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Abstract 

Plants strictly regulate the sterol levels in their cells, as high sterol levels are toxic. 

However, how plants achieve sterol homeostasis is not fully understood. We isolated an 

Arabidopsis thaliana mutant that abundantly accumulated sterol esters in ~1-µm-

diameter structures in leaf cells. We designated the mutant as high sterol ester 1 (hise1) 

and the structures as sterol ester (SE) bodies. Here we show that the gene product 

(HiSE1) responsible for the mutation functions as a key factor in plant sterol 

homeostasis on the endoplasmic reticulum (ER) and participates in a fail-safe-regulatory 

system composed of two processes. First, HiSE1 down-regulates the protein levels of the 

HMG-CoA reductases HMGR1 and HMGR2, which are rate-limiting enzymes in the 

sterol synthesis pathway, resulting in suppression of sterol overproduction. Second, if 

the first process is not successful, excess sterols are converted to sterol esters by 

phospholipid sterol acyltransferase1 (PSAT1) on the ER microdomains and then 

segregated in SE bodies. 

 

Introduction 

Sterols have important functions in many cellular activities of plants. For example, 

brassinosteroids are sterol phytohormones that are involved in cell division, cell elongation, 

vascular differentiation, and other plant-specific processes. Plant sterols are synthesized from 

acetyl-CoA via three pathways: the mevalonate, terpenoid, and sterol biosynthetic pathways 

(see Fig. 3a)1. The sterol levels are regulated, often by conversion of excess sterols to sterol 

esters2, 3. For example, overexpression of the sterol synthesis enzymes HMG-CoA reductase 

(HMGR)4 and CYP515, 6 in Nicotiana tabacum leaves induces the accumulation of sterol 

esters. Application of the sterol precursors squalene and mevalonate to leaves of A. thaliana3 

and Apium graviolens7, respectively, also induced the accumulation of sterol-esters. 

Deficiency of phospholipid sterol acyltransferase1 (PSAT1), which converts excess sterols 

into sterol esters2, 3, causes early senescence of leaves2, 3, and applying the sterol precursor 

squalene to PSAT-deficient plants was lethal. In addition, in A. thaliana mutants that 

accumulate high amounts of cholesterol, the growth of leaves is retarded8, 9. These results 

imply that, despite the importance of sterols in plant growth, excess sterols can be harmful. 
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Thus, sterol levels should be tightly regulated. However, a key factor regulating the plant 

sterol homeostasis is largely unknown.  

The main sterols of plants, animals and fungi are sitosterol, cholesterol, and ergosterol, 

respectively10. Despite this difference, the metabolic pathway of sterol synthesis of plants is 

basically similar to those of yeast and animals11. HMGR, which is located on endoplasmic-

reticulum (ER) membrane in eukaryotes11-16, is a rate-limiting enzyme that converts HMG-

CoA to mevalonate in the synthesis of sterols17. Thus, its level is an important factor in 

regulating sterol synthesis. In yeast18 and animals19, HMGR is degraded through ER-

associated degradation (ERAD)18, 19, which suggests that sterol homeostasis is achieved by 

regulating HMGR at the protein level. ERAD is also involved in regulating HMGR at the 

protein level in Medicago truncatula12 and at the activity level in A. thaliana20. In addition to 

the similar regulations to those of yeast and animals, plants have the potential to evolve a 

unique regulation21. However, plant-specific mechanism underlying sterol biosynthesis is not 

known. 

Lipid bodies (oil bodies) are intracellular structures present in the seed and leaf cells of 

many land plants. Seed oil bodies function as storage compartments for lipids, while leaf oil 

bodies function as subcellular factories that have roles in the responses to fungal infection and 

senescence22, 23. The main lipids in both seed and leaf oil bodies are triacylglycerols (TAGs), 

although less is known about the types of lipids accumulated in leaf oil bodies. To better 

understand leaf oil bodies, we attempted to isolate A. thaliana mutants that develop excess oil 

bodies in the leaves. We found one such mutant, but unexpectedly, an analysis of its oil bodies 

revealed that they contained high levels of sterol esters in ~1-µm-diameter structures in the 

cells. Furthermore, the gene responsible for the mutation was found to have a major role in 

down-regulating two functional HMGR homologues (HMGR1 and HMGR2)17, 24, 25. 

 

Results 

hise1 develops lipophilic structures in leaf cells 

To identify oil bodies in leaf cells, we generated a transgenic wild-type A. thaliana that 

expressed a GFP-labeled oil-body membrane-protein (CALEOSIN3, CLO3)22 under control 

of the native CLO3 promoter. CLO3 is expressed at very low levels in mature leaves because 
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of their normally low content of oil-bodies, although it is induced by biotic stress and 

senescence22. As expected, CLO3-GFP fluorescence was hardly detected in mature leaves of 

the transgenic seedlings (Fig. 1a, wild type). We then mutagenized the transgenic plant and 

screened the mature leaves of the M2 seedlings for mutants with CLO3-GFP fluorescence, 

which would indicate the presence of oil bodies. In this way, we isolated a recessive mutant 

that had bright CLO3-GFP fluorescence (Fig. 1a), which, as explained below, we designated 

hise1-1. hise1-1 had a single mutation at the start codon of the At1g60995 gene, which 

encodes a transmembrane protein of unknown function (Fig. 1b). Expression of the intact 

At1g60995 gene in hise1-1 leaves made the CLO3-GFP fluorescence disappear (Fig. 1a), 

indicating that At1g60995 is responsible for the hise1 phenotype. 

We established two recessive mutant alleles (hise1-2 and hise1-3), neither of which had 

the CLO3-GFP transgene (Fig. 1b). Quantitative PCR analysis revealed that the HiSE1 

transcript levels in the hise1-2 and hise1-3 leaves were markedly low (Fig. 1c). The leaves 

were stained with the lipophilic dye Nile red and inspected with a confocal laser-scanning 

microscope. Both hise1-2 and hise1-3 had many dot-like Nile-red stainable structures (Fig. 

1d). The number of the structures was much higher in all of the hise1 mutant alleles (hise1-1, 

hise1-2 and hise1-3) than in the wild type (Fig. 1e and Supplementary Fig. 1a). Electron 

microscopy revealed structures with diameters of ~1 µm that were distributed in the cytosol of 

hise1-2 and hise1-3 leaf cells, but not in the cytosol of wild-type cells (Fig. 1f), indicating that 

the lipophilic structures are formed in mature leaves as a result of HiSE1 deficiency. To 

examine the relationship between the lipophilic structures and CLO3-GFP-positive oil bodies, 

CLO3-GFP was expressed in hise1-2. The lipophilic structures had two populations in both 

hise1-1 and hise1-2 leaves: a CLO3-GFP-positive population in the leaf marginal areas and a 

CLO3-GFP-negative population throughout the leaves (Supplementary Fig. 1b,c).  

 

hise1 accumulates high levels of sterol esters in lipophilic structures called SE bodies 

The lipidome of the entire leaf was examined by liquid chromatography-electrospray 

ionization-mass spectrometry (LC-ESI-MS). hise1 leaves had specific peaks with retention 

times in the range 8.6 to 9.4 min (Fig. 2a,b). MS/MS spectra identified all of the hise1-

specific molecules as sterol esters, each of which was composed of a sterol (stigmasterol, 
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cycloartenol/lanosterol, campesterol, 24-methylene-cycloartanol, or sitosterol) and a fatty acid 

(linolenate or linoleate) (Fig. 2c and Supplementary Figs. 2 and 3). These sterol esters were 

barely detectable in the wild-type leaves (Fig. 2a,b). On the other hand, hise1 leaves had 

slightly lower amounts of triacylglycerol (TAG, a major component of seed oil bodies) than 

the wild-type leaves (Supplementary Fig. 4).  

We next isolated the lipophilic structures from hise1 leaves that contained many dot-like 

Nile-red stainable structures (Fig. 2d). The lipidome of these structures had peaks similar to 

the hise1-specific peaks on the LC-ESI-MS spectra (Fig. 2e). The lipophilic structures from 

hise1 leaves predominantly accumulated sterol esters, while the total lipids from hise1 leaves 

mainly contained phosphatidylcholine and phosphatidylethanolamine in addition to sterol 

esters (Fig. 2f and Supplementary Data 1). Because of this characteristic feature, we named 

the mutant as high sterol ester1 (hise1) and the lipophilic structures as sterol-ester bodies (SE 

bodies).  

 

HiSE1 negatively regulates the protein levels of HMG-CoA reductases 

HiSE1 localized to the ER (see Fig. 6a). To identify its target proteins, we examined 

proteins in the microsomal fraction from leaves, which includes the ER, by quantitative mass 

spectrometry. Among ~7,000 proteins identified, only two proteins were strikingly different in 

their levels between the mutant alleles and the wild type (Supplementary Data 2). They were 

identified as isoforms of HMG-CoA reductase (HMGR) proteins (Fig. 3a), which are rate-

limiting enzymes for sterol synthesis on the ER membrane12-16. A. thaliana has two HMGR 

homologues, HMGR1 and HMGR2. hise1-2 had ~130-fold higher levels of HMGR1 and 

~220-fold higher levels of HMGR2 than the wild type, while hise1-3 had ~70-fold higher 

levels of HMGR1 and ~140-fold higher levels of HMGR2 (Fig. 3b and Supplementary Table 

1). Other enzymes involved in the synthesis of sterols from acetyl CoA (Fig. 3a) were not up-

regulated in hise1 mutant (Fig. 3b). The hyperaccumulations of the HMGR proteins in hise1-2 

and hise1-3 leaves were confirmed by an immunoblot analysis with anti-HMGR antibodies 

(Fig. 3c). On the other hand, the HMGR1 and HMGR2 mRNA levels were not different 

between the mutant alleles and the wild type (Fig. 3d). These results indicate that HiSE1 

regulates HMGR protein levels, but not HMGR transcript levels. Hence, HiSE1 plays a key 
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role in down-regulating HMGR protein levels. 

 

hise1 has remarkably high levels of HMGR activity and sterol-producing activity 

HMGR catalyzes the conversion of HMG-CoA into mevalonate on the ER membrane 

(Fig. 3a). We measured HMGR activities towards [14C]-HMG-CoA by using the microsomal 

fractions from hise1-2 and wild-type leaves (Supplementary Fig. 5a). hise1-2 exhibited [14C]-

mevalonate-producing activity (Fig. 4a) and the activity of hise1-2 was inhibited by 

lovastatin, a competitive inhibitor of HMGR26, in a dose-dependent manner (Fig. 4a). The 

[14C]-mevalonate production increased with hise1-2 microsomal fraction in an incubation 

time-dependent manner (Fig. 4b). However, the [14C]-mevalonate production was hardly 

detected with the wild-type microsomal fraction (Fig. 4b). To compare specific activities 

between the wild type and hise1-2, we measured HMGR activities by using crude leaf 

extracts that had more abundant HMGR proteins than the microsomal fractions 

(Supplementary Fig. 5b). Specific HMGR activity of hise1-2 was ~23-fold higher than that of 

the wild-type (Fig. 4c). The higher HMGR activity in hise1-2 is consistent with the marked 

increase in HMGR protein levels in hise1 mutants compared to the wild type (Fig. 3).  

