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The spectrum of a fast shock breakout from a stellar wind
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ABSTRACT
The breakout of a fast (>0.1c), yet sub-relativistic shock from a thick stellar wind is expected
to produce a pulse of X-rays with a rise time of seconds to hours. Here, we construct a
semi-analytic model for the breakout of a sub-relativistic, radiation-mediated shock from
a thick stellar wind, and use it to compute the spectrum of the breakout emission. The
model incorporates photon escape through the finite optical depth wind, assuming a diffusion
approximation and a quasi-steady evolution of the shock structure during the breakout phase.
We find that in sufficiently fast shocks, for which the breakout velocity exceeds about 0.1c,
the time-integrated spectrum of the breakout pulse is non-thermal, and the time-resolved
temperature is expected to exhibit substantial decrease (roughly by one order of magnitude)
during breakout, when the flux is still rising, because of the photon generation by the shock
compression associated with the photon escape. We also derive a closure relation between
the breakout duration, peak luminosity, and characteristic temperature that can be used to test
whether an observed X-ray flare is consistent with being associated with a sub-relativistic
shock breakout from a thick stellar wind or not. We also discuss implications of the spectral
softening for a possible breakout event XRT 080109/SN 2008D.

Key words: radiation: dynamics – shock waves – gamma-ray burst: general – supernovae:
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1 I N T RO D U C T I O N

Radiation-mediated shocks (RMS) play a key role in shaping the
early emission observed in various types of cosmic explosions.
The radiation trapped inside the shock is released upon breakout
of the shock from the thick envelope enshrouding the source of
the explosion. The structure and velocity of the shock, and the
characteristics of the consequent emission depend on the type of
the progenitor, the explosion energy, and the angular extent of the
ejecta (for a recent review, see Waxman & Katz 2017). While in
certain situations the shock created in the explosion may become
relativistic (Tan, Matzner & McKee 2001; Nakar & Sari 2012;
Kyutoku, Ioka & Shibata 2014), in the majority of the events it is
sub-relativistic, albeit fast.

In progenitors which are surrounded by sufficiently tenuous
circumstellar medium, the breakout occurs as the shock approaches
the sharp edge of the stellar envelope, whereupon it undergoes an
abrupt transition from an RMS to a collisionless shock. However,
if the progenitor is surrounded by a thick enough stellar wind,
the shock continues to be radiation mediated also after it emerges
from the stellar envelope and continues to propagate down the
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wind (Campana et al. 2006; Waxman, Mészáros & Campana 2007;
Soderberg et al. 2008; Katz, Budnik & Waxman 2010; Balberg &
Loeb 2011). The shock physical width then increases during its
propagation since the optical depth of the wind decreases.

In relativistic shocks, the breakout is significantly delayed, owing
to opacity self-generation. It has been shown (Granot, Nakar &
Levinson 2018) that for a sufficiently high shock Lorentz factor
γ s, at which the immediate downstream temperature approaches
mec2/3, the transition to a collisionless shock occurs at a radius
beyond which the (pair unloaded) Thomson optical depth to infinity
ahead of the shock is τ � meγ s/mp. This is because beneath this
radius, the number of escaping photons that are backscattered into
the flow direction is larger than the number of electrons in the
far upstream flow, giving rise to an accelerated pair production. In
highly non-relativistic RMS, where pair production is negligible,
the transition takes place once the optical depth ahead of the
shock approaches c/vs, where vs is the shock velocity. One might
naively suspect that in the intermediate regime, specifically for
shock velocities vs/c >

√
me/mp, pair production may become

substantial, owing to a steepening of the shock or formation of
a subshock that enhances the temperature. If true, it can lead to
a delayed breakout as in the relativistic case. However, this can
only happen if photon generation within a diffusion length is not
efficient enough during the breakout. We show below that the
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temperature does not rise, or rather decreases, during the photon
escape. In any event, once breakout commences and the radiative
losses start increasing, the shock structure gradually changes, and
this might affect the downstream temperature and the spectrum of
emitted radiation. Thus, detailed calculations of the temperature
profile during the breakout phase are desirable in order to address
these issues. Such calculations can be performed using numerical
methods, like the one developed by Ito et al. (2018). However, until
this method will be adjusted to non-relativistic shocks, one may
resort to an approximate analytic approach in order to get physical
insight.

We note that a sub-relativistic shock breakout from a wind
is expected for a smaller progenitor than a red supergiant star.
Such a progenitor like a Wolf–Rayet (WR) star is known to
eject winds before exploding as a Type Ic or Ib supernova (e.g.
Tanaka et al. 2009; Gal-Yam et al. 2014). Although the shock
breakout from a wind is recently observed to be common in Type
II supernovae (e.g. Moriya et al. 2011; Ofek et al. 2014; Yaron
et al. 2017; Förster et al. 2018), the candidates for sub-relativistic
breakouts are still rare (Soderberg et al. 2008; Mazzali et al. 2008;
Modjaz et al. 2009) because of its short, faint, and X-ray signal.
Therefore, theoretical predictions are important for maximizing the
observational prospects. A fast shock breakout may also happen
in a binary neutron star merger like GW170817 (Abbott et al.
2017a,b) when a cocoon breaks out from the merger ejecta, and the
breakout emission can dominate the jet emission (Kasliwal et al.
2017; Gottlieb et al. 2018; Nakar et al. 2018) because an off-axis
jet is faint for a large viewing angle (Ioka & Nakamura 2018).

