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We study the entanglement of purification (EOP), a measure of total correlation between two subsystems
A and B, for free scalar field theory on a lattice and the transverse-field Ising model by numerical methods.
In both of these models, we find that the EOP becomes a nonmonotonic function of the distance between A
and B when the total number of lattice sites is small. When it is large, the EOP becomes monotonic and
shows a plateaulike behavior. Moreover, we also show that the original reflection symmetry which
exchanges A and B can get broken in optimally purified systems. We provide an interpretation of our results
in terms of the interplay between classical and quantum correlations.
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The entanglement entropy (EE) is a unique measure of
quantum entanglement for pure states [1]. Decomposing
a total quantum system into two subsystems A and B, the
EE is defined as SA ¼ −Tr½ρA log ρA�, where the reduced
density matrix is ρA≡TrBjΨiABhΨjAB, and jΨiAB describes
a pure state. The EE helps us to extract essential properties
of quantum field theories [2,3], especially conformal field
theories (CFTs) [4]. It has recently played an important role
in the context of the anti–de Sitter space/conformal field
theory (AdS/CFT) correspondence (or holography) [5], due
its simple geometrical interpretation in gravity [6,7].
Quantities such as entanglement of formation and

squashed entanglement extend EE to mixed states, where
the EE itself is not a good measure of quantum entangle-
ment or classical correlations (refer to, e.g., a comprehen-
sive review [8]). However, such quantities often require a
minimization over infinitely many quantum states and are
thus computationally challenging in quantum field theory,
leading to a scarcity of results.
This Letter provides a first step toward such a mini-

mization. Wewill study entanglement of purification (EOP)
EPðρABÞ [9,10], a simpler version of more complicated
mixed state entanglement measures and defined as follows:
Consider a purification jΨiAÃBB̃ of a mixed state ρAB,
i.e., a pure state in an enlarged Hilbert space HA ⊗ HB →
HA ⊗ HB ⊗ HÃ ⊗ HB̃ with a constraint

TrÃ B̃½jΨiAÃBB̃hΨjAÃBB̃� ¼ ρAB: ð1Þ

EOP is given by the minimal EE SAÃ over all purifications
jΨiAÃBB̃

EPðρABÞ ¼ min
jΨiAÃBB̃

SAÃ: ð2Þ

EOP is a measure of total correlation between the two
subsystems A and B: it vanishes only for product states and
monotonically decreases under local operations, while its
regularization possesses an operational meaning in terms of
Einstein-Podolsky-Rosen (EPR) pairs [9]. Moreover, an
AdS/CFT-based geometric interpretation was conjectured
[11,12], supported by CFT approaches for specific exam-
ples [13], and actively studied [14–35], motivating a field-
theoretic treatment. Earlier work on EOP for free scalar
field theory has been performed for small subsystems [36].
In this Letter, we numerically study the EOP in free

scalar field theory for larger subsystems assuming a
Gaussian ansatz, as well as in the transverse-field Ising
chain. Both models exhibit intriguing nonmonotonic and
plateaulike behavior of EOP with respect to the distance
between the subsystems. Moreover, we observe a breaking
of the Z2 reflection symmetry that exchanges AÃ and BB̃
for an optimal purification, reminiscent of spontaneous
symmetry breaking and unobserved in previous work [36].
First, consider a lattice free scalar field theory in 1þ 1

dimensions, defined by the Hamiltonian

H ¼ 1

2

Z∞
−∞

dx½π2 þ ð∂xϕÞ2 þm2ϕ2�: ð3Þ
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The ground state wave function Ψ0 for this theory is
Gaussian [2,36,37]

Ψ0½ϕ� ¼ N 0e
−1
2

P
N
n;n0¼1

ϕ0
nWnn0ϕ

0
n0 ≡N 0e−

1
2
ϕTWϕ: ð4Þ

The matrix W is defined by

Wnn0 ¼
1

N

XN
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2a2 þ 4sin2

�
πk
N

�s
e½2πikðn−n0Þ=N�; ð5Þ

where N is the total number of lattice sites. We set the
lattice spacing a ¼ 1. Notice that W is symmetric and
real valued. We consider masses between m ¼ 10−1 and
m ¼ 10−4 near the conformal (massless) limit.
We divide the total Hilbert space into three parts Htot ¼