To examine the effects of up-regulation of the rate-limiting enzyme HMGR on the sterol 

biosynthesis pathway, in-vivo productions of squalene (an intermediate) and sterol esters 

(metabolic end products) were determined by using [14C] tracers. In-vivo labeling of leaves 

with [14C]-sodium bicarbonate, an initial substrate for carbon fixation, revealed that the level 

of [14C]-sterol ester was higher in hise1-2 than in the wild type (Fig. 4d), indicating that 

carbon fixation products are used preferentially for sterol biosynthesis in hise1. Next, in-vivo 

labeling with either [2-14C]-sodium acetate (an acetyl-CoA precursor) or [14C]-isopentenyl 

pyrophosphate (IPP, a squalene precursor) showed that [14C]-sterol esters accumulated to 

much higher levels in hise1-2 than in the wild type (Fig. 4d), indicating that the hise1-2 

mutant has higher levels of sterol-producing activity than the wild type. The production of 

[14C]-squalene was also higher in hise1-2 compared to that in the wild type (Fig. 4d). These 

results indicate that the activity of the sterol biosynthesis pathway was up-regulated in hise1 

due to higher HMGR activities. Hence, HiSE1 prevents accumulation of sterols to toxic levels 

by down-regulating the levels of HMGR proteins. 
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Finally, the effect of the HMGR inhibitor lovastatin on plant growth was examined. 

Inhibiting HMGR proteins stunted the growth of hise1-2, hise1-3, and wild-type seedlings in 

a dose-dependent manner (0, 100, 300, and 1000 nM). However, hise1 mutant alleles were 

more resistant to the inhibitor than the wild type (Fig. 4e and Supplementary Fig. 6a), in 

agreement with remarkably higher levels of HMGR proteins (Fig. 3b) and HMGR activities 

(Fig. 4c) in hise1 than in the wild type. Treatment of seedlings with a competitive inhibitor of 

squalene synthase (SQS) (zaragozic acid)24 also stunted the growth of hise1-2, hise1-3, and 

wild-type seedlings in a dose-dependent manner (0, 10, and 20 µM) (Supplementary Fig. 

6b,c). The high concentrations of zaragozic acid inhibited the greening of wild-type 

cotyledons at early developmental stages (~10-day-old cotyledons) more severely than hise1 

cotyledons (Supplementary Fig. 6b,c). These results indicate that hise1 has remarkably high 

levels of HMGR activity, resulting in up-regulation of sterol biosynthesis pathway. 

 

Detoxification of sterols in hise1 

How do hise1 plants grow normally despite producing potentially toxic levels of 

sterols? Sterol levels in hise1 mutant alleles were similar to those in the wild type (Fig. 5e,f), 

although they had more abundant sterol esters than the wild type (Fig. 2). By focusing on 

PSAT1, which converts sterols into sterol esters2, 3, we generated a double-mutant, hise1-3 

psat1-2 (Supplementary Fig. 7a). As expected, levels of the sterol esters in the leaves were 

undetectable, but they completely recovered in hise1-3 psat1-2 by expressing PSAT1 (Fig. 5a 

and Supplementary Fig. 7b). These results indicate that PSAT1 is responsible for the elevated 

production of sterol esters in hise1.  

To determine whether PSAT1 is involved in SE-body formation in hise1, leaves of 

hise1-3 psat1-2 and the single mutant psat1 were stained with Nile red. psat1 had no Nile red-

stainable SE bodies (Fig. 5b), in agreement with the observation that the PSAT1 deficiency 

failed to produce sterol esters (Fig. 5a)3. Similarly, hise1-3 psat1-2 had no SE bodies (Fig. 

5b). SE bodies were formed in hise1-3 psat1-2 by expressing PSAT1, but not by expressing 

HiSE1 (Fig. 5b). A quantitative analysis showed that the ability to form SE bodies (Fig. 5c) 

was strongly correlated with the levels of sterol ester (Fig. 5a). 

hise1-3 psat1-2 seedlings grew very slowly (Fig. 5d), although seedlings of the single 
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mutants hise1-2, hise1-3, and psat1-2 grew normally (Fig. 5d and Supplemental Fig. 6). The 

growth defects in hise1-3 psat1-2 were recovered by expressing either PSAT1 or HiSE1 (Fig. 

5d). hise1-3 psat1-2 had ~65% higher levels of total free sterols than the wild type and hise1 

(Fig. 5e,f), which may be the reason for its growth defect.  

Despite the normal growth of psat1 seedling (Fig. 5d), psat1 exhibits early leaf 

senescence3, possibly due to the higher levels of total free sterols (Fig. 5e,f). In addition to the 

sterol overaccumulation, sterol deficiency causes defects in plant growth (Fig. 5). These 

results indicate that sterol levels must be strictly regulated in plants. Sterol homeostasis is 

essential for not only plant growth but also cellular activity and membrane fluidity1, 3, 14. 

Taken together, our results show that under HiSE1-deficient conditions, A. thaliana plants 

grow normally with SE bodies and exhibit seedling lethality without them. Thus, HiSE1, by 

down-regulating HMGR, and PSAT1, by removing sterols, work together to achieve sterol 

homeostasis. 

 

Localizations of HiSE1 and PSAT1 

To determine the subcellular site of HiSE1, we generated a GFP-fusion of HiSE1 

(HiSE1n-GFP-HiSE1c), in which GFP was inserted into the first loop of the membrane 

protein HiSE1 (Supplementary Fig. 8a), and expressed it in N. benthamiana. The GFP 

fluorescence of HiSE1n-GFP-HiSE1c had a network structure and co-localized with an ER 

marker (ER-mCherry) (Fig. 6a). No HiSE1n-GFP-HiSE1c signals overlapped with the FM4-

64-labeled plasma membrane (Supplementary Fig. 8b). These results indicate that HiSE1 

localizes to the ER membrane. 

We next expressed an RFP fusion of PSAT1 (PSAT1-TagRFP) in N. benthamiana. The 

RFP fluorescence revealed punctate structures (Fig. 6b) that were not labeled with markers of 

five cellular structures (Golgi, mitochondria, trans-Golgi network, endosomes or ER-plasma 

membrane contact sites) (Supplementary Fig. 9), consistent with a previous report that PSAT1 

localized to unknown punctate structures27. On the other hand, more than 90% of PSAT1-

TagRFP punctate structures were labeled with HiSE1n-GFP-HiSE1c and the ER markers 

GFP-HDEL and GFP-RHD3 (Fig. 6b,c). These results raise the possibility that the ER 

microdomain to which PSAT1 localizes is the site where SE bodies are generated.  
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Discussion 

Sterol homeostasis is important for plant growth because sterols are essential lipids but 

high levels of sterols are toxic. In this study, we identified HiSE1 as a key factor in plant 

sterol homeostasis. We propose a model of a HiSE1-dependent fail-safe regulatory system 

composed of two processes (Fig. 7). First, HiSE1 negatively regulates the protein levels of the 

rate-limiting enzyme HMGR on the ER membrane, by which the HMGR activity is kept at 

the minimum levels to avoid sterol overproduction. Second, if this is not successful, excess 

sterols are converted to sterol esters on the PSAT1-localized ER microdomains, which are 

then segregated in the SE bodies. Defects in these processes caused a defect in plant growth 

(Fig. 5d) due to overaccumulation of sterols. In contrast, plants with sequestered SE bodies 

grew normally, demonstrating that sequestered SE bodies are nontoxic. Hence, the regulatory 

system involving HiSE1 and SE bodies provides an efficient and accurate system for plant 

sterol homeostasis. 

The present results clearly show that HiSE1 reduces HMGR1 and HMGR2 protein 

levels to a bare minimum, but that it does not affect the transcript levels of genes encoding 

these proteins. How HiSE1 regulates HMGR protein levels is unknown. HiSE1 shares 50% 

amino acid sequence similarity (50% positive substitution) with the mouse ER membrane 

protein membralin (NP_001346561.1), which down-regulates the multi-subunit protease γ-

secretase through ERAD28, 29. However, whether membralin is involved in sterol homeostasis 

is unknown. These results imply that HiSE1 regulates ERAD-mediated down-regulation of 

HMGR proteins. 

In yeast and animals, regulatory factors including E3 ubiquitin ligases function in the 

ERAD of HMGR proteins21. In plants, the E3 ubiquitin ligase MAKIBISHI1 mediates the 

ERAD of HMGR proteins in Medicago truncatula12. Deficiency of MAKIBISHI1 resulted in a 

1.5-fold increase in HMGR protein levels compared to control plants12. By contrast, 

deficiency in HiSE1 resulted in the double-digit increase in HMGR protein levels compared 

to the wild type (Fig. 3b). These data suggest that plants have evolved a unique HiSE1-

dependent mechanism to regulate HMGR protein levels. 
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Methods 

Plant materials and growth conditions. A. thaliana ecotype Columbia (Col-0) was used as 

the wild type. Three T-DNA mutants were obtained from the Arabidopsis Biological 

Resource Center at Ohio State University: SALK_013823 (hise1-2), SALK_042821 (hise1-

3), and SALK_117091C (psat1-2). In hise1-2, T-DNA was inserted between 2,773 and 2,774 

bp downstream of the start codon of the HiSE1 gene. In hise1-3, T-DNA was inserted 

between 3,210 and 3,211 bp downstream of the start codon of the HiSE1 gene, although 

abnormal splicing occurred frequently. The following primer sets were used for genotyping 

by PCR: 5’-TGGTTCACGTAGTGGGCCATCG-3’ for the border primer of T-DNA 

insertion (LBa1), 5’-TTCAGTGGCTTGAGAGTAAAACT-3’ and 5’-

GGCAGTGAGATTATCACGAGCAA-3’ for hise1-2 and hise1-3 (the size of PCR product is 

1742 bp), and 5’-ACCCCCTTTTGCATTCATAAC-3’ and 5’-

CTCTCTGGTGTAACGTTTGGC-3’ for psat1-2 (the size of PCR product is 1087 bp). Two 

double mutants (hise1-2 psat1-2 and hise1-3 psat1-2) were generated by crossing between 

single mutants. A. thaliana seeds were surface sterilized with 70% ethanol, dried, sown on 

Murashige-Skoog (MS) agar plates (Wako, Tokyo, Japan), and incubated at 4°C for 3 days to 

break seed dormancy. The seeds were germinated and grown at 22–25°C under continuous 

light (100 µEs-1m-2) or under a 16-h light (100 µEs-1m-2) /8-h dark photoperiod for 2–3 weeks, 

followed by growth in vermiculite at 22–25°C under a 16-h light (100 µEs-1m-2)/ 8-h dark 

photoperiod. Alternatively, A. thaliana seeds were grown on Rockwool at 23°C under a 16-h 

light (100 µEs-1m-2) /8-h dark photoperiod. The first true leaves (juvenile leaves) of A. 

thaliana were used except as specifically described. 

Inhibitor treatments. Seventeen seed grains of each line (the wild type, hise1-2, and hise1-3) 

were sown on MS agar plates that contained 0, 100, 300 and 1,000 nM lovastatin (Tokyo 

Chemical Industry Co., Ltd., Tokyo, Japan) and then grown for 2 weeks. The numbers of 

plants which had opening third true leaves were measured for quantitative analysis. We 

repeated the experiment three times. Three biological replicates were performed for 

quantitative analysis. Microsoft excel 2013 was used for statistical tests throughout the 

statistical analyses in this study. 