At sufficiently low shock velocities, vs/c � 1, the structure of an
RMS can be computed analytically by employing the diffusion
approximation. Such an approach has been undertaken by, e.g.
Weaver (1976), Blandford & Payne (1981a,b), and Katz et al.
(2010). While Blandford & Payne (1981b) considered shocks in
which photon advection by the upstream flow dominates over
photon production, that might be suitable for gamma-ray burst
outflows, Weaver (1976) and Katz et al. (2010) computed the
structure of the RMS under conditions more suitable for shock
breakout in stellar explosions. These studies indicate that the
dominant photon source in such shocks is bremsstrahlung emission
by the shocked electrons, and that once the shock velocity exceeds
about 0.05c the radiation in the immediate shock downstream falls
out of thermodynamic equilibrium and its temperature becomes
extremely sensitive to the shock velocity: Td ∝ v8

s . This strong
dependence of temperature on velocity has important implications
for the observational diagnostics of the breakout signal.

The analyses outlined above assume that the shock is infinite.
However, as mentioned earlier, during the breakout phase an
increasing fraction of the shock energy is radiated away, and the
question arises as to what effect this might have on the structure
and emission of the shock. Attempts to address this issue in case of
a sudden breakout from a stellar envelope have been made recently
using time-dependent models (Sapir, Katz & Waxman 2011; Katz,
Sapir & Waxman 2012; Sapir, Katz & Waxman 2013). Here, we
consider a gradual breakout from a stellar wind. Under the assump-
tion that the shock continuously adjusts to local conditions, so that
it can be considered quasi-steady at any given time, we construct an
analytic model that takes into account photon escape, and compute
the temperature profile inside the shock for different values of the
energy fraction escaping the system, by solving the photon transfer
equation in the diffusion limit. The resultant temperature profiles
are shown to be insensitive to the closure condition (e.g. angular
distribution of the radiation) invoked upstream of the shock. We

find that in fast shocks (v/c >∼ 0.1) the peak temperature decreases
as the energy fraction escaping the shock increases. We also discuss
the implications for the observed breakout signal, in particular to
compare with a possible breakout event XRT 080109/SN 2008D.

2 A NA LY T I C M O D E L O F T H E SH O C K
STRUCTURE

Consider a sub-relativistic RMS propagating in the negative x-
direction (v = vx̂ in the shock frame). We suppose that in the
frame of the shock the flow is stationary (∂ t = 0), and choose x
= 0 to be the boundary upstream from which photons escape to
negative infinity, where the coordinate x is measured in the shock
frame. We further assume that the pressure is dominated by the
radiation everywhere, and neglect the plasma pressure. In what
follows, upstream quantities are labelled with a subscript u, whereby
vu, nu, nγ u, and pγ u are the velocity, plasma density, photon density,
and radiation pressure in the far upstream flow, as measured in the
shock frame. As will be confirmed, for the range of shock velocities
considered below pair production can be ignored, hence the plasma
density satisfies np = ne ≡ n everywhere.

In the diffusion limit, the photon number flux and radiation energy
flux are given, to second order in vu/c, by jγ = jγ x̂ and f γ = fγ x̂,
respectively, with

jγ = vnγ − c

3nσT

dnγ

dx
, (1)

fγ = 4pγ v − c

nσT

dpγ

dx
, (2)

where σ T is the Thomson cross-section (Blandford & Payne
1981a,b). The fluid equations in the shock frame are reduced to:

mpnv = mpnuvu ≡ J , (3)

d

dx
(Jv + pγ ) = 0, (4)

d

dx

(
Jv2/2 + fγ

) = 0. (5)

The above equations can be rendered dimensionless upon defining
p̃γ = pγ /Jvu, ṽ = v/vu, and dτ � = (vu/c)neσ Tdx (note that the
velocity is included in the definition of the optical depth). Integrating
equations (4) and (5), using ṽu = 1, gives:

ṽ + p̃γ = 1 + p̃γ u, (6)

dp̃γ

dτ �
= −1

2
+ 1

2
ṽ2 + 4p̃γ ṽ − 1

2
f̃γ u, (7)

where

f̃γ u = 2fγ u

Jv2
u

(8)

denotes the fraction of shock energy that escapes to infinity, and
must satisfy f̃γ u > −1. Equations (6) and (7) admit an analytic
solution for arbitrary values of p̃γ u and f̃γ u:

ṽ = 4

7
(1 + p̃γ u) + η

7
tanh

[η

2
(τ0 − τ �)

]
, (9)

where

η =
√

(3 − 4p̃γ u)2 + 56p̃γ u − 7f̃γ u (10)
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and

