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1 Introduction

Several theories have been extensively studied as a candidate for UV completed funda-

mental theory which describes our real world, such as string theory. While it must be

important to seek for such theories from theoretical aspects, low energy effective field the-

ories (LEEFT) have played an important role from the phenomenological point of view.

Many LEEFT have been constructed to explain the observational data. For example, in

cosmology, so-called modified gravity models have been extensively studied. One expecta-

tion is that it may be possible to reveal some nature of UV completion by constraining the

LEEFT parameters by observations. However, unless the connection between the UV com-

pletion and LEEFT becomes clear, it would be very difficult to obtain some information of

the fundamental theory from observations. From this perspective, it will be very important

to investigate quantitatively how the information of UV completion is encoded in IR data.

Recently, it has been argued that the 2 to 2 scattering amplitudes of low energy effective

field theories must satisfy an infinite number of inequalities, so-called positivity bounds,

in order to admit a local, analytic, unitary, and Lorentz invariant UV completion with a

mass gap [1–3], and these bounds are applied to various models (e.g., [4–7]). The existence

of such bounds means that locality, unitarity, analyticity, and Lorentz invariance of UV

completions are secretly encoded in LEEFT. Then, the following question will naturally

arise: all the assumptions are really necessary to derive positivity bounds obtained in the
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literature? If one can clarify which conditions on UV completions are necessary to derive

positivity bounds, one could extract information of UV completion more precisely, only

from IR data. For example, if positivity bounds were successfully derived without assuming

locality, such bounds could be useful to test unitarity, analyticity, or Lorentz invariance of

UV completion only from IR data.

This motivates us to investigate whether we can derive positivity bounds even when

the locality assumption on UV completion is removed. It is known that the modulus of the

forward scattering amplitude cannot grow faster than s (log s)2 in the limit s→∞ due to

the unitarity bound, assuming the polynomial boundedness of the amplitude at unphysical

region and existence of a mass gap. This bound is called Froissart-Martin bound [8, 9].

Here, s denotes one of the standard Mandelstam variable, corresponding to the center of

mass energy. Because it is often naively argued that the locality implies the polynomial

boundedness of the scattering amplitude in s even in the unphysical region, the locality and

unitarity are thought to be encoded in the scattering amplitude in the form of the Froissart-

Martin bound. This boundedness properties lead to the 2-subtracted dispersion relation of

the amplitudes, and is fully utilized in the derivation of positivity bounds [1, 3]. Then, how

is the scattering amplitude bounded at high energy in non-local theories? It is expected that

the non-locality will allow amplitudes to grow more rapidly than the case where locality

assumption is imposed. In order to derive how the scattering amplitude is bounded at

high energy in the non-local theory quantitatively, we consider the 2 to 2 massive scalar

scattering in Jaffe’s class of strictly localizable/quasi-local/non-localizable field theories.

In such theories, the exponential growth of the momentum space Wightman functions can

grow exponentially at high energy. Non-locality is incorporated in these theories by allowing

the momentum space Wightman function to be highly singular at high energy, and it is

not necessary to specify an explicit form of Hamiltonian or Lagrangian to define the non-

locality. This class of theories has been well investigated: Wightman formulation of these

theories has been developed [10, 11], and it is known that one can define unitary S-matrix

which has standard properties as it has in standard local quantum field theories, such as

cluster decomposition, LSZ construction, crossing symmetry, and CPT symmetry [12].

After obtaining the high energy behavior of the scattering amplitude, we investigate

whether the dispersion relation with finite number of subtraction can be derived or not,

and clarify under which condition positivity bounds can be obtained.

This paper is organized as follows: in section 2, we firstly review the definition and

several important properties of Jaffe’s class of strictly local/quasi-local/non-localizable the-

ories. In section 3, firstly we introduce some basics on scattering amplitude. Next, we list

up the assumptions we used to derive the results of this study and explain motivations to

assume these conditions. Then, we derive the high-energy behavior on the forward scat-

tering amplitude. In section 4, we derive positivity bounds for α > 0 theory by making

use of the results obtained in section 3. Section 5 is devoted to conclusion and discussion

of this study. We adopt the units with c = ~ = 1 and the following notation:

p2 := ηµνp
µpν = −

(
p0
)2

+ δijp
ipj , ηµν = diag(−1,+1,+1,+1) .
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2 Strict localizability, quasi-locality, and non-localizability

In this section, we explain the definition of Jaffe’s classification of quantum field theories

and its physical meaning. In section 2.1, we introduce the definition of the Jaffe’s classi-

fication and several essential properties of Jaffe’s theories which are relevant to our work,

following [13]. In section 2.2, we explain several important properties of the time-ordered

correlation functions in Jaffe’s theories.

2.1 Definition

Following [13], we briefly summarize the definition of the Jaffe’s classification and its re-

lation to non-locality. In [14–16], the criterion which classify QFT into so-called strictly

localizable theories and non-localizable theories was given. This criterion was given in

terms of the growth rate of the n-point Wightman functions in momentum space for phys-

ical time-like momenta {ki}, which is parameterized by α as

|W (k1, · · · , kn)| < (constant)×

(
n∑
i=1

‖ki‖

)2N

exp

σ( n∑
i=1

‖ki‖

)2α
 . (2.1)

Here, σ is some positive constant and ‖X‖ denotes the Euclidean length of a real vector

X: ‖X‖ :=
√∑4

i=1X
2
i . N is a non-negative constant. W

(
{ki}

)
denotes the n-point

Wightman function in momentum space, and trivial delta function which expresses total

momentum conservation is abbreviated in the above expression. For this α parameter,

fields are classified into 3 classes as
0 ≤ α < 1

2 : strictly localizable field

α = 1
2 : quasi− local field

α > 1
2 : non− localizable field .

Note that α = 0 case is special: in this case, the growth rate of Wightman functions

is polynomially bounded for physical momenta, i.e., Wightman functions are tempered

distributions, and thus this case is especially called tempered localizable.

In this classification, the non-local nature is naturally incorporated in the theory by

considering the highly singular Wightman functions in momentum space, and it is not nec-

essary to specify an explicit form of Hamiltonian or Lagrangian to define the non-locality.

Then, why are α < 1
2 case, α = 1

2 case, and α > 1
2 case called strictly localizable, quasi-

local, and non-localizable, respectively? In order to understand the physical meaning of

this classification based on the value of α, it would be instructive to consider the Lehmann-

Källén spectral density ρφ(µ) of a scalar field φ:

ρφ(µ) ∼ exp [σµα] , (2.2)

where ρφ(µ) is defined by∑
n

|〈0|φ(0) |n〉|2 δ(4) (p− pn) =
1

(2π)3
Θ
(
p0
)
ρφ
(
−p2

)
. (2.3)
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Here, we omitted the polynomially growing factor in eq. (2.2) because it is irrelevant in the

discussion below. From this definition, it turns out that ρφ(µ) is a real and non-negative

Lorentz scalar. Θ(z) is the Heaviside’s step function. |n〉 denotes the multi-particle state

belonging to the eigenstate of the momentum four-vector Pµ with eigenvalue pµn. The label

n includes all the labels which specify the multi-particle states with momentum eigenvalue

pn, and can include both continuous and discrete variables. From the spectral condition,

pn satisfies p0
n ≥ 0 and −p2

n ≥ 0. Then, ρφ

(
−p2

)
= 0 for −p2 ≤ 0. Let us define a 2-point

Wightman function of a scalar φ in momentum space, which is referred to as Wφ(p) in

terms of the spectral density ρφ as

Wφ (p) = (2π)Θ
(
p0
)
ρφ
(
−p2

)
. (2.4)

