Title: Medicinal uses, thin layer chromatography and high-performance liquid

chromatography profiles of plant species from Abomey-Calavi and Dantokpa

Market in the Republic of Benin

Authors: Godfried Dougnon and Michiho Ito*

Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyoto

University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan

* Corresponding author:

E-mail: michihoi@pharm.kyoto-u.ac.jp

Tel: +81-75-753-4506

1

Abstract

This study provides a list of popular medicinal plants found in southern Benin (West

Africa) with their mode of use, diseases treated, and thin layer and high-performance

liquid chromatography profiles. The list includes 10 most widely used plant species from

Dantokpa Market (biggest market located in Cotonou) and Abomey-Calavi in the

Republic of Benin. Species were identified by the Laboratory of Botany and Applied

Ecology, University of Abomey-Calavi. Voucher specimens were deposited in the

herbarium of the Experimental Station for Medicinal Plants, Graduate School of

Pharmaceutical Sciences, Kyoto University, Japan, and in the National Herbarium of

Benin, University of Abomey-Calavi. The list was as follows: Azadirachta indica

(Meliaceae). Caesalpinia bonduc (Caesalpiniaceae), Catharanthus roseus

(Apocynaceae), Garcinia kola (Clusiaceae), Khaya senegalensis (Meliaceae), Monodora

myristica (Annonaceae), Moringa oleifera (Moringaceae), Talinum fruticosum

(Talinaceae), Tridax procumbens (Asteraceae), and Xylopia aethiopica (Annonaceae).

Keywords: Dantokpa Market, Abomey-Calavi, traditional healer, market herbalist, TLC,

HPLC.

2

Introduction

Africa is rich in wild plant species, many of which are used for medicinal purposes. In towns and rural villages in the Republic of Benin, traditional healers and market herbalists (called "Amawato" in the local language Fon) use knowledge passed on from generation to generation. According to a previous study, of the 3,000 plant species inventoried in the forests of Benin, 172 are used locally as food, while 814 are used medicinally [1]. Field surveys suggest that people who are illiterate and those living in the most remote regions use medicinal plants for primary care rather than going to a hospital [2]. There are five main reasons for this: 1) a lack of adequate health care systems or access to hospitals; 2) claims that traditional healers can cure diseases where conventional medicine has failed; 3) the greater number of traditional healers (7,500 per 10 million people) compared with medical doctors (600 per 10 million people); 4) easier access since medicinal plants are generally cultivated in home gardens and also grow wild in abundance; and 5) treatment with traditional medicine is very cheap compared with conventional medicine. Studies carried out in Abomey-Calavi and Cotonou in southern Benin demonstrated that recipes for the treatment of a disease generally vary from a combination of 2-8 medicinal plants at a cost of 300-1,000 West African CFA Franc (XOF) (60-200 Japanese yen) among market herbalists to 2,000-5,000 XOF (400-1,000 Japanese yen) among traditional healers, and these plants are often used in decoctions and infusions [2]. Due to the abundance and multiple uses of these natural resources, there is still a lot of work to do in order to report scientific data on their pharmacological effects, phytochemical composition and medicinal uses in diverse regions. We previously conducted a survey in central Benin with 174 traditional healers and 27 market herbalists and collected 410 prescriptions including more than 160 species of medicinal plant used for hypertension [3]. In this paper, the medicinal uses, diseases treated, reported pharmacological properties, thin layer chromatography (TLC) and high-performance liquid chromatography (HPLC) profiles of 10 most widely used medicinal plants in Dantokpa Market and Abomey-Calavi (Republic of Benin) are reported. Dantokpa Market, also known as "*Tokpa*," is the biggest open-air market in West Africa and is located in Cotonou, southern Benin.

Materials and Methods

Herbal material

In this study, in order to collect valuable information about the medicinal plants, 17 informants were randomly selected using purposive and snowball sampling methods [4]. Selection was based first on consultations with the president of the Association of Traditional Healers of Benin, who suggested individuals with the greatest knowledge of herbal medicine in the selected regions, and second on recommendations from Julien Djego, Professor of Botany at the School of Pharmacy, Faculty of Health Sciences, University of Abomey-Calavi. Informants were asked about the most widely used and readily available plants, their local names, uses, and diseases treated. Interviews were conducted either in Dantokpa Market or at the homes of the informants in March 2018 and a sample of each plant was bought or collected. The following plants were bought in Dantokpa Market: leaves and seeds of *Caesalpinia bonduc*, seeds of *Garcinia kola*, bark of *Khaya senegalensis*, seeds of *Monodora myristica* and fruit of *Xylopia aethiopica*. 5 plant species were collected in Abomey-Calavi: leaves and seeds of *Azadirachta indica*, leaves and roots of *Catharanthus roseus*, leaves of *Moringa oleifera*, leaves of *Talinum fruticosum* and leaves of *Tridax procumbens*. Samples were dried at ambient temperature

and identified by the Laboratory of Botany and Applied Ecology, University of Abomey-Calavi. Voucher specimens of each plant species were deposited in the herbarium of the Experimental Station for Medicinal Plants, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan, and in the National Herbarium of Benin, University of Abomey-Calavi. Registration numbers for each plant species are listed in Table 1.

Preparation of extracts

Air-dried samples were ground into powder using an electric blender. 1 g powder of each sample was extracted with 10 mL 95% ethanol for 72 h under constant agitation. The obtained extracts were filtered and concentrated using a rotary evaporator. TLC and HPLC analysis were carried out as per the European Pharmacopoeia, with the purpose of acquiring chromatographic profiles of the samples [5].

Thin layer chromatography

Each extract was loaded onto 4×7 cm pre-coated silica gel plates (TLC grade, Merck, Darmstadt, Germany) using a capillary tube, and hexane/ethyl acetate (3:1) was used as the mobile phase system. The chromatograms were observed at UV 365 nm, UV 254 nm and after staining with p-anisaldehyde reagent, and Rf values were calculated.