Fifteen seed grains of each line (the wild type, hise1-2, and hise1-3) were sown on MS 

agar plates that contained 0, 10, and 20 µM zaragozic acid (Funakoshi, Tokyo, Japan) and 

then grown for 10 days. The numbers of seedlings with senesced cotyledons were counted 
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and the ratios to fifteen seedlings of each line were calculated. Three biological replicates 

were performed for quantitative analysis. 

Isolation of the hise1 mutant. Transgenic A. thaliana expressing CLO3-GFP under the 

control of the native CLO3 promoter (pCLO3::CLO3-GFP) was used as the parent line22. The 

pCLO3::CLO3-GFP seeds were mutagenized by soaking for 16 h in 0.2 or 0.25% (v/v) 

methanesulfonic acid ethyl ester (Sigma-Aldrich, Tokyo, Japan) and washed for 6 h in 

running water to obtain M1 seeds. The M1 seeds were planted, and after self-fertilization, M2 

seeds were collected from individual M1 plants to generate the M2 lines. Thirty seeds per M2 

line were planted, and 10- to 17-day-old seedlings were collected. Each seedling was 

examined under a fluorescence microscope or fluorescence stereomicroscope, and a mutant 

line that exhibited abnormal CLO3-GFP fluorescence was selected; this line was designated 

high sterol ester1-1 (hise1-1). The hise1-1 mutant was backcrossed once with the wild type 

containing pCLO3::CLO3-GFP. 

Map-based cloning of HiSE1. The hise1-1 homozygous mutant (ecotype Columbia) was 

crossed with Landsberg erecta wild-type plants to generate the mapping population. In the F2 

generation, the hise1-1 mutant was selected and subjected to DNA isolation from leaf tissue. 

The polymorphism between Columbia and Landsberg erecta was analyzed using a 

combination of cleaved amplified polymorphic sequence and simple sequence length 

polymorphism markers30 with data obtained from The Arabidopsis Information Resource 

(http://www.arabidopsis.org). F2 plants showing the hise1 phenotype were screened and used 

for rough mapping. HiSE1 was localized to chromosome 1. For fine-scale mapping, DNA was 

isolated from F2 plants. The nucleotide sequences of both DNA strands were determined 

using an ABI Prism Big Dye Terminator cycle sequence reaction kit (Applied Biosystems, 

Foster City, CA) and a DNA sequencer (Prism 3100; Applied Biosystems). 

Nile red staining. Nile red staining was performed as described previously22. A. thaliana 

leaves were vacuum-infiltrated for 5 min in Nile red stain in water. The fluorescence of Nile 

red was examined under a confocal laser-scanning microscope (Fluoview FV500; Olympus, 

Tokyo, Japan) at a wavelength of 543 nm. Differential interference contrast (DIC) images 

were taken under the same microscope. 

Confocal laser-scanning microscopy. Fluorescent images of transgenic plants were obtained 

under three confocal laser-scanning microscopes: LSM510 META (Carl Zeiss, Jena, 

Germany), LSM780 (Carl Zeiss) and Fluoview FV500 (Olympus). The softwares used were 

ZEN 2.1 (black) of Carl ZEISS and cellSens Dimension (ver 1.16) of Olympus. DIC images 
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were obtained using the same microscopes. The procedures used were described previously31. 

The 488-nm laser was used to excite GFP, whereas the 543-nm laser was used to excite RFP, 

FM4-64 and Nile red. For plasma membrane staining, leaves were exposed to 2 µM FM4-64 

for 5 min. At least two biological replicates were analyzed. 

Quantitative analysis of SE bodies. The number of sterol-ester bodies in the wild type, 

hise1-2, and hise1-3 was counted in each micrograph (147.5 µm × 128.3 µm), with five 

micrographs analyzed per line (n = 5). The number of leaf oil bodies in wild type, hise1-3, 

psat1-2, hise1-3 psat1-2, and hise1-3 psat1-2 harboring either p35S::HiSE1 or 35S::PSAT1 

was counted in each micrograph (135 µm × 135µm), with six micrographs analyzed per line 

(n = 6). At least three biological replicates were analyzed. 

Lipid analysis. Total lipids were extracted from 2-week-old A. thaliana leaves with a mixture 

of chloroform and methanol, followed by washing with water. Lipidomic analysis of the lipid 

extract were performed by LC-ESI-MS in the positive ion mode22. Lipid species were 

separated on a C18 column. The hise1-specific lipid species was characterized by MS/MS 

experiment, using authentic sterol esters (cholesteryl linoleate, cholestery palmitate) as 

references. Free sterols were analyzed by LC-ESI-MS after picolinoyl derivatization. See 

Supplementary Methods for more detail. 

Vector construction. Vectors were constructed using Gateway Technology (Invitrogen, 

Carlsbad, CA) with the destination vectors pFAST-G0132, 33 and pFAST-R0232, 33, pH2GW732 

and pB2GW732 (Plant System Biology, Gent, Belgium), and pGWB66034 and pGWB40635. 

The full-length cDNA fragment of Arabidopsis thaliana HiSE1 (HiSE1cFULL), starting from 

nucleotide 1 (corresponding to A of the start codon ATG) to nucleotide 1,872 (corresponding 

to A of the stop codon), was amplified by PCR using the primer set: 5′-

CACCATGGATCCGGAGCAGACGTTTAT-3′ (forward) and 5′-

TTAATCAACTGAAAGAGGATCAT-3′ (reverse). The HiSE1cFULL PCR product was 

cloned into pENTR/D-TOPO (Invitrogen) via TOPO cloning to construct the entry clone, 

which was then cloned into the destination vectors pFAST-R02 and pGWB406 via LR 

cloning (Invitrogen), creating two vectors, pFAST-R02-HiSE1cFULL and pGWB406-

HiSE1cFULL, respectively. The N-terminal fragment of HiSE1 cDNA (HiSE1cN), starting 

from nucleotide 1 (corresponding to A of the start codon ATG) to nucleotide 549, was PCR 

amplified using the forward primer 5′-CACCATGGATCCGGAGCAGACGTTTAT-3′ and 

reverse primer 5′-GCCAGATCCGCCATCAAGATTTAGCGGTAT-3′, with pGWB406-

HiSE1cFULL as the template. The C-terminal fragment of HiSE1 cDNA (HiSE1cC), starting 
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from nucleotide 550 to nucleotide 1872 (corresponding to A of the stop codon), was PCR 

amplified using the primer set 5′-TCTGGCTCCGGCGTGCCCAAATTGTTGCAT-3′ 

(forward) and 5′-TTAATCAACTGAAAGAGGATCAT-3′ (reverse), with pGWB406-

HiSE1cFULL as the template. A fragment of the GFP gene, starting from nucleotide 1 

(corresponding to A of the start codon ATG) to nucleotide 717, was PCR amplified using the 

primers 5′-GGCGGATCTGGCATGGTGAGCAAGGGCGAG-3′ (forward) and 5′-

GCCGGAGCCAGACTTGTACAGCTCGTCCAT-3′ (reverse), with pFAST-G01 as the 

template. Full-length HiSE1 cDNA containing a GFP fragment insert (HiSE1cN-GFP-

HiSE1cC) was PCR amplified from HiSE1cN, HiSE1cC, and GFP fragment using the primer 

set: 5′-CACCATGGATCCGGAGCAGACGTTTAT-3′ (forward) and 5′-

TTAATCAACTGAAAGAGGATCAT-3′ (reverse). The HiSE1cN-GFP-HiSE1cC PCR 

product was cloned into pENTR/D-TOPO (Invitrogen) via TOPO cloning to produce an entry 

clone, which was then cloned into the destination vector pB2GW7 via LR cloning 

(Invitrogen), thus creating the vector pB2GW7-HiSE1cN-GFP-HiSE1cC. 

Full-length A. thaliana PSAT1 cDNA (PSAT1cFULL), starting from nucleotide 1 

(corresponding to A of the start codon ATG) to nucleotide 1,902 (corresponding to A of the 

stop codon), was PCR amplified using the primer set: 5′-

CACCATGGGAGCGAATTCGAAATCAGT-3′ (forward) and 5′-

TTATATGTACTGGAGAAGCATAT-3′ (reverse). The PSAT1cFULL PCR product was 

cloned into pENTR/D-TOPO (Invitrogen) via TOPO cloning to produce an entry clone, which 

was then cloned into the destination vector pH2GW7 via LR cloning (Invitrogen) to construct 

the final vector, pH2GW7-PSAT1cFULL. 

The full-length fragment of PSAT1 cDNA, except for the stop codon, (PSAT1cFULL-

stop) from nucleotide 1 (corresponding to A of the start codon ATG) to nucleotide 1,899 was 

PCR amplified using the primers 5′-CACCATGGGAGCGAATTCGAAATCAGT-3′ 

(forward) and 5′-TATGTACTGGAGAAGCATATTAG-3′ (reverse), with pH2GW7-

PSAT1cFULL as the template. The PSAT1cFULL-stop PCR product was cloned into 

pENTR/D-TOPO (Invitrogen) via TOPO cloning to produce an entry clone, which was then 

cloned into the destination vector pGWB660 via LR cloning (Invitrogen) to construct the final 

vector, pGWB660-PSAT1cFULL-stop. 

Quantitative real time PCR analysis. Whole leaves of 2-week-old wild-type, hise1-2 and 

hise1-3 plants were used. Total RNA was isolated from the leaves using an RNeasy Plant 

Mini Kit (QIAGEN) and treated with DNase I. cDNA was prepared from the total RNA with 
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a reverse transcriptase, ReverTra Ace (Toyobo, Osaka, Japan). The expression levels of 

mRNA were quantified using a KAPA SYBR FAST Universal Kit (Kapa Biosystems, 

Wilmington, MA) and Thermal Cycler Dice Real Time System Lite (Takara, Shiga, Japan) 

with gene-specific-primer sets (5’-AGAGTTGTTGGATATGATACT-3’ and 5’-

CACCACATTTCGTCACCAAGT-3’ for HiSE1, 5’-CCTGACATGGATGTGATTGG-3’ and 

5’-CAGCAGCAGGTTTCTTGTCC-3’ for HMGR1, 5’-CTTCCCGATGGTGACGAC-3’ and 

5’-TGCTTGTGATGCAAGTTGTG-3’ for HMGR2, and 5’-

CTTGGTGTCAAGCAGATGATTT-3’ and 5’-CGTACCTAGCCTTGGAGTATTTG-3’ for 

EF1a). The relative quantity of target mRNA was normalized using EF1a as a control. Three 

biological replicates were performed. 

Isolation of microsome samples. Whole leaves of 4-week-old wild-type, hise1-2 and hise1-3 

plants were used. The leaves (0.5 g) were chopped with a razor blade in a petri dish on ice in 

1.5 mL of chopping buffer containing 50 mM Hepes-NaOH (pH 7.5), 5 mM EDTA, 0.4 mM 

sucrose and protease inhibitor cocktail cOmplete (Sigma-Aldrich). The homogenate was 

filtered through a cell strainer. The filtrate was centrifuged at 1,000 × g for 10 min at 4°C. The 

1 mL supernatant was centrifuged at 8,000 × g for 20 min at 4°C. The supernatant was 

ultracentrifuged at 100,000 × g for 60 min at 4°C. The pellet was re-suspended in 0.15 mL of 

chopping buffer and designated as the microsomal fraction. 