Then, from eq. (2.3), Fourier transformation of Wφ(p) naively gives∫
d4p

(2π)4
Wφ(p) eip(x−y) =

∑
n

|〈0|φ(0) |n〉|2 e−ipn(x−y) = 〈0|φ(x)φ(y) |0〉 = Wφ(x, y) ,

(2.5)

for x 6= y. From the translation invariance, a 2-point Wightman function in position space

can be written as

Wφ(x, y) = 〈0|φ(x)φ(y) |0〉 =: Wφ(x− y) , (2.6)

and Wφ(z) may be expressed in terms of the spectral density as

Wφ(z) =

∫
d4p

(2π)4
Wφ(p) eipz

=

∫
d4p

(2π)4
Θ
(
p0
) ∫ ∞

0
dµ (2π)δ

(
p2 + µ

)
ρφ(µ) eipz =

∫ ∞
0

dµρφ(µ)W
(µ)
free(z) , (2.7)

where W
(µ)
free(z) denotes a Wightman function for free scalar with mass square m2 = µ,

whose explicit form is

W
(µ)
free(z) :=

∫
d3p

(2π)32p0
eipz
∣∣∣∣
p0=
√
µ+δijpipj

. (2.8)

From the asymptotic behavior of W
(µ)
free(z) at µ

∣∣z2
∣∣ � 1, it turns out that the above

expression for Wφ(z) with z2 6= 0 is convergent and well-defined for α < 1
2 , but ill-defined

for α > 1
2 . This implies that one cannot define Wightman function in position space

without smearing for α > 1
2 . Note that one can define a position-space two-point Wightman

function W (z) for sufficiently large but finite
∣∣z2
∣∣ when α = 1

2 . In order to obtain a well-

defined two-point Wightman function for α ≥ 1
2 , it is necessary to introduce a smeared

field φ
[
fx0
]

centered at x = x0:

φ [fx0 ] :=

∫
d4xφ(x)fx0(x) , (2.9)

where fx0(x) denotes a smearing test function which is centered at x = x0 defined by

fx0(x) :=

∫
d4k

(2π)4
f̃ (k) eik(x−x0) , (2.10)

– 4 –



J
H
E
P
0
5
(
2
0
1
9
)
2
1
6

and f̃(k) is an entire function in k. Note that φ
[
fx0
]

= φ(x0) when f̃(k) = 1. Then, a

position-space smeared two-point Wightman function Wφ

(
fx0 , gy0

)
is given by

Wφ (fx0 , gy0) := 〈0|φ
[
fx0
]
φ
[
gy0
]
|0〉 =

∫
d4p

(2π)4
Θ
(
p0
)
f̃∗ (p) g̃ (p) ρφ(−p2)eip(x0−y0) .

(2.11)

Eq. (2.11) becomes well-defined if one chooses test functions f and g such that f̃(p), g̃(p) <

Ce−
σ
2
‖p‖2α with some constant C. Although quasi-local theories or non-localizable theories

have non-local nature as mentioned above, Wightman formulation of these theories has been

developed [10, 11], and it is known that one can define unitary S-matrix which has standard

properties as it has in standard local quantum field theories, such as cluster decomposition,

LSZ construction, crossing symmetry, and CPT symmetry [12]. For non-localizable field

theories, the standard micro-causality condition which is expressed by local commutativity

of fields is replaced by the asymptotic commutativity which expresses the macro-causality

(detail discussions in this aspect can be found in e.g., [17] and references therein).

2.2 Time-ordered products

In order to evaluate the scattering amplitudes, it is necessary to know the time-ordered

products of fields, or equivalently, retarded products of fields. We only discuss the time-

ordered products below. For notational simplicity, let us consider the 2-point time-ordered

correlation function, i.e., the Feynman propagator firstly. The formal definition of the

Feynman propagator is naively given by

GF (x, y) := Θ
(
x0 − y0

)
Wφ (x, y) + Θ

(
y0 − x0

)
Wφ (y, x) . (2.12)

However, the right-hand side of the above expression is ill-defined at the space-time points

where the Wightman function diverges. As a result, one needs to regularize divergences ap-

pearing in the position-space Wightman functions in order to define the time-ordered prod-

ucts. Therefore, it is generally impossible to determine time-ordered correlation functions

unambiguously from the momentum-space Wightman functions. Regularization scheme

dependence will be inevitable. Then, the well-defined Feynman propagator in position

space is formally given by [18]

GF (x, y) := g (−i∂x,−i∂y)
[
Θ
(
x0 − y0

)
Wg (x, y) + Θ

(
y0 − x0

)
Wg (y, x)

]
, (2.13)

where Wg(x, y) denotes a smeared 2-point Wightman function in position space defined by

Wg (x, y) :=

∫
d4k1

(2π)4

∫
d4k2

(2π)4 (2π)4 δ(4) (k1 + k2)
W̃φ (k1, k2)

g (k1, k2)
ei(k1x+k2y) . (2.14)

Here, W̃φ

(
k1, k2

)
is the 2-point Wightman function in momentum space which is related

to Wφ(p) given in eq. (2.4) as W̃φ

(
k,−k

)
= Wφ(k). g(k1, k2) denotes an entire function

which is needed to make the above expression (2.14) finite for an arbitrary set of points

(x, y) in Minkowski spacetime. Such g is called an indicator function. Then, the Feynman

– 5 –
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propagator in momentum space is simply given by the convolution product of the 2-point

Wightman function and a step function:

GF (k1, k2) :=

∫
d4x1

∫
d4x2GF (x1, x2) e−ik1x1−ik2x2 (2.15)

= (2π)4 δ(4) (k1 + k2) g (k1, k2)

∫ ∞
−∞

dp0

2π

−i
g (p,−p)

[
W̃φ (p,−p)
p0 − k0

1 − iε
−

W̃φ (−p, p)
p0 − k0

1 + iε

]∣∣∣∣∣
~p=~k1

.

Here, we chose a permutation invariant indicator function which satisfies g(k,−k) =

g(−k, k).1 If we choose a Lorentz invariant indicator function g and write g
(
−k2

)
:=

g (k,−k), and using eq. (2.4) with Wφ(p), the above expression of the Feynman propagator

in momentum space is reduced to the well-known Lehmann-Källén spectral representation

by changing the integration variable in eq. (2.15) from p0 to µ :=
(
p0
)2 − |~k|2:

GF
(
−k2

)
= g

(
−k2

) ∫ ∞
0

dµ
ρφ(µ)

g(µ)

−i
k2 + µ− iε

, (2.16)

where GF

(
−k2

)
is defined by GF (k1, k2) = (2π)4 δ(4) (k1 + k2)GF

(
−k2

1

)
. When ρφ(µ) ∼

µN exp
[
σµα

]
, we choose g(µ) which behaves as g(µ) ∼ µN+1 exp

[
σµα

]
. Then, eq. (2.16)

is well-defined. Feynman propagator depends on the choice of an indicator function. Such

ambiguities are expressed as contact terms, which may become manifest if we rewrite

eq. (2.16) as

GF
(
−k2

)
=

∫ ∞
0

dµ
(−i) ρφ(µ)

k2 + µ− iε

(
1−

g(µ)− g
(
−k2

)
g(µ)

)

=

∫ ∞
0

dµ
(−i) ρφ(µ)

k2 + µ− iε

[
1− 1

g(µ)

∞∑
n=1

1

n!

∂n g
(
−k2

)
∂ (−k2)n

(
µ+ k2

)n]
. (2.17)

The second term in the final line expresses the divergent contact terms. These contact

terms cancel on-shell singularity included in the Feynman propagator, and hence do not

contribute to on-shell quantities. When α = 0, namely, the theory is tempered-localizable,

an indicator g(µ) is an real polynomial, and hence the number of contact terms is finite.

When α > 0, an indicator g(µ) is given by an entire function, and hence the number of

contact terms is infinite. We do not expect the appearance of an infinite number of contact

terms within a validity of a perturbation theory. Therefore, quantum field theories whose

high-energy behavior of them can be captured perturbatively will fall into α = 0 theory.