High-performance liquid chromatography

All chemical reagents and solvents were purchased from Nacalai Tesque Inc. (Kyoto, Japan), and were of HPLC grade or otherwise the highest grade available. Analyses were performed using an HPLC system (L-2130 pump, L-2300 column oven, L-2400 UV detector; Hitachi Ltd., Tokyo, Japan) and a 150×4.6 mm Cosmosil Cholester column (Nacalai Tesque Inc.). Ethanolic extracts were dried over anhydrous sulfate sodium and

filtered through a 0.45-μm filter (Cosmonice Filter W, Nakalai Tesque Inc). A 10-μL sample of each filtered extract was injected onto the column, which was maintained at 25°C. The mobile phase was composed of water and acetonitrile, and was delivered at a flow rate of 1 mL/min. Total run time was 30 min; detection was carried out at 260 nm. Following recommendations of the European Pharmacopoeia [5], the acetonitrile:water ratio was as follows: 25:75 (*A. indica* leaves, *K. senegalensis* bark), 60:40 (*A. indica* seeds, *C. roseus* leaves and roots, *X. aethiopica* fruits), 20:80 (*M. oleifera* leaves, *M. myristica* seeds), 40:60 (*T. fruticosum* leaves, *C. bonduc* leaves, *T. procumbens* leaves, *G. kola* seeds), and 90:10 (*C. bonduc* seeds).

Results and Discussion

Data obtained in the local language were compared and cross-referenced with existing flora keys [6] to confirm authenticity. Plant species are listed in Table 1 in alphabetical order of their scientific names, with family and voucher numbers, local names, collection/purchase location, reported pharmacological effects, parts used, preparation methods, administration route, and diseases/symptoms treated in the Republic of Benin. Fig. 1 and 2 show respectively the TLC and HPLC chromatograms of the described plant species. A map representing the study area and pictures of the plant species are available as online supplementary data alongside the TLC chromatograms observed under UV 365 nm and 254 nm.

Azadirachta indica (Fig. 1 and 2; 1L and 1S)

In our TLC chromatograms, similar Rf values were found for seeds and leaves of *A. indica* at 0.61 and 0.42. Azadirachtin, nimbin, quercetin and salannin are the most reported compounds of *A. indica* [7] and using hexane/ethyl acetate (1:1) as mobile phase,

nimbin and azadirachtin were previously identified with high Rf values [8]. Thus, the different Rf values obtained in the present study could correspond to azadirachtin, nimbin, quercetin or salannin. The HPLC chromatograms showed a variety of peaks; however, further experiments are now needed to confirm identify of these components.

Caesalpinia bonduc (Fig. 1 and 2; 2L and 2S)

In our TLC chromatograms, seeds and leaves of *C. bonduc* revealed similar spots at Rf values of 0.84 and 0.5. The most commonly reported compounds of *C. bonduc* are bonducellin and caesalpin [9]. Our HPLC chromatograms showed few peaks whose identity need to be confirmed by further advanced phytochemical analysis and comparison with reference standards. Compounds with similar peaks and various concentrations have been previously reported in samples of the genus *Caesalpinia* [10].

Catharanthus roseus (Fig. 1 and 2; 3L and 3R)

At Rf values of 0.44 and 0.84, same spots were revealed for roots and leaves of *C. roseus*. However, fewer spots and different Rf values were observed compared with a previous study [11], possibly due to variability in the plant collection area, plant part studied, extraction method, or mobile phase system used for TLC. Few peaks were observed in our HPLC chromatograms. Vincristine, serpentine, and vinblastine have previously been identified in *C. roseus* [12], suggesting that the peaks and spots observed in this study could correspond to either of these compounds.

Garcinia kola (Fig. 1 and 2; 4)

Rf values of 0.87 and 0.88 were previously obtained by Seanego et al. [13] using a chloroform: ethyl acetate: formic acid (10:8:2) solvent system. In the present study, we obtained only one spot at 0.65 using hexane/ethyl acetate (3:1) solvent system. This difference can be explained by variation in sample collection area, solvent system used,

or method of preparation of the samples. Our HPLC chromatogram of *G. kola* revealed two main peaks at 4.30 and 5.50 min. Phytochemical compounds such as bioflavonoids, xanthones, and benzophenones have been isolated from the seeds of *G. kola* [14], suggesting that the spots and peaks in this study could correspond to any of these chemicals.

Khaya senegalensis (Fig. 1 and 2; 5)

TLC results in this study showed one to two spots from the bark of K. senegalensis. Previous phytochemical analysis of K. senegalensis reported the presence of phenols, tannins, saponins, and alkaloids using various solvent extracts [15]. Limonoids such as khayanolide A, 1α , 3α , 7α -trideacetylkhivorin, and khayanone were previously identified from the bark of K. senegalensis [16]. Our HPLC chromatograms showed various peaks with different concentrations, and therefore, additional chromatographic techniques are now needed to confirm the identity of these components.

Monodora myristica (Fig. 1 and 2; 6)

Our TLC plates revealed several spots for the seeds of *M. myristica* using hexane/ethyl acetate (3:1). HPLC analysis showed different peaks, which could correspond to flavonoids, tannins, or glycosides as previously reported [17].

Moringa oleifera (Fig. 1 and 2; 7)

Our TLC results revealed several spots using hexane/ethyl acetate (3:1) with Rf values from 0.4 to 0.83. Using a different solvent system, Bueno et al. [18] obtained two spots from methanolic extracts of leaves of *M. oleifera* from the Philippines. This plant reportedly contains flavonoids and phenolic compounds such as quercetin and kaempferol, and negligible amount of alkaloids [18, 19]. The different peaks obtained in

the HPLC chromatograms give an indication of their polarity, suggesting the presence of polar and non-polar compounds.