τ0 = 2

η
arctanh

[
3 − 4p̃γ u

η

]
= 1

η
ln

η + 3 − 4p̃γ u

η − 3 + 4p̃γ u
, (11)

for the boundary condition ṽu = 1 at τ � = 0. Here, τ 0 is roughly the
centre of the shock transition layer (the precise location is slightly
shifted, depending on the choice of parameters). It can be readily
verified that the downstream velocity, ṽd = ṽ(τ � → ∞), satisfies
ṽd ≥ 0 for f̃γ u ≥ −1, and that no physical solutions exist for f̃γ u <

−1, as expected. It is also seen that with the choice (dp̃γ /dτ �)u = 0,
or f̃γ u = 8p̃γ u in our notation, which corresponds to an infinite
shock with no escape, the solution obtained by Blandford & Payne
(1981b) is recovered upon defining τ � − τ 0 → τ �.

2.1 A note on boundary conditions

The solution described by equation (9) depends, formally, on two
free parameters, p̃γ u and f̃γ u. In an infinite shock with a cold
upstream, the physical choice is p̃γ u = f̃γ u = 0, since photons
cannot reach distances larger than a few diffusion lengths upstream
of the shock. In a finite shock with photon escape, the value of
f̃γ u specifies the energy fraction which is radiated away. However,
within the diffusion approximation the value of p̃γ u is uncertain,
and there seems to be a degeneracy in the solution. In reality, p̃γ u

is fixed by additional physics beyond the diffusion approximation.
One naively anticipates some relation of the form fγ u = eγ uvrad,
where eγ u is the energy density of the escaping radiation and vrad is
some effective velocity that depends on the angular distribution of
the radiation and, perhaps, some other details. If, for instance, one
invokes complete beaming at the boundary x = 0, then eγ u = pγ u,
vrad = −c, and fγ u = −pγ uc. In the other extreme, if the escaping
radiation is taken to be sufficiently isotropic just upstream of the
shock, then the effective velocity is vrad � −vu, the equation of
state is eγ u = 3pγ u, and thus fγ u = −3pγ uvu. In reality, a similar
relation likely holds, but with a somewhat different prefactor. We
shall henceforth adopt the relation

f̃γ u = −2αp̃γ u, (12)

and explore the dependence of the solution on the dimensionless
parameter α (where a factor of 2 comes from the normalization in
equation 8). Note that α = c/vu for the complete beaming case and
α = 3 for the isotropic case. To check the sensitivity of the solutions
to the choice of α, we examine a broader range of values, 1 ≤ α

≤ c/vu. In the above prescription α = 1 corresponds to a diffusion
velocity vrad = −vu/3.

2.2 Shock solutions

Solutions for the shock profile are exhibited in Fig. 1 for vu/c = 0.25
and different values of f̃γ u and α. As seen, photon escape leads to
shock steepening, as expected. Specifically, for given values of vu

and nu, the shock transition layer becomes somewhat narrower as
f̃γ u increases, and the far downstream velocity vd becomes smaller,
giving rise to correspondingly larger values of the downstream
density nd, and somewhat larger values of the pressure pγ d. Quite
generally, the dependence of the solution on α is found to be rather
weak (as long as the shock velocity is sub-relativistic i.e. c/vu

<∼ 3).
It is worth pointing out that, formally, as the fraction of shock

energy which is radiated away approaches unity, namely f̃γ u = −1,
we have η = 4 + 2/α compared with η = 3 in the infinite case
(f̃γ u = 0) with equations (10) and (12). Since the width of the
transition layer scales as ∼2/η (see equation 9), it means that even

Figure 1. Normalized velocity (upper panel) and pressure (lower panel)
profiles plotted as functions of the optical depth τ � for different values of
the radiation energy flux upstream, f̃u = −0.001,−0.2,−0.4, −0.6, and α

= 4 (complete beaming for c/vu = 4) and α = 1, where f̃γ u = −2αp̃γ u.
The blue line corresponds to an almost infinite shock.

Figure 2. A plot of |f̃γ u| versus τ 0 for α = 1 (dashed line) and α = 4 (solid
line).

in the presence of substantial losses the shock width remains of order
c/vu, and is reduced only by a numerical factor, roughly (4 + 2/α)/3.
This trend is seen in Fig. 1, and more clearly in Fig. 2, where |fγ u| is
plotted against τ 0. Fig. 2 confirms that radiative losses commence
roughly when the optical depth from the centre of the shock transi-
tion layer to infinity is about c/vu and become nearly maximal when
it equals (c/vu)ln [7/(1 + 4/α)]/(4 + 2/α), approximately 0.3c/vu

for α = 4. The prime reason, as can be seen from equation (12)
and Fig. 1, is that the upstream pressure required for substantial
losses is a small fraction of the downstream pressure (unless α

is small). Even for α = 1, we find pu/pd � 0.2 at f̃γ u = −0.5,
and a shock width of 	τ � 0.5c/vu > 1. It practically means that
the diffusion approximation is a reasonable approximation even at
large losses. On the other hand, the downstream velocity approaches
zero as f̃γ u → −1, implying increasingly strong compression of the
downstream layer as breakout proceeds and |fγ u| increases.