However, the appearance of an infinite number of contact terms does not necessarily mean

that the number of parameters included in the theory is infinite. Thus, it seems that even

the perturbatively renormalizable theory can be α > 0 theory generically, although in α > 0

case it will be difficult to determine the value of α for some given QFT rigorously, because

in order to do so one needs to evaluate the high-energy behavior of the spectral density ρ(µ)

1As we will mention soon, on-shell quantities such as scattering amplitudes is independent of a particular

choice of an indicator.
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non-perturbatively.2 There are several theories which are conjectured to be α > 0 theories.

For example, it has been conjectured that Little String Theories may be α = 1
2 quasi-local

theories in [20], and Galileon theories may be α > 1
2 non-localizable theories in [13].

In fact, eq. (2.16) is also useful for investigating the behavior of the Feynman prop-

agator for large modulus of −k2 ∈ C. This is because g
(
−k2

)
is an entire function and

hence GF

(
−k2

)
is analytic in −k2 in the complex −k2-plane modulo an isolated pole and

branch cut. Therefore, one can easily analytically continue GF

(
−k2

)
for −k2 ∈ C and it

turns out that the growth rate of the Feynman propagator GF

(
−k2

)
for large modulus of

−k2 ∈ C is bounded as3

lim
|−k2|→∞

∣∣∣∣∣ GF
(
−k2

)
(−k2)N eσ|−k2|

α

∣∣∣∣∣ <∞ , (2.18)

when −k2 is not on singularities. This boundedness property obeys from the growth rate

of an indicator function via eq. (2.16). This means that the growth rate of the Feynman

propagator for large modulus of −k2 ∈ C is determined by the growth rate of the 2-point

Wightman function Wφ(k) at large −k2 with physical time-like k. It is not necessary to

specify the properties of the 2-point Wightman function Wφ(k) at large modulus of −k2

with unphysical k to derive eq. (2.16).

Next, let us generalize the above discussion to the 4-point time-ordered correlation

function in momentum space, because we will consider the 2 to 2 scattering amplitude which

is related to 4-point time-ordered correlation functions through the reduction formula. As

in the case of the 2-point function, the 4-point time ordered correlation function is also

formally defined by

GF (x1, · · · , x4) (2.19)

:= g (−i∂x1 , · · · ,−i∂x4)

[∑
I

Θ
(
x0
i1 − x

0
i2

)
Θ
(
x0
i2 − x

0
i3

)
Θ
(
x0
i3 − x

0
i4

)
Wg (xi1 , · · · , xi4)

]
,

where I denotes the permutations
(

1, ··· , 4
i1, ··· , i4

)
, and

∑
I denotes the summation over all

permutations. Here, Wg(x1, · · · , x4) is a smeared 4-point Wightman function defined by

Wg (x1, · · · , x4) :=

[
4∏
i=1

∫
d4ki
(2π)4

]
(2π)4δ(4)

 4∑
j=1

kj

 W̃φ (k1, · · · , k4)

g (k1, · · · , k4)
ei

∑4
n=1 knxn , (2.20)

2It is also expected from perturbative analysis that an infinite number of divergences will appear in per-

turbatively nonrenormalizable theories. The connection between perturbatively nonrenormalizable theories

and non-localizable theories was discussed in [19].
3Note that the left-hand side of (2.18) will be non-zero for time-like k, while it can be zero for space-like k,

generally. This is because an indicator g
(
−k2

)
must grow for large −k2, while it may not grow for different

directions in a complex −k2-plane. In some special case g
(
−k2

)
can decay rapidly for Euclidean direction.

The rapid decay of g
(
−k2

)
in Euclidean direction is assumed and used as a key property regulating

perturbative UV loops in Efimov’s non-local QFT program (see e.g., [21]), although this rapid decay might

not necessarily be ensured generically in quasi-local/ non-localizable theories in Jaffe’s language, as is also

pointed out in [13].
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and we chose the permutation-invariant indicator function in eq. (2.19) for simplicity:

g (k1, · · · , k4) = g (ki1 , · · · , ki4) for ∀I . (2.21)

Then, momentum space 4-point time-ordered correlation function is simply given by the

convolution product of 4-point Wightman function and step functions:

GF (k1, · · · , k4) :=

[
4∏
i=1

∫
d4xi

]
GF (x1, · · · , x4) e−i

∑4
j=1 kjxj (2.22)

= (2π)4δ(4)

(
4∑
i=1

ki

)
g (k1, · · · , k4)

∑
I

 4∏
j=1

∫
dp0

j

2π

 (2π)δ

(
4∑
l=1

p0
l

)

×
W̃φ (pi1 , · · · , pi4)

g (pi1 , · · · , pi4)

∣∣∣∣∣
{~pin=~kin}n=1,··· ,4

3∏
r=1

(
−i∑r

n=1

(
p0
in
− k0

in

)
− iε

)
.

This is just the generalization of eq. (2.15) to the 4-point case. Then, using the fact that

4-point Wightman function can be written in terms of a Lorentz scalar function WI as

W̃φ (pi1 , · · · , pi4)
∣∣∣
p1+···+p4=0

=

[
3∏

n=1

Θ
(
p0
in

)]
(2.23)

× WI

(
− (p1 + p2)2 , − (p1 − p3)2 ,

{
p2
i

})∣∣∣
p1+···+p4=0

,

and choosing a Lorentz invariant indicator function g = g
(
−
(
k1+k2

)2
, −
(
k1−k3

)2
,
{
k2
i

})
,

eq. (2.22) reduces to

GF

(
− (k1 + k2)2 , − (k1 − k3)2 ,

{
k2
i

})
g
(
− (k1 + k2)2 , − (k1 − k3)2 ,

{
k2
i

}) (2.24)

=
∑
I

∫ ∞
−|~k1+~k2|2

ds′

2π

∫
d
(
p0

1 − p0
2

)
4π

×
∫

dp0
3

2π

WI

(
s′, − (p1 − p3)2 ,

{
p2
i

})
g
(
s′, − (p1 − p3)2 ,

{
p2
i

})
∣∣∣∣∣∣
{~pin=~kin}n=1,··· ,4, p

0
4=−

∑3
j=1 p

0
j

×
∑
λ=±1

Θ
(
λ
(
p0

1 + p0
2

))
2λ
(
p0

1 + p0
2

) 3∏
r=1

(
−i∑r

n=1

(
p0
in
− k0

in

)
− iε

Θ
(
p0
ir

))∣∣∣∣∣
p01+p02=λ(s′+|~k1+~k2|2)

1
2

,

where

GF (k1, · · · , k4) := (2π)4δ(4) (k1 + · · ·+ k4)GF

(
− (k1 + k2)2 , − (k1 − k3)2 ,

{
k2
i

})
.

(2.25)

Here,
{
k2
i

}
stands for

{
k2
i

}
i=1,··· ,4. In order to obtain eq. (2.24), we changed the integration

variables by introducing s′ :=
(
p0

1 + p0
2

)2 − |~k1 + ~k2|2. Again, GF (k1, · · · , k4) can be deter-

mined only up to contact terms, although they do not contribute to scattering amplitudes.
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As in the case of the 2-point Feynman propagator, it is expected from eq. (2.24) that the

4-point time-ordered correlation functions in momentum space will be also bounded for

large modulus of −
(
k1 + k2

)2 ∈ C with fixed −
(
k1 − k3

)2
and

{
k2
i

}
i=1,··· ,4 as

lim
|−(k1+k2)2|→∞

∣∣∣∣∣∣∣
GF

(
− (k1 + k2)2 , − (k1 − k3)2 ,

{
k2
i

})
(
− (k1 + k2)2

)N
eσ
′(−(k1+k2)2)

α

∣∣∣∣∣∣∣ <∞ , (2.26)

when the arguments of GF are not on singularities. Here, σ′ is some positive constant

whose precise value of σ′ may depend on the value of −(k1− k3)2,
{
k2
i

}
, or σ appearing in

eq. (2.1), but the precise value of σ′ is irrelevant in our study. It should be noted in advance

that this boundedness property (2.26) of time-ordered correlation functions is an important

observation which would support the plausibility of the assumption C introduced in the

next section 3.

