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Abstract. We develop a linear response theory by computing the asymptotic

value of the order parameter from the linearized equation of continuity around the

nonsynchronized reference state using the Laplace transform in time. The proposed

theory is applicable to a wide class of coupled phase oscillator systems and allows any

coupling functions, any natural frequency distributions, any phase-lag parameters,

and any values for the time-delay parameter. This generality is in contrast to the

limitation of the previous methods of the Ott–Antonsen ansatz and the self-consistent

equation for an order parameter, which are restricted to a model family whose coupling

function consists of only a single sinusoidal function. The theory is verified by numerical

simulations.
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1. Introduction

Synchronization among rhythmic elements can be ubiquitously observed in a wide

variety of systems, whose numbers of elements range from small to large [1, 2, 3, 4]. Since

synchronization between two pendulum clocks hanging on the same wall was observed

by Huygens, it has also been found in many large systems, such as flashing fireflies [1],

cardiac cells [5], the circadian rhythm in mammals [2], and neuronal populations [3, 6].

Synchronization is often essential to biological functions, in large systems in particular,

and we focus on large systems in this study.

Based on mathematical modeling of a rhythmic element and the phase reduction

theory [7, 8, 9], synchronization is described by coupled phase-oscillator models. For

example, the Kuramoto model [7], a paradigmatic coupled phase-oscillator model, has

two types of states: a nonsynchronized state, in which each oscillator rotates with its

proper frequency called the natural frequency, and partially synchronized states, in

which part of the oscillators rotate with the same effective frequency. Strengthening

the couplings provides a synchronization transition from the nonsynchronized state to

the partially synchronized states, and the continuity of the transition is determined

by the natural frequency distribution in the Kuramoto model [7, 10, 11, 12, 13]. We

can thus reproduce macroscopic dynamics such as the continuous and discontinuous

synchronization transitions by controlling the microscopic details that include the

coupling strength and the natural frequencies.

However, the single direction from a microscopic model to macroscopic dynamics

does not provide a complete picture of the synchronization in real systems because

we have often no prior knowledge of the microscopic character, such as the coupling

strength or natural frequency distribution. Additionally, it is difficult to access directly

the microscopic character. This motivates us to develop a theory that extracts the

microscopic character from a macroscopic experiment. One potential candidate is the

linear response theory; a clear example of an application is spectroscopy.

One strategy for obtaining the linear response formula in coupled oscillator models

is to construct and analyze the self-consistent equation for the order parameter based

on knowledge of the stationary states under an external force. This strategy has been

developed in models that have a single sinusoidal coupling function[14, 15] and can

reach the nonlinear regime beyond the linear response. However, the construction of

the self-consistent equation is not easily extended to general systems whose coupling

functions consist of many harmonics of sinusoidal functions because there are several

stable stationary states for a given set of parameters [16, 17, 18].

Another strategy relies on the Ott–Antonsen ansatz [19, 20]. This ansatz reduces

the equation of continuity, which describes the dynamics in the large population limit,

to finite-dimensional ordinary differential equations. See ref. [15] for an application

to the linear response. However, the benefit of this reduction is limited in the single

harmonic case again, and the natural frequency distribution must be rational, e.g., a

Lorentzian, so that one can apply the residue theorem.
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The above two strategies result in difficulties when we consider a general coupling

function, while coupling functions often consist of several harmonics in neuronal

networks [21], in electrochemical oscillators [22, 23], and near a Hopf bifurcation [24, 25].

In addition to the generality of coupling functions, a desired linear response theory must

provide susceptibility for all rotation frequencies of external forces from the point of

view of experimental measurements. Furthermore, the time delay in couplings, which

drastically changes its synchrony [26, 27], must be incorporated because it is inevitable

in many natural systems. Thus, we propose a linear response theory that is applicable to

systems with any coupling functions accompanied by a time delay, any natural frequency

distributions, and any rotational frequencies of external forces.

Linear response theory has been developed in statistical mechanics [28, 29], but

computing a value of susceptibility is not easy because we must solve the equations of

motion for an N -body system, which is nonintegrable in general. In the class of globally

coupled interactions, this difficulty has been overcome in the large population limit by

using the Vlasov equation, which describes the dynamics of a one-body distribution

function and is an analogy to the equation of continuity [30, 31]. Our approach has

been inspired by this linear response theory.

The construction of this paper is as follows. In Section 2, we describe the model

which we analyze in this study. We describe the constructed linear response theory

based on the equation of continuity with a general coupling function and a time delay

in Section 3. In Section 4, we describe the numerical simulations used to validate the

theory. Section 5 is devoted to the summary and discussion.

2. Model

In this section, we introduce our model, relevant quantities, and the large population

limit.

