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We present a new method of deriving the geometry of entanglement wedges in holography directly from
conformal field theories (CFTs). We analyze an information metric called the Bures metric of reduced
density matrices for locally excited states. This measures the distinguishability of states with different
points excited. For a subsystem given by an interval, we precisely reproduce the expected entanglement
wedge for two-dimensional holographic CFTs from the Bures metric, which turns out to be proportional to
the anti–de Sitter metric on a time slice. On the other hand, for free scalar CFTs, we do not find any sharp
structures like entanglement wedges. When a subsystem consists of two disconnected intervals, we manage
to reproduce the expected entanglement wedge from holographic CFTs with the correct phase transitions,
up to a very small error, from a quantity alternative to the Bures metric.
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Introduction.—An important and fundamental question
in the AdS=CFT correspondence [1] is whether physical
information included in a given region A in conformal field
theory (CFT) can correspond to that in a certain region MA
in anti–de Sitter (AdS) gravity. More concretely, here we
mean that the reduced density matrix ρA of a CFT on a
subregion A is equivalent to a reduced density matrix ρbulkMA

of bulk gravity on a certain region MA in AdS. The answer
to this question has been argued to be yes, where MA is
given by the entanglement wedge [2–4], i.e., the region
surrounded by the subsystem A and the extremal surface
ΓA, whose area gives the holographic entanglement
entropy [5,6].
Normally this subregion duality is explained by com-

bining several ideas: the gravity dual of a bulk field
operator (i.e., Hamilton-Kabat-Lifschytz-Lowe map [7]),
quantum corrections to holographic entanglement entropy
[8,9], and the conjectured connection between AdS=CFT
and quantum error correcting codes [10,11]. However,
since these highly employ the dual AdS geometry
from the beginning, it is not clear how entanglement
wedges emerge from CFT itself. The main aim of this
Letter is to derive the geometry of an entanglement
wedge purely from CFT computations. We will focus on

two-dimensional (2D) CFTs for technical reasons. The
AdS=CFT argues that a special class of CFTs, called
holographic CFTs, can have classical gravity duals,
described by general relativity. A holographic CFT is
characterized by a large central charge c and strong
interactions, which lead to a large spectrum gap [12,13].
Therefore, the entanglement wedge geometry is available
only when we consider holographic CFTs as we will
see later.
Consider a state in a 2D CFT on a complex plane R2,

locally excited by a primary operator Oðw; w̄Þ. We set
ðw; w̄Þ ¼ ðxþ iτ; x − iτÞ. By choosing a subsystem A on
the x axis, we define the reduced density matrix on A,
tracing out its complement B,

ρAðw; w̄Þ ¼ TrB½Oðw; w̄Þj0ih0jO†ðw̄; wÞ�; ð1Þ

first introduced in [14] to study its entanglement entropy.
We assume that the conformal dimension h ofO satisfies

1 ≪ h ≪ c. Thus, we can neglect its backreaction in the
gravity dual and can approximate the two-point function
hOðw1; w̄1ÞO†ðw2; w̄2Þi by the geodesic length in the
gravity dual between the two points ðw1; w̄1Þ and
ðw2; w̄2Þ on the boundary η → 0 of Poincaré AdS3,

ds2 ¼ η−2ðdη2 þ dwdw̄Þ ¼ η−2ðdη2 þ dx2 þ dτ2Þ: ð2Þ

Therefore, by projecting on the bulk time slice τ ¼ 0, the
state ρAðw; w̄Þ is dual to a bulk excitation at a bulk point P
defined by the intersection between the time slice τ ¼ 0 and
the geodesic, as in Fig. 1.
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Now we are interested in how we can distinguish the two
states: ρAðw; w̄Þ and ρAðw0; w̄0Þ when w ≠ w0, created by
the same operators. On the time slice τ ¼ 0, the location
of dual bulk excitations is given by ðη; xÞ ¼ ðτ; xÞ and
ðη; xÞ ¼ ðτ0; x0Þ. The entanglement wedge reconstruction
argues that we cannot distinguish the two excited bulk
states when both excitations are outside of MA, while we
can distinguish them if at least one of them is inside ofMA.
A useful measure of distinguishability between two

density matrices ρ and ρ0 is the Bures distance DB, defined
by (refer to, e.g., [15])

DBðρ; ρ0Þ2 ¼ 2

�
1 − Tr

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ

p
ρ0

ffiffiffi
ρ

pq ��
; ð3Þ

When the density matrix is parametrized by continuous
valuables λi, denoted by ρðλÞ, we can define the informa-
tion metric

