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——— Abstract

In the stable marriage problem (SM), a mechanism that always outputs a stable matching is called
a stable mechanism. One of the well-known stable mechanisms is the man-oriented Gale-Shapley
algorithm (MGS). MGS has a good property that it is strategy-proof to the men’s side, i.e., no man
can obtain a better outcome by falsifying a preference list. We call such a mechanism a man-strategy-
proof mechanism. Unfortunately, MGS is not a woman-strategy-proof mechanism. (Of course, if
we flip the roles of men and women, we can see that the woman-oriented Gale-Shapley algorithm
(WGS) is a woman-strategy-proof but not a man-strategy-proof mechanism.) Roth has shown that
there is no stable mechanism that is simultaneously man-strategy-proof and woman-strategy-proof,
which is known as Roth’s impossibility theorem.

In this paper, we extend these results to the stable marriage problem with ties and incomplete
lists (SMTT). Since SMTTI is an extension of SM, Roth’s impossibility theorem takes over to SMTI.
Therefore, we focus on the one-sided-strategy-proofness. In SMTI, one instance can have stable
matchings of different sizes, and it is natural to consider the problem of finding a largest stable
matching, known as MAX SMTI. Thus we incorporate the notion of approximation ratios used in
the theory of approximation algorithms. We say that a stable-mechanism is a c-approximate-stable
mechanism if it always returns a stable matching of size at least 1/c of a largest one. We also
consider a restricted variant of MAX SMTI, which we call MAX SMTI-1TM, where only men’s lists
can contain ties (and women’s lists must be strictly ordered).

Our results are summarized as follows: (i) MAX SMTI admits both a man-strategy-proof
2-approximate-stable mechanism and a woman-strategy-proof 2-approximate-stable mechanism. (ii)
MAX SMTI-1TM admits a woman-strategy-proof 2-approximate-stable mechanism. (iii) MAX
SMTI-1TM admits a man-strategy-proof 1.5-approximate-stable mechanism. All these results
are tight in terms of approximation ratios. Also, all these results apply for strategy-proofness
against coalitions.
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Strategy-Proof Approximation Algorithms for the Stable Marriage Problem

1 Introduction

An instance of the stable marriage problem (SM) [5] consists of n men my,ma, ..., My, n
women wi, ws, ..., Wy, and each person’s preference list, which is a total order of all the
members of the opposite gender. If a person ¢; precedes a person g; in a person p’s preference
list, then we write ¢; >, g; and interpret it as “p prefers g; to ¢;”. In this paper, we denote a
preference list in the following form:

mo @ W3 W1 Wq W2,

which means that mqy prefers w3 best, wy second, wy third, and wy last (this example is for
n=4).

A matching is a set of n (man, woman)-pairs in which no person appears more than once.
For a matching M, M(p) denotes the partner of a person p in M. If, for a man m and a
woman w, both w >, M(m) and m =,, M (w) hold, then we say that (m,w) is a blocking
pair for M or (m,w) blocks M. Note that both m and w have incentive to be matched with
each other ignoring the given partner, so it can be thought of as a threat for the current
matching M. A matching with no blocking pair is a stable matching. It is known that any
instance admits at least one stable matching, and one can be found by the Gale-Shapley
algorithm (or GS algorithm for short) in O(n?) time [5]. There have been a plenty of research
results on this problem from viewpoints of Economics, Computer Science, Mathematics, etc
(see [7, 21, 14] e.g.).

1.1 Strategy-Proofness

The stable marriage problem can be seen as a game among participants, who have true
preferences in mind, but may submit a falsified preference list hoping to obtain a better
partner than the one assigned when true preference lists are used. Formally, let S be a
mechanism, that is, a mapping from instances to matchings, and we denote S(I) the matching
output by S for an instance I. We say that S is a stable mechanism if, for any instance I,
S(I) is a stable matching for I. For a mechanism S, let I be an instance, M be a matching
such that M = S(I), and p be a person. We say that p has a successful strategy in I if there
is an instance I’ in which people except for p have the same preference lists in I and I’, and
p prefers M’ to M (i.e., M'(p) >, M (p) with respect to p’s preference list in I), where M’ is
a matching such that M’ = S(I'). This situation is interpreted as follows: I is the set of true
preference lists, and by submitting a falsified preference list (which changes the set of lists
to I'), p can obtain a better partner M’(p). We say that S is a strategy-proof mechanism
if, when S is used, no person has a successful strategy in any instance. Also we say that S
is a man-strategy-proof mechanism if, when S is used, no man has a successful strategy in
any instance. A woman-strategy-proof mechanism is defined analogously. A mechanism is
a one-sided-strategy-proof mechanism if it is either a man-strategy-proof mechanism or a
woman-strategy-proof mechanism.