2.1. Settings

We consider the system described by the ordinary differential equations

dθj
dt

(t) = ωj +
1

N

N∑
k=1

Γ (θj(t)− θk(t− τ)) +H (θj(t), t) , (1)

where θj(t) ∈ [0, 2π) is the phase of the jth phase-oscillator, ωj is its time-independent

natural frequency, Γ(θj(t)− θk(t− τ)) is the coupling function from oscillator k to j, τ

refers to the time delay of the couplings, and H(θ, t) is the external force. We assume

that function H(θ, t) has the form

H(θ, t) = Θ(t)H̄(θ − ωext), (2)

where ωex is the external frequency and Θ(t) is the Heviside step function. The external

force is turned off for t < 0 and is turned on at t = 0. To investigate the linear response,

we assume that the external force is sufficiently small, |H(θ, t)| ≪ 1.
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The natural frequencies follow the natural frequency distribution g(ω), which

satisfies the normalization condition of∫ ∞

−∞
dω g(ω) = 1. (3)

We note that, for a nonzero time delay of τ > 0, system (1) is not invariant under the

rotating reference frame with frequency ω0 and a shift in ḡ(ω) = g(ω−ω0), whereas this

invariance holds for τ = 0.

Referring to the works by Kuramoto [33] and Daido [34], we expand the coupling

function Γ and the external force H into the Fourier series as

Γ(θ) = −
∑
n>0

Kn sin(nθ + αn) (4)

and, from the form of the external force (2),

H(θ, t) = −Θ(t)
∑
n>0

hn sin[n(θ − ωext)− βn]. (5)

Real constants Kn, αn, and hn represent the coupling strength, the phase-lag, and the

amplitude of the external force for the Fourier mode n, respectively. The real parameter

βn determines the direction of the external force in the rotating reference frame with

frequency ωex.

2.2. Order parameters and susceptibilities

To study the synchrony of the oscillators, we introduce the order parameters

zm(t) =
1

N

N∑
k=1

eimθk(t), (m = 1, 2, · · ·) (6)

which are called the Daido order parameters [34] and detect the clusters whose phases

are congruent modulo 2π/m. The first-order parameter, z1, is equivalent to the

Kuramoto order parameter [33]. Owing to the rotating external force H(θ, t), the order

parameters also rotate with external frequency ωex. Accordingly, the susceptibility

tensor χ(ωex) = (χmn(ωex)) depending on the external frequency is asymptotically

defined by

χmn(ωex)e
inωext =

∂zm
∂hn

∣∣∣∣
h→0

(t), as t → ∞. (7)

In other words, χmn(ωex) is defined as the rate of change in the mth Daido order

parameter induced by the nth Fourier mode of the external force in the rotating reference

frame with frequency ωex. We aim to obtain the susceptibility χmn(ωex) by taking the

large population limit in a coupled oscillator system that has a general coupling function.
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2.3. Large population limit

Using the Daido order parameters (6), we have a simple expression for the equations of

motion (1) as

dθj
dt

(t) = ωj +
∞∑

n=−∞

[
Γ̃nz−n(t− τ) + H̃n(t)

]
einθj , (8)

where Γ̃n and H̃n(t) are the Fourier components of the coupling function Γ(θ) and the

external force H(θ, t), which are defined by

Γ(θ) =
∞∑

n=−∞

einθ Γ̃n (9)

and

H(θ, t) =
∞∑

n=−∞

einθ H̃n(t). (10)

The present forms of Γ (4) and H (5) give

Γ̃n =
i

2
Kne

iαn , Γ̃−n = Γ̃∗
n, (n > 0), (11)

and

H̃n(t) =
i

2
hnΘ(t)e−i(nωext+βn), H̃−n(t) = H̃∗

n(t), (n > 0), (12)

where Γ̃∗
n is the complex conjugate of Γ̃n, for instance, and we define Γ̃0 = H̃0 = 0.

In the large population limit of N → ∞, the dynamics of the system (8) are

described by the equation of continuity

∂F

∂t
+

∂

∂θ
(V F ) = 0, (13)

where F (θ, ω, t) is the probability density function that satisfies the normalization

condition ∫ 2π

0

dθ

∫ ∞

−∞
dω F (θ, ω, t) = 1, (14)

and velocity V is given by

V (θ, ω, t) = ω +
∞∑

n=−∞

einθ
[
Γ̃nz−n(t− τ) + H̃n(t)

]
. (15)

The Daido order parameters are expressed as

zm(t) =

∫ 2π

0

dθ

∫ ∞

−∞
dω eimθF (θ, ω, t), (m = 1, 2, · · ·). (16)

3. Linear response theory

We derive the susceptibility in the nonsynchronized state by solving the linearized

equation of continuity around the nonsynchronized state. The solution is obtained

by performing the Fourier transform in the phase variable and the Laplace transform in

the time variable.
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3.1. Linearization around the nonsynchronized state

As the reference state for t < 0, we consider the nonsynchronized state

F (θ, ω, t) = F0(ω), for t < 0, (17)

which is the trivial stationary solution to the equation of continuity (13). The

normalization condition (14) gives

F0(ω) =
g(ω)

2π
. (18)

The small external force H(θ, t) that starts at t = 0 perturbs the state from F0 to

F (θ, ω, t) = F0(ω) + f(θ, ω, t) for t ≥ 0, (19)

where |f(θ, ω, t)| ≪ 1 is assumed according to |H(θ, t)| ≪ 1. The continuity of F (θ, ω, t)

at t = 0 implies that the initial condition of f(θ, ω, t) is

f(θ, ω, 0) = 0. (20)