HA ⊗ HB ⊗ HC (Fig. 1). We denote the number of lattice
sites in A, B by jAj; jBj and the distance between them by d.
Then Eq. (4) is written as

Ψ0½ϕ� ¼ N 0 exp

�
−
1

2

�
ϕAB

ϕC

�T� P Q

QT R

��
ϕAB

ϕC

��
;

ð6Þ

with the submatrices P, Q, R determined by Eq. (5).
We compute mutual information (MI) IðA∶BÞ ¼

SA þ SB − SAB and logarithmic negativity (LN) ENðρABÞ,
both of which are shown in Fig. 2. MI is a measure of total
correlation satisfying IðA∶BÞ=2 ≤ EPðρABÞ [10]. LN is a
useful probe of quantum entanglement between A and B
[38,39], defined as ENðρABÞ ¼ log TrjρΓB

ABj [40,41], where
ρΓB
AB is the partial transposition with respect to B. We
observe that ENðρABÞ takes the largest value at d ¼ 0 and
for d ≥ 1 shows exponential decay. On the other hand, MI
slowly decreases as function of d (refer to the Supplemental
Material [42] for the scaling law of MI and EOP in the
conformal limit).
To calculate the EOP, we purify the system by adding

auxiliary subsystems Ã and B̃. Assuming the purified wave
functional is Gaussian, we obtain

ΨAÃBB̃½ϕ�¼N AÃBB̃exp

�
−
1

2
ϕTVϕ

�

¼N AÃBB̃exp
�
−
1

2

�
ϕAB

ϕÃB̃

�T� J K

KT L

��
ϕAB

ϕÃB̃

��
;

ð7Þ

where we have decomposed the matrix V into three
submatrices J, K, L. The condition (1) requires J ¼ P.
Furthermore, assuming subsystems of equal width
w ¼ jAj ¼ jBj, and setting jÃj ¼ jB̃j ¼ w, L becomes a
2w × 2w square matrix and is related to K by the equation

L−1 ¼ ðK−1QÞR−1ðK−1QÞT: ð8Þ

Use of a symmetry transformation [36] allows the sim-
plification of the K to the form

K ¼
�

1w KA;B̃

KB;Ã 1w

�
: ð9Þ

Thus, all parameters of the purification are contained in
the w × w matrices KA;B̃ and KB;Ã. If one assumes a Z2

symmetry which reflects AÃ and BB̃, we will have
KA;B̃ ¼ KR

B;Ã
, where we define MR of a matrix M as the

inverse ordering of all rows and columns, i.e.,

ðKR
B;Ã

Þj;k ¼ ðKB;ÃÞwþ1−j;wþ1−k: ð10Þ

The Z2 asymmetry A is defined to quantify the Z2

symmetry breaking as

A ¼ kKA;B̃ − KR
B;Ã

k2; ð11Þ

where kMk2 is the two-norm over all entries of M. The
actual value of EP is Z2 invariant due to SAÃ ¼ SBB̃.
Then SAÃ can be computed from the eigenvalue spectrum

fλkg of the matrix Λ≡ −V−1
AÃ;BB̃

VBB̃;AÃ [2] as follows:

FIG. 1. An example of the setup for our lattice model with
N ¼ 20 and jAj ¼ jBj ¼ 4. The distance between A and B is
d ¼ 1. There is a Z2 reflection symmetry.

FIG. 2. Half of MI (left) and LN (right) for jAj ¼ jBj ¼ 4
and N ¼ 60 as a function of d, shown for mass m ¼
10−1; 10−2; 10−3; 10−4 (bottom to top).
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SAÃ ¼
X
k