Mass spectrometry for quantitative proteomics. The microsome samples were resolved by 

SDS-PAGE, followed by in-gel digestion using trypsin as described previously36. The 

resulting peptides were measured (n=3) by Q Exactive hybrid mass spectrometer (Thermo 

Fisher Scientific, San Jose, CA) essentially as described previously37. MS/MS spectra were 

interpreted and peak lists were generated by Proteome Discoverer 2.2.0.388 (Thermo). 

Searches were performed by using the SEQUEST against Arabidopsis thaliana (TAIR10) 

peptide sequence. Searching parameters were set as follows: enzyme selected as used with 

two maximum missing cleavage sites, a mass tolerance of 10 ppm for peptide tolerance, 0.02 

Da for MS/MS tolerance, fixed modification of carbamidomethyl (C), and variable 

modification of oxidation (M). Peptide identifications were based on significant Xcorr (high 

confidence filter). Peptide identification and modification information returned from 

SEQUEST were manually inspected and filtered to obtain confirmed peptide identification 

and modification lists of HCD MS/MS. Precursor ion intensity (normalized by total peptide 

amount) was used for label-free quantification. 

Immunoblot analysis. A. thaliana leaves were homogenized in 15 volumes (w/v) of SDS-

sample buffer [100 mM Tris-HCl, pH 6.8, 4% (w/v) SDS, 20% (v/v) glycerol, and 10% (v/v) 
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2-mercaptoethanol]. The homogenates (15 μL) were subjected to SDS-PAGE on 5-15% 

acrylamide gels (Wako). The separated proteins on the gels were transferred 

electrophoretically to polyvinylidene difluoride membranes (Immobilon-P; Millipore, 

Billerica, MA). The membranes were treated with blocking solution [5% skim milk, Tris-HCl, 

pH 7.5, and 0.1% (v/v) Triton X] and then incubated for 1 hr in anti-HMG1cd antibody38 

(diluted 1: 1,000) at 25°C, or for 1 hr in monoclonal anti-Actin (plant) antibody produced in 

mouse clone 10-B3 (diluted 1: 2,000)(Sigma-Aldrich, St. Louis, MO). Horseradish peroxidase 

conjugated anti-rabbit IgG (GE Healthcare, Tokyo, Japan) or anti-mouse IgG that were diluted 

(1:2000) were used as the second antibody. Immunodetection was performed with a 

chemiluminescent system using ImmunoStar LD (Wako) and C-DiGit blot scanner (LI-COR, 

Lincoln, NE). The membrane was stained with Coomassie Brilliant Blue (CBB). 

HMGR activity. HMGR activity was measured as described previously39, 40, with a slight 

modification. Microsomal fractions were prepared from leaves of 4-week-old hise1-2 and 

wild-type plants. The leaves (2.5 g fresh weight) were chopped with a razor blade in a petri 

dish on ice in 7.5 mL of a buffer solution [100 mM potassium phosphate (pH 7.0), 5 mM 

EDTA, and 0.4 M sucrose]. The homogenate was filtered through gauze and the filtrate was 

centrifuged at 1,000 × g and 4 °C for 10 min. The supernatant was centrifuged at 8,000 × g 

and 4 °C for 20 min. The supernatant was ultracentrifuged at 91,000 × g and 4 °C for 90 min. 

The pellet was resuspended in 0.5 mL of 100 mM potassium phosphate buffer (pH 7.0) and 

used as a microsomal fraction. The protein concentration in the resuspensions was measured 

with TaKaRa BCA Protein Assay Kit (Takara). Then, the protein concentrations of the 

microsomal fractions were adjusted to 0.3 mg protein/mL.  

Crude extracts were prepared from leaves of 3-week-old hise1-2 and wild-type plants. 

The leaves (0.3 g fresh weight) were homogenized in 0.9 mL of 100 mM potassium phosphate 

(pH 7.0). The homogenate was centrifuged at 8,000 × g and 4°C for 10 min. The supernatant 

was used as a crude extract. The protein concentration in the resuspensions was measured 

with TaKaRa BCA Protein Assay Kit (Takara). Then, the protein concentrations of crude 

extracts from the wild type and hise1-2 were adjusted to 7.0 and 0.7 mg protein/mL, 

respectively. 

The reaction mixture (26-μL) was composed of a microsomal fraction or a crude extract 

(18.6 μL), 100 mM potassium phosphate (pH 7.0), 3 mM NADPH, 10 mM dithiothreitol, and 

0.03 μCi [3-14C]-HMG-CoA in the presence (1, 10 and 100 μM) or absence of lovastatin. The 

mixtures were incubated at 30 °C for 30, 60 and 180 min. The reaction was then terminated 
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by adding 5 µL of mevalonate lactone (1 mg/mL) and 5 µL of 6 N HCI followed by 

incubating for 15 min at room temperature. After adding 125 µL of 1M potassium phosphate 

(pH 6.0) and 300 µL of ethyl acetate, the solution was vortexed and centrifuged for separating 

into two layers. The upper layer fraction (lipid fraction) (260 µL) containing [14C]-mevalonate 

was collected. A part of the fraction was applied to INSTA-GEL (PerkinElmer) to measure the 

radioactivity. The rest part was subjected to silica gel thin layer chromatography (TLC) by 

using acetone:venzene (1:1, v/v). The TLC plate was exposed to an imaging plate (BAS-IP 

SR 2040, Fujifilm) overnight. Signals on the TLC plate were detected with a scanner 

(Typhoon FLA7000, GE Healthcare) and analyzed with Image Quant TL (GE Healthcare) to 

quantify the radioactivity of produced [14C]-mevalonate. Three biological replicates were 

analyzed. 

Metabolism of labeled compounds. Whole leaves of 4-week-old hise1-2 and wild-type 

plants were used. Leaf segments (5 mm × 5 mm; ca.156 mg) were incubated in a 30 mL 

Erlenmeyer flask fitted with a glass tube, containing a piece of folded filter paper impregnated 

with 0.1 mL 20% (w/w) KOH in the center well, with 37 kBq of [4-14C]-isopentenyl 

pyrophosphate (1.872GBq mmol-1; Perkin Elmer), 74 kBq of [14C]-sodium bicarbonate (2.18 

GBq mmol-1, Perkin Elmer), or 74 kBq of [2-14C]-acetic acid sodium salt (2.15 GBq mmol-1; 

GE Healthcare) for 24 h under illumination (76.5 µmol m-2 s-1) at 25°C. After incubation, a 

0.5 mL aliquot of supernatant was mixed with 0.5 mL of 0.1 N HCl in a 30 mL Erlenmeyer 

flask fitted with a glass tube, containing a piece of folded filter paper impregnated with 0.1 

mL 20% (w/w) KOH in the center well. Carbon dioxide (CO2) dissolved in the medium was 

captured by the KOH-impregnated filter paper. Total lipids were extracted according to the 

method of Bligh & Dyer41. The upper layer, lower layer, and residue were referred to as 

hydrophilic, hydrophobic, and starch fractions, respectively. The glass tube and filter paper 

from the center well were transferred to a 50 mL flask containing 10 mL distilled water. 

Radioactive signal of a 0.5 mL aliquot was determined using the liquid scintillation counter to 

estimate the amount of 14CO2 released during metabolism. Radioactivity in the hydrophilic 

and starch fractions was also measured with the liquid scintillation counter. Hydrophobic 

fraction was separated by silica gel thin layer chromatography (TLC). Squalene was separated 

using hexane:diethyl ether:acetic acid solution (80:20:1, v/v/v) or hexane, and quantified 

based on the comparison of its Rf value with that of a standard. The hydrophobic fraction was 

applied to a TLC plate, exposed to an imaging plate (BAS-IP SR 2040, Fujifilm) overnight, 

detected with a scanner (Typhoon FLA7000, GE Healthcare), and analyzed with Image Quant 

TL (GE Healthcare). Radioactivity was quantified based on a standard curve generated from 
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known amounts of [2-14C]-acetic acid sodium salt. Radioactivities incorporated into squalene 

and sterol esters are given based on the fresh weights of leaves. Three biological replicates 

were performed. 

Stable transformation of A. thaliana plants. The vector pBGWF7-pCLO3-CLO322 or 

pFAST-R02-HiSE1cFULL was introduced into hise1-2 or hise1-1 mutant plants, respectively, 

via Agrobacterium-mediated transformation (strain GV3101) using the floral dip method42, 

thus generating transgenic hise1-2 and hise1-1 plants containing the pCLO3::CLO3-GFP or 

p35S::HiSE1 vector, respectively. Similarly, vector pFAST-R02-HiSE1cFULL or pH2GW7-

PSAT1cFULL was introduced into hise1-3 psat1-2 double mutants, as described above, to 

generate transgenic hise1-3 psat1-2 plants containing p35S::HiSE1 or p35S::PSAT1 vector, 

respectively. 

Fluorescence microscopy analysis. Fluorescent images of leaves of wild-type, hise1-1, and 

hise1-2 plants were obtained with a fluorescence microscope (BX53; Olympus) equipped 

with a CCD camera (DP74; Olympus). A mirror unit (U-FBNA, Olympus) was used for GFP 

and Nile red fluorescence. Two biological replicates were performed. The number of SE 

bodies in wild-type, hise1-1, and hise1-2 leaves was counted in each micrograph (300 µm × 

185 µm), and six micrographs were analyzed per line (n = 6). A mirror unit U-FGNA 

(Olympus) was used for HMGR1-RFP fluorescence. Three biological replicates were 

performed. 

Reverse transcription PCR (RT-PCR). Total RNA was isolated from A. thaliana seedlings 

using RNeasy Plant Mini Kit (Qiagen). The RNA was treated with DNase I and used for 

cDNA synthesis using Ready-To-Go RT-PCR Beads (GE Healthcare), followed by PCR using 

the following primer sets: 5′-TTCAGTGGCTTGAGAGTAAAACT-3′ (forward) and 5′-

ATCAACTGAAAGAGGATCATGAT-3′ (reverse) for HiSE1, 5′-

CTCTCTGGTGTAACGTTTGGC-3′ (forward) and 5′-TATGTACTGGAGAAGCATATTAG-

3′(reverse) for PSAT1, and 5′-ACTGGAGGTTTTGAGGCTGGTAT-3′ (forward) and 5′-

GCACCGTTCCAATACCACCAATC-3′ (reverse) for EF1a. The size of PCR products of 

HiSE1, PSAT1, and EF1a was 1,268 (for both the wild type and hise1-3), 1,164, and 494 bp, 

respectively. At least three biological replicates were performed for all RT-PCR analyses. 