It is known that there is no strategy-proof stable mechanism for SM [18], which is known
as Roth’s impossibility theorem. By contrast, the man-oriented GS algorithm, MGS for short,
(in which men send and women receive proposals; see Appendix A) is a man-strategy-proof
stable mechanism for SM [18, 2]. Of course, by the symmetry of men and women, the
woman-oriented GS algorithm (WGS) is a woman-strategy-proof stable mechanism.
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1.2 Ties and Incomplete Lists

One of the most natural extensions of SM is the Stable Marriage with Ties and Incomplete
lists, denoted SMTI. An instance of SMTTI consists of n men, n women, and each person’s
preference list. A preference list may include ties, which represent indifference between two
or more persons, and may be incomplete, meaning that a preference list may contain only a
subset of people in the opposite gender. Such a preference list may be of the following form:

ma : wz (w1 wy),

which represents that mo prefers ws best, w; and w4 second with equal preference, but does
not want to be matched with ws. If a person ¢ is included in p’s preference list, we say
that ¢ is acceptable to p. A matching is a set of mutually acceptable (man, woman)-pairs
in which no person appears more than once. The size of a matching M, denoted |M]|, is
the number of pairs in M. For a matching M, (m,w) is a blocking pair if (i) m and w are
acceptable to each other, (ii) m is single in M or w >, M(m), and (iii) w is single in M
or m =, M(w). A matching without blocking pairs is a stable matching. (When ties come
into consideration, there are three definitions for stability, super, strong, and weak stabilities.
Here we are considering weak stability which is the most natural notion among the three.
In the case of super and strong stabilities, there exist instances that do not admit a stable
matching. See [7, 14] for more details.)

Note that in the case of SM, the size of a matching is always n by definition, but it may
be less than n in the case of SMTI. In fact, there is an SMTI-instance that admits stable
matchings of different sizes, and the problem of finding a stable matching of the maximum
size, called MAX SMTI, is NP-hard [10, 15]. There are a plenty of approximability and
inapproximability results for MAX SMTI. The current best upper bound on the approximation
ratio is 1.5 [16, 17, 11] and lower bounds are 33/29 ~ 1.1379 assuming P#NP and 4/3 ~ 1.3333
assuming the Unique Games Conjecture (UGC) [22]. There are several attempts to obtain
better algorithms (e.g., polynomial-time exact algorithms or polynomial-time approximation
algorithms with better approximation ratio) for restricted instances; one of the most natural
restrictions is to admit ties in preference lists of only one gender, which we call SMTI-1T.
MAX SMTI-1IT (i.e., the problem of finding a maximum cardinality stable matching in
SMTI-1T) remains NP-hard, and as for the approximation ratio, the current best upper
bound is 1 4 1/e ~ 1.368 [13] and lower bounds are 21/19 ~ 1.1052 assuming P#NP and
5/4 = 1.25 assuming UGC [8, 22].

1.3 Our Contributions

In this paper, we consider the strategy-proofness in MAX SMTI, and investigate the trade-off
between strategy-proofness and approximability. In the case of incomplete preference lists,
there may be unmatched (i.e., single) persons. Thus, we have to extend the definition of
a person preferring one matching to another. We say that a person p prefers M’ to M if
either M'(p) >, M (p) holds or p is single in M but is matched in M’ with some acceptable
woman. Then the definition of strategy-proofness for SM naturally takes over to SMTI.

Let I be a MAX SMTI instance and M,,; be a maximum size stable matching for
1. A stable matching M for I is called an r-approzimate solution for I if % <r. A
stable mechanism S is called an r-approzimate-stable mechanism if S(I) is an r-approximate
solution for any MAX SMTTI instance I.

Firstly, since SMTI is a generalization of SM, Roth’s impossibility theorem for SM [18]
holds also for MAX SMTT (regardless of approximability):

9:3

ISAAC 2019



9:4

Strategy-Proof Approximation Algorithms for the Stable Marriage Problem

» Proposition 1. There is no strategy-proof stable mechanism for MAX SMTIL

Therefore, we focus on one-sided-strategy-proofness. We show that there is a 2-approxi-
mate-stable mechanism, which is achieved by a simple extension of the GS algorithm. We
also show that this result is tight:

» Theorem 2. MAX SMTI admits both a man-strategy-proof 2-approzimate-stable mechan-
ism and a woman-strategy-proof 2-approxrimate-stable mechanism. On the other hand, for
any positive e, MAX SMTI admits neither a man-strategy-proof (2 — €)-approzimate-stable
mechanism nor a woman-strategy-proof (2 — €)-approximate-stable mechanism.