�
log

ffiffiffiffiffi
λk

p
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λk

p
log

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λk

p
λk

�
: ð12Þ

The EOP is the minimum of SAÃ over all purifications
ΨAÃBB̃½ϕ�, achieved by varying KA;B̃ and KB;Ã. We com-
puted the EOP for subsystem sizes w ¼ 1, 2, 3, 4 and
studied its dependence on the distance d, using a numerical
limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-
BFGS) optimization implemented with the C++ package
DLIB [43]. Here we made the assumption that an optimal
purification is contained in the Gaussian purification above.
We also assumed that the auxiliary subsystems have the
same sizes as the original ones, and larger numerical setups
did not appear to reduce the optimal EOP further. If either
assumption were inaccurate, our results for free scalar field
theory would only provide an upper bound on the EOP.
As the Z2 reflection symmetry is a property of the

original system ρAB and leaves the EOP invariant, it might
be natural to assume, as in Ref. [36], that the optimal
purification is Z2 symmetric. However, we observe that to
find the true minimum of SAÃ, one needs to enlarge the
parameter space by breaking the Z2 exchange symmetry
between AÃ and BB̃. The results for N ¼ 60 are shown in
Fig. 3 (left). From d ¼ 0 to d ¼ 1, we observe a plateaulike
behavior of EP at large wwhose width appears independent
of w, suggesting a finite-size effect. The Z2 symmetry
breaking clearly appears at d ¼ 1 (Fig. 3, right). Within
numerical accuracy, A ¼ 0 for any d ≠ 1. This symmetry
breaking becomes more pronounced with increasing w. At
w ¼ 1, it is not observed within our numerical accuracy,
while it is clearly visible for w ¼ 4.
For small N, the EOP does not monotonically decrease

as a function of d (Fig. 4, left). As we increase N, this
nonmonotonicity gradually disappears and we get a plateau
at large w (Fig. 4, right). It is a surprise that the EOP, being
a correlation measure, does not decrease monotonically
with distance d, unlike the other correlation measures
shown in Fig. 2.
Next, we compute the EOP for spin systems. Let us

denote Hilbert space dimension by D such that DA ¼
dimHA etc. In general, the dimension of auxiliary Hilbert
space DÃDB̃ should be at least as large as rankρAB to

purify a mixed state ρAB, with no general upper bound.
Fortunately, the true minimum of SAÃ can be found for
DÃ;DB̃ ≤ rankρAB in a system with finite-dimensional
Hilbert space [44], enabling us to compute EOP in practice.
For convenience, we call the purification minimal when
DÃDB̃¼ rankρAB and maximal when DÃDB̃ ¼ ðrankρABÞ2.
One example of purification is the thermofield double
purification (TFD)

jψTFDiABÃ B̃ ¼
X
i

ffiffiffiffiffi
pi

p jiiABjiiÃ B̃; ð13Þ

where ρAB ¼ P
ipijiihijAB with

P
ipi ¼ 1, pi ≥ 0. All

possible purifications of a fixed dimension can be
obtained by acting with unitary operators on the auxiliary
systems, yielding jψðUÞiABÃB̃¼IAB⊗UÃB̃jψ0iABÃB̃, where
jψ0iABÃ B̃ is an initial state. We also vary the dimensions
DÃ;DB̃ to achieve both minimal and maximal purification.
We have used a variation of the steepest descent method.

To obtain the global minimum, we start from several
random initial purifications and ensure that the same point
of convergence is reached. Nevertheless, the existence of
additional local minima cannot be excluded, in which case
the numerical results only provide an upper bound. The
same is true for the scalar field case.
We deal with a one-dimensional (1D) transverse-field

Ising model

HIsing ¼ −
X
hi;ji

σzi ⊗ σzj − h
XN
i¼1

σxi ; ð14Þ

FIG. 3. EP form ¼ 10−4 andN ¼ 60 for various w ¼ jAj ¼ jBj
(left) and A for the data set at w ¼ 4 (right).

FIG. 4. EOP for small N with block width w ¼ 2 and
mass m ¼ 10−4 (left). EOP for large N with w ¼ 4 and
m ¼ 10−4 (right).