The Daido order parameters receive no contribution from the nonsynchronized

reference state, F0(ω), and they have the same order with perturbation f as

zn(t) =

∫ 2π

0

dθ

∫ ∞

−∞
dω einθf(θ, ω, t). (21)

This ordering produces the linearized equation of continuity as

∂f

∂t
(θ, ω, t) + ω

∂f

∂θ
(θ, ω, t) + F0(ω)

[
∂v

∂θ
(θ, t, τ) +

∂H

∂θ
(θ, t)

]
= 0, (22)

where we defined

v(θ, t, τ) =
∞∑

n=−∞

einθ Γ̃nz−n(t− τ). (23)

The linearized equation (22) is valid under a weak external force.

3.2. Fourier–Laplace transforms

To solve the linearized equation (22), we employ the Fourier and Laplace analyses.

Substituting the Fourier series expansion of f ,

f(θ, ω, t) =
∞∑

n=−∞

einθf̃n(ω, t), (24)

and of H (10) into the linearized equation (22), we find the Fourier-expanded expression

for each n as

∂f̃−n

∂t
(ω, t)− inωf̃−n(ω, t)− inF0(ω)

[
Γ̃−nzn(t− τ) + H̃−n(t)

]
= 0. (25)

Further, we perform the Laplace transform which is defined for φ(t) to be

φ̂(s) =

∫ ∞

0

dt φ(t)e−st for Re(s) > 0, (26)
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where the condition Re(s) > 0 is assumed to ensure the convergence of the integral.

The Laplace transform modifies equation (25) as

(s− inω)f̂−n(ω, s) = inF0(ω)
[
Γ̃−ne

−sτ ẑn(s) + Ĥ−n(s)
]
+ f̃−n(ω, 0), (27)

where we used zn(t) = 0 for t < 0. We note that the last term disappears owing to the

initial condition (20); however this term is kept tentatively to discuss the stability of

the reference state, F0(ω).

Both sides of Eq. (27) contain f̂−n, and f̂−n is associated with the Laplace transform

of the order parameter, ẑn(s), as

ẑn(s) = 2π

∫ ∞

−∞
dω f̂−n(ω, s). (28)

Using this relation, we solve Eq. (27) with respect to ẑn(s). By multiplying (27) by

2π(s− inω)−1 and integrating over ω, we have

ẑn(s) = in
[
Γ̃−ne

−sτ ẑn(s) + Ĥ−n(s)
] ∫ ∞

−∞
dω

g(ω)

s− inω
+ 2π

∫ ∞

−∞
dω

f̃−n(ω, 0)

s− inω
. (29)

By defining the functions

In(s) = in

∫ ∞

−∞
dω

g(ω)

s− inω
, (30)

and

Gn(s) = 1− Kn

2i
e−iαne−sτIn(s), (31)

the Laplace transform of the order parameter zn(t) is expressed as

ẑn(s) =
1

Gn(s)

[
In(s)Ĥ−n(s) + 2π

∫ ∞

−∞
dω

f̃−n(ω, 0)

s− inω

]
. (32)

The temporal evolution of zn(t) is obtained by performing the inverse Laplace transform.

The inverse Laplace transform of function φ̂(s) is defined by

φ(t) =
1

2πi

∫
Br

ds φ̂(s)est, (33)

where the integral is performed along the Bromwich contour which lies on the right-hand

side of any singularities of φ̂(s) on the complex s plane. If φ̂(s) has a simple pole at

s = s0 ∈ C, the inverse Laplace transform produces a mode proportional to exp(s0t)

upon picking up this pole in the residue theorem. As a result, a pole of Re(s0) < 0

corresponds to a stable mode, and a pole of Re(s0) > 0 corresponds to an unstable

mode.

We note that integral In(s), and function Gn(s) are defined on the right-half plane of

Re(s) > 0 of the complex s plane following the definition of the Laplace transform (26).

To apply the discussion above to ẑn(s), we need to perform the analytic continuation of

In(s). See Appendix A for this continuation.

The stability of the nonsynchronized state F0(ω) is examined by turning off the

external force, H(θ, t) = 0, and is determined by the roots of Gn(s). A demonstration
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of the stability analysis is provided in Appendix B with the use of the Nyquist diagrams.

Assuming the stability of the nonsynchronized state F0(ω) through the rest of this study,

we compute the susceptibility from (32), whose last term vanishes because of the initial

condition (20).