2.3 Computing the temperature profile

The local temperature can be obtained from the relation

kT (x) = pγ (x)

nγ (x)
, (13)
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once the photon density is known. The evolution of the latter is
governed by the equation

djγ

dx
= ṅγ , (14)

with jγ given by equation (1), where ṅγ is a photon source that
accounts for all emission and absorption processes. Under the
conditions envisaged here, photon generation is dominated by
bremsstrahlung emission of the hot electrons. Absorption can be
accounted for by including the suppression factor

fab = 1 − nγ

nBB
= 1 − 2.4 × 10−31
−3nγ , (15)

where 
 = kT/mec2 (Weaver 1976) that considerably simplifies the
calculations and is sufficient for our purposes. Specifically, ṅγ =
Qfffab. For the thermal bremsstrahlung source, we adopt the form
(equation 3.2 in Weaver 1976):

Qff = 1

2
αenpneσTc
−1/2�eff, (16)

expressed in terms of the fine structure constant αe and the
coefficient �eff = E1(y)geff(y), where y ≡ hνc/kT, E1(y) is the first-
order exponential integral function, which satisfies E1(y) � −ln y
− 0.5772 at y � 1, and geff ≈ 1.226 − 0.475ln y + 0.0013(ln y)2 is
the Gaunt factor. The cut-off frequency, νc(T, n), corresponds to the
energy below which newly generated soft photons are re-absorbed
before being boosted to the thermal peak by inverse Compton
scattering. It is derived in Katz et al. (2010) and is given explicitly by
their equation (11), y = (kT/mec2)−9/4(αegff(mec2)−3h3c3n/32π )1/2.
Combining equations (1), (14), and (16), we finally arrive at

d

dτ �

[
ñγ ṽ − 1

3

dñγ

dτ �

]
= αe

2
ñ(c/vu)2
−1/2�efffab ≡ 3ṽQ̃γ , (17)

with ñγ ≡ nγ /nu = (mp/me)(vu/c)2(p̃γ /
) for a given solution
p̃γ (τ �) of the shock equations, specifically equations (6) and (9).
Note that the photon flux is normalized as j̃γ ≡ jγ /nuvu = ñγ ṽ −
(1/3)dñγ /dτ �.

This equation is subject to the boundary conditions djγ /dτ � → 0
at τ � → ∞, and

jγ u = fγ u

3kTu
(18)

at τ � = 0, where Tu is the value of the temperature there. The
solution that satisfies the boundary conditions is obtained with the
Green’s function method as

ñγ (x̃) = j̃γ u

ṽeff (x̃)
+

∫ ∞

0
G(x̃, ỹ)Q̃γ (ỹ)dỹ, (19)

where we introduce a new coordinate,

dx̃ = 3(vu/c)nuσTdx = 3ṽdτ �, (20)

and the Green’s function is

G(x̃, ỹ) =
⎧⎨
⎩

ex̃−ỹ

ṽeff (ỹ) , (x̃ ≤ ỹ)
1

ṽeff (x̃) , (x̃ > ỹ)
(21)

with an effective velocity

1

ṽeff (x̃)
=

∫ ∞

x̃

e−(x̃′−x̃)

ṽ(x̃ ′)
dx̃ ′. (22)

The boundary condition djγ /dτ � → 0 at the far downstream, τ � →
∞, is satisfied thanks to the suppression factor fab in equation (15),
that leads to a thermodynamic equilibrium, Q̃γ → 0. A numerical

solution of equation (19) is obtained through iteration: Q̃γ is
calculated from 
 (and ñγ in fab) with equation (17), ñγ is calculated
from Q̃γ with equation (19), and 
 is calculated from ñγ with
equation (13). The convergence of the iteration becomes slow for
large |f̃γ u|. The photon flux upstream, j̃γ u, is adjusted to satisfy
the boundary condition in equation (18) by the second numerical
iteration.

Fig. 3 shows the temperature profiles thereby computed for
an upstream velocity vu/c = 0.25, two values of the density,
nu = 1012 cm−3 (left-hand panel) and nu = 1015 cm−3 (right-
hand panel), and different values of the escape parameter, f̃u =
−0.001,−0.2, −0.4, and − 0.6, as indicated. The thick solid lines
are solutions obtained for α = 4 in equation (12) (complete
beaming), the thin dotted lines for α = 3 (isotropic case), and the
dashed lines for α = 1. The case f̃u = −0.001, that corresponds to
a nearly infinite shock, is consistent with the previous calculations
outlined in Weaver (1976)1 and Katz et al. (2010) for α = 4 and 3.
For α = 1, the drop-off at small optical depths somewhat deviates
from the infinite shock solution. This is due to the higher upstream
pressure required to obtain the same losses. We verified that it does
converge to the infinite shock case for smaller values of f̃γ u.