FIG. 5. EOP for w ¼ 1, N ¼ 10 for the critical Ising model
(left). The same for N ¼ 4 (right).
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where hi; ji denotes the summation over nearest neighbors
with periodic boundary condition. We focus on its ground
state at the critical point (h ¼ 1) (see the Supplemental
Material [42] for noncritical points of the thermal ground
state [45,46]). While the optimization is performed using
maximal purifications, the optimal purification always
corresponds to the minimal purification for this case.
The EOP for the corresponding subsystems with w ¼ jAj ¼
jBj ¼ 1 as a function of d is depicted in Fig. 5 along with
MI and LN. For smaller N (N ¼ 4), one can see that the
EOP does not decrease with d. This can be explained
as follows: EP must coincide with SA (Prop. 7 in [47]) at
d ¼ 1 since ρAB has support only on a symmetric subspace,
while EP < SA at d ¼ 0 follows from the numerical
computation. This provides us with a clear example of
EOP increasing with distance. Moreover, the Z2 symmetry
is clearly broken at d ¼ 1 as SÃ ≠ SB̃ (Fig. 6, left). For
w ¼ 1, the Z2 symmetry is gradually recovered as N gets
larger (N ≳ 12).
We also consider the larger subsystem size w ¼ 2. In this

case, the EOP is computed using minimal purifications to
expedite the computation. We again observe a nonmono-
tonic behavior of EOP that weakens as N increases (Fig. 6,
right) similar to the free scalar case. The Z2 symmetry
breaking is also found at d ¼ 1, which remains even at
large N.
Finally, we seek to provide an interpretation of our

results. For both free scalar theory and the critical Ising
model, we observed a nonmonotonic or plateaulike behav-
ior of the EOP at small d. These behaviors are very special
to EOP and do not appear in MI. This is in contrast to the
fact that they possess similar information-theoretic proper-
ties as total correlation measures (refer to, e.g., Ref. [10]).
This mirrors the observation in Refs. [11,12] that the value
of holographic EOP behaves differently than that of holo-
graphic MI, with the former developing a plateaulike
behavior.
Suppose total correlations (measured by half of MI)

are a combination of quantum entanglement and classical
correlations. As EP ≥ 2ðIðA∶BÞ=2Þ for separable states
[9] while EP ¼ I=2 for pure states, we assert that EOP
enhances the classical correlations compared to IðA∶BÞ=2

at least twofold, while treating quantum entanglement
equivalently. This explains the nonmonotonicity of EOP
as well: quantum entanglement can be estimated by the LN,
which falls of quickly with d. Thus, classical contributions
at d ≥ 1 are enhanced compared to short-range quantum
entanglement at d ¼ 0. Possible connections to analogous
quantities such as quantum discord [48,49] will be an
interesting future work.
We also propose a mechanism of Z2 symmetry breaking

at d ¼ 1 by a toy model with dominant nearest-neighbor
quantum entanglement (Fig. 7). The distinction between
quantum entanglement and classical correlation is crucial
here, as well. At d ¼ 1, an intermediate site C is strongly
entangled with both A and B, and tracing it out turns ρAB
into a highly mixed state. This leads to strong classical
correlations between A and B. As a result, the purification
requires strong entanglement for A ↔ Ã, B ↔ B̃, Ã ↔ B̃,
Ã ↔ B and A ↔ B̃ in order to convert the large amount
of classical correlations into quantum entanglement.
This complicated competition, under the constraint of
monogamy, results in a Z2 reflection symmetry breaking,
where only either Ã ↔ B or A ↔ B̃ exhibits strong
entanglement (Fig. 7, center). This picture is indeed
confirmed both for the free scalar and the Ising model.
In contrast, correlations are either weak at d ≥ 2 or are
strong but mainly consist of entanglement at d ¼ 0. Both
cases require little purification, allowing a simple sym-
metric purification to be optimal. This suggests that the Z2

symmetry breaking occurs when ρAB possesses strong
classical correlations.
Notice that the Z2 symmetry breaking does not occur for

CFT vacua in holographic setups. However, such a sym-
metry breaking can be possible in holography for excited
states or nonconformal setups. Searching for Z2 symmetry
breaking in holographic EOP will thus serve as an
interesting future endeavor.
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FIG. 6. Smax ¼ maxfSÃ; SB̃g and Smin ¼ minfSÃ; SB̃g of the
optimal purifications for w ¼ 1 and N ¼ 10 (left). The non-
monotonic behavior of EOP for w ¼ 2 (right).

FIG. 7. A toy model for EOP for 1D many body systems,
assuming only short-range quantum entanglement (zigzag lines)
for w ¼ jÃj ¼ jB̃j ¼ 3. At d ¼ 1, we only show one of the two
optimal Z2 symmetry-broken purifications.
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