3.3. Susceptibilities

The susceptibility χmn(ωex) is defined in the limit of t → ∞ as in (7), and the asymptotic

temporal evolution of zn(t) is obtained by considering the singularities of (32). The

stability assumption of F0 implies that all the roots of Gn(s) are on the left-half plane

Re(s) < 0. Consequently, the asymptotic behavior of the order parameters is determined

by the residues of the poles on the imaginary axis, which come from the external force

as, from (12),

Ĥn(s) = − 1

2i

hne
−iβn

s+ inωex

, Ĥ−n(s) =
1

2i

hne
iβn

s− inωex

, (n > 0). (34)

The residue theorem gives

zn(t) →
In(inωex)

2iGn(inωex)
ei(nωext+βn)hn, as t → ∞ (n > 0) (35)

and

z−n(t) →
−I−n(−inωex)

2iG−n(−inωex)
e−i(nωext+βn)hn, as t → ∞ (n > 0), (36)

where, for n > 0,

In(inωex) = − [J(ωex)− iπg(ωex)] , I−n(−inωex) = [In(inω)]
∗, (37)

and

J(ωex) = PV

∫ ∞

−∞
dω

g(ω)

ω − ωex

. (38)

PV represents the Cauchy principal value. ¿From the definition (7), the susceptibility

tensor χ(ωex) = (χmn(ωex)) is diagonal as

χmn(ωex) = χn(ωex)δmn, (39)

and, for n > 0,

χn(ωex) =
πg(ωex) + iJ(ωex)

2−Kne−i(αn+nωexτ)[πg(ωex) + iJ(ωex)]
eiβn , (40)

and

χ−n(ωex) = χ∗
n(ωex). (41)

The susceptibility (40) is the main result of this study. This main result (40) is an

extension of the susceptibility [14] obtained in the Kuramoto model [7, 10], whose

coupling function is Γ(θ) = − sin θ without the time-delay. We provide three remarks

derived from this main result (40).
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The first remark is on the divergence of the susceptibility. The divergence appears if

the complex denominator of the susceptibility (40) vanishes. For instance, the divergence

is observed at Kn,c = 2/[πg(0)] if the model has three types of symmetry: a zero

phase lag αn = 0, a zero time delay τ = 0, and a symmetric natural frequency

g(ω), where the satisfaction of the last symmetry gives J(0) = 0. In contrast, the

divergence does not appear for any value of Kn unless we tune the external frequency

ωex so that the imaginary part of the denominator vanishes, if one of the three types of

symmetry is broken. The absence of divergence is demonstrated in Appendix C in the

Kuramoto model with an asymmetric natural frequency. In the next section, we discuss

our examination of the theory with the tuned ωex to observe the divergence because

the divergence is a representative phenomenon at the critical point, and it provides a

deep numerical examination: the divergence expands the discrepancy of susceptibility

between the theoretically predicted value and the numerically observed value that is

perturbed by breaking the assumption of the large population limit or the zero external

force limit.

The second remark is on the critical exponent γ, which is defined as

χ ∝ |K −Kc|−γ (42)

around the critical coupling strength Kc [32]. We choose ωex to observe the divergence.

The denominator of the susceptibility (40) depends on the coupling constant linearly,

and the critical exponent γ should be unity: γ = 1. This universality of γ gives a sharp

contrast with the dependence of the critical exponent β on the coupling function: the

single harmonic case has β = 1/2 [33] while β = 1 for the general case [35, 36]. The

critical exponent β is defined here, with absence of the external force, by

z1 ∝ (K −Kc)
β (43)

above and around the critical point.

The last remark is regarding the roles of the phase lag and the time delay. The

phase lag αn and the time delay τ are included only in the exponential factor of the

denominator and play a similar role in the susceptibility (40). In fact, the phase lag can

be eliminated from the time-delayed Kuramoto model if the external frequency, ωex, is

fixed [26]. However, the time delay couples to ωex, and, from experimental observation

of the susceptibility, we can identify which factor is included in the system by varying

ωex.

4. Numerical tests

To verify our theoretical results, we perform numerical simulations, where we also shed

light on the difference between the roles of the phase lag αn and the time delay τ . We

first examine the linear response in the Sakaguchi–Kuramoto model, which contains the

phase lag but not the time delay in a single sinusoidal coupling function. The single

harmonics permits us to apply the Ott–Antonsen reduction, which eliminates finite-size
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fluctuations and is useful for examining the theory. The second model is the time-

delayed Daido–Kuramoto model, which has multi-harmonics in the coupling functions.

This model highlights the usefulness of the proposed theory for general systems. In the

above two models, we use the Lorentz distribution

g(ω) =
γ

π

1

(ω − Ω)2 + γ2
(44)

as the natural frequency distribution, although the proposed theory can be applied to

other distributions. Note that the time delay breaks the invariance of the system with

respect to the Galilei transform of θ and hence the rotation of the reference frame and

Ω cannot be removed by shifting ω if the coupling function has a nonzero time delay,

τ . The principal value, J(ωex) (38), can be explicitly computed for the Lorentzian (44),

as shown in Appendix D.

We adopt the 4th-order Runge–Kutta method to integrate the original equations

(1) and the reduced equations, where the time length is T = 1000 with a discrete time

size dt = 0.05. Values of the order parameters are evaluated by averaging over the time

interval of [T/2, T ].