Fig. 4 shows the photon number fluxes |j̃γ | as functions of
the optical depth τ � for the upstream velocity vu/c = 0.25 and
density nu = 1012 cm−3 and different escape fractions f̃u =
−0.001,−0.2, −0.4, and − 0.6 with α = 4. The negative flux part
is plotted by dashed lines. As photons escape, the photon number
fluxes change the sign at τ � � 2, i.e. after the shock compression as
we can see from Fig. 1. This is consistent with the picture that the
photons generated by the shock compression diffuse upstream to be
released as breakout emission. Furthermore, we can check that the
sign changes at ∼1/4 of the diffusion length 	x ∼ c/vnσ T.

As Fig. 3 indicates, the temperature of the escaping radiation
decreases as the escaping flux |f̃γ u| increases. This is seen more
clearly in Fig. 5, where the upstream temperature is plotted against
|f̃γ u|. The temperature declines exponentially as the loss rate
increases. Consequently, a spectral softening is anticipated during
the course of the breakout. The sole reason for this behaviour is
the increase in the shock compression ratio with increasing losses,
that leads to enhancement of the photon generation rate. To get
some insight, we give a simple heuristic derivation of the upstream
temperature: the escaping photons is generated within ∼1/4 of
diffusion length 	x ∼ c/vnσ T so as not to be swept downstream
(see Fig. 4). From equations (14) and (16), the photon number flux
near the upstream boundary is approximately given by

jγ ∼ Qfffab	x/4 ∼ αenc2
−1/2�eff/8v, (23)

where we can put fab ≈ 1. Here, the photons are mainly generated
after the deceleration down to v ∼ vd (or the compression n ∝
1/v). The number flux also satisfies the boundary condition in
equation (18). By approximating jγ ∼ |jγ u| and T ∼ Tu, we obtain
an analytic approximation for the upstream temperature as

kTu ∼ 1

mec2

(
4mpv

2
uv

2
d f̃γ u

3αec2�eff

)2

. (24)

This relation is shown in Fig. 5 by dashed lines, and elucidates the
dependence of Tu on vd,

1The temperature profile at small optical depths, below τ � � 0.3, is
somewhat different from that obtained in Weaver (1976), owing to the
different boundary condition used by this author. However, this does not
affect the solution in the entire range.
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Figure 3. Temperature profiles as functions of the optical depth τ � for the upstream velocity vu/c = 0.25 and densities nu = 1012 cm−3 (left-hand panel) and
nu = 1015 cm−3 (right-hand panel). We take the radiation energy flux upstream f̃u = −0.001,−0.2, −0.4, and − 0.6, and α = 4 (complete beaming for c/vu

= 4; solid lines), α = 3 (isotropic case; dotted lines), and α = 1 (dashed lines) where f̃γ u = −2αp̃γ u. The photon number flux upstream is adjusted to satisfy
the boundary condition jγ u = fγ u/3kTu.

Figure 4. Photon number fluxes |j̃γ | as functions of the optical depth τ �

for the upstream velocity vu/c = 0.25 and density nu = 1012 cm−3. The
negative fluxes are shown by dashed lines. We take the radiation energy
flux upstream f̃u = −0.001,−0.2,−0.4, and − 0.6, and α = 4 (complete
beaming for c/vu = 4).

Figure 5. Expected temperature evolution as a function of the radiation
energy flux upstream (i.e. escaping flux fraction) |f̃u|. The temperature
peaks just after the breakout and exponentially decreases for fast shocks
with vu/c

>∼ 0.1. We also plot the analytic approximation for the upstream
temperature in equation (24) by dashed lines with using �eff = 20 for vu/c =
0.25 and nu = 1015 cm−3, and �eff = 40 for vu/c = 0.25 and nu = 1012 cm−3.

Figure 6. Same as the right-hand panel in Fig. 3, but for vu/c = 0.08.

To examine the dependence on the shock velocity, we obtained
solutions for vu/c = 0.08 (see Fig. 6). Contrary to the previous
case, the temperature profile is essentially independent of the loss
rate. This is expected since at such low velocity, the characteristic
length over which a full thermodynamic equilibrium is established
becomes comparable to the shock width. The numerical result
exhibited in Fig. 6 is in a good agreement with the analytic result
derived in equation (14) in Katz et al. (2010).

2.4 Caveats

The quasi-steady, planar approximation invoked in our analysis is
questionable, since at breakout the diffusion time across the shock
and the expansion time are comparable. On the one hand, dynamical
effects might lead to some suppression of the photon production
rate inside the shock and a corresponding increase of the immediate
downstream temperature. On the other hand, sphericity might give
rise to adiabatic losses of the expanding shocked layer. What is the
net effect on the observed temperature is difficult to assess.

