0

0 0 1
h 0 0 − 1

h

0 2
√

3
h2

√
3
h 0 −2

√
3

h2

√
3
h

 .

(A-3)
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Define a generalized discrete stress σe = DeReu
e, where σe is in the form of column matrix,

and let the global stiffness matrix obtained by K =
∑

e TeTKeTe, where Te is the local assembly

matrix mapping the global DOFs into the elemental DOFs. We can then derive the equation

Ku =
∑
e

TeTKeTeu

=
∑
e

TeTKeue

=
∑
e

TeTLeDeReu
e

=
∑
e

TeTLeσ
e =

(
T1T

L1 T2T
L2 · · · , TmTLm

)

σ1

σ2

...

σm



(A-4)

Let L denote
(
T1T

L1 T2T
L2 · · · , TmTLm

)
and σ denote

(
σ1 σ2 · · · , σm

)T
. The

equation as described in Eq. (6) can be finally obtained.

A.2 UMF step

To see more into the UMF step Eq. (18), the objective function Eq. (16) is regrouped into

eCRE(x,θ(j−1)) =
1

2

∫ ωmax

ωmin

‖D(θ(j−1))
− 1

2
((

D(θ(j−1))R− c2c1A
+M,−Z

)
x

−c2A
+a
√
S0(ω)

)
‖2z(ω)dω

(A-5)

where x = (ũ;p). For the sake of convenience, superscript U and M correspond to the unmea-

sured and measured parts of the array in follows, respectively. Minimization of the objective

function over the mechanical field x yields ũ(j)

p(j)

 = x(j) =

 ũk(j)

(RUU )−1(SU −RUM ũk(j))


R = (

(
D(θ(j−1))R− c2c1A

+M,−Z
)T

D(θ(j−1))
−1(
(
D(θ(j−1))R− c2c1A

+M,−Z
)

S = (
(
D(θ(j−1))R− c2c1A

+M,−Z
)T

D(θ(j−1))
−1c2A

+a
√
S0(ω).

(A-6)

As p(j) is obtained, σ̃(j) could be easily assembled based on equation (15).
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A.3 UMP step

To update the damage parameter θ, the objective function in (Ps) is divided by each element e

eeCRE(ũe(j), σ̃
e
(j), θe) =

1

2

∫ ωmax

ωmin

‖(θeDe)
− 1

2

(
θeDeReũ

e
(j) − σ̃

e
(j)

)
‖2z(ω)dω + λ|θe − θ0e|

=

(
aeθe +

be
θe

+ ce

)
+ λ|θe − θ0e|, e = 1, · · · ,m

ae =
1

2

∫ ωmax

ωmin

ũeT(j)R
T
e DeReũ

e
(j)z(ω)dω,

be =
1

2

∫ ωmax

ωmin

σ̃eT(j)D
−1
e σ̃

e
(j)z(ω)dω,

ce : constant term.

(A-7)

Minimization of the objective function over every single-variable θe in each element results in

θe(j) = arg min

(
aeθe +

be
θe

+ ce

)
+ λ|θe − θ0e|

=



√
be

ae + 2λ
, if λ <

1

2

(
be
θ2

0e

− ae
)

√
be

ae − 2λ
, else if λ <

1

2

(
ae −

be
θ2

0e

)
θ0e , else λ ≥ 1

2

∣∣∣∣ae − be
θ2

0e

∣∣∣∣
, e = 1, · · · ,m.

(A-8)
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