Talinum fruticosum (Fig. 1 and 2; 8)

Very little attention has been given to the phytochemical screening of this plant. It has been mainly reported phenolic compounds such as luteoline in the leaves of *T. fruticosum* [20]. Our TLC chromatograms showed multiple spots with Rf values from 0.43 to 0.84. Our HPLC system showed few peaks; thus, additional chromatographic techniques are now needed to identify the different phytochemicals from our sample.

Tridax procumbens (Fig. 1 and 2; 9)

Our TLC results showed 3 spots with Rf values from 0.45 to 0.82 for *T. procumbens* leaves suggesting the presence of more and less polar components. Using a different solvent system, Nisha et al. [21] have reported few spots for the leaves of *T. procumbens*. Our HPLC chromatogram showed a few peaks whose identity need to be confirmed by further advanced chromatographic techniques.

Xylopia aethiopica (Fig. 1 and 2; 10)

Our TLC chromatogram showed the presence of more or less polar compounds. The fruit of *X. aethiopica* has been reported to contain kaurene-type diterpenoid acids such as kaurenoic and xylopic acid [22]. These polar compounds may correspond to the lowest Rf values obtained in our TLC plates. Different peaks were observed with the main one at 2.5 min in our HPLC chromatogram; therefore, further analyses are now needed to identify the different compounds.

In the present study, the leaves accounted for half of our samples and generally showed more spots on TLC plates and more peaks on HPLC chromatograms than the seeds or roots. Buhian et al. [23] presented the chromatographic fingerprints of leaves and stems

of Muntingia calabura, and reported that the leaves showed more spots compared to the

stems. The fact that the leaves are rich in various metabolites could explain why this part

of plants is preferentially used in traditional medicine, as reported previously [2, 3, 24].

To confirm the identity and isolate the various phytochemicals obtained from our plant

extracts, comparative TLC experiments and additional HPLC and nuclear magnetic

resonance (NMR) analyses using reference standards will be conducted in a separate

study. Multiple compounds exist throughout plants, and TLC and HPLC profiling is a

good first step toward determining their chemical constituents. In this study, medicinal

uses, TLC and HPLC profiling data of selected plant species from southern Benin were

presented for the first time.

Conclusions

This paper focused on the medicinal uses and characterization of 10 most widely used

medicinal plants from Dantokpa Market and Abomey-Calavi in the Republic of Benin.

However, numerous resources exist in other markets and regions, and should also be

examined in future studies. The TLC and HPLC data of the described plant species

demonstrate the presence of a large range of secondary metabolites. Moreover, the

various uses of these medicinal plants indicate the abundance of knowledge among

traditional healers and market herbalists. This is a preliminary study and will be followed

by more detailed analyses of the described species, with evaluation of their

pharmacological effects.

Funding: None.

Conflict of Interest: The authors declare that they have no conflict of interest.

10

References

- Codjia JTC, Assogbadjo AE, Ekué MRM (2003) Diversity and local valorization of Benin's food forest plant resources. Cah Agric 12:321–331
- Koudokpon H, Dougnon TV, Bankolé HS, et al (2017) Ethnobotanical survey of plants used in the treatment of infections in southern Benin. Health Sci Diseases 18:55–71
- Dougnon GT (2013) Ethnobotanical and ethnopharmacological studies of plants used in the traditional treatment of high blood pressure in central Benin. Thesis for the Grade of Doctor in Pharmacy, University of Abomey-Calavi, Faculty of Health Sciences. DOI: 10.13140/RG.2.2.14520.19202/1
- Tongco MDC (2007) Purposive sampling as a tool for informant selection.
 Ethnobotany Research and Applications 5:147–158
- 5. European Directorate for the Quality of Medicines and Healthcare (2017) European Pharmacopoeia 9.0. Council of Europe, Strasbourg Codex, France (http://online6.edqm.eu/ep900/)
- de Souza S (1988) Flora of Benin: Names of plants in Benin national languages.
 National University of Benin, Republic of Benin
- 7. Alzohairy MA (2016) Therapeutics role of *Azadirachta indica* (neem) and their active constituents in diseases prevention and treatment. J Evid Based Complementary Altern Med 2016:1–11. https://doi.org/10.1155/2016/7382506

- 8. Vani MM, Rao PSS, Varma GN, et al (2016) Identification and chemical characterization of *Azadirachta indica* leaf extracts through thin layer chromatography. Int J Res Eng Technol 5:117–122
- Schmelzer GH, Gurib-Fakim A (2008) Plant Resources of Tropical Africa (PROTA)
 Volume 11. Medicinal Plants 1. PROTA Foundation, Wageningen, Netherlands
- Parveen A, Zahra Z, Farooqi MQ, et al (2017) Phytochemical screening and content determination of different species of genus *Caesalpinia* belonging to different origin with antidiabetic activity. Pharmacogn J 9:743–749. https://doi.org/10.5530/pj.2017.6.117
- Kabesh K, Senthilkumar P, Ragunathan R, Kumar RR (2015) Phytochemical analysis of *Catharanthus roseus* plant extract and its antimicrobial activity. Int J Pure Appl Biosci 3:162–72
- Tikhomiroff C, Jolicoeur M (2002) Screening of *Catharanthus roseus* secondary metabolites by high-performance liquid chromatography. J Chromatogr 955:87–93. https://doi.org/10.1016/S0021-9673(02)00204-2
- Seanego CT, Ndip RN (2012) Identification and antibacterial evaluation of bioactive compounds from *Garcinia kola* (Heckel) seeds. Molecules 17:6569–6584. https://doi.org/10.3390/molecules17066569
- 14. Tshibangu PT, Kapepula PM, Kapinga MJK, et al (2016) Fingerprinting and validation of a LC-DAD method for the analysis of biflavanones in *Garcinia kola-*based antimalarial improved traditional medicines. J Pharm Biomed Anal 128:382–390. https://doi.org/10.1016/j.jpba.2016.04.042