3 Bounds on the high energy behavior of scattering amplitudes for phys-

ical s

In this section, we will obtain the high energy behavior of the forward-limit scattering

amplitude under several assumptions. In section 3.1, we firstly introduce some basics of 2

to 2 scattering amplitudes. Next, we list up the assumptions which are needed to obtain

the high energy behavior of the scattering amplitude and the dispersion relation. We also

explain the physical meaning or motivations of these assumptions. In section 3.2, we derive

the high energy behavior of the scattering amplitude for α ≥ 0 case. We also explain the

intuitive derivation of the high energy behavior.

3.1 Basics and assumptions

Let us consider the 2 to 2 scattering of the real scalar φ with positive mass square m2 > 0.

We refer to the incoming momenta and outgoing momenta as p1, p2 and p3, p4, respectively.

From the total momentum conservation, p4 = p1 + p2− p3. Then, from the Lorentz invari-

ance, one can express the corresponding scattering amplitudes in terms of the Mandelstam

variables s, t and u which are defined by

s := − (p1 + p2)2 = −(p3 + p4)2 , (3.1)

t := − (p1 − p3)2 = −(p2 − p4)2 , (3.2)

u := − (p1 − p4)2 = −(p2 − p3)2 . (3.3)

From this definition, it turns out that s + t + u = 4m2 holds, and hence we refer to the

scattering amplitude of this process by F (s, t). In the center of mass frame (CM frame),

on-shell momenta p1, p2, and p3 can be parameterized as

pµ1 =

(
Ecm

2
, 0, 0, qs

)
, pµ2 =

(
Ecm

2
, 0, 0,−qs

)
, pµ3 =

(
Ecm

2
, qs sin θ, 0, qs cos θ

)
.

(3.4)
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Here, qs = 1
2

√
s− 4m2 denotes the amplitude of the three-momentum in the CM frame.

Then, Mandelstam variables can be written in terms of the 4-momenta in CM frame as

s = E2
cm , t = 2q2

s (cos θ − 1) , u = −2q2
s (cos θ + 1) , (3.5)

and so s and t are called center of mass energy and momentum transfer, respectively.

From now on, in order to make the discussion clearer, we list up the assumptions which

are needed to obtain the results presented in this paper:

A: Lorentz invariance, unitarity, and s↔ t↔ u crossing symmetry

B1: analyticity properties in the large Lehmann ellipse.

For fixed s ∈ R+iε for sufficiently large Re s with an infinitesimal positive constant ε,

F̃ (s, z) := F (s, t)
∣∣
t=2q2s(z−1)

is assumed to be holomorphic in z on or inside the large

Lehmann ellipse C0 with foci at z = ±1, and the semi-major axis is 1+
(
t0/2q

2
s

)
. The

ellipse C0 can be expressed as C0 =
{
z′ = z(s) : z(s) := cosh

(
β0(s) + iϕ′

)
,−π < ϕ′ ≤

π
}

with cosh
(
β0(s)

)
= 1 +

(
t0/2q

2
s

)
. Here, t0 > 0 is an s-independent constant. We

expect that we can take t0 = m2(1 − δ) with 0 < δ � 1, although the specific value

of t0 does not change any discussions below.

B2: analyticity properties in the complex s-plane.

The forward scattering amplitude F (s, 0) is assumed to be holomorphic in s in the

first Riemann sheet of the complex s-plane modulo poles and branch cuts which are

predicted by unitarity. F (s, t) is assumed to be analytic in t at t = 0 for any s in the

first Riemann sheet of the complex s-plane modulo poles and branch cuts.

C: exponential boundedness of the amplitude for fixed t at large s.

On the ellipse C0, F̃
(
s, z(s)

)
is assumed to be exponentially bounded:4∣∣∣F̃ (s, z(s))

∣∣∣ < C̃sN exp [Csα] , N <∞ , 0 < C , C̃ , as s→∞+ iε . (3.6)

Furthermore, we also assume that |∂nt F (s, t)|t=0 is also exponentially bounded in the

complex s-plane:

|∂nt F (s, t)|t=0 < C̃n |s|Nn exp [Cn|s|α] , Nn <∞ , 0 < Cn , C̃n , as |s| → ∞ .

(3.7)

Here, C, C̃, Cn, and C̃n denote some positive constants.

Motivations for assuming conditions B1-C. There are several motivations why it

would be meaningful to work under the assumptions B1-C.

• Motivation for assuming B1: assumption B1 plays an essential role to constrain the

high energy behavior of the scattering amplitude. As we will discuss at the end of sec-

tion 3.2, the holomorphy in the ellipse C0 is closely related to the short-range nature

of the force which induces the scattering under consideration.5 We expect this holo-

morphy in the ellipse C0 as long as the scatterings are caused by a short-range force.

4This boundedness property in the complex z-plane has been already obtained in [22] for α > 1
2

case.
5This point is also mentioned in [23].
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• Motivation for assuming B2: it is known that causality and analyticity of the forward

scattering amplitudes in complex s plane are closely connected to each other, and

their connection has been extensively investigated from 1950’s (e.g., [24]). Roughly

speaking, the retarded propagator associated with the scattering process is given by

the Fourier component of the forward scattering amplitude, and hence analyticity in

the first Riemann sheet of the complex s-plane implies causality [13, 25, 26].6 We

simply assume that these properties hold for generic α because of its close connection

to the causality.

• Motivation for assuming C: F (s, t) is written in terms of 4-point time-ordered correla-

tion functions GF
(
p1, p2,−p3,−p4 = −(p1+p2−p3)

)
via the reduction formula. Thus,

we expect that the boundedness property (2.26) of GF in the complex −
(
p1 + p2

)2
-

plane with fixed −
(
p1 − p3

)2
and

{
p2
i

}
will be intimately connected to the bounded-

ness properties of F (s, t) for large |s| in the unphysical region with fixed t.7 Then,

from (2.26), it is expected that F (s, t) would be also bounded exponentially for large

|s| as (3.6) or (3.7).

Although the rigorous derivation of analyticity properties B1-2 are discussed in the context

of axiomatic QFT (see e.g., [23, 27–29]), we simply assume these properties as a starting

point of this study. From now, we move on to derive several consequences followed from

these assumptions.

3.2 High energy behavior of the scattering amplitude

Firstly, we develop the method to obtain a high energy behavior of the scattering amplitude

at t = 0 and its n-th derivative with respect to t at t = 0. That is, we obtain the upper

bound on F (n)(s) at large s, where F (n)(s) is defined by

F (n)(s) :=
1

n!