We next consider a restricted version, MAX SMTI-1T. Throughout the paper, we assume
that ties appear in men’s lists only (and women’s lists must be strict). In the following, we
use the name MAX SMTI-1TM to stress that only men’s preference lists may contain ties.
As for woman-strategy-proofness, we obtain the same result as for MAX SMTI, which is a
direct consequence of Theorem 2:

» Corollary 3. MAX SMTI-1TM admits a woman-strategy-proof 2-approximate-stable mech-
anism, but no woman-strategy-proof (2 — €)-approzimate-stable mechanism for any positive €.

For man-strategy-proofness, we can reduce the approximation ratio to 1.5, which is the
main result of this paper.

» Theorem 4. MAX SMTI-1TM admits a man-strategy-proof 1.5-approximate-stable mech-
anism, but no man-strategy-proof (1.5 — €)-approzimate-stable mechanism for any positive €.

We remark that no assumptions on running times are made for our negative results,
while algorithms in our positive results run in linear time. Note also that the current best
polynomial-time approximation algorithms for MAX SMTI and MAX SMTI-1TM have the
approximation ratios better than those in our negative results (Theorems 2 and 4). Hence our
results provide gaps between polynomial-time computation and strategy-proof computation.

Coalition. In the above discussion, man-strategy-proofness (woman-strategy-proofness) is
defined in terms of a manipulation of a preference list by one man (woman). We can extend
this notion to a coalition of men (or women) as follows; a coalition C' of men has a successful
strategy if there is a way of falsifying preference lists of members of C' which improves the
outcome of every member of C. It is known that MGS is strategy-proof against a coalition
of men in this sense (Theorem 1.7.1 of [7]), and this strategy-proofness holds also in the
stable marriage with incomplete lists (SMI) (page 57 of [7]). Since all our strategy-proofness
results (Lemmas 5 and 11) are attributed to strategy-proofness of MGS in SMI, we can easily
modify the proofs so that Theorem 2, Corollary 3, and Theorem 4 hold for strategy-proofness
against coalitions.

Many-to-One Setting. Clearly, the negative parts of Theorem 2, Corollary 3, and Theorem
4 hold for a many-to-one extension of MAX SMTI, denoted MAX HRT. Also, we can show
that man-strategy-proofness in Theorems 2 and 4 carry over to resident-strategy-proofness in
MAX HRT by cloning hospitals (see e.g., page 283 of [9] for cloning). By contrast, woman-
strategy-proofness in Theorem 2 and Corollary 3 do not hold for hospital-strategy-proofness
in MAX HRT; there is no hospital-strategy-proof stable mechanism even without ties (see
Sec. 1.7.3 of [7]).
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Overview of Techniques. Since MGS is a man-strategy-proof stable mechanism for SM,
such types of algorithms are good candidates for proving the positive part of Theorem 4.
Existing 1.5-approximation algorithms for MAX SMTI for one-sided ties are of GS-type, but
in these algorithms, proposals are made from the side with no ties (women, in our case),
so we cannot use them for our purpose. As mentioned above, there are 1.5-approximation
algorithms for the general MAX SMTTI [16, 17, 11], which are fortunately of GS-type and can
handle proposals from the side with ties (men, in our case). Hence one may expect that these
algorithms will work. However, it is not the case. The main reason is as follows: Suppose
that some man m is going to propose to a woman, and the head of m’s current list is a tie,
which is a mixture of unmatched and matched women. In this case, m’s proposal will be sent
to an unmatched woman, say w. Suppose that, just one step before, another man m’ has
proposed to w’. Then if m’ moves w to the position just before w’, he can make w already
matched when m is about to propose to her, and as a result of this, m does not propose to
w but to another unmatched woman. In this way, a man can change another man’s proposal
order, which destroys the strategy-proofness (see Appendix B for more details). To overcome
it, we modify Kirdly’s 1.5-approximation algorithm [11] (or more precisely, the algorithm
M-KNA given in Appendix B) to be robust in the sense that a man’s proposal order is not
affected by other men’s preference lists.

Ties or Incomplete Lists. When only ties are present (SMT) or only incomplete lists are
present (SMI), all the stable matchings of one instance have the same cardinality. The former
is due to the fact that any stable matching is a perfect matching, and the latter is due to
the Rural Hospitals theorem [6, 19, 20]. Hence approximability is not an important issue in
these cases. As for strategy-proofness, since SMT and SMI are generalizations of SM, Roth’s
impossibility theorem holds and no strategy-proof stable mechanism exists. Existence of
one-sided strategy-proofness for SMI is already known as we have mentioned in “Coalition”
part above, and that for SMT follows directly from Theorem 2.