Another concern is the validity of the RMS solution. Within
the diffusion approximation, it has been found above that the
radiation can support the shock even when the losses become
large. This requires causal contact across the shock to allow its
adjustment of the changing conditions. In reality, a subshock will
eventually form due to dynamical effects, which may alter the

MNRAS 484, 3502–3509 (2019)



Spectrum of a fast shock breakout from a wind 3507

spectrum. Note, however, that the jump conditions across the
entire shock transition are determined by the overall energy and
momentum fluxes upstream (i.e. incoming flux minus escaping
flux). Consequently, the presence of a subshock will not affect
the downstream temperature considerably. It can lead to particle
acceleration that might give rise to formation of a non-thermal tail
via Comptonization once the subshock energy becomes substantial,
but is unlikely to alter significantly the evolution of the downstream
temperature during breakout. A complete treatment of these effects
is beyond the scope of this paper (see also Section 3.2).

3 OBSERVATIONAL CONSEQUENCES

As the shock emerges from the stellar envelope, it starts propagating
in the wind until breaking out at some radius Rbo at time tbo = Rbo/vbo

at velocity vbo. In the following, we adopt a wind profile of the
form ρw = A(r/R�)−2, here R� denotes the progenitor’s radius. The
shock accelerates during propagating through the decreasing density
profile of the stellar envelope, and the profile of the accelerated
ejecta can be expressed in terms of the maximum velocity v0 of the
ejecta subsequent to the shock emergence from the stellar envelope
in the form (Nakar & Sari 2010)

E(v) = E0(v/v0)−λ = 4πcv0

κ
R2

� (v/v0)−λ, (25)

where λ = (1 + 0.62n)/0.19n, and 1.5 ≤ n ≤ 3 is the polytropic
index that depends on the progenitor type. Here, E0 is the total
energy contained in a shell of optical depth c/v0 with opacity κ . The
breakout velocity can be readily found by equating the swept up
energy, mbov

2
bo, where mbo = 4πAR2

�Rbo is the swept-up mass, with
the energy injected into the shock, E(vbo), noting that at the breakout
radius, Rbo, the optical depth of the wind,2τw,bo = κmbo/4πR2

bo,
satisfies τw, bo = c/vbo. This finally yields

vbo = v0(R�/Rbo)2/(λ+1) = v0(R�/v0tbo)2/(λ+3). (26)

By employing equations (A2), (A4), and (A7) for v0 in Nakar &
Sari (2010), the breakout velocity can be expressed in terms of
the explosion energy, E = 1051E51 erg, and ejecta mass, Mej =
10 M10 M�, as

vbo � 0.1c E0.44
51 M−0.31

10 t−0.25
bo,2 , (27)

where tbo, 2 = tbo/102 s (Svirski & Nakar 2014a,b). The above
analysis predicts hard X-ray emission with a significant softening
during the breakout phase for fast shocks, vbo

>∼ 0.1c, or, using
equation (27), for breakouts that satisfy tbo,2

<∼ E1.76
51 M−1.24

10 .
For illustration, we present in Fig. 7 the spectral energy dis-

tribution, νFν , integrated over the duration of the breakout phase,
assuming that at any given time the radiation has a thermal spectrum
characterized by the local temperature at the emitting surface (i.e.
the upstream temperature in our solution). To be precise, the time-
integrated spectrum is given formally by∫

νFνdt ∝
∫

E(τ )|fγ u(τ )|ν4
(
ehν/kT (τ ) − 1

)−1
dτ, (28)

where τ ∝ r−1 ∝ vλ + 2 is the optical depth at radius r and time t
= r/v because the swept-up wind energy 4πArv2 is equal to E(v)
∝ v−λ, E(τ ) ∝ v−λ ∝ τ−λ/(λ + 2) is the shock energy at τ , fγ u(τ ) is
the corresponding escape parameter (see Fig. 2) by equating τ to
τ0(f̃γ u) in equations (11) and (12), and T(τ ) is the temperature (see

2For simplicity, we adopt the same opacity for the envelope and the wind.

Figure 7. Time-integrated spectral energy distribution for vu/c = 0.25,
nu = 1013 cm−3, α = 4, and n = 3 taking the temperature softening in
Fig. 5 into account. The origin of the vertical axis is arbitrary. We also plot
the photon spectral indexes of a possible breakout event XRT 080109/SN
2008D, � = 2.1+0.3

−0.4 (Modjaz et al. 2009) and � = 2.3+0.3
−0.3 (Soderberg et al.

2008).

Fig. 5). In Fig. 7, we connect the thermal peaks for corresponding
frequencies. The time-integrated spectrum spreads over a broad
frequency range because of a softening during the breakout phase.