DNA sequencing of the transcripts revealed that hise1-3 had at least three types of sequences; 

the wild-type sequence, a sequence with a 5-bp insertion at the beginning of the 11th exon, 

and a sequence that contains the 9th intron, suggesting that abnormal splicing occurs in hise1-

3. 
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Transient expression assay in Nicotiana benthamiana. Vectors including pB2GW7-

HiSE1cN-GFP-HiSE1cC, pGWB660-PSAT1cFULL-stop, pBIC/ER-mCherry43, 

pBI121/p35S:SP-GFP-HDEL44, pHGW/proRHD3::GFP-RHD345, pGWB2/ST-Venus46, mt-

gk47, and pGWB1/GFP-SYP6148, 49 were used for transient expression assays, as described 

previously50. Unpublished vectors were also used, including pGWB5/ARA6-GFP provided by 

Dr. Emi Ito at International Christian University and Dr. Kazuo Ebine at the National Institute 

for Basic Biology, pGWB2/GFP-ARA7 provided by Dr. Tatsuaki Goh at Kobe University, 

and pSYT1-GFP provided by Dr. Kazuo Ebine. These vectors were independently 

transformed into A. tumefaciens strain GV3101. Transformed A. tumefaciens cells were 

inoculated into leaves of 4–7-week-old N. benthamiana plants. Two days after inoculation, 

leaves were observed under a confocal laser scanning microscope. Percentages of PSAT1-

TagRFP punctate structures, labeled with each organelle marker, were calculated. At least two 

biological replicates of microscope analysis were performed. 

Isolation of SE bodies. SE bodies were isolated as described previously51, with a slight 

modification. Briefly, aerial parts (3.5 g) of juvenile leaves of 4-week-old hise1-2 plants were 

homogenized in 5 mL of 20% sucrose in a buffer (100 mM Tris-HCl [pH 7.5], 10 mM KCl, 

and 1 mM EDTA); this buffer was used throughout the experiment. The suspension was 

centrifuged at 10,000 × g for 10 min. A 2 mL floating lipid fraction was collected and 

centrifuged at 20,000 × g for 10 min. A 0.6 mL volume of top-most fraction was collected and 

mixed with 0.5 mL of 20% sucrose. The suspension was covered with 0.2 mL of 15% 

sucrose, followed by 0.4 mL of 5% sucrose, and then centrifuged at 20,000 × g for 10 min. 

After removing the bottom-most fraction, the remaining sample was mixed with 0.5 mL of 

20% sucrose. The suspension was covered with 0.2 mL of 15% sucrose, followed by 0.4 mL 

of 5% sucrose, and then centrifuged at 20,000 × g for 10 min. The bottom-most fraction was 

removed, and the remaining sample was mixed with 0.3 mL of 20% sucrose. The suspension 

was covered with 0.4 mL buffer and centrifuged at 20,000 × g for 10 min. Subsequently, the 

bottom-most fraction was removed, and the remaining sample was mixed with 0.5 mL buffer. 

The suspension was centrifuged at 20,000 × g for 10 min, and the floating lipid fraction was 

stored at −80°C until further use. 

Chemicals. Cholesterol-25,26,26,26,27,27,27-d7 (99 atom % D), stigmastanol, and 

brassicasterol were purchased from C/D/N Isotopes (Quebec, Canada), Wako Pure Chemicals 

(Osaka, Japan), and Larodan Fine Chemicals (Solna, Sweden), respectively. β-Sitosterol, 

campesterol, and stigmasterol were obtained from Tama Biochemicals (Tokyo, Japan). 

Cholesterol, cycloartenol, cholesteryl linoleate, cholestery palmitate, and 1,2-didecanoyl-sn-
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glycero-3-phosphocholine were obtained from Sigma-Aldrich (St. Louis, MO). Picolinic acid, 

4-dimethylaminopyridine, and 2-methyl-6-nitrobenzoic anhydride were purchased from 

Tokyo Chemical Industry (Tokyo, Japan). 

Lipidomic analysis. Crude lipids were extracted according to the method of Bligh and 

Dyer41, with a slight modification52, 39, 40. Briefly, fresh deuterium-labeled cholesterol was 

added to the extraction solvent as an internal standard for free sterol analysis. A. thaliana 

leaves (average fresh weight = 30 mg) were harvested, placed in a microcentrifuge tube along 

with a zirconia bead, and immediately frozen in liquid nitrogen. Samples were homogenized 

under cryogenic conditions using a BMS Shake Master at 900 rpm for 2 min. To the frozen 

plant powder, 20-volumes of CHCl3:MeOH:water mixture (50:100:31.45, v/v/v), containing 1 

μM 1,2-didecanoyl-sn-glycero-3-phosphocholine and 2.5 μM cholesterol-

25,26,26,26,27,27,27-d7,  was added and vortexed. Samples were centrifuged at 10,000 × g 

for 5 min at room temperature. The chloroform layer (200 μl) was collected in a new 

microcentrifuge tube, and water (52.6 μl) was added. After vigorous mixing, the sample was 

incubated on ice for 10 min, and then centrifuged at 1,000 × g for 3 min at 4°C. After 

centrifugation, 85 μl of the lower layer was collected in a new microcentrifuge tube. The 

organic solvent was removed using a centrifugal concentrator, and the residue was dissolved 

in 162 μl ethanol. After centrifugation at 10,000 × g for 15 min at 4°C, the supernatant was 

collected and subjected to liquid chromatography–mass spectrometry (LC-MS) analysis on a 

Waters Xevo G2 Qtof mass spectrometer as described22, except that the conditions for 

recording mass spectra were changed to the following: scan range, mass-to-charge ratio (m/z) 

100 to 2,000; polarity, positive ion mode; capillary voltage, 3 kV; cone voltage, 20 V; source 

temperature, 120°C; desolvation temperature, 450°C; cone gas flow, 50 L h–1; desolvation gas 

flow, 600 L h–1; and nebulizer gas, N2. Tandem mass spectrometry (MS/MS) data were 

recorded in positive ion mode using collision energy ramp mode (ramp start, 20 V; ramp end, 

40 V), with the other parameters as described above. The recorded data were analyzed as 

described previously53. 

Free sterols were analyzed via LC-MS after picolinoyl derivatization, as described by 

Yamashita et al. (2007)54. Samples for lipidomic analysis were diluted 10-fold in ethanol, and 

0.1 mL aliquots were dried in a centrifugal concentrator. Dried lipid extracts were combined 

with a freshly prepared mixture of derivatization reagents containing 0.05 mL each of 

picolinic acid (90 mg), 4-dimethylaminopyridine (30 mg), and 2-methyl-6-nitrobenzoic 

anhydride (150 mg) dissolved in dry tetrahydrofuran (3 mL) and triethylamine (0.6 mL). The 

resulting mixture was vortexed and incubated for 30 min at room temperature. Subsequently, 
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water (1 mL) and ethyl acetate (0.4 mL) were added to each sample and thoroughly mixed. 

Samples were then centrifuged at 3,000 × g for 5 min. The upper layer was collected, dried, 

and dissolved in ethanol (0.2 mL). After centrifugation at 10,000 × g for 10 min, the 

supernatant was collected and analyzed on a Shimadzu LCMS-8050 equipped with a 

Shimadzu Nexera ultra high performance liquid chromatography (UHPLC) system. 

Chromatographic separation was performed at a flow rate of 0.4 mL min−1 on an ODS column 

(Kinetex 2.6 µm C18 100 Å, 30 mm × 2.1 mm; Phenomenex, CA) at 55°C using solvents A 

(acetonitrile:water:formic acid = 200:800:1, v/v/v) and B (acetonitrile:2-propanol:formic acid 

= 100:900:1, v/v/v). Gradients of both solvents were the same as those used for general 

lipidomic analysis55. Picolinoyl esters of free sterols were detected via selected reaction 

monitoring (SRM) in the positive ion mode. The SRM transitions for each sterol derivative 

were as follows: cholesterol-d7 (m/z 499.40 > 376.35, CE −15), cholesterol (m/z 492.4 > 

369.35, CE −15), β-sitosterol (m/z 520.40 > 397.40, CE −15), campesterol (m/z 506.40 > 

383.35, CE −15), stigmastanol (m/z 522.45 > 399.40, CE −15), brassicasterol (m/z 504.40 > 

381.35, CE −15), stigmasterol (m/z 518.40 > 395.35, CE −15), cycloartenol (m/z 532.40 > 

409.40, CE −15), and 24-methylenecycloartanol (m/z 546.45 > 423.40, CE −15). 

Lipidome analysis of the lipid fraction prepared from the isolated SE bodies was 

performed as described above. 

 

Data availability  

Sequence data from this study can be found in the GenBank/EMBL data libraries under the 

following accession numbers: CLO3 (At2g33380), HiSE1 (At1g60995), PSAT1 (At1g04010), 

HMGR1 (At1g76490), HMGR2 (At2g17370) and EF1a (At5g60390). The data that support 

the findings of this study are available from the corresponding author upon request. 
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FIGURE LEGENDS 

Figure 1 | An A. thaliana mutant, hise1, abnormally develops lipophilic structures. a, 
GFP fluorescence images and bright field images of 12-day-old plants of wild type, hise1-1, 
and hise1-1 rescued by expressing p35S::HiSE1. pCLO3::CLO3-GFP was introduced into all 
the lines. Three biological replicates were performed with similar results. b, Schematic 
representation of HiSE1 gene (At1g60995) and the positions of the hise1-1 mutation and each 
T-DNA insertion in two hise1 mutant alleles (hise1-2 and hise1-3). Closed boxes, exons; solid 
lines, introns; arrows 1 and 2, primers used for genotyping; arrows 1 and 3, primers used for 
reverse transcription PCR; arrows 4 and 5, primers used for quantitative real time PCR. 
Schematic representation of HiSE1 protein composed of 623 amino acids. Gray boxes, 
transmembrane domains. c, The expression levels of HiSE1 mRNA in wild type, hise1-2 and 
hise1-3 by quantitative real time PCR analysis. The averages of three biological replicates are 
shown. Error bars show standard deviations (n = 3). Different letters exhibit significant 
differences (p<0.05, Tukey's test). The intensity value of wild type was defined as 1.0. d, 
Confocal laser-scanning microscopic images showing lipophilic structures (SE bodies, 
arrowheads) in juvenile leaves of 2-week-old plant of wild type, hise1-2, and hise1-3. e, A 
quantitative analysis of SE-body densities in cross sections of confocal laser-scanning 
microscopic images of juvenile leaves of 2-week-old plants of wild type, hise1-2, and hise1-3. 
The averages of five biological replicates are shown. Error bars show standard deviations (n = 
5). Different letters exhibit significant differences (p<0.05, Tukey's test). f, Electron 
micrographs showing SE bodies in hise1-2 and hise1-3 juvenile leaves (asterisks). Note that 
the wild-type leaves hardly develop SE bodies. Ten ultrathin sections of each genotype were 
inspected with similar results. CW, cell wall.  

 

Figure 2 | hise1 mutant accumulates much higher levels of sterol esters in SE bodies. a, 
Liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) patterns of 
lipids from juvenile-leaf extracts of wild type, hise1-1 and hise1-2. The intensity of the 
maximum peak of wild type is 100%. Six biological replicates were performed with similar 
results. b, These panels show magnified views of the boxed areas of a. c, Identification of 
hise1-specific sterol esters. Identified sterol esters from hise1-1-specific peaks with retention 
times in the range 8.6 to 9.4 min on LC-ESI-MS in b. Annotation shows sterol moiety based 
on the m/z value of fragment ion detected in MS/MS spectra and literature data on 
phytosterols. Since there are many isomers in phytosterols, some minor SE species are dually 
annotated. There is also a possibility that sterol moiety should be other isomer of same 
molecular weight (e.g. the moiety annotated as 24-methylenecycloartanol might be 24-
methylcycloartenol. They are isomers). Formula shows [M+NH4]+ ion. d, Bright-field and 
Nile red-fluorescence images of the SE bodies isolated from the hise1-2 leaves. Three 
biological replicates were performed with similar results. e, LC-ESI-MS patterns of lipids of 
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the isolated SE bodies of hise1-2, total lipids from juvenile-leaf extracts of hise1-3 and wild 
type. Blank background pattern is shown. The intensity of the maximum peak of wild type is 
100%. Three biological replicates were performed with similar results. f, Relative contents of 
sterol esters, TAGs, phosphatidylcholines (PCs), and phosphatidylethanolamines (PEs). See 
Supplementary Data 1 for detailed information on the molecular species identified. 