1.4 Related Work

There are some literature studying trade-offs between approximability and strategy-proofness.
Krysta et al. [12] consider to approximate the size of a Pareto optimal matching in the House
Allocation problem, where preference lists may include ties. They give upper and lower
bounds on the approximation ratio of randomized strategy-proof mechanisms for computing
a Pareto optimal matching. Dughmi and Ghosh [3] study the generalized assignment problem
(GAP) and its variants. Their objective is to maximize the sum of the values of the assigned
jobs. They present a strategy-proof O(logn)-approximate mechanism for the GAP, where n
represents the number of jobs.

The following papers discuss strategy-proofness in the stable matching problem with
indifference. Erdil and Ergin [4] consider the Hospitals/Residents problem where only
hospitals’ preference lists may have ties. They consider the algorithm that first breaks ties
according to a tie-breaking rule 7 and then applies the resident-oriented GS algorithm (let us
call this algorithm GS™). They give an instance and a tie-breaking rule 7 such that GS™ does
not produce a resident-optimal stable matching. They also show that seeking for a resident-
optimal stable matching loses strategy-proofness, that is, no deterministic resident-optimal
stable mechanism can be resident-strategy-proof. Abdulkadiroglu et al. [1] give an evidence
to support GS”. They show that for any tie-breaking rule 7, no resident-strategy-proof
mechanism dominates GS™ (with respect to residents).

9:5
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2 Results for MAX SMTI

In this section, we give a proof of Theorem 2. We start with the positive part:

» Lemma 5. MAX SMTI admits both a man-strateqy-proof 2-approzimate-stable mechanism
and a woman-strategy-proof 2-approxrimate-stable mechanism.

Proof. Consider a mechanism S* that is described by the following algorithm. Given a MAX
SMTT instance I, S* first breaks each tie so that persons in a tie are ordered increasingly
in their indices, that is, if ¢; and g; are in the same tie of p’s list, then after the tie break
gi *p ¢; holds if and only if ¢ < j. Let I’ be the resulting instance. Its preference lists
are incomplete but do not include ties; such an instance is called an SMT instance. It then
applies MGS modified for SMI [7] to I’ and obtains a stable matching M for I’. Tt is easy to
see that M is stable for I. Also it is well-known that in MAX SMTI, any stable matching is
a 2-approximate solution [15]. Hence S* is a 2-approximate-stable mechanism.

We then show that S* is a man-strategy-proof mechanism. Suppose not. Then there is a
MAX SMTTI instance I and a man m who has a successful strategy in I. Let J be a MAX
SMTTI instance in which only m’s preference list differs from I, and by using it m obtains a
better outcome. Let M; and M; be the outputs of S* on I and J, respectively. Then m
prefers M; to My, that is, either (i) Mj(m) >, M;(m) with respect to m’s true preference
list in I, or (ii) m is single in M and matched in M;, and M;(m) is acceptable to m in I.
Let I’ and J’, respectively, be the SMI-instances constructed from I and J by breaking ties
in the above mentioned manner. Then M; and M, are, respectively, the results of MGS
applied to I’ and J’. Since I’ is the result of tie-breaking of I and m prefers M; to M; in
I, m prefers M; to My in I’. Note that, due to the tie-breaking rule, the preference lists
of people except for m are same in I’ and J’. This means that when MGS is used in SMI,
m can have a successful strategy in I’ (i.e., to change his list to that of J’), contradicting
man-strategy-proofness of MGS for SMI (page 57 of [7]).

If we exchange the roles of men and women in S*, we obtain a woman-strategy-proof
2-approximate-stable mechanism. |

We then show the negative part. We remark that e is not necessarily a constant.

» Lemma 6. (1) For any positive €, there is no man-strategy-proof (2 — €)-approzimate-stable
mechanism for MAX SMTI, even if ties appear in only women’s preference lists. (2) For any
positive €, there is no woman-strategy-proof (2 — €)-approximate-stable mechanism for MAX
SMTI, even if ties appear in only men’s preference lists.

Proof. (1) Counsider the instance I; given in Fig. 1, where mg’s preference list is empty. It is
straightforward to verify that I; has two stable matchings My = {(m1,w;), (m2,w2)} and
My = {(mq,ws), (ma,ws)}, both of which are of maximum size.

ma: w2 w1 wi: ma
ma: w2 ws wa: (m1 mz)
ms: ws: ma

Figure 1 A MAX SMTI instance I;.

Let S be an arbitrary (2 — €)-approximate-stable mechanism for MAX SMTTI. Since S is a
stable mechanism, it must output either My or My on I;. First suppose that it outputs Mj.
Let I be the instance obtained from I; by deleting w; from m;’s preference list. Then since
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M is still a stable matching for I] and S is a (2 — €)-approximate-stable mechanism, S must
output a stable matching of size 2. But since M5 is now the only stable matching of size 2, S
outputs Ms on I{. Thus m; can obtain a better partner by manipulating his preference list.
On the other hand, suppose that S outputs My on I;. Then let I{’ be the instance obtained
from I by deleting w3 from msy’s preference list. By a similar argument, .S must output M;
on I{ and hence my can obtain a better partner by manipulation. We have shown that, for
any (2 — e)-approximate-stable mechanism S, some man has a successful strategy in I; and
hence S is not a man-strategy-proof mechanism.