∂n

∂tn
F (s, t)

∣∣∣∣
t=0

, (3.8)

under the assumptions A − C. Note that the method presented in this subsection 3.2 is

developed based on [30], although the bounds on the F (n)(s) with n ≥ 1 was not discussed

there. Partial wave expansion of F (s, t) is given by

F (s, t) =

√
s

qs

∞∑
l=0

(2l + 1)fl(s)Pl

(
1 +

t

2q2
s

)
(3.9)

where Pl(z) denotes the Legendre polynomial. From the S-matrix unitarity SS† = 1, one

obtains the unitarity constraints on the partial wave amplitude fl(s) for s ≥ 4m2:

|fl(s)| ≤ 1 . (3.10)

6It is argued in [13] that analyticity with allowing exponential growth (3.7) implies macro-causality.
7In analytically continuing F (s, t) to the unphysical region, one must maintain the on-shell condition

k2i = −m2.
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From the holomorphy of F̃ (s, z) on or inside the ellipse C0 fl(s) can be expressed as

fl(s) =
qs

2πi
√
s

∮
C0
F̃ (s, z′)Ql(z

′)dz′ . (3.11)

This is known as the Neumann’s expansion. Here, Ql(z) denotes the Legendre functions of

the 2nd kind. By making use of the asymptotic behavior of Ql(z) at large l, one obtains

|fl(s)| < Gl(β0, s) :=
qs√
s
B0(s)

√
e−β0 coshβ0 ·

e−β0l√
l
, (3.12)

where

B0(s) :=
1√
8π

∫ π

−π
dϕ′

∣∣∣F̃ (s, cosh
(
β0(s) + iϕ′

))∣∣∣ . (3.13)

Defining L(s) by GL < 1 ≤ GL−1, one obtains

Gl′+L(β0, s) =
e−β0l

′√
1 + l′

L

GL(β0, s) <
e−β0l

′√
1 + l′

L

. (3.14)

Thanks to the bound (3.12) and from the asymptotic behavior of the Legendre polynomial

Pl(z) in the limit l →∞, Weierstrass’s theorem ensures that partial wave expansion (3.9)

uniformly converges inside the ellipse C0 when s ∈ R + iε. Because Pl(z) is holomorphic

in the whole complex z-plane, Weierstrass’s double series theorem ensures that the n-th

derivative of F (s, z) with respect to z is given by

∂n

∂zn
F (s, z) =

√
s

qs

∞∑
l=0

(2l + 1)fl(s)P
(n)
l (z) , P

(n)
l (z) :=

∂n

∂zn
Pl(z) , (3.15)

inside the ellipse C0. Then, when s ∈ R + iε, the n-th derivative of F (s, t) with respect to

t at t = 0 is given by

F (n)(s) =

√
s

qs

1

n!2nq2n
s

∞∑
l=0

(2l + 1)fl(s)P
(n)
l (1) . (3.16)

We have obtained two constraints on |fl(s)| so far: (3.10) and (3.12). From the defini-

tion of L(s), it turns out that (3.10) and (3.12) give the stronger bound for l ≤ L(s) − 1

and for l ≥ L(s), respectively. Therefore, by using (3.14),

∣∣∣F (n)(s)
∣∣∣ < √s

qs

1

n!2nq2n
s

[
L−1∑
l=0

(2l + 1)P
(n)
l (1) +

∞∑
l=L

(2l + 1)Gl(β0, s)P
(n)
l (1)

]

<

√
s

qs

1

n!2nq2n
s

[
L−1∑
l=0

(2l + 1)P
(n)
l (1) (3.17)

+
∞∑
l′=0

e−β0l
′
P

(n)
l′+L(1)

(
2L

(
1 +

l′

L

) 1
2

+

(
1 +

l′

L

)− 1
2

)]
.
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Because

Pl(z) = 2F1

(
l + 1,−l; 1;

1− z
2

)
, (3.18)

and Gauss’s hyper geometric function 2F1 (α, β; γ;x) satisfies

∂

∂x
2F1 (α, β; γ;x) =

αβ

γ
2F1 (α+ 1, β + 1; γ + 1;x) , (3.19)

P
(n)
l (1) can be evaluated as

P
(n)
l (1) =

{
1

2n
(l+n)!
(l−n)! n ≤ l ,

0 n ≥ l + 1 .
(3.20)

Substituting eq. (3.20) into eq. (3.17),

∣∣∣F (n)(s)
∣∣∣< √s

qs

1

n!4nq2n
s

[
L−1∑
l=n

(2l+1)l2n
(
1+O

(
l−1
))

+

∞∑
l′=0

e−β0l
′
(l′+L)2n

(
1+O

((
l′+L

)−1
))(

2L

(
1+

l′

L

) 1
2

+

(
1+

l′

L

)− 1
2

)]
,

∼
√
s

qs

1

q2n
s

L2n+2 +
2L

1
2

β0

∫ ∞
0

dy e−y
(y+Y )2n+ 1

2

β
2n+ 1

2
0

 , (3.21)

with neglecting the irrelevant proportionality constant. Here, y := β0l
′ and Y := β0L, and

we assumed that L and Y grows as s increases and neglected the terms which are lower

order in L or Y . When L grows as s increases, L and B0(s) are related as

B0(s) ' 2eβ0L
√
L , (3.22)

which can be obtained from the definition of L.

• α = 0 case. By using eqs. (3.13) and (3.22), polynomial boundedness (3.6) with

α = 0 is converted to the bound on Y = β0L as

Y <

(
N − 1

4

)
ln(s/s0)− 1

2
lnY ≈

(
N − 1

4

)
ln(s/s0)− 1

2
ln ln(s/s0) , (3.23)

where s0 is some constant. Applying eq. (3.23) to eq. (3.21), and by making use of the

approximation 2β0 ≈ (t0/s)
1/2 which is valid at large s, one obtains∣∣∣F (n)(s)

∣∣∣ < (constant)× s (ln(s/s0))2n+2 . (3.24)

n = 0 case of eq. (3.24) gives the bound on the total cross section σtot(s) as

σtot(s) < (constant)× (ln(s/s0))2 , (3.25)
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which corresponds to a celebrated Froissart-Martin bound8 [8, 9]. Eq. (3.24) naively sug-

gests that s−2 ·
∣∣F (s, t)

∣∣→ 0 as s→∞+ iε for small but positive t. Indeed, the bound on

F (s, t) obtained in [30] for t > 0 also implies the existence of such small but positive t if we

assume the polynomial boundedness (3.6) with α = 0. This is in fact crucially important

to obtain a dispersion relation of F (s, t) for t > 0 with finite number of subtractions [31].

• α > 0 case. Next, let us derive the bound on
∣∣F (n)(s)

∣∣ at s → ∞ assuming the

exponential boundedness (3.6) with α > 0. Then, from eq. (3.13), B0(s) is also bounded

as

B0(s) < C̃

√
π

2
sN exp [Csα] . (3.26)

From this bound and eq. (3.22), Y = β0L is bounded as

Y < Csα +

(
N − 1

4

)
ln(s/s0)− 1

2
lnY ≈ Csα +

(
N − α

2
− 1

4

)
ln(s/s0)− 1

2
ln ln(s/s0) .

(3.27)

Applying the bound (3.27) to eq. (3.21), for n ≥ 0, one obtains∣∣∣F (n)(s)
∣∣∣ < C2n+2s1+(2n+2)α

t0n+1 . (3.28)

Note that the right-hand side diverges in the limit t0 → 0, which is consistent with the

fact that |F (s, 0)| diverges when the massless particle exchange exists. This result shows

that |F (s, 0)| is polynomially bounded in s when s → ∞ + iε, even if
∣∣F (s, t)

∣∣ can grow

exponentially in the unphysical region. The powers of s of the right-hand side of (3.28)

grows as n grows, however. This suggests that
∣∣F (s, t)

∣∣ grows faster than any polynomial

in s in the Regge limit when t > 0. This is consistent with the assumption C which we

imposed to derive this result, and indeed, the bound on F (s, t) obtained in [30] for t > 0

also implies the exponential growth of F (s, t > 0) in the Regge limit if we assume the

exponential growth (3.6) with α > 0. This result implies that one cannot obtain dispersion

relation with finite number of subtractions for F (s, t) when t > 0. (3.28) also suggests that

the Froissart-Martin bound can be violated even in local QFT with 0 < α < 1
2 . We do not

deny the possibility that F̃ (s, z) were in fact polynomially bounded in s on or inside the

ellipse C0 even when 0 < α < 1
2 , but we do not expect such boundedness property from

the consideration in section 2.2. It should be noted that the forward scattering amplitude

F (s, 0) is still bounded by s2 for 0 ≤ α < 1
2 in spite of the possible violation of the