4.1. The Sakaguchi–Kuramoto model

The Sakaguchi–Kuramoto model is recovered by setting the coupling function, Γ(θ), to

be

Γ(θ) = −K sin(θ + α), (45)

without the time-delay, where 0 < α < π. The first susceptibility is read as

χ1(ωex) =
πg(ωex) + iJ(ωex)

2−Ke−iα[πg(ωex) + iJ(ωex)]
. (46)

We choose the frequency of the external force, ωex, so that the system has the divergence

of χ1 at the critical point. The divergence appears when the denominator of (46)

vanishes. The imaginary part provides the condition for ωex as

J(ωex) cosα− πg(ωex) sinα = 0, (47)

and the real part determines the critical point, Kc, as

Kc =
2 cosα

πg(ωex)
. (48)

For a fixed phase-lag parameter α = 1, susceptibility χ1 obtained theoretically, (46),

is shown in Figure 1 with numerical results in the N -body system and in the reduced

system derived by the Ott–Antonsen ansatz. The reduced system, corresponding to the

limitN → ∞, is in good agreement with the theory for a sufficiently small external force,

h = 10−4, whereas the agreement is not perfect for h = 10−2 which is not sufficiently

small for imitating the limit of h → 0 taken in the definition of susceptibility, (7). This

observation concludes that the discrepancy between the theory and numerics results from

the nonlinearity of the response with respect to h rather than the finite-size fluctuation
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in the N -body system. We have two remarks in order. First, to observe the linear

response clearly, h in the N -body system must be larger than O(1/
√
N), which is the

expected level of the finite-size fluctuation of the order parameter. Thus, we must use

a larger N to use a smaller h. Second, the nonlinearity inhibits the divergence at the

critical point because the divergence results from the linear response. The nonlinearity,

therefore, enhances the discrepancy around the critical point as observed for h = 10−2

in Figure 1.

χ 1

K

|χ
1
|

K

χ
1,real

: N=105, h=10-2

χ
1,imag

: N=105, h=10-2

χ
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χ
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χ
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: theory
χ
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: theory

χ
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χ
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Figure 1. (a) Susceptibility and (b) its absolute value in the Sakaguchi–Kuramoto

model (45). The natural frequency distribution g(ω) is the Lorentzian (44) with

(γ,Ω) = (0.1, 3). The phase-lag parameter is set to be α = 1 and the frequency

of the external force is correspondingly chosen to be ωex = 2.844259 to satisfy the

divergence condition (47). The critical point is Kc ≃ 0.370163, which corresponds

to the right boundaries of the panels. The numerical simulations are conducted with

N = 105 and h = 10−2 in N -body system, and with h = 10−2 and h−4 in the reduced

system.

4.2. The time-delayed Daido–Kuramoto model

The time-delayed Daido–Kuramoto model has the coupling function of

Γ(θ) = −
M∑
n=1

Kn sin θ (49)

with M > 1 and the nonzero time-delay parameter τ in (1). The susceptibilities are

explicitly written as

χn(ωex) =
πg(ωex) + iJ(ωex)

2−Kne−inωexτ [πg(ωex) + iJ(ωex)]
, for 1 ≤ n ≤ M. (50)

This susceptibility for n = 1 is obtained by replacing α with ωexτ in the susceptibility

(46) of the Sakaguchi–Kuramoto model. We adopt M = 2 in the numerical simulations

for simplicity, although the theory is applicable to any arbitrary M . The coupling

constant of the second Fourier mode, K2, will be sufficiently small positive number so
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that the nonsynchronized state becomes unstable in the first Fourier mode. We set the

time-delay parameter as τ = 2 here and choose the value of ωex to satisfy the divergence

condition.

It is worth commenting on the continuity of the synchronization transition.

First, the theory is applicable in the nonsynchronized state even if the transition

is discontinuous. One advantage of the continuous transition is that numerical

examinations can be robustly performed, while the discontinuous transition, owing to

the bistability, may accompany a jump of responses around the critical point for a finite

external force. The parameter set, γ = 0.1,Ω = 3, and τ = 2, gives the continuous

transition in the delayed Kuramoto model [26], but it is not obvious if the time-delayed

Daido–Kuramoto model also exhibits the continuous transition. For instance, the multi-

harmonic coupling function with M = 2 results in the discontinuous transition if K2 > 0

and τ = 0 [37]. Our numerical computation, however, implies that the transition is

continuous with the given parameter set.

The Ott–Antonsen reduction is not applicable to the Daido–Kuramoto model, and

we show the results for only N -body simulations in Figure 2. The numerical results do

not perfectly agree with the theoretical prediction, but they approach the theoretical

curves as the external force becomes small. This tendency of discrepancies is very similar

to the ones observed in the Sakaguchi–Kuramoto model, in which the validity of the

theory has been confirmed with the aid of the reduced system. Thus, we conclude that

the theory is also valid in the time-delayed Daido–Kuramoto model.