(2) We use the instance I given in Fig. 2, which is symmetric to I;. By the same
argument as above, we can show that for any (2 — ¢)-approximate-stable mechanism .S, some
woman has a successful strategy in I and hence S is not a woman-strategy-proof mechanism.

m1 w1 wi: m2 miy
ma: (w1 w2) w2 M2 M3
ms w2 w3
Figure 2 A MAX SMTT instance I>. <

3 Results for MAX SMTI-1TM

Recall that MAX SMTI-1TM is a restriction of MAX SMTI where ties can appear in men’s
preference lists only. Then Corollary 3 is immediate from Lemma 5 and Lemma 6(2).

We then move to man-strategy-proofness and give a proof for Theorem 4. We start with
the negative part:

» Lemma 7. For any positive €, there is no man-strategy-proof (1.5 — €)-approzimate-stable
mechanism for MAX SMTI-1TM.

Proof. The proof goes like that of Lemma 6. Consider the instance I3 in Fig. 3. I3 has
four matchings of size 3, namely, M3 = {(mq,w1), (me, w2), (M3, ws)}, My = {(m1,w1),
(mg,’wz), (mg, w4)}, M5 = {(ml,wl), (mg, ?1)3)7 (m37w4)}, and M6 = {(ml,wg), (mg,
ws), (M3, ws)}. Among them, Ms and Mg are stable (M, is blocked by (mg,ws) and
Ms5 is blocked by (mq,ws)). Hence any (1.5 — €)-approximate-stable mechanism outputs
either M3 or Mg, since a stable matching of size 2 is not a (1.5 — €)-approximate solution.

mi w2 w1 w1 mi
ma: (w2 ws) w2 M2 M
ms3 w3 Wy wa: m2 m3
ma W4q: ms

Figure 3 A MAX SMTI-1TM instance Is.

Consider an arbitrary (1.5 — ¢)-approximate-stable mechanism S for MAX SMTI-1TM,
and suppose that S outputs M3 on I3. Then if m; deletes wy from the list, Mg is the unique
maximum stable matching (of size 3); hence S must output Mg and so m; can obtain a
better partner we. Similarly, if S outputs Mg on I3, mg can force S to output M3 by deleting
wy from the list. In either case, some man has a successful strategy in I3 and hence S is not
a man-strategy-proof mechanism. |

Finally, we give a proof for the positive part, which is the main result of this paper.

9:7
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» Lemma 8. There exists a man-strategy-proof 1.5-approximate-stable mechanism for MAX
SMTI-1TM.

Proof. We give Algorithm 1 and show that it is a man-strategy-proof 1.5-approximate-stable
mechanism by three subsequent lemmas (Lemmas 9-11). Algorithm 1 first translates an
SMTI-1TM instance I to an SMI instance I’ using Algorithm 2, then applies MGS to I’ and
obtains a matching M’, and finally constructs a matching M of I from M’. The new instance
I' contains 2n men a; and b; (1 <i<n,1<j <n)and 2n women s; and ¢; (1 < j < n)
(lines 2 and 3 of Algorithm 2). It is important to note that a man a; corresponds to a man
m; of I, while a man b; and two women s; and ¢; correspond to a woman w; of I. As will
be seen later, b; is definitely matched with s; or ¢; in M’, and the other woman (i.e., either
s;j or t; who is not matched with b;) plays a role of woman w; of I: If she is single in M’,
then w; is single in M. If she is matched with a; in M’, then w; is matched with m; in M.

Algorithm 1 An algorithm for MAX SMTI-1TM.

Input: An instance I for MAX SMTI-1TM.
Output: A matching M for I.
1: Construct an SMI instance I’ from I using Algorithm 2.
2: Apply MGS to I’ and obtain a matching M’.
3: Let M := {(m;,w;) | (a;,s;) € M’V (a;,t;) € M'} and output M.

Algorithm 2 Translating instances.

Input: An instance I for MAX SMTI-1TM.
Output: An instance I’ for SMI.

1: Let X and Y be the sets of men and women of I, respectively.

2: Let X' :={a; | m; € X} U{b; | wj € Y} be the set of men of I'.

3: Let Y/ :={s; |w; € Y}U{t; | w; € Y} be the set of women of I".