Froissart-Martin bound for α > 0:

lim
s→∞+iε

∣∣∣∣F (s, 0)

s2

∣∣∣∣ = 0 for 0 ≤ α < 1

2
. (3.29)

Intuitively, the origin of the existence of the bounds (3.12) on the partial wave am-

plitudes fl(s) can be understood as the short-range nature of the force mediating the

scattering under consideration. In the large impact parameter regime b ∼ (l/qs) � 1 and

8More precisely, the bound on σtot(s) which can be obtained from this analysis is slightly stronger than

a simple log-square form, because of the second term in eq. (3.23). This fact is pointed out in [30].
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for fixed 0 ≤ −t � s, i.e., for small θ, the scattering amplitude will be dominated by the

exchange of soft particles. The force mediated by the soft particle exchange with mass

M is expected to decay as exp[−Mb] for large impact parameter Mb � 1. On the other

hand, scattering with fixed b will grow as exp[Csα] when the scattering energy increases,

because the number of excited intermediate multi-particle states can increase as exp[Csα]

at most, which is responsible for an exponential growth of the Lehmann-Källén spectral

density. With taking into account l ∼ qsb, the above discussion implies the partial wave

amplitudes may behave as

|fl(s)| ∼ eCs
α
e
−M
qs
l
, (3.30)

for sufficiently large l. Then, using qs ∼
√
s, exponential suppression of fl(s) for l & L̃(s) :=

M−1Csα+ 1
2 is expected. Thus,

F (n)(s) ∼
L̃(s)∑
l=0

(2l + 1)fl(s)

(
l

qs

)2n

. (3.31)

Unitarity in the form of SS† = 1 which leads to the condition |fl(s)| ≤ 1 further constrains

the high energy behavior of the scattering amplitude:

∣∣∣F (n)(s)
∣∣∣ ∼ L̃(s)∑

l=0

(2l + 1)

(
l

qs

)2n

∼
(
L̃(s)

)2n+2
s−n =

(
M−1C

)2n+2
s1+(2n+2)α . (3.32)

This coincides with the obtained bounds (3.28) assuming the holomorphy of F̃ (s, Z) inside

the ellipse C0. This result indicates the holomorphy of F (s, t) inside the ellipse C0 is

intimately related to the short-range nature of the force.

4 Positivity bounds

In this section, we derive the positivity bounds for α > 0 case. In section 4.1, we review

the derivation of positivity bounds for α = 0 case based on [3, 5]. In section 4.2, we derive

the positivity bounds for α > 0 case. It turns out that it seems impossible to obtain any

positivity bounds for α ≥ 1 case, because we fail to obtain the dispersion relation with a

finite number of subtractions. In section 4.3, we obtain the criterion which allows us to

obtain the lower bound on α through the violation of positivity bounds. We also briefly

comment on the application of our results to massive Galileon model and its massless limit.

4.1 Positivity bounds for tempered localizable field

Using Cauchy’s integral formula, F (s, t) can be expressed as

F (s, t) =

(
s− 2m2 +

t

2

)2 ∮
C

ds′

2πi

F (s′, t)

(s′ − s)
(
s′ − 2m2 + t

2

)2 , (4.1)
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where F (s, t) is holomorphic in s inside the counterclockwise contour C. Then, by deforming

the contour and fully making use of the s↔ u crossing symmetry, one obtains

F (s, t) =

[
−Ress=m2F (s, t)

m2 − s
+

Resu=m2F (s, t)

m2 − u

]
+

1∑
k=0

ak(t)s
k

+
2
(
s̄+ t̄

2

)2

π

∫ ∞
4m2

dµ
ImF (µ+ iε, t)(

µ̄+ t̄
2

)[(
µ̄+ t̄

2

)2
−
(
s̄+ t̄

2

)2
] , (4.2)

where X̄ := X −
(
4m2/3

)
. Here, we used the fact that

∣∣s−2 · F (s, t)
∣∣ → 0 as |s| → ∞ for

0 ≤ t < 4m2, t 6= m2 when α = 0 [31]. We also used the Schwarz reflection principle. We

did not write down the explicit expressions of coefficients ak(t) because they are irrelevant

for positivity bounds. Then, the pole-subtracted amplitude B(s, t) which is defined by

B(s, t) := F (s, t)−
[
−Ress=m2F (s, t)

m2 − s
+

Resu=m2F (s, t)

m2 − u
+

Rest=m2F (s, t)

m2 − t

]
, (4.3)

can be expressed as

B(s, t) =
Rest=m2F (s, t)

m2 − t
+

1∑
k=0

ak(t)s
k

+
2
(
s̄+ t̄

2

)2

π

∫ ∞
4m2

dµ
ImF (µ+ iε, t)(

µ̄+ t̄
2

)[(
µ̄+ t̄

2

)2
−
(
s̄+ t̄

2

)2
] , (4.4)

for 0 ≤ t < 4m2, t 6= m2. Thus, by making use of the fact that Rest=m2F (s, t) is indepen-

dent of s in scalar theories, one can derive the following expression from eq. (4.4):

B(2N,M)(t) =

M∑
k=0

(−1)k

k!2k
I(2N+k,M−k)(t) , (4.5)

for 0 ≤ t < 4m2, t 6= m2, with N ≥ 1 and M ≥ 0. Here, B(2N,M)(t) and I(q,p)(t) are

defined by

B(2N,M)(t) :=
∂2N
v ∂Mt
M !

B̃(v, t)

∣∣∣∣
v=0

, B̃(v, t) := B(s, t)|s=v+2m2−(t/2) , (4.6)

I(q,p)(t) :=
q!2

p!π

∫ ∞
4m2

dµ
∂pt ImF (µ+ iε, t)(

µ̄+ t̄
2

)q+1 > 0 . (4.7)

In (4.7), we used ∂nt ImF (s+ iε, t) > 0 for n ≥ 0, when 0 ≤ t < 4m2, t 6= m2, and s ≥ 4m2

are simultaneously satisfied [5]. Note that the right-hand-side of eq. (4.7) is finite thanks

to the bounds (3.24). B(2N,M)(t) is however not ensure to be positive for M ≥ 1 because

(−1)k factor is included in the right-hand side of (4.5). Then, from eqs. (4.5) and (4.7)

together with

I(q,p)(t) <
q

M2
I(q−1,p)(t) , (4.8)
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where M2 :=
(
µ̄+ (t̄/2)

)
µ=µmin

, µmin is the lower bound value of µ of the integration over

µ on the right-hand side of eq. (4.7), it has been shown that the following infinite number

of inequalities which are recursively defined must be satisfied [3, 5]:

Y (2N,0)(t) := B(2N,0)(t) , (4.9a)

Y (2N,M)(t) :=

M/2∑
r=0

crB
(2N+2r,M−2r)(t)

+
1

M2

(M−1)/2∑
even k=0

(2(N + k) + 1) βkY
(2(N+k),M−2k−1)(t) > 0 , (4.9b)

for N ≥ 1,M ≥ 0 and 0 ≤ t < 4m2 , t 6= m2. Coefficients ck and βk are defined by

ck :=
E2k

(2k)!22k
, βk :=

(−1)k
(
22k+3 − 2

)
B2k+2

(2k + 2)!
, (4.10)

where E2k and B2k+2 denote the Euler numbers and Bernoulli numbers, respectively. These

bounds are also extended to the scattering of the particles with spin [32, 33] and are applied

to various models (e.g., [4–7]). An infinite number of inequalities (4.9) with N ≥ 1, M ≥ 0

are obtained, and they are called positivity bounds. Thanks to the condition v = 0 and

0 ≤ t < 4m2, the left-hand side of (4.9) can be evaluated within the validity of the LEEFT,

meaning that (4.9) gives the non-trivial bounds on LEEFT.