- 15. Sani AA, Alemika TE, Zakama S, et al (2013) Phytochemical screening and thin layer chromatography of the leaves of *Khaya senegalensis* (dry zone mahogany) Meliaceae. J Pham Bioresour 9:20–23. https://doi.org/10.4314/jpb.v9i1.4
- 16. Zhang H (2008) Characterization of bioactive phytochemicals from the stem bark of African Mahogany *Khaya senegalensis* (Meliaceae). Dissertation for the Grade of Doctor of Philosophy in Food Technology, Clemson University, South Carolina, USA (https://tigerprints.clemson.edu/all_dissertations/305)
- 17. Moukette BM, Pieme CA, Njimou JR, et al (2015) In vitro antioxidant properties, free radicals scavenging activities of extracts and polyphenol composition of a non-timber forest product used as spice: *Monodora myristica*. Biol Res 48:1–17. https://doi.org/10.1186/s40659-015-0003-1
- 18. Bueno PR, Alvarez MR, Cruz RO, et al (2016) Thin layer chromatography (TLC) and high-performance liquid chromatography (HPLC) profiling and phytochemical analysis of *Euphorbia hirta*, *Gliricidia sepium* and *Moringa oleifera* methanol extracts. Der Pharma Chem 8:456–461
- Leone A, Fiorillo G, Criscuoli F, et al (2015) Nutritional characterization and phenolic profiling of *Moringa oleifera* leaves grown in Chad, Sahrawi refugee camps, and Haiti. Int J Mol Sci 16:18923–18937. https://doi.org/10.3390/ijms160818923
- Kiranmayee BR, Sirisha GVD, Rachel VK, Jha A (2016) Structural characterization
 and evaluation of antioxidant activity of isolated phenolic compounds from *Talinum*fruticosum leaves. Int J Pharm Sci Rev Res 38:75–82

- 21. Nisha MH (2010) Phytochemical and biological investigation of *Tridax procumbens* leaves. Thesis for degree of B. Pham, East West University, Aftabnagar, Dhaka of Bangledesh (http://dspace.ewubd.edu/handle/123456789/1691)
- 22. Ekong DEU, Ogan AU (1968) Chemistry of the constituents of *Xylopia aethiopica*. The structure of xylopic acid, a new diterpene acid. J Chem Soc Chem 69:311–312. https://doi.org/10.1039/j39680000311
- 23. Buhian WPC, Rubio RO, Martin-Puzon JJ (2017) Chromatographic fingerprinting and free-radical scavenging activity of ethanol extracts of *Muntingia calabura* L. leaves and stems. Asian Pac J Trop Biomed 7:139–143. https://doi.org/10.1016/j.apjtb.2016.11.016
- 24. Fah L, Klotoé JR, Dougnon V, et al (2013) Ethnobotanical study of plants used in the treatment of diabetes in pregnant women in Cotonou and Abomey - Calavi (Benin). J Anim Plant Sci 18:2647–2658
- 25. Adepoju AO, Ogunkunle ATJ, Femi-Adepoju AG (2014) Antifungal activities of seed oil of neem (*Azadirachta indica* A. Juss). Glob J Biol Agr Heath Sci 3:106–109
- 26. Ospina Salazar DI, Hoyos Sánchez RA, Orozco Sánchez F, et al (2015) Antifungal activity of neem (*Azadirachta indica*: Meliaceae) extracts against dermatophytes. Acta Biol Colomb 20:201–207. https://doi.org/10.15446/abc.v20n3.45225
- 27. Bharat P, Sagar R, Sulav R, Ankit P (2015) Investigations of antioxidant and antibacterial activity of leaf extracts of *Azadirachta indica*. Afr J Biotechnol 14:3159–3163. https://doi.org/10.5897/AJB2015.14811

- 28. Farahna M, Bedri S, Khalid S, et al (2010) Anti-plasmodial effects of *Azadirachta indica* in experimental cerebral malaria: Apoptosis of cerebellar Purkinje cells of mice as a marker. North Am J Med Sci 518–525. https://doi.org/10.4297/najms.2010.2518
- 29. Noorani AA, Gupta K, Bhadada K, Kale MK (2011) Protective effect of methanolic leaf extract of *Caesalpinia bonduc* (L.) on gentamicin-induced hepatotoxicity and nephrotoxicity in rats. Iran J Pharm Ther 10:21–25
- 30. Gupta M, Muzumder U, Kumar R (2004) Antitumor activity and antioxidant status of *Caesalpinia bonducella* against ehrlich ascites carcinoma in swiss albino mice. J Pharmacol Sci 94:177–184
- 31. Kumar RS, Kumar KA, Murthy NV (2010) Hepatoprotective and antioxidant effects of *Caesalpinia bonducella* on carbon tetrachloride-induced liver injury in rats. Int J Plant Sci 1:062–068
- 32. Tiong S, Looi C, Hazni H, et al (2013) Antidiabetic and antioxidant properties of alkaloids from *Catharanthus roseus* (L.) G. Don. Molecules 18:9770–9784. https://doi.org/10.3390/molecules18089770
- 33. Nayak BS, Pinto PLM (2006) *Catharanthus roseus* flower extract has woundhealing activity in Sprague Dawley rats. BMC Complement Altern Med 6:1–6
- 34. Akoachere TK, Ndip RN, Chenwi EB, et al (2002) Antibacterial effect of *Zingiber* officinale and *Garcinia kola* on respiratory tract pathogens. East Afr Med J 79:588–592