4: Each a;’s list is constructed as follows: Consider a tie (wj, wj;, --- wj,) in m;’s list in
I. We assume without loss of generality that j; < jo» < -+ < ji. (If not, just arrange
the order, which does not change the instance.) Replace each tie (w;, wj, --- wj,) by a
strict order of 2k women t;, t;, --- t;. 55, Sj, - Sj.- A woman who is not included in

a tie is considered as a tie of length one.

5: Each b;’s list is defined as “b; : 5; t;".

6: For each j, let P(w,) be the list of w; in I, and Q(w;) be the list obtained from P(w;,)
by replacing each man m; by a;. Then s; and ¢;’s lists are defined as follows:

We briefly give a high-level idea behind Algorithm 1. Consider an application of MGS
to I’ at line 2. Since men’s proposal order does not affect the outcome, it is convenient to
first let b; propose to his first choice woman s; for each j. At this moment, there are n pairs
(bj,s) (1 <j <n). Weregard this as an initial state, and as long as (b;, s;) is a pair, ¢; acts
as w;. At some point, if s; receives a proposal from some man a; for the first time, s; rejects
b; and b; then proposes to his second choice woman t;, which is accepted. We regard this
as a change of the state, and the role of w; is taken over to s;. Once this happens, (b;,t;)
remains a pair till the end of the algorithm. Recall that at line 4 of Algorithm 2, each man
makes two copies of each tie. This is regarded as allowing a man to propose to woman w;
twice, first to ¢; and second to s;.
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With these observations in mind, we can see that MGS for I’ simulates the following
GS-type algorithm for the original MAX SMTT instance I.

Each free man proposes to a woman from the top of the list. When he encounters a tie
T, he proposes to the women in T in a predetermined order (i.e., smaller index first). If
he is rejected by all of them, he starts the second sequence of proposals to the women in
T in the same order. If he is rejected by all the women in T" again, then he proceeds to
the next tie.

Each woman’s acceptance/rejection policy is as follows: If two proposals are first proposals,
she respects her preference list. Similarly, if both are second proposals, she respects her
preference list. If one is a first proposal and the other is a second proposal, she always
chooses the second proposal (regardless of her list). Hence, once a woman receives a
second proposal of some man, she never accepts a first proposal thereafter.

This algorithm achieves an approximation ratio of 1.5 for MAX SMTI, although we do
not prove it here. A beneficial point of this algorithm is that a man’s proposal order is
predetermined and is not affected by other persons’ states. As we explained in Sec. 1.3,
absence of this property prevented existing algorithms from being man-strategy-proof.

The reason why we do not use this algorithm directly but translate it to an algorithm
using MGS for SMI is to make the proof of man-strategy-proofness simpler; this translation
allows us to attribute man-strategy-proofness of Algorithm 1 to that of MGS for SMI, as we
did in the proof of Lemma 5.

Now we start formal proofs for the correctness.

» Lemma 9. Algorithm 1 always outputs a stable matching.

Proof. Let M be the output of Algorithm 1 and M’ be the matching obtained at line 2 of
Algorithm 1. We first show that M is a matching. Since M’ is a matching, a; appears at
most once in M’, so m; appears at most once in M. Observe that b; is matched in M’, as
otherwise (bj,t;) blocks M’, contradicting the stability of M’ in I’. Hence at most one of s;

and t; can be matched with a; for some ¢, which implies that w; appears at most once in M.

Thus M is a matching.

We then show the stability of M. Since M’ is the output of MGS, it is stable in I’. Now
suppose that M is unstable in I and there is a blocking pair (m;,w;) for M. There are
four cases:

Case (i): both m; and w; are single. Since m; is single in M, line 3 of Algorithm 1 implies
that a; is single in M’. Since wj is single in M, s; is not matched in M’ with anyone in
Q(wj), i.e., s; is single or matched with b;. Note that (a;, s;) is a mutually acceptable
pair because (m;,w;) is a blocking pair, and a; =, b; in I’ by construction. Thus (a;, s;)
blocks M’, a contradiction.

Case (ii): w; >m, M(m;) and w; is single. Let M (m;) = wy. Then, by construction of
M, M’(a;) is either si or ty. By construction of I’, Wj =m, Wi implies both s; >4, sk
and s; >4, tg, and in either case we have that s; >4, M’(a;) in I’. Since wj is single

in M, by the same argument as Case (i), s; is either single or matched with b; in M.

Hence (a;, s;) blocks M.

Case (iii): m; is single and m; >,,; M (w;). Since m; is single in M, a; is single in M’
by the same argument as Case (i). Let M(w;) = mg. Then, by construction of M, either
s; or t; is matched with a, and the other is matched with b; since b; can never be
single as we have seen in an earlier stage of this proof. In particular, M’(s;) is either
ay or bj. Note that m; =, my in P(w;) implies a; >, ax in Q(w;), so in either case
a; =s; M'(s;) in I' due to the construction of s;’s list. Therefore (a;, s;) blocks M.
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Case (iv): w; >y, M(m;) and my; >, M(wj). By the same argument as Case (ii), we
have that s; >4, M'(a;) in I’. By the same argument as Case (iii), we have that
a; =s; M'(s;) in I'. Hence (a4, s;) blocks M’. <

» Lemma 10. Algorithm 1 always outputs a 1.5-approximate solution.