In fact, one can improve the above positivity bounds eq. (4.9) when perturbation

theory based on LEEFT is valid for s < Λ2
th with m2 � Λ2

th, by evaluating ImF (µ + iε)

with 4m2 < µ < Λ2
th which expresses the contributions from loops of light particle φ with

external momenta satisfying 4m2 < s < Λ2
th:

B
(2N,M)
Λth

(t) := B(2N,M)(t)−
M∑
k=0

(−1)k

k!2k
(2N + k)!2

(M − k)!π

∫ Λ2
th

4m2

dµ
∂M−kt ImF (µ+ iε, t)(

µ̄+ t̄
2

)2N+k+1

=

M∑
k=0

(−1)k

k!2k
I

(2N+k,M−k)
Λth

(t) , (4.11a)

I
(q,p)
Λth

(t) :=
q!2

p!π

∫ ∞
Λ2
th

dµ
∂pt ImF (µ+ iε, t)(

µ̄+ t̄
2

)q+1 > 0 . (4.11b)

From the definition of Λth, one can evaluate B
(2N,M)
Λth

(t) perturbatively by using LEEFT .

Then, by making use of inequalities

I
(q,p)
Λth

(t) <
q

Λ2
th + (t/2)− 2m2

I
(q−1,p)
Λth

(t) , (4.12)
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which is just an analogue of (4.8), one obtains the improved positivity bounds:

Y
(2N,0)

Λth
(t) := B

(2N,0)
Λth

(t) , (4.13a)

Y
(2N,M)

Λth
(t) :=

M/2∑
r=0

crB
(2N+2r,M−2r)
Λth

(t) (4.13b)

+
1

Λ2
th + (t/2)− 2m2

(M−1)/2∑
even k=0

(2(N + k) + 1) βkY
(2(N+k),M−2k−1)

Λth
(t) > 0 .

4.2 Positivity bounds without temperedness assumption

In this subsection, we derive the positivity bounds without temperdness assumption,

namely, for theories with α > 0.

• 0 < α < 1 case. Using Cauchy’s integral formula, F (s, t) can be expressed as

F (s, t) =

(
s− 2m2 +

t

2

)2P ∮
C

ds′

2πi

F (s′, t)

(s′ − s)
(
s′ − 2m2 + t

2

)2P , (4.14)

for any P ∈ N. Here F (s, t) is holomorphic in s inside the counterclockwise contour C.
Then, combined with an analyticity assumption B2, one obtains the following expression

by deforming the contour and fully making use of the s↔ u crossing symmetry:

F (s, t) =

[
−Ress=m2F (s, t)

m2 − s
+

Resu=m2F (s, t)

m2 − u

]
+

2P−1∑
k=0

bk(t)s
k

+
2
(
s̄+ t̄

2

)2P

π

∫ R

4m2

dµ
ImF (µ+ iε, t)(

µ̄+ t̄
2

)2P−1
[(
µ̄+ t̄

2

)2
−
(
s̄+ t̄

2

)2
]

+

(
s̄+ t̄

2

)2P

π

∫ R+4m2−t

R
dµ

ImF (µ+ iε, t)(
µ̄+ t̄

2

)2P [(
µ̄+ t̄

2

)
+
(
s̄+ t̄

2

)]
+

(
s̄+

t̄

2

)2P ∫
C±R

ds′

2πi

F (s′, t)

(s′ − s)
(
s̄′ + t̄

2

)2P
, (4.15)

where C±R denotes the semi-circle with radius R: C+
R :=

{
s : s = Reiθ + iε, 0 ≤ θ ≤ π

}
and

C−R :=
{
s : s = Reiθ − iε, π ≤ θ ≤ 2π

}
. We did not write down the explicit expressions of

coefficients bk(t) because they are irrelevant for positivity bounds. We will take the limit

R → ∞ later. For any s ∈ C in the complex-s plane, except for poles and branch cuts

on the real-s axis, F (s, t) is analytic in t at t = 0 from the analyticity assumption. Thus,
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eq. (4.15) gives rise to

∂nt
n!
F̃ (v, t)

∣∣∣∣
t=0

=
∂nt
n!

(−Ress=m2F (s, t)

m2 − s
+

Resu=m2F (s, t)

m2 − u
+

2P−1∑
k=0

bk(t)s
k

)
s=v+2m2−(t/2)


t=0

+
2v2P

n!π

∫ R

4m2

dµ∂nt


ImF (µ+ iε, t)(

µ̄+ t̄
2

)2P−1
[(
µ̄+ t̄

2

)2
− v2

]

t=0

+
v2P

n!π
∂nt

∫ R+4m2−t

R
dµ

ImF (µ+ iε, t)(
µ̄+ t̄

2

)2P (
µ̄+ t̄

2 + v
)

t=0

+
v2P

n!

∫
C±R

ds′

2πi
∂nt

 F (s′, t)(
s̄′ + t̄

2 − v
)(

s̄′ + t̄
2

)2P


t=0

, (4.16)

where

F̃ (v, t) := F (s, t)|s=v+2m2−(t/2) . (4.17)

Thus,

B(2N,M)(0) =

[
∂2N
v

(
∂Mt
M !

B̃(v, t)

∣∣∣∣
t=0

)]
v=0

=
(2N)!2

M !π

∫ R

4m2

dµ∂Mt

 ImF (µ+ iε, t)(
µ̄+ t̄

2

)2N+1


t=0

+ ∂2N
v

[
∂Mt
M !

(
Rest=m2F (s, t)|s=v+2m2−(t/2)

m2 − t− iε

)∣∣∣∣∣
t=0

]∣∣∣∣∣
v=0

+
(2N)!

M !π
∂Mt

∫ R+4m2−t

R
dµ

ImF (µ+ iε, t)(
µ̄+ t̄

2

)2N+1


t=0

+
(2N)!

M !

∫
C±R

ds′

2πi
∂Mt

 F (s′, t)(
s̄′ + t̄

2

)2N+1


t=0

, (4.18)

for any N ∈ N and M ≥ 0. Note that when Rest=m2F (s, t) is independent of s, the

second term in the second line of eq. (4.18) vanishes. In scalar theories, Rest=m2F (s, t) is

independent of s, and hence one can drop the contribution from t-channel pole in (4.18).

Now, let us consider what happens if we take the limit R→∞ in eq. (4.18). From (3.28),

s↔ u crossing symmetry, and the Schwarz reflection principle, it turns out that
∣∣F (n)(s±

ε)
∣∣ < |s|1+(2n+2)α along the real axis. If this polynomial boundedness property also holds
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on the complex s-plane, the terms in the final line of eq. (4.18) vanish after taking the limit

R→∞. In order to show the boundedness property of
∣∣F (n)(s)

∣∣ in the complex s-plane, the

Phragmén-Lindelöf theorem plays a crucial role. Combined with the analyticity assumption

B2, the theorem ensures that the polynomial boundedness (3.28) on the real axis also holds

for modulus of s in the upper-half plane if
∣∣F (n)(s)

∣∣ can grow no faster than exp[σ|s|γ ] with

γ < 1 as |s| → ∞ in the upper-half plane. Combined with the boundedness assumption

C, this means that for α < 1 case,
∣∣F (n)(s)

∣∣ is bounded by |s|1+(2n+2)α in the upper-half

plane.9 This boundedness in the upper-half plane also ensures the boundedness in the

lower-half plane by making use of the s ↔ u crossing symmetry. Thus, from eqs. (3.28)

and (4.18), one can obtain the following expression by taking the limit R → ∞, only for

2N > 1 + (2 + 2M)α:

B(2N,M)(0) =
(2N)!2

M !π

∫ ∞
4m2

dµ∂Mt

 ImF (µ+ iε, t)(
µ̄+ t̄

2

)2N+1


t=0

=

M∑
k=0

(−1)k

k!2k
I(2N+k,M−k)(0) .