3.1 Deriving the physical parameters from the observables

The breakout pulse features three general observables – luminosity,
duration, and the typical photon frequency, which we henceforth
associate with the characteristic breakout temperature. Following
the breakout emission, the luminosity declines, sometimes slowly,
as a power law during the transition of the shock from being
radiation dominated to collisionless (see discussion below), and
thus the breakout observables should be associated only with the
rising part of the observed signal, specifically, the luminosity is
roughly the peak luminosity, the duration is the emission rise time
and the temperature is roughly one-third the peak energy of the
time-integrated spectrum of the rising flux. These three observables
are determined by two physical parameters – the breakout velocity
and radius. Thus, the model is overconstrained, whereby any two
observables are sufficient to determine the physical parameters, and
the third one can be used as a consistency check of the model.
The luminosity and duration are related to the physical parameters
through (e.g. Svirski & Nakar 2014b):

tbo ≈ Rbo

vbo
, (29)

Lbo ≈ 1.5 × 1042tbo,2v
3
bo,−1 erg s−1. (30)

The dependence of the radiation temperature on the velocity and
radius cannot be expressed as a simple analytic formula (see
equation 24 and Fig. 5). Moreover, as we have seen above it varies
with time (as the escape fraction increases). However, a rough
estimate of the typical breakout temperature can be obtained by
finding the radiation temperature when the escape fraction is 0.5.
Fig. 8 shows the typical temperature for f̃u = −0.5 and α = 4 as a
function of breakout time, for several shock velocities, vu/c = 0.1,
0.2, 0.3, and 0.4. The density is determined by the opacity condition
nσ TRbo = c/vbo. With this Fig. 8, one can infer the shock velocity
from the observed quantities Tbo and tbo. It can then be compared to
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Figure 8. Typical temperature at the escape fraction f̃u = −0.5 with α = 4
as a function of breakout time-scale for several shock velocities vu/c = 0.1,
0.2, 0.3, and 0.4.

the velocity obtained from Lbo, thereby testing if a given observed
flare may have been the result of a shock breakout from a wind.

3.2 The observed light curve and spectral evolution

The above analysis relates the escaping fraction (i.e. luminosity) and
the radiation temperature to the instantaneous lab time at which the
quasi-steady, planar solution is obtained. It is naively anticipated
that this can be directly translated into the observed light curve
and time-resolved spectra during the breakout phase. However, in
practice geometrical (non-planar) effects, not accounted for by our
model, may alter these observables (though not the time-integrated
spectrum) in ways we now describe. The main point is that since the
breakout takes place once τ ≈ c/v > 1, the photons can still interact
with upstream gas also after escaping the shock. These interactions
conceivably include absorption and/or scattering of photons along
their path to the observer. First, let us consider absorption. Svirski,
Nakar & Sari (2012) have shown that when the post-shock plasma
is out of thermodynamic equilibrium then free–free absorption of
photons that escape the shock is negligible. However, if there are
partially ionized metals in the cold upstream then their X-ray opacity
can be considerable. To estimate the ionization fraction, we use the
ionization parameter ξ = L/nr2, where L is the luminosity of ionizing
radiation and n is the gas density, all expressed in cgs units. Chevalier
& Irwin (2012) (and references therein) have shown that when ξ >

104, radiation at a temperature of ∼10 keV fully ionize all metals
including iron. In case of a shock breakout from a stellar wind with
n ∝ r−2, the ionization depends only on the shock velocity, roughly
as ξ ≈ 108(vs/c)3. Consequently, for the shocks considered here
(vs/c

>∼ 0.1) we have ξ > 105, hence photoabsorption by partially
ionized metals is not expected. Next, let us consider the effect of
scattering. For the shocks we consider here the Thomson optical
depth encountered by a photon escaping the shock is ∼2–3. Thus, a
non-negligible fraction of the escaping photons are scattered at least
once on their way to the observer by electrons at radii larger than
Rbo. This scattering cannot change the emitted spectrum but it will
affect the photon arrival time. Consequently, our simplified model
cannot fully account for the exact shape of the X-ray light curve
nor for the spectral evolution during the rising of the emission.
Nevertheless, we expect that the emission will show a hard-to-
soft evolution during the rise of the flux, and the time-integrated
spectrum to be non-thermal, similar to the one shown in Fig. 7.

Note that the spectrum is formed in a different way from the case
of a breakout from a stellar surface, in which the time-integrated
spectrum is the sum of radiation emitted form different positions of
the shocked material.

It is worth noting that the breakout emission dominates the rise
of the signal and, perhaps, the initial decay following the peak
luminosity (over a duration that does not exceed the risetime), but
not the entire luminosity evolution. The reason is that following
the breakout of the RMS a collisionless shock is formed which is
very efficient in converting the shock energy to X-rays (Svirski &
Nakar 2014a), at least as long as τ > 1. As a result, the observed
flux following the breakout phase should exhibit a slow power-
law decay until the collisionless shock reaches the full extent of
the wind (Svirski et al. 2012). The transition from RMS to a fully
collisionless shock is anticipated to be gradual, since the escaping
radiation accelerates the plasma ahead of the shock, at radii r >

Rbo, roughly to a velocity v ≈ vbo(Rbo/r)2, and once the shocked
gas that trails the radiation, and propagates at a velocity vbo arrives,
it drives a collisionless subshock that moves at a relative velocity
vbo − v into these pre-accelerated fluid. This subshock strengthens
gradually with time until either a full conversion is established or
until the shock reaches the edge of the wind. The post-shock electron
temperature is set by the balance between the heating and (mainly
inverse Compton) cooling and it is about ∼60 keV and less (Katz,
Sapir & Waxman 2011; Murase et al. 2011; Svirski et al. 2012;
Svirski & Nakar 2014a). We leave the calculation of the spectrum
during this phase to a future work.