 

Figure 3 | Hyperaccumulation of HMGR proteins in hise1 mutant. a, A schematic view of 
biosynthesis of sterols via mevalonate pathway, isoprenoid pathway and sterol biosynthetic 
pathway. The enzymes indicated were detected by quantitative proteomics (see b and 
Supplementary Table 1). IPP, isopentenyl pyrophosphate; DMAPP, dimethylallyl 
pyrophosphate; FPP, farnesyl pyrophosphate. Lovastatin is a competitive inhibitor of HMGR 
and zaragozic acid is a competitive inhibitor of squalene synthase (SQS). b, Mass 
spectrometry for quantitative proteomics showing precursor ion intensities of enzymes that 
were detected in the microsomal fractions from wild type, hise1-2 and hise1-3 leaves. The 
precursor ion intensities were normalized by total peptide amounts. The intensity value of 
wild type was defined as 1.0. The averages of three biological replicates are shown. Error bars 
show standard deviations (n = 3). Asterisks show significant differences between wild type 
and hise1 mutants (two-sided t-test, p < 0.01). c, An immunoblot analysis of leaf extracts of 
wild type, hise1-2 and hise1-3 with anti-HMGR and anti-actin antibodies. Three biological 
replicates were performed with similar results. d, The expression levels of HMGR1 and 
HMGR2 mRNAs in wild type, hise1-2 and hise1-3 by quantitative real time PCR analysis. 
The averages of three biological replicates are shown. Error bars show standard deviations (n 
= 3). The intensity value of wild type was defined as 1.0. Significant differences in the 
relative expression levels of HMGR1 and HMGR2 were examined (p>0.05, Tukey's test). 

 

Figure 4 | hise1 mutant has dramatically higher sterol-producing activity than the wild 
type. a, Thin-layer chromatography showing [14C]-mevalonate-producing activity from [14C]-
HMG-CoA of microsomal fractions of the wild-type and hise1-2 leaves in the presence or 
absence of a HMGR inhibitor (lovastatin) for 60 min Two biological replicates were 
performed with similar results. b, Time-course data for [14C]-mevalonate production with the 
wild-type and hise1-2 microsomal fractions (5.6 µg protein). The averages of three biological 
replicates are shown. Error bars show standard deviations (n = 3). A significant difference 
between the wild type and hise1-2 was determined (p = 3.6 × 10-6, two-sided t-test). c, 
Specific HMGR activities of crude extracts and microsomal fractions from the wild-type and 
hise1-2 leaves are shown. Three biological replicates were performed. Data represent average
±standard deviation (n = 3). A significant difference between the wild type and hise1-2 was 
determined (p = 5.1 × 10-10, two-sided t-test). d, In-vivo labeling with a radioactive [14C]-
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sodium bicarbonate as an initial substrate for carbon fixation, [2-14C]-sodium acetate as an 
acetyl-CoA precursor, and [14C]-IPP as a squalene precursor. The incorporated radioactivity 
levels into squalene or sterol esters in the same fresh weights of wild-type and hise1-2 leaves 
are shown. The averages of three biological replicates are shown. Error bars show standard 
deviations (n = 3). Asterisks exhibit a significant difference between wild type and hise1-2 (p 
< 0.05, two-sided t-test). e, Effects of lovastatin on the ratios of plants with opening third true 
leaves to 17 plants of wild type, hise1-2 and hise1-3. See Supplementary Fig. 6a for their 
plant growth. The averages of three biological replicates are shown. Error bars show standard 
deviations (n = 3). Asterisks exhibit a significant difference between wild type and hise1 
mutants (p < 0.05, two-sided t-test).  

 

Figure 5 | Deficiency of PSAT1 causes defects in SE-body formation and plant growth of 
hise1. The wild type, two single mutants (hise1-3 and psat1-2), the double mutant (hise1-3 
psat1-2), and the double mutant rescued by expressing either p35S::HiSE1 or p35S::PSAT1 
were used. a, The contents of sitosteryl linoleate and campesteryl linoleate in 2-week-old 
leaves are shown as relative values of signal intensities of [M+NH4]+ species of sterol esters 
to that of [M+H]+ of internal standard (1,2-didecanoyl-sn-glycero-3-phosphocholine). The 
averages of six biological replicates are shown. Error bars show standard deviations (n = 6). 
Different letters exhibit significant differences (p<0.05, Tukey's test). b, Confocal laser-
scanning microscopic images of leaf cells stained with Nile red. Arrowheads show SE bodies. 
Three biological replicates were performed with similar results. c, A quantitative analysis of 
SE-body densities in 2-week-old leaves. The averages of six biological replicates are shown. 
Error bars show standard deviations (n = 6). Different letters exhibit significant differences 
(p<0.05, Tukey's test). d, Growth phenotypes of 2-week-old seedlings of each line on rock 
wools. Three biological replicates were performed with similar results. e, Total contents of 
free sterols in 2-week-old juvenile leaves. Values are given in µg/g fresh weight (FW). A 
dotted line shows the total free sterol level of the wild type. The averages of biological 
replicates with error bars (standard deviations). Wild type (n = 6), hise1-3 (n = 6), psat1-2 (n 
= 5), hise1-3 psat1-2 (n = 6) and p35S::PSAT1 in hise1-3 psat1-2 (n = 6), and p35S::HiSE1 in 
hise1-3 psat1-2 (n = 5). Different letters exhibit significant differences (p<0.05, Tukey-
Kramer method). f, Free sterol contents of each line. Sterol moiety was annotated based on 
the m/z value of fragment ion detected in MS/MS spectra and literature data on phytosterols. 
Data represent average±standard deviation. Biological replicates were performed; wild type 
(n = 6), hise1-3 (n = 6), psat1-2 (n = 5), hise1-3 psat1-2 (n = 6) and p35S::PSAT1 in hise1-3 
psat1-2 (n = 6), and p35S::HiSE1 in hise1-3 psat1-2 (n = 5). 

 

Figure 6 | HiSE1 localizes to the ER, while PSAT1 localizes to the ER microdomains. a, 
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Transient expression of HiSE1n-GFP-HiSE1c with the ER marker ER-mCherry in N. 
benthamiana leaves. b, Transient expression of PSAT1-TagRFP with each of HiSE1n-GFP-
HiSE1c, the ER marker GFP-HDEL, and the ER-membrane marker GFP-RHD3 in N. 
benthamiana leaves. c, Labeling rates of PSAT1 punctate structures with the markers 
indicated. PM, Plasma membrane. The averages with error bars (standard deviations) of five 
biological replicates are shown. In each experiment, 50 to 100 PSAT1 punctate structures 
were analyzed. Different letters exhibit significant differences (p<0.05, Tukey's test). 

 

Figure 7 | A hypothetical model of a HiSE1-depedent fail-safe regulatory system for 
sterol homeostasis via HMGR down-regulation. The regulatory system is composed of two 
processes: 1) HiSE1-mediated down-regulation of HMGR to prevent sterol overproduction on 
the ER and 2) Detoxification of excess amounts of sterols on the PSAT1-localized ER 
microdomains and segregation of sterol esters into SE bodies. MVA, mevalonate. 
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SUPPLEMENTARY FIGURE LEGENDS 
 
Supplementary Figure 1 | CLO3-GFP-positive and CLO3-GFP-negative populations of 
SE bodies in hise1-1 and hise1-2 leaves. a, Quantitative analysis of SE body densities in 
fluorescence microscopic images of juvenile leaves of 2-week-old wild-type, hise1-1, and 
hise1-2 plants containing the CLO3-GFP transgene. The averages of six biological replicates 
are shown. Error bars represent standard deviation (n = 6). Different letters indicate 
significant differences (p < 0.05; Tukey's test). b, GFP fluorescence and bright field images of 
the first true leaves of 2-week-old hise1-1 and hise1-2 plants containing the CLO3-GFP 
transgene. Three biological replicates were performed with similar results. c, Confocal laser-
scanning microscopic images showing CLO3-GFP and Nile red-labeled SE bodies of the first 
true leaves in b. Note that SE bodies are separated into two populations; a CLO3-GFP-
positive population in the leaf marginal areas and a CLO3-GFP-negative population 
throughout the leaves. Three biological replicates were performed with similar results. 
 
Supplementary Figure 2 | Structural characterization of sterol esters via tandem mass 
spectrometry (MS/MS) in the positive ion mode. MS/MS spectra of two standard sterol 
esters and a major hise1-specific sterol ester are shown. The m/z value of the precursor ion, 
[M+NH4]+, was subjected to MS/MS analysis. A fragment ion attributable to sterol moiety 
formed by the neutral loss of fatty acid moiety was observed as a base peak in the MS/MS 
spectrum. Three biological replicates were performed with similar results. 
 
Supplementary Figure 3 | MS/MS spectra of a series of sterol esters accumulated 
abundantly in hise1 plants. MS/MS spectra of hise1-specific sterol esters are shown. The 
m/z value of the precursor ion, [M+NH4]+, was subjected to MS/MS analysis. A fragment ion 
attributable to sterol moiety formed by the neutral loss of fatty acid moiety was observed as a 
base peak in the MS/MS spectrum. Three biological replicates were performed with similar 
results. 
 
Supplementary Figure 4 | Liquid chromatography–mass spectrometry (LC-MS) analysis 
of triacylglycerols (TAGs) isolated from the juvenile leaves of two hise1 mutants and the 
wild type. Contents of TAGs are expressed as signal intensities of [M+NH4]+ species relative 
to that of [M+H]+ of the internal standard (1,2-didecanoyl-sn-glycero-3-phosphocholine). For 
example, TAG_52:5 has 52 carbons and 5 double bonds. The averages of six biological 
replicates are shown. Error bars represent standard deviation (n = 6). Different letters indicate 
significant differences (p < 0.05; Tukey's test). 
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Supplementary Figure 5 | Microsomal fractions and crude extracts from the wild type 
and hise1-2 used for measuring HMGR activities. a, An immunoblot of microsomal 
fractions of the wild type and hise1-2 with anti-HMGR antibody. The blotting membrane was 
stained with Coomassie Brilliant Blue (CBB). Three biological replicates were performed 
with similar results. b, An immunoblot of crude leaf extracts of the wild type and hise1-2 with 
either anti-HMGR antibody or anti-actin antibody. An asterisk shows a non-specific band. 
Three biological replicates were performed with similar results. 
 