DB½ρðλþ dλÞ; ρðλÞ�2 ≃ Gijdλidλj ≡ dD2
B; ð4Þ

where dλi are infinitesimally small. This metric Gij is
called the Bures metric, which measures the distinguish-
ability between nearby states.
The quantum version of the Cramér-Rao theorem [16]

tells us that, when we estimate the values of λi, the errors of
measurements are bounded as follows:

⟪δλiδλj⟫ ≥ ðG−1Þij: ð5Þ

As an exercise, consider the case where A covers the
total system, where ρAðw; w̄Þ becomes a pure state
jϕðwÞihϕðwÞj. The Bures distance DB is simplified as

DBðjϕi; jϕ0iÞ2 ¼ 2½1 − jhϕðwÞjϕðw0Þij�;
jhϕðwÞjϕðw0Þij ¼ jw − w̄j2hjw0 − w̄0j2hjw − w̄0j−4h: ð6Þ

This leads to the Bures metric

dD2
B ¼ h

τ2
ðdτ2 þ dx2Þ: ð7Þ

This is proportional to the time slice metric in the gravity
dual (2). This coincidence is very natural because the
distinguishability should increase as the bulk points are
geometrically separated, as noted in [17]. However, this
result is universal for any 2D CFTs.
Also, we often calculate (introduced in [18])

Iðρ; ρ0Þ ¼ Tr½ρρ0�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½ρ2�Tr½ρ02�

p ð8Þ

instead ofDB to estimate distinguishability. We always find
0 ≤ Iðρ; ρ0Þ ≤ 1. We have Iðρ; ρ0Þ ¼ 1 if and only if ρ ¼ ρ0.
Single interval case.—We choose the subsystem A to be

an interval 0 ≤ x ≤ L at τ ¼ 0. The surface ΓA in the bulk
AdS is the semicircle ðx − L=2Þ2 þ η2 ¼ L2=4. Thus, if the
entanglement reconstruction is correct, the information
metric vanishes if the bulk point P is outside of the
entanglement wedge. This boundary of this wedge in the
CFT is given by

jw − L=2j ¼ L=2: ð9Þ
In this example, this is the same as the causal wedge [19].
Let us start with the calculation of the quantity Iðρ; ρ0Þ

defined by (8), for ρ ¼ ρAðw; w̄Þ and ρ0 ¼ ρAðw0; w̄0Þ. Since
this calculation is essentially that of Tr½ρρ0�, we perform the
conformal transformation z2 ¼ w=ðw − LÞ, which maps
two flat space path integrals that produce ρðw; w̄Þ and
ρðw0; w̄0Þ into a single plane (z plane). Refer to [20,21] for
similar calculations. The insertion points of the four
primary operators on the z plane are

z1¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−x− iτ
L−x− iτ

r
ð≡zÞ; z2¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−xþ iτ
L−xþ iτ

r
ð≡z̄Þ;

z03¼−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−x0− iτ0

L−x0− iτ0

r
ð≡−z0Þ; z04¼−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−x0 þ iτ0

L−x0 þ iτ0

r
ð≡− z̄0Þ:

Refer to Fig. 2 for this conformal mapping. It is important
to note that the boundaries of the wedges (9) on the w
planes are mapped into the diagonal lines z ¼ �iz̄.
The quantity Tr½ρρ0� is expressed as a correlation

function on the z plane,

Tr½ρρ0�¼
����� dz1dw1

����
���� dz2dw2

����
���� dz

0
3

dw0
3

����
���� dz

0
4

dw0
4

����
�

2hHðz1;z2;z03;z04ÞZð2Þ

ðZð1ÞÞ2 ;

Hðz1;z2;z03;z04Þ

≡ hO†ðz1; z̄1ÞOðz2; z̄2ÞO†ðz03; z̄03ÞOðz04; z̄04Þi
hO†ðw1;w̄1ÞOðw2;w̄2ÞihO†ðw0

3;w̄
0
3ÞOðw0

4;w̄
0
4Þi

;

where we write the vacuum partition function on a n-
sheeted complex plane by ZðnÞ. Finally, we obtain

FIG. 1. A sketch of entanglement wedge MA (red colored
region) for an interval A in AdS3=CFT2 and holographic
computations of two-point functions dual to geodesics.
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Iðρ;ρ0Þ ¼ Fðz1;z2;z03;z04Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fðz1;z2;z3;z4ÞFðz01;z02;z03;z04Þ

p ;