- 35. Paul CA, Fabian OC, Okechukwu PCU (2014) Antimicrobial effects of bitter kola (*Garcinia kola*) nut on *Staphylococcus aureus*, *Escherichia coli* and *Candida albicans*. IOSR J Dent Med Sci 13:29–32. https://doi.org/10.9790/0853-13452932
- 36. Zhang H, Wang X, Chen F, et al (2007) Anticancer activity of limonoid from *Khaya* senegalensis. Phytother Res 21:731–734
- 37. Tatsadjieu LN, Essia-Ngang JJ, Ngassoum MB, Etoa FX (2003) Antibacterial and antifungal activity of *Xylopia aethiopica*, *Monodora myristica*, *Zanthoxylum xanthoxyloïdes* and *Zanthoxylum leprieurii* from Cameroon. Fitoterapia 74:469–472. https://doi.org/10.1016/S0367-326X(03)00067-4
- 38. Gupta R, Mathur M, Bajaj VK, et al (2012) Evaluation of antidiabetic and antioxidant activity of *Moringa oleifera* in experimental diabetes. J Diabetes 4:164–171
- 39. Elgamily H, Moussa A, Elboraey A, et al (2016) Microbiological assessment of *Moringa oleifera* extracts and its incorporation in novel dental remedies against some oral pathogens. Open Access Maced J Med Sci 4:585–590
- 40. Toppo R, Roy BK, Gora RH, et al (2015) Hepatoprotective activity of *Moringa* oleifera against cadmium toxicity in rats. Vet World 8:537–540
- 41. Nikkon F, Saud ZA, Rahman MH, Haque ME (2003) In vitro antimicrobial activity of the compound isolated from chloroform extract of *Moringa oleifera* Lam. Pak J Biol Sci 6:1888–1890

- 42. Liao DY, Chai YC, Wang SH, et al (2015) Antioxidant activities and contents of flavonoids and phenolic acids of *Talinum triangulare* extracts and their immunomodulatory effects. J Food Drug Anal 23:294–302. https://doi.org/10.1016/j.jfda.2014.07.010
- 43. Olorunnisola OS, Adetutu A, Afolayan AJ, Owoade AO (2016) Effect of methanolic leaf extract of *Talinum triangulare* (Jacq). Willd. on biochemical parameters in diet induced dyslipidemia Wistar rats. Pharmacogn Mag 12:333–339. https://doi.org/10.4103/0973-1296.192194
- 44. Ravindra Babu (2012) Hypoglycemic activity of methanolic extract of *Talinum* triangulare leaves in normal and streptozotocin induced diabetic rats. J App Pharm Sci 2:197-201. https://doi.org/10.7324/JAPS.2012.2537
- 45. Ravikumar V, Kanchi SS, Devaki T (2005) Effect of *Tridax procumbens* on liver antioxidant defense system during lipopolysaccharide-induced hepatitis in D-galactosamine sensitised rats. Mol Cell Biochem 269:131–136
- 46. Ravikumar V, Shivashangari KS, Devaki T (2005) Hepatoprotective activity of *Tridax procumbens* against D-galactosamine/lipopolysaccharide-induced hepatitis in rats. J Ethnopharmacol 101:55–60
- 47. Asekun OT, Adeniyi BA (2004) Antimicrobial and cytotoxic activities of the fruit essential oil of *Xylopia aethiopica* from Nigeria. Fitoterapia 75:368–370. https://doi.org/10.1016/j.fitote.2003.12.020

Table 1: Medicinal plants cited in this study: scientific names, collected parts and locations, local names, pharmacological effects, part(s) used, method of preparation, administration route and disease(s) treated.

Family,	Collected part;	Local name	Pharmacological	Part(s) used and preparation method	Administration	Disease(s) treated
Scientific name,	Purchase/collection	(Fon)	effects		route	
Voucher number	location					
Meliaceae,	Leaves and Seeds;	KININUTIN	Seeds: antifungal [25]	Leaves are malaxed into balls and sun-dried, after	Oral	Diabetes
Azadirachta	collected in			which the balls are chewed and swallowed.		
indica A. Juss.,	Abomey-Calavi		Leaves: antifungal	An oil is made from the seeds, mixed with coconut	Dermal	Malaria
EST-5025			[26], antioxidant and	oil and applied to the body		
AA 6789/HNB			antibacterial [27],	An aqueous decoction of the leaves is mixed with the	Oral	Ascaris
			anti-plasmodial [28]	leaves of Cassia siamea and drunk.		
				A decoction of leaves and bark is drunk 2-3 times a	Oral	Malaria
				day (the preparation is very bitter).		
				The leaves are reduced to a paste and chewed.	Oral	Epilepsy
				Fermented sap created with the bark is applied to	Dermal	Leprosy
				lesions.		
				An infusion of fresh leaves is drunk daily.	Oral	Hepatitis
Caesalpiniaceae,	Leaves and Seeds;	AJIKUN	Leaves:	A decoction of roots is mixed with sugar and drunk 2	Oral	Sexual asthenia,
Caesalpinia	bought in		hepatoprotective and	hours before sexual intercourse.		impotence
bonduc (L.)	Dantokpa Market		nephroprotective	Leaves are mixed with those of Bambusa	Oral	Measles
Roxb.,			[29], antitumor and	vulgaris and soaked in hot water. Two tablespoons of		
			antioxidant [30]	the cooled solution is drunk daily.		

EST-5031				Two glasses of a decoction of leaves and roots is	Oral	Fever and
AA 6795/HNB			Seeds:	taken daily for 7 days.		headaches
			hepatoprotective and	A hot decoction of leaves is massaged into the chest.	Dermal	Chest pain
			antioxidant [31]	A decoction of leaves and roots is drunk during	Oral	Painful
				menstruation.		menstruation
				Powdered seed is taken daily as a food supplement.	Oral	Diabetes
Apocynaceae,	Leaves and Roots;	FLAWE	Leaves: antidiabetic	Thirty grams of the leaves is boiled in 1 L of water	Oral	Diabetes
Catharanthus	collected in		and antioxidant [32]	and drunk throughout a full day.		
roseus (L.) G.	Abomey-Calavi			Fifteen grams of roots is collected, washed, dried for	Oral	Hypertension
Don,			Flowers: wound	a few days in the sun and pounded into a powder. The		
EST-5026			healing activity [33]	powder is boiled in 2 L of water, reduced to 1.5 L,		
AA 6790/HNB				cooled, and filtered. A bamboo cup of the solution is		
				drunk in the morning on an empty stomach.		
				The roots, stems, or leaves are crushed and	Oral	Diarrhea
				mixed with hot or cold water. One teaspoon (5		
				mL) of the infusion is drunk 2 times a day until the		
				symptoms cease.		
				The roots are boiled with water for 5-20 min. One	Oral	Gonorrhea
				cup of the extract is taken orally three times a day.		
Clusiaceae,	Seeds; bought in	AHOWE	Seeds: antibacterial	The seeds are pounded and eaten or chewed daily	Oral	Cough
Garcinia kola	Dantokpa Market		[34], antimicrobial	(bitter).		Diabetes
Heckel,			[35]			Menstrual pain
EST-5035				The seeds are pounded, mixed with alcohol, and the	Oral	Jaundice
AA 6799/HNB				mixture is drunk.		Anemia
				The bark is soaked in palm wine and drunk.	Oral	Diarrhea