Supplementary Figure 6 | Effects of the HMGR inhibitor lovastatin and the SQS 
inhibitor zaragozic acid on growth of the wild-type and hise1 plants. a, Two-week-old 
plants of the wild type and hise1 mutant alleles (hise1-2 and hise1-3) on the agar plates in the 
absence and presence of the HMGR inhibitor lovastatin. White arrowheads show plants that 
were unable to open the third true leaves. Three biological replicates were performed with 
similar results. b, Ten-day-old seedlings of the wild type and hise1 mutant alleles on the agar 
plates in the absence and presence of the SQS inhibitor zaragozic acid. White arrowheads 
show senesced cotyledons. Three biological replicates were performed with similar results. c, 
Effects of zaragozic acid on the ratio of seedlings with greening cotyledons to 15 seedlings of 
the wild type, hise1-2 and hise1-3. See Supplementary Fig. 6b for their plant growth. The 
averages of three biological replicates are shown. Error bars show standard deviations (n = 3). 
Asterisks show significant differences between wild type and hise1 mutants (p<0.05, two-
sided t-test). 
 
Supplementary Figure 7 | Sterol ester contents in leaves of A. thaliana mutant lines and 
the wild type. a, RT-PCR of HiSE1, PSAT1, and EF1a (control) transcripts in 2-week-old 
seedlings of each line indicated. Numbers of PCR cycles for each gene are shown. Three 
biological replicates were performed with similar results. b, Sterol ester contents in juvenile 
leaves of each line. Signal intensities of [M+NH4]+ species of sterol esters relative to that of 
[M+H]+ of the internal standard (1,2-didecanoyl-sn-glycero-3-phosphocholine) are shown.  
Data represent average±standard deviation. Six biological replicates were performed. n.d., 
not detected. 
 
Supplementary Figure 8 | No overlap of HiSE1n-GFP-HiSE1c signals with the FM4-64-
labeled plasma membrane. a, A schematic view of the GFP fusion, HiSE1n-GFP-HiSE1c. 
The GFP fragment was inserted between the 183th and 184th amino acid of HiSE1. b, N. 
benthamiana leaves expressing HiSE1n-GFP-HiSE1c were stained with FM4-64 to visualize 
the plasma membrane (PM). Fluorescence images of the cortical region (upper) and middle 
region (lower) of the cell are shown. Three biological replicates were performed with similar 
results. 
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Supplementary Figure 9 | Localization of PSAT1 to the endoplasmic reticulum (ER) 
microdomains. The PSAT1-TagRFP fusion was transiently co-expressed with each organelle 
marker in N. benthamiana leaves. Different organelle markers used included the Golgi marker 
ST-Venus, the mitochondrial marker mt-gk, the ER-plasma membrane-contact site marker 
SYT1-GFP, the trans-Golgi-network (TGN) marker GFP-SYP61, and two endosome markers 
ARA6-GFP and GFP-ARA7. Three biological replicates were performed with similar results. 
 
Supplementary Table 1 | Protein levels of sterol biosynthetic enzymes in microsomal 
fractions of leaves of wild type, hise1-2 and hise1-3.  
 
Supplementary Data 1 | LC-ESI-MS data showing relative contents of sterol esters, 
TAGs, phosphatidylcholines (PCs), and phosphatidylethanolamines (PEs) in hise1 
mutant leaf extract and the isolated SE bodies.  
 