Fðz1;z2;z03;z04Þ≡ hO†ðz1; z̄1ÞOðz2; z̄2ÞO†ðz03; z̄03ÞOðz04; z̄04Þi:
ð10Þ

In holographic CFTs, we can approximate the correla-
tion functions by regarding the operators as generalized
free fields [22] so that we simply take theWick contractions
of two-point functions (we set z ¼ z1 and z0 ¼ −z3),

Fðz1;z2;z03;z04Þ≃ jz− z̄j−4hjz0− z̄0j−4hþjzþ z̄0j−8h: ð11Þ

The value of Iðρ; ρ0Þ as a function of w0 ¼ x0 þ iτ0 is plotted
in the left two graphs in Fig. 3. The upper left graph is the
case where w is inside the wedge (9) and we have I ¼ 1 if
and only if w ¼ w0, while 0 < I < 1 if and only if w ≠ w0,
as expected. This shows that we can correctly distinguish
the states. On the other hand, if w is outside the wedge (see
the lower left graph), we find I ≃ 1 (i.e., indistinguishable)

if w0 is also outside, while we have I ≃ 0 if w0 is inside. We
can see that the border is precisely the CFT counterpart of
the entanglement wedge (9). This border gets very sharp
when h ≫ 1 as we are assuming for geodesic approxima-
tion. These behaviors perfectly agree with bulk state
distinguishability in AdS=CFT.
When we calculate the information metric, we assume

w ≃ w0 (or equally z ≃ z0). In this case, the first term in (11)
dominates when jz − z̄j ≤ jzþ z̄j and this condition pre-
cisely matches that for the outside wedge condition. Indeed,
if we only keep this first term, we immediately find
Iðρ; ρ0Þ ¼ 1. On the other hand, when it is inside, the
second term is dominant and the result is identical to the
case where A is the total space [i.e., ρA ¼ jϕðwÞihϕðwÞj
is pure].
As a comparison, in the right two graphs in Fig. 3, we

plotted Iðρ; ρ0Þ for a 2D free massless scalar CFT (the
scalar field is denoted by φ), where we chose the primary
operator to beOðw; w̄Þ ¼ eiαφðw;w̄Þ, which has the dimension
h ¼ α2=2. Clearly, in this freeCFT,we cannot find any sharp
structure of an entanglement wedge as opposed to holo-
graphic CFTs, though they have qualitative similarities.
We can evaluate the Bures metric from

An;m ¼ Tr½ðρmρ0ρmÞn� ð12Þ

via the analytical continuation n ¼ m ¼ 1=2. We apply the
conformal transformation [we set k ¼ ð2mþ 1Þn] zk ¼
w=ðw − LÞ, so that the path integrals for 2mn ρ’s and n ρ0’s
are mapped into that on a single plane. This leads to

An;m ¼ hO†ðw1ÞOðw2Þ � � �O†ðw2k−1ÞOðw2kÞiZðkÞQ
k
i¼1hO†ðw2i−1ÞOðw2iÞiðZð1ÞÞk : ð13Þ

Refer to [23,24] for analogous computations of relative
entropy. Then we find

An;m ¼
Y2k
i¼1

jk−1ðziÞ1−kj2h
Yk
j¼1

jðz2j−1Þk− ðz2jÞkj4h

× hO†ðz1ÞOðz2Þ � � �O†ðz2k−1ÞOðz2kÞi
ZðkÞ

ðZð1ÞÞk : ð14Þ

Note that we have

z1¼
�

−x−iτ
L−x−iτ

�
1=k

; z2ð¼ z̄1Þ¼
�

−xþiτ
L−xþiτ

�
1=k

;

z2sþ1¼eð2πi=kÞsz1; z2sþ2¼eð2πi=kÞsz2; ðs¼1;2;…;k−1Þ:

Let us evaluate An;m in holographic CFTs, using the
generalized free field approximation. We take w ≃ w0 to
calculate the Bures metric. When w and w0 are outside of
the entanglement wedge (9), or equally jz2j−1 − z2jj <
jz2j−2 − z2j−1j, the 2k point function is approximated as

0.0
–2

–5
0

0

2

4

0

2

4

5

–5
0

5

–1
1 2

0

–2
–1

1
2

0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0
0.5

1.0
1.5

2.0

0.0

0.5

1.0

0.0
0.5

1.0
1.5

2.0

FIG. 3. The profiles of Iðρ; ρ0Þ as a function of x0 (horizontal
axis) and τ0 (depth axis) for the choice A ¼ ½0; 2� (i.e., L ¼ 2).
The two left ones are for a 2D holographic CFT, while the right
ones for a 2D free scalar CFT. In the upper two graphs, we chose
h ¼ 1=2 and ðx; τÞ ¼ ð1; 0.1Þ and in the lower two, we chose
h ¼ 10 and ðx; τÞ ¼ ð−1; 0.1Þ.