				Three seeds are eaten daily for 3 consecutive days	Oral	Heart palpitations
				(forbidden foods during treatment: lemons, oranges,		and vertigo
				alcoholic drinks, oil, pepper).		
				The fruit , in association with <i>Amaranthus</i>	Oral	Impotence
				spinosus and rhizomes of Zingiber officinale, is		
				ground and eaten.		
Meliaceae,	Bark; bought in	ZUNZATIN	Bark: anticancer	The bark is boiled with water and a 30-mL glass	Oral	Diarrhea
Khaya	Dantokpa Market		[36], antitumor and	("talokpemi" in local language Fon) is drunk twice a		Obesity
senegalensis			antioxidant [16]	day.		Menstrual pain
(Desr.) A. Juss.,				A decoction of bark is drunk.	Oral	Malaria and fever
EST-5027				An aqueous decoction of stems, leaves, or bark is	Dermal	Circumcision
AA 6791/HNB				used for washing or sprayed onto wounds.		wounds
				One teaspoon of bark powder is taken daily with a	Oral	Diabetes
				meal.		
Annonaceae,	Seeds; bought in	SASALIKUN	Leaves and Bark:	The leaves are boiled with water, in association with	Oral	Cough
Monodora	Dantokpa Market		antioxidant and free	the rhizomes of Zingiber officinale, and drunk.		
myristica			radical scavenging	Thirty seeds are macerated in 2 L of water for 2 days,	Oral	Hypertension
(Gaertn.)			activities [17]	then filtered and collected (~1.5 L). A bamboo cup of		
Dunal,				the solution is drunk once a day. Alternatively, 3-4		
EST-5029			Seeds: antibacterial	seeds are chewed and swallowed with water.		
AA 6793/HNB			and antifungal [37]	A decoction of the fruit and root is drunk daily.	Oral	Cyst and myomas
				A decoction of 1 kg of stem bark is soaked in 4 L of	Oral	Malaria
				water for 20 min and taken every 2 days.		
	Leaves; collected	KPATIMATIN	Pods : antidiabetic	Massage is performed using crushed roots .	Dermal	Rheumatism and
	in Abomey-Calavi		and antioxidant [38]			joint pain

Moringaceae,					The bark stem, trunk, and pulp are applied locally	Dermal	Amnesia
Moringa			Leaves: a	ntibacterial	to the forehead.		
oleifera Lam.,			and antifu	ıngal [39],	A decoction of the leaves is drunk three times a day.	Oral	Hypertension
EST-5032			hepatoprot	ective [40]	The leaves are usually cooked to make a sauce	Oral	Diabetes
AA 6796/HNB					accompanied by corn dough.		
			Roots	barks:	Lightly heated leaves are used to treat	Oral	Fever and pain
			antimicrob	oial [41]	influenza. Cooked for longer, they are nutritious,		
					refreshing, and slightly analgesic.		
					The juice of fresh leaves or crushed root is used as a	Oral	Bronchopulmonary
					revulsive.		disorders
					The bark and crushed leaves are applied to the head.	Dermal	Migraine
					A methanolic extract of leaves is drunk in the	Oral	Anxiety
					morning and evening.		
Talinaceae,	Leaves; collected	GLASEMA	Leaves:	antioxidant	A decoction of roots is drunk three times a day for 7	Oral	Hypertension
Talinum	in Abomey-Calavi		[42],	anti-	days.		
fruticosum (L.)			hyperchole	esterolemia	Fresh leaves are crushed with leaves of Vitellaria	Dermal	Furuncle
Juss.,			and antiox	xidant [43],	paradoxa and Elaeis guineensis and applied to		
EST-5033			hypoglycei	mic [44]	lesions.		
AA 6797/HNB					A decoction of leafy stem is drunk.	Oral	Malaria
					The leaves are macerated in water and applied to	Dermal	Scabies
					lesions.		
					The whole plant is dried and burned, formed into a	Oral	Female
					powder, and taken from the second day of		infertility, fibroma
					menstruation.		
		WENMI			One glass of macerated leaves is drunk daily.	Oral	Diarrhea

Asteraceae,	Leaves; collected	Leaves: antioxidant,	An aqueous decoction of the whole plant, in	Oral Hypertension
Tridax	in Abomey-Calavi	anti-inflammatory	association with leaves of Euphorbia hirta, is drunk.	
procumbens L.,		and hepatoprotective	An aqueous decoction of leaves	Oral Amenorrhea
EST-5034		[45, 46]	with flowers of Phyllanthus	
AA 6798/HNB			amarus and Alternanthera sessilis is drunk	
			The leafy stem and pulp are crushed and applied to	Dermal Edema
			lesions.	
Annonaceae,	Fruit; bought in KPEJELE	KUN Fruit: antibacterial	The fruit is washed with the fruit of <i>Tetrapleura</i>	Oral Asthma
Xylopia	Dantokpa Market	and antifungal [37],	tetraptera, Crinum jagus bulb, and the roots	
aethiopica		antimicrobial and	of Securidaca longepedunculata, cut into pieces,	
(Dunal) A.		cytotoxic [47]	soaked in water for three days and drunk (adults: 1	
Rich,			small glass daily; children: 1 teaspoon daily.	
EST-5030			A decoction of leaves with roots of <i>Cocos nucifera</i> is	Oral Fibroma
AA 6794/HNB			drunk daily.	
711 0 /) // II (B			The fruit is chewed (seeds are used in rituals, in	Oral Anxiety
			association with Schrebera arborea, Afzelia africana,	
			and Tetrapleura tetraptera).	
			Ripe fruit is mixed with	Dermal Wounds
			aerial parts of Solanum nigrum, reduced to a powder,	
			and applied to lesions.	