Proof. Let I be an input, M,,; be a maximum stable matching for I, and M be the output
of Algorithm 1. We show that % < 1.5. Let G = (X UY, E) be a bipartite (multi-)graph
with vertex bipartition X and Y, where X corresponds to men and Y corresponds to women
of I. The edge set E is a union of M and M,,, that is, (m;, w;) € E if and only if (m;, w,)
is a pair in M or Myp. If (m;,w;) is a pair in both M and M,,;, then E contains two edges
(m;,w;), which constitute a “cycle” of length two. An edge in E corresponding to M (resp.
M,p:) is called an M-edge (resp. Mopi-edge). Since the degree of each vertex of G is at most
2, each connected component of GG is an isolated vertex, a cycle, or a path.

It is easy to see that G' does not contain a single M,,-edge as a connected component,
since if such an edge (m;, w;) exists, then (m;, w;) is a blocking pair for M, contradicting the
stability of M. In the following, we show that G does not contain, as a connected component,
a path of length three m; — w; — my — w, such that (m;, w;) and (ms, we) are M,p-edges
and (my,w;) is an M-edge. If this is true, then for any connected component C of G, the
number of M-edges in C is at least two-thirds of the number of M,,-edges in C', implying
Bl <15,

Suppose that such a path exists. Note that m; and wy are single in M. If m; =w; Mk,
then (m;,w;) blocks M. Since women’s preference lists do not contain ties, we have that
My =w, Mi. If wg =m, wj, then (my,we) blocks M. If wj >, wg, then (my,w;) blocks
Mope. Hence w; and wy are tied in my’s list. Then by construction of I’, (i) t; =4, ;.
(Hereafter, referring to Fig. 4 would be helpful. Here, the order of ¢t; and t; in a’s list is
uncertain, i.e., it may be the opposite, but this order is not important in the rest of the
proof.) Since wy is single in M, either sy or t, is single in M’. If s, is single in M’, then
(be, s¢) blocks M’, a contradiction. Hence (ii) ¢, is single in M’. Since M (my) = wj, either
M'(ag) = sj or M'(ar) = t; holds. In the former case, (i) and (ii) above imply that (ax,t¢)
blocks M’, so assume the latter, i.e., M'(ay) = t;. Recall from the proof of Lemma 9 that
either s; or t; is matched with b; in M’, so M’(s;) = b;. Since (m;, w;) is an acceptable pair
in I, we have that a; >, b; due to the construction of s;’s list. Since m; is single in M, a;

is single in M’. Hence (a;, s;) blocks M’, a contradiction. <
@it e 85 e sjt o oai e by
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Figure 4 A part of the preference lists of I'.

» Lemma 11. Algorithm 1 is a man-strategy-proof mechanism.

Proof. The proof is similar to that of Lemma 5. Suppose that Algorithm 1 is not a man-
strategy-proof mechanism. Then there are MAX SMTI-1TM instances I and J and a man
m; having the following properties: I and J differ in only m;’s preference list, and m; prefers
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My to My, where M and M ; are the outputs of Algorithm 1 for I and J, respectively. Then
either (i) My(m;) >m, Mr(m;) in I, or (ii) m; is single in My and M ;(m;) is acceptable to
m; in 1.

Let I’ and J' be the SMI-instances constructed by Algorithm 2. Since I and J differ
in only m;’s preference list, I’ and J’ differ in only a;’s preference list. Let M and M,
respectively, be the outputs of MGS applied to I’ and J'. In case of (i), we have that
My (a;) »=a; My (a;) in I’, due to line 4 of Algorithm 2 and line 3 of Algorithm 1. In case
of (ii), a; is single in M because m; is single in M7, and M (a;) is acceptable to a; in I’
because M ;(m;) is acceptable to m; in I. This implies that a; has a successful strategy in
I, contradicting man-strategy-proofness of MGS for SMI [7]. <

By Lemmas 9, 10, and 11, we can conclude that Algorithm 1 is a man-strategy-proof
1.5-approximate-stable mechanism for MAX SMTI-1TM. <
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A  The Man-Oriented Gale-Shapley Algorithm

During the course of the algorithm, each person takes one of two states “free” and “engaged”.
At the beginning, everyone is free and the matching M is initialized to the empty set. At
one step of the algorithm, an arbitrary free man m proposes to the top woman w in his
current list. If w is free, then m and w are provisionally matched and (m,w) is added to M.
If w is engaged and matched with m’, then w compares m and m/’, takes the preferred one,
and rejects the other. The rejected man deletes w from the list and becomes (or remains)
free. When there is no free man, the matching M is output. The pseudo-code is given in
Algorithm 3.