(4.19)

This means that for 0 < α < 1 case, one can relate B(2N,M)(t) to the imaginary part of

the scattering amplitude as in eq. (4.5) only when both 2N > 1 + (2M + 2)α and t = 0 are

satisfied. Therefore, for 0 < α < 1 case, positivity bounds (4.9) with 2N > 1 + (2M + 2)α

and t = 0 must be still satisfied, while other bounds which must be satisfied in α = 0

case could be violated. Indeed, eqs. (3.28), (4.5), (4.7), and (4.9) imply that for α > 0

case, I(2N,M)(t), B(2N,M)(t), and Y (2N,M)(t) are ensured to be finite only when both 2N >

1+(2M+2)α and t = 0 are satisfied. Note that one can also obtain the improved positivity

bounds by introducing Λth which specifies the regime of the validity of the perturbative

calculation of LEEFT, and evaluating the contributions from the loops of light particle as

is done for α = 0 case in section 4.1.

The result obtained here is remarkable: there are still infinite number of inequalities

which must be satisfied by LEEFT scattering amplitude, even when UV completions are

non-local. Existence of such bounds implies the existence of IR obstructions to unitary,

analytic, and Lorentz invariant UV completions. In order to demonstrate the importance of

this result, let us consider the forward-limit positivity bounds Y (2N,0)(0) > 0 with N ≥ 1,

for example. Leading-order forward-limit positivity bound Y (2,0)(0) > 0 can be an IR ob-

struction for LEEFTs to admit local, analytic, unitary, and Lorentz invariant UV comple-

tions, even if LEEFTs are apparently consistent with locality and Lorentz invariance. This

statement has been already obtained in [1]. In the literature, sub-leading order forward-

limit positivity bounds Y (2N,0)(0) > 0 with N ≥ 2 are also regarded as IR obstructions

to local, analytic, unitary, and Lorentz invariant UV completions. However, our results

suggest that sub-leading order forward-limit positivity bounds can be IR obstructions to

analytic, unitary, and Lorentz invariant but possibly non-local UV completions.

• α ≥ 1 case. As is discussed just before obtaining eq. (4.19), one cannot make use of

Phragmén-Lindelöf theorem for α ≥ 1 case, because
∣∣F (n)(s)

∣∣ can grow as fast as exp
[
C|s|

]
9This polynomial boundedness on the scattering amplitudes in the complex s-plane is consistent with

the result obtained in [29].
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Figure 1. This figure shows which inequalities must be satisfied for generic α > 0. For α > 0 case,

all the bounds could be violated when t > 0. When t = 0, some of the bounds must still be satisfied

for 0 < α < 1 case: for fixed M and α with 0 < α < 1, inequalities with 2N > 1 + (2 + 2M)α must

be satisfied. For fixed N and α with 0 < α < 1, inequalities with M ≥ (2α)−1(2N − 1) − 1 could

be violated even when t = 0. When α ≥ 1, all the inequalities could be violated. Of course, one

can also derive the improved positivity bounds by introducing the parameter Λth and evaluating

the loop corrections from the light particle.

in this case. This means that it would be impossible to show the polynomial boundedness of∣∣F (n)(s)
∣∣ in the complex-s plane even if

∣∣F (n)(s)
∣∣ is polynomially bounded on the real axis.

This means that it will be impossible to obtain dispersion relation with a finite number of

subtractions for α ≥ 1 case, and hence all the positivity bounds can be violated.

Let us summarize the results obtained in this subsection 4.2. Among an infinite number

of positivity bounds (4.9) which must be satisfied in α = 0 case, all the bounds with t > 0

could be violated for any value of (2N,M) in α > 0 case. On the other hand, some of

positivity bounds (4.9) with t = 0 must be still satisfied for 0 < α < 1. In figure 1,

we list up which inequalities must be satisfied for generic α. For fixed M and α with

0 < α < 1, inequalities with 2N > 1 + (2 + 2M)α must be satisfied. For fixed N and

α with 0 < α < 1, inequalities with M ≥ (2α)−1(2N − 1) − 1 could be violated even

when t = 0. When α ≥ 1, all the inequalities could be violated. As is emphasized above,

there are still infinite number of positivity bounds for α < 1, such as sub-leading order

forward-limit positivity bounds. This implies the existence of IR obstructions to Lorentz

invariant UV completions: our results open the new possibility to falsify unitary, analytic,

and Lorentz invariant UV completions via the violation of positivity bounds, even if LEEFT

is apparently Lorentz invariant.

4.3 Lower bound on the α parameter

If we maintain the assumptions A-C which are given in section 3.1, the results obtained in

section 4.1–4.2 allow us to put a lower bound on α in the following manner:

• If at least one of the positivity bounds (4.9) is violated for t > 0, then α > 0.
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• If the positivity bounds (4.9) with t = 0 are violated for ∀(2N,M) ∈ {(2Ni,Mi)}i∈D,

where D specifies the set of variables (2N,M), then

α ≥ Min

[
2N∗ − 1

2M∗ + 2
, 1

]
,

2N∗ − 1

2M∗ + 2
:= Max

[{
2Ni − 1

2Mi + 2

}
i∈D

]
. (4.20)

This result shows that one can obtain the information of the α parameter only from the

low energy data which would be accessible from observations, by investigating which in-

equalities are violated among an infinite number of inequalities (4.9).

Application to massive Galileon: massless limit. Let us briefly comment on the

application of our results to massive Galileon models. Positivity bounds are applied to

massive Galileon models in [5]. Their results suggest that it is impossible to take the mass-

less limit with satisfying the leading-order forward limit positivity bound. From eq. (4.20),

this means that the UV completion of Galileon models which are obtained by taking the

massless limit of massive Galileon models cannot be strictly localizable theories: if one try

to maintain unitarity, analyticity, and Lorentz invariance, one must give up strict local-

ity. This is consistent with the conjecture proposed in [13] that Galileons may fall into

non-localizable theory.

5 Conclusion and discussions

In this study, we have derived the posivity bounds on LEEFT which admit an analytic,

unitary, and Lorentz invariant UV completions with a mass gap. Under several reasonable

assumptions on the S-matrix, we find that an infinite number of subtractions will be re-

quired for t > 0, unless α = 0. This means that the beyond forward limit positivity bounds

obtained in the literature can be violated even in local QFT because standard local QFT

can have 0 ≤ α < 1
2 . Beyond forward limit positivity bounds are obtained only when α = 0

case, namely, momentum space Wightman functions are polynomially bounded. On the

other hand, we have shown that ∂nt F (s, t)
∣∣
t=0

are polynomially bounded in the complex s-

plane when α < 1, leading to the dispersion relation with finite number of subtractions. As

a result, we obtained an infinite number of positivity bounds for α < 1 theories: obtained

bounds for generic α are summarized in figure 1. Because α ≥ 1
2 theories are essentially

non-local, our results suggest the existence of IR obstructions to analytic, unitary, and

Lorentz invariant UV completions. So far, it was impossible to conclude that the UV

completion must violate at least one of the analyticity, unitarity, or Lorentz invariance,

by testing the violation of positivity bounds. This is because it was not known whether

positivity bounds could be obtained when the locality assumption is removed. Our results

open the very exciting windows to test the analyticity, unitarity, or Lorentz invariance of

UV completion only from IR data, even if Lorentz invariance is maintained at low energy.

As is well known, however, one of the most annoying issue is the necessity of the intro-

duction of a mass gap in the scattering amplitude under consideration to derive positivity

bounds. The existence of a mass gap is important for deriving the high energy behavior

of the amplitude and the dispersion relation. Both of them are crucially important to de-

rive positivity bounds. Because massless graviton will be coupled to all sectors, this issue
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must be considered seriously. It should be clarified under which situation one can correctly

capture the properties of the amplitude by introducing mass terms in the theory as an IR

regulator. We will study these aspects in our future work.
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