4.3. Distinction between the phase lag and the time delay

Finally, we illustrate that phase lag α plays the same role as time delay τ for a fixed ωex

but a different role for a varying ωex. For simplicity, we concentrate on the time-delayed

Sakaguchi–Kuramoto model and assume that the coupling strength K1 and the natural

frequency distribution, g(ω), are known. This assumption implies that, in a rewritten

form of (40),

K1e
−i(α1+ωexτ) =

2

πg(ωex) + iJ(ωex)
− 1

χ1(ωex)
, (51)

the first term of the most right-hand side is known, but the second term must be

pointwisely observed in an experiment with inevitable errors. We imitate the errors

by adding noise ξ(l)(ωex) to the theoretical value of χ1(ωex) at each observing point

ωex: χ
(l)
1 (ωex) = χ1(ωex) + σξ(l)(ωex). The random value, ξ(l)(ωex), is independently

drawn from the standard normal distribution, and superscript l denotes the index of

realization, in other words, virtual observation. In Figure 3, we show the means and

standard deviations of the right-hand side of (51) averaged over 100 realizations of

χ
(l)
1 (ωex) for σ = 10−3 and 10−2. For (τ, α) = (2, 0), the real and imaginary parts

of the right-hand side of (51) are wavy with period π according to the choice of τ ,

whereas no wave is found for (τ, α) = (0, 2), as we expect from (51). The large standard

deviations for large |ωex −Ω| are due to the lack of population of oscillators, that is the
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Figure 2. (a,c) Susceptibilities and (b,d) their absolute values in the time-delayed

Daido–Kuramoto model with M = 2. The natural frequency distribution, g(ω), is

Lorentzian (44) with (γ,Ω) = (0.1, 3). The delay parameter is set to be τ = 2 and

the frequency of the external force is determined to be ωex = 3.023969 to observe the

divergence of χ1. The critical point is K1,c ≃ 0.205665, which is the right boundaries

of the panels. We set K2 = 0.01 to keep mode 2 stable. The numerical simulations

are conducted with (N,h) = (105, 10−2) and (106, 10−3). The susceptibility χ2 must

be constant of K1 because the susceptibility χ2 does not depend on K1.

smallness of g(ω). This demonstration suggests that a sufficiently precise observation

of the susceptibility can identify the existence and value of the time delay. We must

remember that knowledge of the coupling strength and the natural frequency is assumed

in the above demonstration; however, it is usually difficult to access these in advance.

Identification of the coupling strength and the natural frequency distribution is out of

the scope of this study but should be investigated.
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Figure 3. (a,c) Real and (b,d) imaginary parts of the right-hand side of (51),

under replacing the theoretical susceptibility χ1(ωex) with a noisy one χ
(l)
1 (ωex). (a,b)

(τ, α) = (0, 2) and (c,d) (τ, α) = (2, 0). The points represent the means over 100

realizations, and the error bars the standard deviations. Noises follow the zero-mean

normal distributions and their standard deviations σ are σ = 10−3 (red circles) and

10−2 (green crosses). The blue solid lines are the theoretical predictions. The natural

frequency g(ω) is the Lorentzian (44) with (γ,Ω) = (0.1, 3), and the coupling strength

is set to be K1 = 0.1.

5. Summary and discussion

We have developed a linear response theory for coupled oscillator systems by directly

solving the linearized equation of continuity around the nonsynchronized state. One

considerable advantage of the proposed theory is that it is applicable to systems that

have general coupling functions, phase lags, and a time delay, while the previous two

methods of the self-consistent equation and the Ott–Antonsen reduction are restricted to

the systems that have a single sinusoidal coupling function. The theoretical predictions

have been successfully verified by numerical simulations.

The reference state is assumed to be nonsynchronized as the first step for a general

theory. Another interesting topic would be to construct a linear response theory for other

types of reference states: partially synchronized states, cluster states [38], chimera states

[39, 40], glassy states [41], chaos states [42], and so on.

Finally, we comment on a possible application of the linear response theory for the

identification problem. This linear response theory gives macroscopic responses from

microscopic details, and the identification problem can be formulated as the inverse
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problem. A simple identification using the proposed theory was demonstrated in Section

4.2 to distinguish between the phase lag and the time delay by surveying the dependence

on the external frequency wtih knowledge of the coupling strength and the natural

frequency distribution. A more systematic and precise identification method will be

discussed elsewhere.
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Appendix A. Analytic continuation

Function In(s) is first defined in Re(s) > 0 in (30), which is the domain of the Laplace

transform (26). We continue this function into the entire complex s plane, which is

necessary to obtain In(inωex) included in the susceptibility χn(ωex). We have I0(s) = 0

and assume n ̸= 0.

In the definition of In(s) (30), the integral contour with respect to ω is the real axis

and the contour does not meet the singular point ω = −is/n because s is restricted in

the right-half plane, Re(s) > 0. However, in the limit of Re(s) → +0, the pole arrives

on the real axis from the lower (upper) side of the complex s plane for n > 0 (n < 0).

To avoid this pole, we smoothly modify the integral contour to the upper (lower) side

and continue this modification for Re(s) < 0 so that we obtain the continued function.

This continuation gives the explicit form of function In(s) as

In(s) =



∫ ∞

−∞
dω

ing(ω)

s− inω
for Re(s) > 0,

PV

∫ ∞

−∞
dω

ing(ω)

s− inω
± iπg

(
− is

n

)
for Re(s) = 0,∫ ∞

−∞
dω

ing(ω)

s− inω
± 2iπg

(
− is

n

)
for Re(s) < 0,

(A.1)

where the second term for Re(s) ≤ 0 due to the residue at the pole ω = −is/n and the

positive (negative) sign corresponds to n > 0 (n < 0).