FIG. 2. A sketch of conformal transformation for the calcu-
lation of Tr½ρρ0�.
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hO†ðz1ÞOðz2Þ � � �O†ðz2k−1ÞOðz2kÞi

≃
Yk
j¼1

hO†ðz2j−1ÞOðz2jÞi ≃
Yk
j¼1

jz2j−1 − z2jj−4h; ð15Þ

and this leads to the trivial result An;m ¼ 1, leading to the
vanishing Bures metric dD2

B ¼ 0. This agrees with the
AdS=CFT expectation that ρA cannot distinguish two
different bulk excitations outside of entanglement wedge.
On the other hand, when w and w0 are inside of

the entanglement wedge (9), or equally jz2j−1 − z2jj >
jz2j−2 − z2j−1j, we can approximate as

hO†ðz1ÞOðz2Þ � � �O†ðz2k−1ÞOðz2kÞi

≃
Yk
j¼1

hO†ðz2j−2ÞOðz2j−1Þi ≃
Yk
j¼1

jz2j−2 − z2j−1j−4h:

In the limit n → 1=2 and m → 1=2, this leads to

A1=2;1=2 ¼ jw − w̄j2hjw0 − w̄0j2hjw0 − w̄j−4h;

dD2
B ¼ h

τ2
ðdx2 þ dτ2Þ: ð16Þ

This Bures metric for ρAðw; w̄Þ coincides with that for the
pure state (7) and reproduces the bulk AdS metric on the
time slice τ ¼ 0.
Similarly, in a 2D holographic CFT with a circle

compactification x ∼ xþ 2π, we obtain the Bures metric

dD2
B ¼ h

sinh2τ
ðdτ2 þ dx2Þ; ð17Þ

if w is inside the wedge. In a 2D holographic CFT at finite
temperature T, we obtain

dD2
B ¼ h

ð2πTÞ2
sin2 ð2πTτÞ ðdτ

2 þ dx2Þ: ð18Þ

These metrics agree with those on the time slice τ ¼ 0 of
global AdS3 and Banados-Teitelboim-Zanelli (BTZ) black
hole, by projecting boundary points (x, τ) into the time slice
along geodesics.
It is instructive to calculate the Bures metric in the 2D

massless free scalar CFT for the primary O ¼ eiαφ. For
α ¼ 1, we find the following analytical result:

A1=2;1=2¼
ð ffiffiffi

z
p þ ffiffiffiffi

z0
p Þ

� ffiffiffī
z

p þ
ffiffiffiffi
z̄0

p 	
ð ffiffiffi

z
p þ ffiffiffī

z
p Þð ffiffiffiffi

z0
p þ

ffiffiffiffi
z̄0

p
Þ

4
ffiffiffiffiffiffiffiffiffiffiffijzjjz0jp ð ffiffiffi

z
p þ ffiffiffiffi

z̄0
p Þð ffiffiffī

z
p þ ffiffiffiffi

z0
p Þ ;

dD2
B¼−

L2ðdwÞ2
16w2ðL−wÞ2−

L2ðdw̄Þ2
16w̄2ðL− w̄Þ2

þ L2ðdwÞðdw̄Þ
2jwjjw−Ljð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w̄ðw−LÞp þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wðw̄−LÞp Þ2 : ð19Þ

Note that we cannot find any sharp structure of an
entanglement wedge as opposed to the holographic CFT.
Double interval case.—Next we take the subsystem A to

be a union of two disconnected intervals A1 and A2, which
are parametrized as A1 ¼ ½0; s� and A2 ¼ ½lþ s; lþ 2s�,
without losing generality. We conformally map the w plane
with two slits along A1 and A2 into a z cylinder via (see,
e.g., [25])

z ¼ fðwÞ ¼ Jðκ2Þ
2

−
Jðκ2Þ
2Kðκ2Þ sn

−1ðw̃; κ2Þ; ð20Þ

where we introduced

w̃ ¼ 2

l

�
w − s −

l
2

�
; Jðκ2Þ ¼ 2π

Kðκ2Þ
Kð1 − κ2Þ ;

Kðκ2Þ ¼
Z

1

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2Þð1 − κ2x2Þ

p ; κ ¼ l
lþ 2s

:

The function sn−1ðw̃; κ2Þ is the Jacobi elliptic function.
We can calculate Iðρ; ρ0Þ using the map (20) both for