The only event in which a fast (>0.1c) sub-relativistic shock
breakout from a thick wind was most likely observed is the X-
ray transient XRT 080109 (Soderberg et al. 2008; Mazzali et al.
2008; Modjaz et al. 2009). XRT 080109 is associated with the
Type Ibc supernova 2008D, favouring a WR progenitor, which are
known to eject winds (Tanaka et al. 2009; Gal-Yam et al. 2014).
The X-ray peak luminosity is 3.8+1

−1 × 1043 erg s−1, the rise time
is ∼50–100 s and after the peak it decays roughly as t−1 for about
300 s (Soderberg et al. 2008; Modjaz et al. 2009). The general
properties of the signal are in agreement with the interpretation of
a fast shock breakout from a thick wind (Chevalier & Fransson
2008; Svirski & Nakar 2014a,b). In this interpretation, the shock
breakout emission dominates during the rise and at later times, it is
possible that there is also contribution from the collisionless shock
that forms following the breakout. The radio observations identify
synchrotron emission and the inferred shock radius ∼3 × 1015

cm at ∼5 d implies a shock velocity of ∼0.25 c (Soderberg et al.
2008). A simple estimate, vbotbo, implies a breakout radius Rbo ∼
6 × 1011 cm and hence a density n ∼ c/vboσ TRbo ∼ 1013 cm−3. The
observed spectrum is consistent with a power-law spectrum with a
photon spectral index � = 2.1+0.3

−0.4 for the period 0–520 s (Modjaz
et al. 2009) and � = 2.3+0.3

−0.3 (Soderberg et al. 2008), showing a
significant hard-to-soft evolution (Soderberg et al. 2008). In Fig. 7,
we compare the breakout spectrum computed from the model with
the time-integrated spectral index of XRT 080109, which includes
also emission after the peak and is therefore most likely not purely
the shock breakout spectrum. It shows that the observations are
broadly consistent with the model prediction. We can also apply
the test presented in Section 3.1 to XRT 080109. Plugging Lbo =
4 × 1043 erg s−1 and tbo = 100 s into equation (30) implies vbo/c ≈
0.3. Now, using Fig. 8, we obtain Tbo ≈ 5 keV for vbo/c = 0.3 and
tbo = 100 s, in agreement with the observed spectrum.

We should mention that a power-law spectrum could be also
produced by other mechanisms. First, bulk Compton scattering
could shape a power-law spectrum because a typical photon experi-
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ences (c/v)2 scatterings, each one giving a fractional energy increase
∼(v/c)2 and a total average increase of order unity (Blandford &
Payne 1981a,b; Wang et al. 2007; Suzuki & Shigeyama 2010),
although the efficiency of the non-thermal emission may not be
enough (Suzuki & Shigeyama 2010). Second, as above mentioned,
the collisionless shock that forms following the breakout, accelerate
electrons to a temperature >∼ 60 keV. These electrons upscatter
soft photons to a power-law spectrum (Svirski & Nakar 2014a,b).
Future observations of shock breakouts that will separate between
the spectrum during the rise and following the peak will enable us
to distinguish between emissions that comes from the breakout of
the RMS and emission that interacts with electrons accelerated in
the collisionless shock that follows.

4 C O N C L U S I O N S

We have shown that the breakout of a sub-relativistic, fast (>0.1c)
shock from a thick stellar wind should lead to a broad time-
integrated spectrum during the rise of the observed flux and,
conceivably, softening of the time resolved spectrum, as shown
in Figs 5 and 7. The physical reason is that the photon genera-
tion (which decreases the temperature) is enhanced by the shock
steepening during the photon escape. We applied our results to
XRT 080109/SN 2008D and found them to be consistent with the
observed time-integrated, and the reported softening, of the X-ray
spectrum in this source in Fig. 7. We also derive a closure relation
between the breakout duration, peak luminosity, and characteristic
temperature in equations (29) and (30) and Fig. 8, which is also
found to be consistent with the observations of XRT 080109. Our
calculations are based on a semi-analytic model of a planar, RMS
that incorporates photon escape through the upstream plasma, treats
radiative transfer in the diffusion limit, and assumes a quasi-steady
evolution during the breakout phase.

While the time-integrated spectrum of the breakout signal is a
robust feature, the X-ray light curve and the time-resolved spectral
evolution may be altered by the interaction of the escaping radiation
with the plasma ahead of the RMS, at radii larger than the breakout
radius, where the planar approximation invoked in our analysis
breaks down. In particular, acceleration of the unshocked fluid ahead
of the RMS by the escaping radiation is expected to lead to the
gradual emergence of a collisionless sub-shock that strengthens over
a time comparable to or even longer than the breakout time. This
intermediate transition from the RMS phase to a fully collisionless
shock might have interesting observational diagnostics yet to be
explored.
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