Appendix B. Stability analysis using the Nyquist diagram

The stability of the nonsynchronized state F0(ω) is analyzed by turning off the external

force, H(θ, t) = 0. Roughly speaking, the initial perturbation, f(θ, ω, 0), plays the

role of the external force in the response formula (32), and the stability of F0(ω) is

determined by the zero points of Gn(s), which is analytically continued via the procedure

in Appendix A. If there is a zero point whose real part is positive, then F0(ω) is unstable.

We suppose that Gn(s) is a mapping from the complex s plane to the complex Gn

plane. We focus on the boundary of the stability, the imaginary axis s = iy (y ∈ R).
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Figure B1. The Nyquist diagrams. (a) The Sakaguchi–Kuramoto model. K1,c ≃
0.370163. (b) The time-delayed Daido–Kuramoto model. K1,c ≃ 0.205665. The

natural frequency distribution g(ω) is the single Lorentzian (44) with (γ,Ω) = (0.1, 3).

In each panel three curves are shown for K < Kc (blue broken), K = Kc (orange

solid), and K > Kc (red dot-dashed). The inset is a magnification around the origin

of the region of [−0.1, 0.1]× [−0.1, 0.1].

In the limit of y → ±∞ we have Gn → 1. Thus, the mapped imaginary axis forms an

oriented closed curve and the boundary of the unstable region Re(s) can be identified

on the complex Gn plane by the closed curve and its orientation. This consideration

implies that the nonsynchronized state, F0(ω), is unstable if the mapped unstable region,

which is the inside of the closed curve, contains the origin. The Nyquist diagrams for

G1(s) are shown in Figure B1 for the Sakaguchi–Kuramoto model and the time-delayed

Daido–Kuramoto model.

Appendix C. The Kuramoto model with an asymmetric natural frequency

distribution

We consider the Kuramoto model by setting the coupling function Γ(θ) as

Γ(θ) = −K sin θ (C.1)

and the parameters as α = τ = 0 in (4). The susceptibility for the order parameter, z1,

is written as

χ1(ωex) =
πg(ωex) + iJ(ωex)

2−K[πg(ωex) + iJ(ωex)]
, (C.2)

which is obtained through the general expression (40).

We employ an asymmetric natural frequency distribution, g(ω), to observe the non-

divergence of the susceptibility at the critical point for the static external force and show

the qualitative difference from the other two types of asymmetry, the phase lag and the

time delay. The asymmetry is achieved by the family of g(ω) as

g(ω) =
c

[(ω − Ω)2 + γ2
1 ] [(ω + Ω)2 + γ2

2 ]
, (C.3)
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Figure C1. Susceptibility in the Kuramoto model with the asymmetric natural

frequency distribution, where (γ1, γ2,Ω) = (0.6, 1, 0.6) in (C.3). The frequency of

the external force is set to zero: ωex = 0. There is no divergence at the critical point

K = Kc ≃ 1.084618, which is the right boundary of the panel. Numerical simulations

are conducted with N = 105 and h = 10−2.

where Ω ≥ 0, γ1, γ2 > 0 and the normalization constant c is given by

c =
γ1γ2[(γ1 + γ2)

2 + 4Ω2]

π(γ1 + γ2)
(C.4)

as in ref. [43]. The distribution is symmetric if γ1 = 1 or Ω = 0 and tends to be

bimodal with large Ω. We use the parameter set (γ1, γ2,Ω) = (0.6, 1, 0.6) to realize the

asymmetric unimodal, g(ω).

First, we consider the static external force case with ωex = 0. The susceptibility does

not diverge even at the critical point, Kc, as shown in Figure C1. This nondivergence

is in good agreement with the first remark mentioned in Section 3.3.

The divergence recovers if we choose the external frequency, ωex, appropriately.

The divergence appears under the condition J(ωex) = 0 at the point of

Kc =
2

πg(ωex)
. (C.5)

This theoretical prediction is confirmed numerically in Figure C2, where we can observe

their discrepancy with larger h because of the nonlinearity of the response as explained

in Section 4.1.

In the Kuramoto model, the divergence of the susceptibility appears only in the

real part, which is shown in Eq. (C.2). In other words, the response must be parallel

to the direction of the external force. In contrast, in the Sakaguichi–Kuramoto model

and the time-delayed Daido–Kuramoto model, the phase lag and the time delay permit

divergences in both real and imaginary parts of the susceptibility, and the direction of

the response is not always parallel to the external force, i.e., we may observe a phase-gap

between the external force and the linear response. The coexistence of the divergence

and the phase gap thus reveals the different roles of the two groups of asymmetry;
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Figure C2. Susceptibility in the Kuramoto model with the asymmetric natural

frequency distribution, (γ1, γ2,Ω) = (0.6, 1, 0.6) in (C.3). The frequency of the external

force is set to be ωex = 0.303819, which satisfies J(ωex) = 0. The divergence of χ(ωex)

is observed at the critical point, K = Kc ≃ 1.084618, which is the right boundary of

the panel. The numerical simulations are conducted with N = 105 and h = 10−2, 10−4.

asymmetry by the phase lag or the time delay permits the coexistence, while asymmetry

in g(ω) does not.