Figure Legends

Fig. 1 TLC profiles of the described plant species obtained using a hexane/ethyl acetate (3:1) mobile phase and revealed with anisaldehyde reagent. Rf values are also indicated

Azadirachta indica (1L: leaves, 1S: seeds), Caesalpinia bonduc (2L: leaves, 2S: seeds), Catharanthus roseus (3L: leaves, 3R: roots), Garcinia kola (4), Khaya senegalensis (5), Monodora myristica (6), Moringa oleifera (7), Talinum fruticosum (8), Tridax procumbens (9), and Xylopia aethiopica (10)

Fig. 2 HPLC profiles of the described plant species

Azadirachta indica (1L: leaves, 1S: seeds), Caesalpinia bonduc (2L: leaves, 2S: seeds), Catharanthus roseus (3L: leaves, 3R: roots), Garcinia kola (4), Khaya senegalensis (5), Monodora myristica (6), Moringa oleifera (7), Talinum fruticosum (8), Tridax procumbens (9), and Xylopia aethiopica (10)

Figure Legends

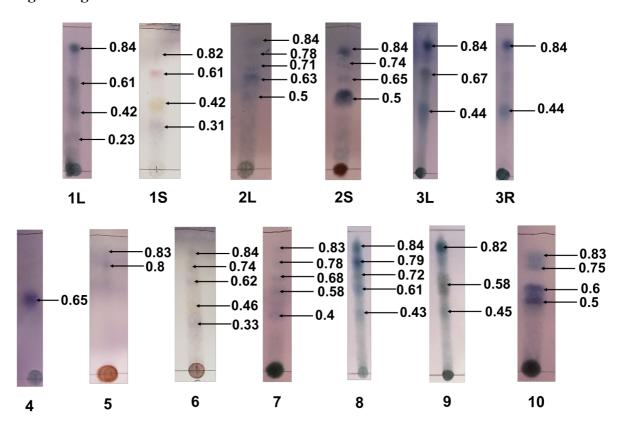


Fig. 1 TLC profiles of the described plant species obtained using a hexane/ethyl acetate (3:1) mobile phase and revealed with anisaldehyde reagent. Rf values are also indicated Azadirachta indica (1L: leaves, 1S: seeds), Caesalpinia bonduc (2L: leaves, 2S: seeds), Catharanthus roseus (3L: leaves, 3R: roots), Garcinia kola (4), Khaya senegalensis (5), Monodora myristica (6), Moringa oleifera (7), Talinum fruticosum (8), Tridax procumbens (9), and Xylopia aethiopica (10)

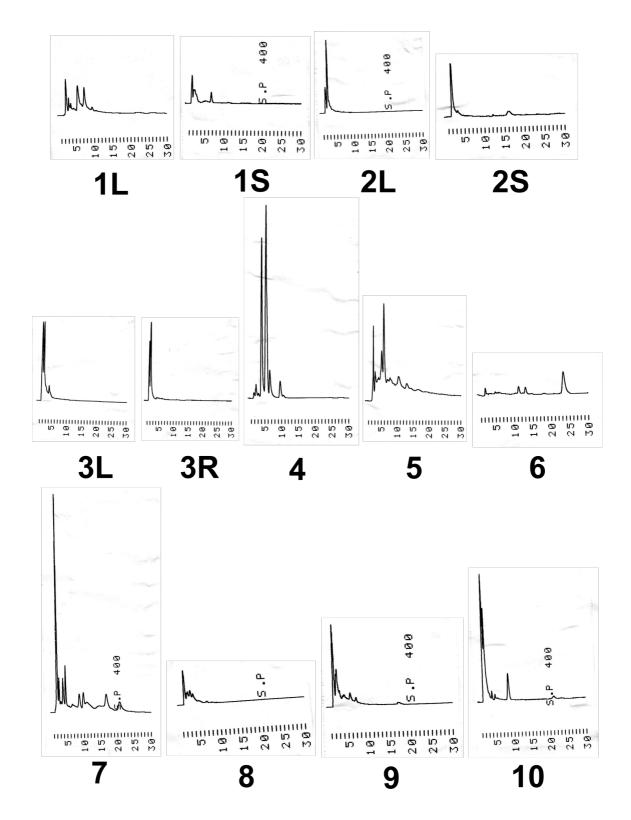


Fig. 2 HPLC profiles of the described plant species

Azadirachta indica (1L: leaves, 1S: seeds), Caesalpinia bonduc (2L: leaves, 2S: seeds), Catharanthus roseus (3L: leaves, 3R: roots), Garcinia kola (4), Khaya senegalensis (5), Monodora myristica (6), Moringa oleifera (7), Talinum fruticosum (8), Tridax procumbens (9), and Xylopia aethiopica (10)

Supplementary data

Medicinal uses, thin-layer chromatography and high-performance

liquid chromatography profiles of plant species from Abomey-Calavi

and Dantokpa Market in the Republic of Benin

Authors: Godfried Dougnon and Michiho Ito*

Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyoto

University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan

* Corresponding author:

E-mail: michihoi@pharm.kyoto-u.ac.jp

Tel: +81-75-753-4506

1

Contents

Fig. S1 Study area	3
Fig. S2 Pictures of the plant species collected in Abomey-Calavi	4
Fig. S3 Pictures of the plant species bought in Dantokpa Market	5
Fig. S4 TLC profiles of the described plant species obtained using a hexane/ethyl ace	tate
(3:1) mobile phase and observed at UV 365 nm. R _f values are indicated	6
Fig. S5 TLC profiles of the described plant species obtained using a hexane/ethyl ace	tate
(3:1) mobile phase and observed at UV 254 nm. R _f values are indicated	7