Supplementary Data 2 | Quantitative proteomics of microsomal fractions from leaves of 
wild type, hise1-2 and hise1-3.  
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Figure 1 | An A. thaliana mutant, hise1, abnormally develops lipophilic structures. a, GFP fluorescence images and bright field 
images of 12-day-old plants of wild type, hise1-1, and hise1-1 rescued by expressing p35S::HiSE1. pCLO3::CLO3-GFP was 
introduced into all the lines. Three biological replicates were performed with similar results. b, Schematic representation of HiSE1 
gene (At1g60995) and the positions of the hise1-1 mutation and each T-DNA insertion in two hise1 mutant alleles (hise1-2 and
hise1-3). Closed boxes, exons; solid lines, introns; arrows 1 and 2, primers used for genotyping; arrows 1 and 3, primers used for 
reverse transcription PCR; arrows 4 and 5, primers used for quantitative real time PCR. Schematic representation of HiSE1 protein 
composed of 623 amino acids. Gray boxes, transmembrane domains. c, The expression levels of HiSE1 mRNA in wild type, hise1-
2 and hise1-3 by quantitative real time PCR analysis. The averages of three biological replicates are shown. Error bars show 
standard deviations (n = 3). Different letters exhibit significant differences (p<0.05, Tukey's test). The intensity value of wild type 
was defined as 1.0. d, Confocal laser-scanning microscopic images showing lipophilic structures (SE bodies, arrowheads) in 
juvenile leaves of 2-week-old plant of wild type, hise1-2, and hise1-3. e, A quantitative analysis of SE-body densities in cross 
sections of confocal laser-scanning microscopic images of juvenile leaves of 2-week-old plants of wild type, hise1-2, and hise1-3. 
The averages of five biological replicates are shown. Error bars show standard deviations (n = 5). Different letters exhibit 
significant differences (p<0.05, Tukey's test). f, Electron micrographs showing SE bodies in hise1-2 and hise1-3 juvenile leaves 
(asterisks). Note that the wild-type leaves hardly develop SE bodies. Ten ultrathin sections of each genotype were inspected with 
similar results. CW, cell wall.
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Figure 2 | hise1 mutant accumulates much higher levels of sterol esters in SE bodies. a, Liquid chromatography-electrospray ionization-mass 
spectrometry (LC-ESI-MS) patterns of lipids from juvenile-leaf extracts of wild type, hise1-1 and hise1-2. The intensity of the maximum peak of wild 
type is 100%. Six biological replicates were performed with similar results. b, These panels show magnified views of the boxed areas of a. c, 
Identification of hise1-specific sterol esters. Identified sterol esters from hise1-1-specific peaks with retention times in the range 8.6 to 9.4 min on LC-
ESI-MS in b. Annotation shows sterol moiety based on the m/z value of fragment ion detected in MS/MS spectra and literature data on phytosterols. 
Since there are many isomers in phytosterols, some minor SE species are dually annotated. There is also a possibility that sterol moiety should be other 
isomer of same molecular weight (e.g. the moiety annotated as 24-methylenecycloartanol might be 24-methylcycloartenol. They are isomers). Formula 
shows [M+NH4]+ ion. d, Bright-field and Nile red-fluorescence images of the SE bodies isolated from the hise1-2 leaves. Three biological replicates 
were performed with similar results. e, LC-ESI-MS patterns of lipids of the isolated SE bodies of hise1-2, total lipids from juvenile-leaf extracts of 
hise1-3 and wild type. Blank background pattern is shown. The intensity of the maximum peak of wild type is 100%. Three biological replicates were 
performed with similar results. f, Relative contents of sterol esters, TAGs, phosphatidylcholines (PCs), and phosphatidylethanolamines (PEs). See 
Supplementary Data 1 for detailed information on the molecular species identified.
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Figure 3 | Hyperaccumulation of HMGR proteins in hise1 mutant. a, A schematic view of biosynthesis of sterols via mevalonate 
pathway, isoprenoid pathway and sterol biosynthetic pathway. The enzymes indicated were detected by quantitative proteomics (see
b and Supplementary Table 1). IPP, isopentenyl pyrophosphate; DMAPP, dimethylallyl pyrophosphate; FPP, farnesyl pyrophosphate. 
Lovastatin is a competitive inhibitor of HMGR and zaragozic acid is a competitive inhibitor of squalene synthase (SQS). b, Mass 
spectrometry for quantitative proteomics showing precursor ion intensities of enzymes that were detected in the microsomal fractions 
from wild type, hise1-2 and hise1-3 leaves. The precursor ion intensities were normalized by total peptide amounts. The intensity 
value of wild type was defined as 1.0. The averages of three biological replicates are shown. Error bars show standard deviations (n = 
3). Asterisks show significant differences between wild type and hise1 mutants (two-sided t-test, p < 0.01). c, An immunoblot 
analysis of leaf extracts of wild type, hise1-2 and hise1-3 with anti-HMGR and anti-actin antibodies. Three biological replicates were 
performed with similar results. d, The expression levels of HMGR1 and HMGR2 mRNAs in wild type, hise1-2 and hise1-3 by 
quantitative real time PCR analysis. The averages of three biological replicates are shown. Error bars show standard deviations (n = 
3). The intensity value of wild type was defined as 1.0. Significant differences in the relative expression levels of HMGR1 and 
HMGR2 were examined (p>0.05, Tukey's test).
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Figure 4 | hise1 mutant has dramatically higher sterol-producing activity than the wild type. a, Thin-layer chromatography showing 
[14C]-mevalonate-producing activity from [14C]-HMG-CoA of microsomal fractions of the wild-type and hise1-2 leaves in the presence or 
absence of a HMGR inhibitor (lovastatin) for 60 min Two biological replicates were performed with similar results. b, Time-course data 
for [14C]-mevalonate production with the wild-type and hise1-2 microsomal fractions (5.6 µg protein). The averages of three biological 
replicates are shown. Error bars show standard deviations (n = 3). A significant difference between the wild type and hise1-2 was 
determined (p = 3.6 × 10-6, two-sided t-test). c, Specific HMGR activities of crude extracts and microsomal fractions from the wild-type 
and hise1-2 leaves are shown. Three biological replicates were performed. Data represent average±standard deviation (n = 3). A 
significant difference between the wild type and hise1-2 was determined (p = 5.1 × 10-10, two-sided t-test). d, In-vivo labeling with a 
radioactive [14C]-sodium bicarbonate as an initial substrate for carbon fixation, [2-14C]-sodium acetate as an acetyl-CoA precursor, and 
[14C]-IPP as a squalene precursor. The incorporated radioactivity levels into squalene or sterol esters in the same fresh weights of wild-
type and hise1-2 leaves are shown. The averages of three biological replicates are shown. Error bars show standard deviations (n = 3). 
Asterisks exhibit a significant difference between wild type and hise1-2 (p < 0.05, two-sided t-test). e, Effects of lovastatin on the ratios of 
plants with opening third true leaves to 17 plants of wild type, hise1-2 and hise1-3. See Supplementary Fig. 6a for their plant growth. The 
averages of three biological replicates are shown. Error bars show standard deviations (n = 3). Asterisks exhibit a significant difference 
between wild type and hise1 mutants (p < 0.05, two-sided t-test).
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Figure 5 | Deficiency of PSAT1 causes defects in SE-body formation and plant growth of hise1. The wild type, two single mutants 
(hise1-3 and psat1-2), the double mutant (hise1-3 psat1-2), and the double mutant rescued by expressing either p35S::HiSE1 or 
p35S::PSAT1 were used. a, The contents of sitosteryl linoleate and campesteryl linoleate in 2-week-old leaves are shown as relative 
values of signal intensities of [M+NH4]+ species of sterol esters to that of [M+H]+ of internal standard (1,2-didecanoyl-sn-glycero-3-
phosphocholine). The averages of six biological replicates are shown. Error bars show standard deviations (n = 6). Different letters 
exhibit significant differences (p<0.05, Tukey's test). b, Confocal laser-scanning microscopic images of leaf cells stained with Nile red. 
Arrowheads show SE bodies. Three biological replicates were performed with similar results. c, A quantitative analysis of SE-body 
densities in 2-week-old leaves. The averages of six biological replicates are shown. Error bars show standard deviations (n = 6). 
Different letters exhibit significant differences (p<0.05, Tukey's test). d, Growth phenotypes of 2-week-old seedlings of each line on 
rock wools. Three biological replicates were performed with similar results. e, Total contents of free sterols in 2-week-old juvenile 
leaves. Values are given in µg/g fresh weight (FW). A dotted line shows the total free sterol level of the wild type. The averages of 
biological replicates with error bars (standard deviations). Wild type (n = 6), hise1-3 (n = 6), psat1-2 (n = 5), hise1-3 psat1-2 (n = 6) and 
p35S::PSAT1 in hise1-3 psat1-2 (n = 6), and p35S::HiSE1 in hise1-3 psat1-2 (n = 5). Different letters exhibit significant differences 
(p<0.05, Tukey-Kramer method). f, Free sterol contents of each line. Sterol moiety was annotated based on the m/z value of fragment 
ion detected in MS/MS spectra and literature data on phytosterols. Data represent average±standard deviation. Biological replicates 
were performed; wild type (n = 6), hise1-3 (n = 6), psat1-2 (n = 5), hise1-3 psat1-2 (n = 6) and p35S::PSAT1 in hise1-3 psat1-2 (n = 6), 
and p35S::HiSE1 in hise1-3 psat1-2 (n = 5).
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Figure 6 | HiSE1 localizes to the ER, while PSAT1 localizes to the ER microdomains. a, Transient expression of 
HiSE1n-GFP-HiSE1c with the ER marker ER-mCherry in N. benthamiana leaves. b, Transient expression of PSAT1-
TagRFP with each of HiSE1n-GFP-HiSE1c, the ER marker GFP-HDEL, and the ER-membrane marker GFP-RHD3 in N. 
benthamiana leaves. c, Labeling rates of PSAT1 punctate structures with the markers indicated. PM, Plasma membrane. 
The averages with error bars (standard deviations) of five biological replicates are shown. In each experiment, 50 to 100 
PSAT1 punctate structures were analyzed. Different letters exhibit significant differences (p<0.05, Tukey's test).
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Figure 7 | A hypothetical model of a HiSE1-depedent fail-safe regulatory system for sterol homeostasis via 
HMGR down-regulation. The regulatory system is composed of two processes: 1) HiSE1-mediated down-
regulation of HMGR to prevent sterol overproduction on the ER and 2) Detoxification of excess amounts of 
sterols on the PSAT1-localized ER microdomains and segregation of sterol esters into SE bodies. MVA, 
mevalonate.
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Supplementary Figure 1 | CLO3-GFP-positive and CLO3-GFP-negative populations of SE bodies in hise1-1 and hise1-2 leaves. a,
Quantitative analysis of SE body densities in fluorescence microscopic images of juvenile leaves of 2-week-old wild-type, hise1-1, and 
hise1-2 plants containing the CLO3-GFP transgene. The averages of six biological replicates are shown. Error bars represent standard 
deviation (n = 6). Different letters indicate significant differences (p < 0.05; Tukey's test). b, GFP fluorescence and bright field images of the 
first true leaves of 2-week-old hise1-1 and hise1-2 plants containing the CLO3-GFP transgene. Three biological replicates were performed 
with similar results. c, Confocal laser-scanning microscopic images showing CLO3-GFP and Nile red-labeled SE bodies of the first true 
leaves in b. Note that SE bodies are separated into two populations; a CLO3-GFP-positive population in the leaf marginal areas and a 
CLO3-GFP-negative population throughout the leaves. Three biological replicates were performed with similar results.
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Supplementary Figure 2 | Structural characterization of sterol esters via tandem mass spectrometry (MS/MS) in the positive ion 
mode. MS/MS spectra of two standard sterol esters and a major hise1-specific sterol ester are shown. The m/z value of the precursor ion, 
[M+NH4]+, was subjected to MS/MS analysis. A fragment ion attributable to sterol moiety formed by the neutral loss of fatty acid 
moiety was observed as a base peak in the MS/MS spectrum. Three biological replicates were performed with similar results.
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Supplementary Figure 3 | MS/MS spectra of a series of sterol esters accumulated abundantly in hise1 plants. MS/MS 
spectra of hise1-specific sterol esters are shown. The m/z value of the precursor ion, [M+NH4]+, was subjected to MS/MS 
analysis. A fragment ion attributable to sterol moiety formed by the neutral loss of fatty acid moiety was observed as a base peak 
in the MS/MS spectrum. Three biological replicates were performed with similar results.
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Supplementary Figure 4 | Liquid chromatography–mass spectrometry (LC-MS) analysis of triacylglycerols (TAGs) 
isolated from the juvenile leaves of two hise1 mutants and the wild type. Contents of TAGs are expressed as signal 
intensities of [M+NH4]+ species relative to that of [M+H]+ of the internal standard (1,2-didecanoyl-sn-glycero-3-
phosphocholine). For example, TAG_52:5 has 52 carbons and 5 double bonds. The averages of six biological replicates are 
shown. Error bars represent standard deviation (n = 6). Different letters indicate significant differences (p < 0.05; Tukey's 
test).
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Supplementary Figure 5 | Microsomal fractions and crude extracts from the wild type and hise1-2 used for measuring 
HMGR activities. a, An immunoblot of microsomal fractions of the wild type and hise1-2 with anti-HMGR antibody. The blotting 
membrane was stained with Coomassie Brilliant Blue (CBB). Three biological replicates were performed with similar results. b, An 
immunoblot of crude leaf extracts of the wild type and hise1-2 with either anti-HMGR antibody or anti-actin antibody. An asterisk 
shows a non-specific band. Three biological replicates were performed with similar results.
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Supplementary Figure 6 | Effects of the HMGR inhibitor lovastatin and the SQS inhibitor zaragozic acid on growth of the wild-
type and hise1 plants. a, Two-week-old plants of the wild type and hise1 mutant alleles (hise1-2 and hise1-3) on the agar plates in the 
absence and presence of the HMGR inhibitor lovastatin. White arrowheads show plants that were unable to open the third true leaves. 
Three biological replicates were performed with similar results. b, Ten-day-old seedlings of the wild type and hise1 mutant alleles on the 
agar plates in the absence and presence of the SQS inhibitor zaragozic acid. White arrowheads show senesced cotyledons. Three biological 
replicates were performed with similar results. c, Effects of zaragozic acid on the ratio of seedlings with greening cotyledons to 15 
seedlings of the wild type, hise1-2 and hise1-3. See Supplementary Fig. 6b for their plant growth. The averages of three biological 
replicates are shown. Error bars show standard deviations (n = 3). Asterisks show significant differences between wild type and hise1 
mutants (p<0.05, two-sided t-test).
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Supplementary Figure 7 | Sterol ester contents in leaves of A. thaliana mutant lines and the wild type. a, RT-PCR of 
HiSE1, PSAT1, and EF1a (control) transcripts in 2-week-old seedlings of each line indicated. Numbers of PCR cycles for each 
gene are shown. Three biological replicates were performed with similar results. b, Sterol ester contents in juvenile leaves of 
each line. Signal intensities of [M+NH4]+ species of sterol esters relative to that of [M+H]+ of the internal standard (1,2-
didecanoyl-sn-glycero-3-phosphocholine) are shown. 
Data represent average±standard deviation. Six biological replicates were performed. n.d., not detected.
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Supplementary Figure 8 | No overlap of HiSE1n-GFP-HiSE1c signals with the FM4-64-labeled plasma membrane. 
a, A schematic view of the GFP fusion, HiSE1n-GFP-HiSE1c. The GFP fragment was inserted between the 183th and 
184th amino acid of HiSE1. b, N. benthamiana leaves expressing HiSE1n-GFP-HiSE1c were stained with FM4-64 to 
visualize the plasma membrane (PM). Fluorescence images of the cortical region (upper) and middle region (lower) of the 
cell are shown. Three biological replicates were performed with similar results.
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Supplementary Figure 9 | Localization of PSAT1 to the endoplasmic reticulum (ER) microdomains. The PSAT1-TagRFP fusion 
was transiently co-expressed with each organelle marker in N. benthamiana leaves. Different organelle markers used included the Golgi 
marker ST-Venus, the mitochondrial marker mt-gk, the ER-plasma membrane-contact site marker SYT1-GFP, the trans-Golgi-network 
(TGN) marker GFP-SYP61, and two endosome markers ARA6-GFP and GFP-ARA7. Three biological replicates were performed with 
similar results.



Supplementary Table 1 | Protein levels of sterol biosynthetic enzymes in microsomal 
fractions of leaves of wild type, hise1-2 and hise1-3.

Precursor ion intensity

Protein Accession Description wild type hise1-2 hise1-3

ACAT2 AT5G48230.2 acetoacetyl-CoA thiolase 2 1±0.12 1.02±0.24 1.20±0.19

HMGS AT4G11820.1 hydroxymethylglutaryl-CoA synthase 1±0.10 1.06±0.16 1.03±0.07

HMGR1 AT1G76490.1 3-hydroxy-3-methylglutaryl CoA reductase 1 1±0.77 129.06±2.91* 70.80±12.85*

HMGR2 AT2G17370.1 3-hydroxy-3-methylglutaryl-CoA reductase 2 1±2.45 224.64±42.62* 137.33±53.19*

MVD1 AT2G38700.1 mevalonate diphosphate decarboxylase 1 1±0.29 1.61±0.22* 1.84±0.26*

FPS1 AT5G47770.1 farnesyl diphosphate synthase 1 1±0.15 1.19±0.14 1.39±0.39

FPS2 AT4G17190.1 farnesyl diphosphate synthase 2 1±1.74 2.23±1.76 1.70±1.88

SQS1 AT4G34640.1 squalene synthase 1 1±0.07 1.03±0.05 1.02±0.11

SQE1 AT1G58440.1 squalene epoxidase 1 1±2.45 2.03±4.97 0

SQE3 AT4G37760.1 squalene epoxidase 3 1±1.10 1.74±0.16 1.52±1.68

LAS1 AT3G45130.1 lanosterol synthase 1 1±0.35 0.55±0.15 0.83±0.23

CAS1 AT2G07050.1 cycloartenol synthase 1 1±0.08 0.92±0.10 1.03±0.04

SMT1 AT5G13710.2 sterol methyltransferase 1 1±0.12 0.98±0.04 1.31±0.16

CYP51G1 AT1G11680.1 cytochrome P450 51G1 1±0.11 1.04±0.07 1.31±0.21

HYD1 AT1G20050.1 C-8,7 sterol isomerase 1±0.12 1.22±0.04* 1.30±0.07*

SMT2 AT1G20330.1 sterol methyltransferase 2 1±0.03 1.19±0.09* 1.33±0.11*

SMT3 AT1G76090.1 sterol methyltransferase 3 1±0.11 1.19±0.10 0.91±0.39

DWF5 AT1G50430.1 delta5,7-sterol  delta7 reductase 1±0.12 0.86±0.03 0.86±0.07

DWF1 AT3G19820.3 delta24-sterol reductase 1±0.06 0.92±0.06 1.13±0.14

The intensity value of wild type is defined as 1. Data represent average±standard deviation. Three 
biological replicates were performed. Asterisks show significant differences between wild type and 
hise1 mutants (two-sided t-test, p < 0.01). See Methods for details.