Appendix D. Calculation of susceptibility with Lorentzian natural

frequency distributions

In our numerical simulations, we use a Lorentzian or its product as the natural frequency

distributions in the main text. In that case the principal value, J(ωex) (38), can be

computed explicitly by using the residue theorem. We introduce the integral

Jϵ(ωex) =

∫ ∞

−∞
dω

g(ω)

ω − ωex + iϵ
. (D.1)

The pole is at ω = ωex − iϵ and the integral is well defined for ϵ ̸= 0. We assume ϵ > 0.

Moreover, we consider the single Lorentzian (44) for simplicity. Adding the upper half-

circle contour and using the residue theorem by picking up the pole ω = Ω+ iγ, we are

able to compute the value of Jϵ(ωex) explicitly as

Jϵ(ωex) =
1

Ω− ωex + i(γ + ϵ)
. (D.2)

Taking the limit ϵ → +0 in (D.2) and applying the continuation technique presented in

Appendix A to the right-hand side of (D.1), we have

lim
ϵ→+0

Jϵ(ωex) = J(ωex)− iπg(ωex) (D.3)

and

J(ωex) =
1

Ω− ωex + iγ
+ iπg(ωex) =

Ω− ωex

(Ω− ωex)2 + γ2
. (D.4)

The above idea is applicable to the multiplicative Lorentzian (C.3).
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Appendix E. Ott–Antonsen reduction in the case with Lorentzian natural

frequency distributions

In the numerical confirmation of the Sakaguchi–Kuramoto model, we used the Ott–

Antonsen ansatz [19, 20], which reduces the equation of continuity to a real two-

dimensional system describing the dynamics of the order parameter z1. This reduction

is limited to a class of models, but the reduced equations are useful for examinining

our theory because the reduced system corresponds exactly to the large population

limit and has no finite-size fluctuations. Here, we derive the reduced equations in the

Sakaguchi–Kuramoto model with the natural frequency (C.3).

The Ott–Antonsen ansatz introduces the form of the probability density function

F as

F (θ, ω, t) =
g(ω)

2π

{
1 +

∞∑
n=1

[
an(ω, t)einθ + (a∗(ω, t))ne−inθ

]}
, (E.1)

where the complex-valued function a(ω, t) satisfies the condition |a (ω, t) | < 1 and is

regular on the complex ω-plane. Substituting the ansatz (E.1) into the equation of

continuity for the Kuramoto model with the first harmonic external force having the

frequency of ωex, we obtain the equation for a (ω, t) as

∂a

∂t
= −iωa+

K

2

(
z∗1 − a2z1

)
− h

2

(
e−iωext − a2eiωext

)
, (E.2)

where the order parameter z1(t) and a(ω, t) are related through

z1 =

∫ ∞

−∞
dω g(ω)a∗(ω, t), (E.3)

which is obtained from (E.1). The integral over ω in the right-hand side of (E.3)

is performed by adding the large upper-half circle, which has no contribution to the

integral, and picking up the two poles of g(ω), (C.3), at ω = Ω+ iγ1 and ω = −Ω+ iγ2.

The residues give

z1(t) = k1A(t) + k2B(t), (E.4)

where complex variables A and B are defined by

A(t) = a∗(Ω + iγ1, t), B(t) = a∗(−Ω + iγ2, t) (E.5)

and the time-independent coefficients are given by

k1 =
γ2

γ1 + γ2

2Ω− i (γ1 + γ2)

2Ω + i (γ1 − γ2)
, k2 =

γ1
γ1 + γ2

2Ω + i (γ1 + γ2)

2Ω + i (γ1 − γ2)
. (E.6)

Finally, in (E.2), by setting ω as ω = Ω + iγ1 or ω = −Ω + iγ2, we have the reduced

equations

dA

dt
= i (Ω + iγ1)A− K

2

[
A2 (k∗

1A
∗ + k∗

2B
∗) eiα − (k1A+ k2B) e−iα

]
− h

2

(
A2e−iωext − eiωext

)
, (E.7)
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dB

dt
= i (−Ω + iγ2)B − K

2

[
B2 (k∗

1A
∗ + k∗

2B
∗) eiα − (k1A+ k2B) e−iα

]
− h

2

(
B2e−iωext − eiωext

)
. (E.8)

Similarly, for the Sakaguchi–Kuramoto model with the Lorentzian g(ω), which is

discussed in Section 4.1, we have the reduced equation for z1:

dz1
dt

= i(Ω + iγ)z1 −
K

2
z1

(
|z1|2eiα − e−iα

)
− h

2

(
z21e

−iωext − eiωext
)
. (E.9)

It is worth noting that the Ott–Antonsen reduction is also applicable to the time-delayed

Kuramoto model [19].
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