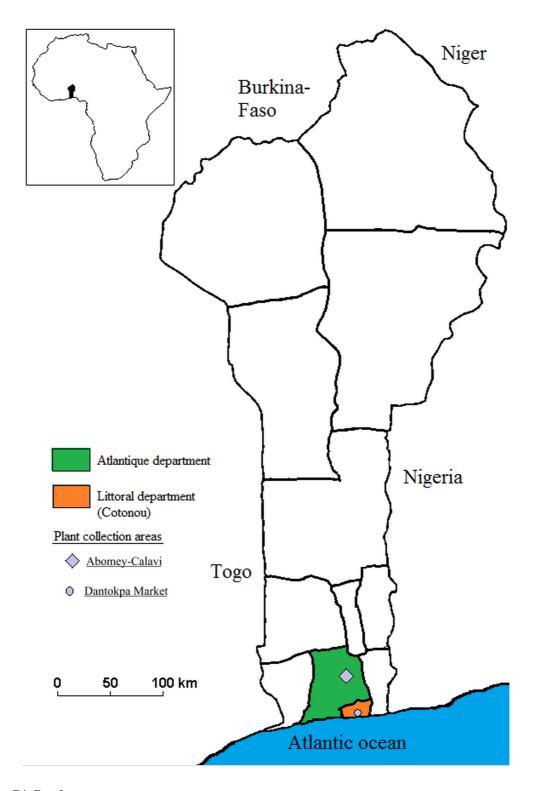


Fig. S1 Study area

The Republic of Benin is located in West Africa. The Atlantique and Littoral departments are located in southern Benin. Abomey-Calavi is shown by a diamond and is located in the Atlantique department. The Littoral department is represented by Cotonou, where Dantokpa Market is located (indicated by a circle)

Fig. S2 Pictures of the plant species collected in Abomey-Calavi

Azadirachta indica (1L: leaves, 1S: seeds), Catharanthus roseus (3L: leaves, 3R: roots), Moringa oleifera (7), Talinum fruticosum (8), and Tridax procumbens (9)

Fig. S3 Pictures of the plant species bought in Dantokpa Market

Caesalpinia bonduc (2L: leaves, 2S: seeds), Garcinia kola (4), Khaya senegalensis (5), Monodora myristica (6), and Xylopia aethiopica (10)

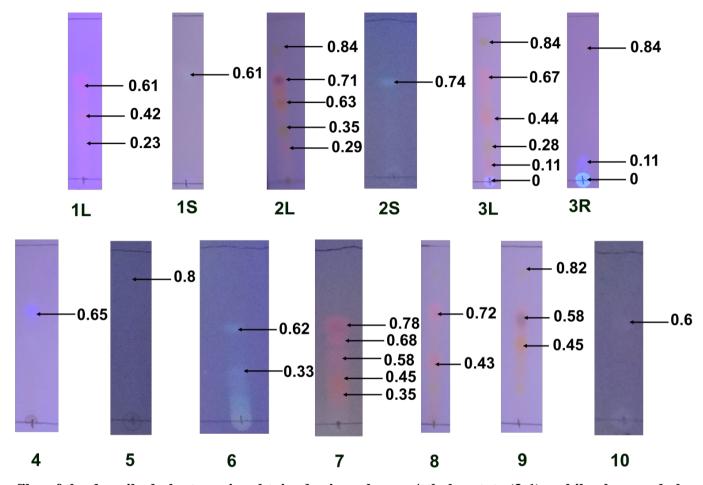


Fig. S4 TLC profiles of the described plant species obtained using a hexane/ethyl acetate (3:1) mobile phase and observed at UV 365 nm. R_f values are indicated

Azadirachta indica (1L: leaves, 1S: seeds), Caesalpinia bonduc (2L: leaves, 2S: seeds), Catharanthus roseus (3L: leaves, 3R: roots), Garcinia kola (4), Khaya senegalensis (5), Monodora myristica (6), Moringa oleifera (7), Talinum fruticosum (8), Tridax procumbens (9), and Xylopia aethiopica (10)

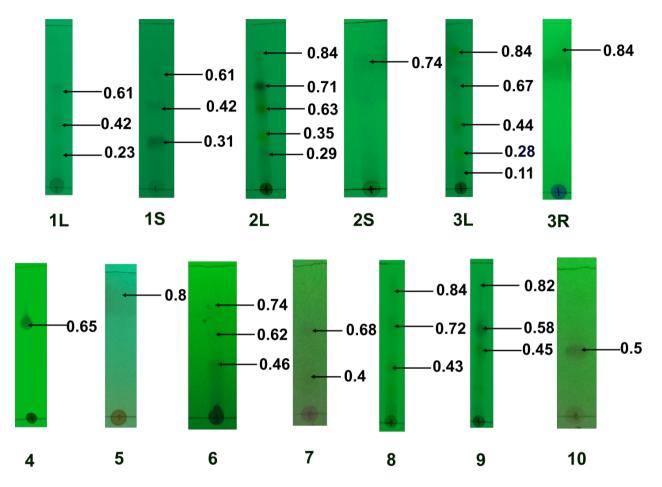


Fig. S5 TLC profiles of the described plant species obtained using a hexane/ethyl acetate (3:1) mobile phase and observed at UV 254 nm. $R_{\rm f}$ values are indicated

Azadirachta indica (1L: leaves, 1S: seeds), Caesalpinia bonduc (2L: leaves, 2S: seeds), Catharanthus roseus (3L: leaves, 3R: roots), Garcinia kola (4), Khaya senegalensis (5), Monodora myristica (6), Moringa oleifera (7), Talinum fruticosum (8), Tridax procumbens (9), and Xylopia aethiopica (10)