ρAðw; w̄Þ and ρAðw0; w̄0Þ and the formula (10). The two w
planes are mapped into a torus, described by the z plane
with the identification Re½z� ∼ Re½z� þ 2J and Im½z�∼
Im½z� þ 2π, as depicted in Fig. 4.
In holographic CFTs, we need to distinguish two phases

depending on the moduli of the torus: (i) the connected

FIG. 4. A sketch of conformal transformation for Tr½ρAρ0A� in
the double interval case. We assumed the phase (i), where the
entanglement wedge is connected, as depicted by the colored
region. The lower picture describes the geometry after the
transformation and is given by a torus by identifying the edges.
Blue (or green) points are outside (or inside) of MA.
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phase, J < π or equally κ < 3 − 2
ffiffiffi
2

p
, and (ii) the dis-

connected phase, J > π or equally κ > 3 − 2
ffiffiffi
2

p
. We can

confirm phase (i) [or (ii)] coincides with the case in the
gravity dual where the entanglement wedge gets connected
(or disconnected), and the circle Re½z� (or Im½z�) shrinks to
zero size in the bulk, respectively. This is the standard
Hawking-Page transition [26] and agrees with the large c
CFT analysis [12]. The holographic two-point functions on
the torus in each phase behave like

hO†ðz;z̄ÞOðz0;z̄0ÞiðiÞ≃maxn1∈Z

����sin
�
πðzþ2πin1−z0Þ

2J

�����
−4h

;

hO†ðz;z̄ÞOðz0;z̄0ÞiðiiÞ≃maxn2∈Z

����sinh
�ðzþ2Jn2−z0Þ

2

�����
−4h

:

Let us estimate four-point functions F in (10) by the
generalized free field prescription, where we again assume
w ≃ w0. There are two contributions: the trivial Wick
contraction and the nontrivial one as in (11). The trivial
one leads to Iðρ; ρ0Þ ¼ 1, which tells us that we cannot
distinguish the two states. Therefore, we again find that the
entanglement wedge corresponds to the region where
nontrivial contractions become dominant.
The nontrivial Wick contraction is dominant when

minn1∈Z

����sin
�
π

2J
ðz2− z1−2n1πiÞ

�����≥
����sin

�
π

2J
ðz3− z2Þ

�����
in the connected case and when

���� sinh
�
z2 − z1

2

����� ≥ minn2∈Z

���� sinh
�
z2 − z3 − 2n2J

2

�����

in the disconnected case. We plotted these regions in terms
of the coordinate w̃ of (20) in Fig. 5.
In both cases, the regions are very close to correct

entanglement wedges, respecting the expected connected
or disconnected geometry (note our holographic relation in
Fig. 1). However, there is a very small deviation, which is
always within a few percent. This deviation arises because
the correct distinguishability should be measured by the
Bures metric. Our analysis using Iðρ; ρ0Þ only gives an
approximation, much like the Renyi entropy compared
with the von Neumann entropy.
The calculation of the genuine Bures distance DBðρ; ρ0Þ

is very complicated, as the trace Tr½ðρmρ0ρmÞn� corresponds
to a partition function on a genus nð2mþ 1Þ − 1 Riemann
surface. However, in the final n ¼ m → 1=2 limit (genus
zero limit), it might not be surprising to obtain the expected
metric (7).
Conclusions.—In this Letter, we present a general

mechanism to show how entanglement wedges emerge
from holographic CFTs. One important future problem is to
repeat the same procedure by using the genuine localized
operator in the bulk [7] (see also [27,28] or the state [17]).
Another interesting direction will be to extend this con-
struction to the higher-dimensional AdS=CFT. Moreover,
it may be useful to consider other distance measures such
as trace distances [29]. It would also be intriguing to
explore the relationship between our approach and the
path-integral optimization [30]. It may also be fruitful to
consider connections between our results and the recent
proposals for entanglement wedge cross sections [31–36].
Additionally, it would be interesting to study 1=N correc-
tions in our setup, which might be related to quantum
extremal surfaces [37]. We would like to revisit these
problems soon [38].
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FIG. 5. The plots of the locations of the operator insertion on the
w̃ plane where the nontrivial Wick contraction is favored (blue
colored regions in the left pictures). The upper pictures are for
κ ¼ 0.1 where MA is connected, while the lower ones are for κ ¼
0.2 where MA is disconnected. In the upper middle and right
pictures, blue curves are the borders between the nontrivial and
trivial contraction, while orange curves describe the borders of the
entanglement wedge. The same is true for the lower right picture.
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