B Non-Strategy-Proofness of Existing 1.5-approximation Algorithms
for MAX SMTI-1TM

Kiraly [11] presented a 1.5-approximation algorithm for general MAX SMTTI (i.e., ties can
appear on both sides), which is named “New Algorithm”. We modify it in the following
two respects.
1. Men’s proposals do not get into the second round.
2. When there is arbitrarity, the person with the smallest index is prioritized.
Ideas behind these modifications are as follows: For item 1, since there is no ties in women'’s
preference lists, executing the second round does not change the result. The role of item 2
is to make the algorithm deterministic, so that the output is a function of an input (as we
did in the proof of Lemma 5). For completeness, we give a pseudo-code of the algorithm,
denoted M-KNA to stand for “Modified Kirdly’s New Algorithm”, in Algorithm 4.

Each person takes one of three states, “free”, “engaged”, and “semi-engaged”. Initially,
all the persons are free. At lines 5, 10, and 14, man m proposes to woman w. Basically, the
procedure is exactly the same as that of MGS. If w is free, then we let M := M U {(m,w)}
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Algorithm 3 The man-oriented Gale-Shapley algorithm.

: Let M := () and all people be free.

: while there is a free man whose preference list is non-empty do
Let m be any free man.
Let w be the woman at the top of m’s current list.

Let M := M U{(m,w)}, and m and w be engaged.
end if
if w is engaged then

1
2
3
4
5. if w is free then
6
7
8
9 Let m’ be w’s partner.

10: if w prefers m’ to m then

11: Delete w from m’s list.

12: else

13: Let M := M U{(m,w)}\ {(m',w)}.
14: Let m’ be free and m be engaged.
15: Delete w from m’’s list.

16: end if

17 end if

18: end while

19: Output M.

and both m and w be engaged (we say w accepts m). If w is engaged to m’ (i.e., (m/,w) € M)
and if m >, m/, then we let M := M U {(m,w)} \ {(m/,w)}, m be engaged, and m’ be
free. We also delete w from m/’s preference list (we say w accepts m and rejects m'). If w is

engaged to m’ and m’ >, m, then we delete w from m’s preference list (we say w rejects m).

There is an exception in the acceptance/rejection rule of a woman, when she receives the
first and second proposals. This is actually the key for guaranteeing 1.5-approximation, but
this rule is not used in the subsequent counter-example so we omit it here. Readers may
consult to the original paper [11] for the full description of the algorithm.

It is already proved that the (original) Kirdly’s algorithm always outputs a stable matching
which is a 1.5-approximate solution, and it is not hard to see that the same results hold for
the above M-KNA for MAX SMTI-1TM. However, as the example in Figures 5 and 6 shows,
it is not a man-strategy-proof mechanism.

ma w2 w1 w1 ma mg M
ma (w1 ws) w2: M4 M

ms w3 ws ma ms

ma w1 w2 w4

mi w1 w2 w1 M2 mg M
ma: (w1 ws) w2 M4 M1

m3 w3 w3 mz M3

ma w1 w2 w4

Figure 6 A counter-example (manipulated by m1).
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Algorithm 4 Modified Kirdly’s New Algorithm (M-KNA) [11].

1: Let M := () and all people be free.

2: while there is a free man whose preference list is non-empty do

3:  Among those men, let m be the one with the smallest index.

4:  if the top of m’s current preference list consists of only one woman w then
5: Let m propose to w.

6: end if

7 if the top of m’s current preference list is a tie then

8: if all the women in the tie are engaged then

9: Among those women, let w be the one with the smallest index.

10: Let m propose to w.

11: end if

12: if there is a free woman in the tie then

13: Among those free women, let w be the one with the smallest index.
14: Let m propose to w.

15: end if

16: end if

17: end while

18: Output M.

If M-KNA is applied to the true preference lists in Figure 5, the obtained matching is
{(ma,w1), (ms3,ws), (M4, w2)}. Suppose that m; flips the order of w; and wy (Figure 6).
This time, M-KNA outputs {(m,ws), (ma,w3), (mg,w1)} and m; successfully obtains a
partner ws. By proposing to w; first, mq is able to let mqy propose to ws. This allows my4 to
obtain wy, which prevents my from proposing to ws. This eventually makes it possible for
m1 to obtain ws.

We finally remark that the same example shows that the other two 1.5-approximation
algorithms [16, 17] (with the tie-breaking rule 2 above) are not man-strategy-proof mechanisms
either.
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