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Current clinical biomarkers for the programmed cell death 1 (PD-1) blockade therapy are
insufficient because they rely only on the tumor properties, such as programmed cell death
ligand 1 expression frequency and tumor mutation burden. Identifying reliable, responsive
biomarkers based on the host immunity is necessary to improve the predictive values.

We investigated levels of plasma metabolites and T cell properties, including energy
metabolism markers, in the blood of patients with non-small cell lung cancer before and
after treatment with nivolumab (n = 55). Predictive values of combination markers
statistically selected were evaluated by cross-validation and linear discriminant analysis on
discovery and validation cohorts, respectively. Correlation between plasma metabolites and
T cell markers was investigated.

The 4 metabolites derived from the microbiome (hippuric acid), fatty acid oxidation
(butyrylcarnitine), and redox (cystine and glutathione disulfide) provided high response
probability (AUC = 0.91). Similarly, a combination of 4 T cell markers, those related to
mitochondrial activation (PPARy coactivator 1 expression and ROS), and the frequencies of
CD8*PD-1" and CD4* T cells demonstrated even higher prediction value (AUC = 0.96).
Among the pool of selected markers, the 4 T cell markers were [...]
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BACKGROUND. Current clinical biomarkers for the programmed cell death 1 (PD-1) blockade
therapy are insufficient because they rely only on the tumor properties, such as programmed cell
death ligand 1 expression frequency and tumor mutation burden. Identifying reliable, responsive
biomarkers based on the host immunity is necessary to improve the predictive values.

METHODS. We investigated levels of plasma metabolites and T cell properties, including energy
metabolism markers, in the blood of patients with non-small cell lung cancer before and after
treatment with nivolumab (n = 55). Predictive values of combination markers statistically selected
were evaluated by cross-validation and linear discriminant analysis on discovery and validation
cohorts, respectively. Correlation between plasma metabolites and T cell markers was investigated.

RESULTS. The 4 metabolites derived from the microbiome (hippuric acid), fatty acid oxidation
(butyrylcarnitine), and redox (cystine and glutathione disulfide) provided high response probability
(AUC = 0.91). Similarly, a combination of 4 T cell markers, those related to mitochondrial activation
(PPARY coactivator 1 expression and ROS), and the frequencies of CD8*PD-1"' and CD4" T cells
demonstrated even higher prediction value (AUC = 0.96). Among the pool of selected markers, the
4 T cell markers were exclusively selected as the highest predictive combination, probably because
of their linkage to the abovementioned metabolite markers. In a prospective validation set (n = 24),
these 4 cellular markers showed a high accuracy rate for clinical responses of patients (AUC = 0.92).

CONCLUSION. Combination of biomarkers reflecting host immune activity is quite valuable for

responder prediction.

FUNDING. AMED under grant numbers 18cm0106302h0003, 18gm0710012h0105, and
181k1403006h0002; the Tang Prize Foundation; and JSPS KAKENHI grant numbers |P16H06149,

17K19593, and 19K17673.

Introduction

Programmed cell death 1 (PD-1) and cytotoxic T lymphocyte—associated protein 4 (CTLA-4) are the
critical players in maintaining immune tolerance during tumor growth (1-4). Blocking of molecules
individually or both together rejuvenates CD8" T cells in the dormant or reversible exhaustion stage and
can induce strong antitumor activity in mice and humans (1-3, 5, 6). CD8"* T cells, once activated by

recognition of tumor antigens, proliferate and attack tumors. Activated T cells with chronic stimulation

eventually express PD-1 and CTLA-4 and go into the reversible exhaustion stage to avoid excessive

proliferation and the generation of autoimmunity. Some of the activated CD8"* T cells may go into the
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irreversible exhaustion stage, resist rejuvenation, and are defined by PD-1" CTLA-4" T cell immuno-
globulin and mucin domain—containing molecule 3—positive (Tim-3*), Ki-67*, and others (7). Immune
tolerant individuals who carry tumors are likely to contain variable proportions of CD8"* T cells with
reversible and irreversible exhaustion stages.

Although antibodies against CTLA-4, PD-1, or its ligand, PD-L1, have been approved for treatment of
various human cancers and demonstrated the impressive clinical efficacy (4), a significant portion of cancer
patients remain less responsive (4—6). Therefore, predictive biomarkers to distinguish responders and non-
responders are desperately required to save cost and time for those patients.

Effective cancer immunotherapy depends on the cancer-immunity cycle, in which naive T cells are
primed in draining lymph nodes (DLNSs) and differentiated to effector T cells that egress into circulation
and traffic to tumor sites, guided by a gradient of chemokines released from tumor sites to attack tumor
cells (8). Tumor antigens are captured by dendritic cells, which in turn traffic to DLNs and stimulate naive
T cells again. To distinguish responders from nonresponders, it is critical to evaluate how many CD8* T
cells are in the stage of reversible or irreversible exhaustion in patients by monitoring peripheral blood
mononuclear cells (PBMCs), while the actual battles of the immune system against cancer take place in
tumor sites and DLNSs.

When CD8* T cells are activated by antigenic stimulation, such as tumor antigens, they mobilize vari-
ous intracellular signaling pathways to generate abundant energy and anabolic reaction substrates required
for proliferation (9). Fagarasan’s group previously showed that proliferation of the antigen-stimulated T cell
population drastically changes the systemic metabolites in mouse blood (10). We also confirmed similar
drastic change in serum metabolites due to the antitumor immune reactions in a PD-1 blockade cancer
therapy model (11). Activated tumor-reactive CD8* T cells were also shown to carry mitochondria with
higher reactive oxygen species (ROS) detected by mitochondrial dye staining. ROS signaling links to the
regulation of mTOR/AMPK phosphorylation, which subsequently activates the PPARy coactivator la
(PGC-10) pathway. This feed-forward pathway for mitochondrial biogenesis enhances CD8* T cell acti-
vation (11, 12). We further showed that PGC-1a/PPAR complex activation enhances the efficacy of the
PD-1 blockade therapy by enhancing fatty acid oxidation (FAO) in CD8* T cells, which leads to longevity
of effector CD8" T cells (13). Therefore, these T cell metabolism-associated markers may serve as predictive
or early monitoring biomarkers in the PD-1 blockade therapy.

It is also known that gut microbiota and immune activity mutually affect each other as Fagarasan
and coworkers have demonstrated using IgA-deficient or PD-1-deficient mouse models (14, 15). In
the case of tumor immunity, recent reports also suggested that microbiota and/or their metabolites
are related to the efficacy of immune checkpoint inhibitors (16—18). Especially, certain microbiota,
Akkermansia muciniphila, and diversity of flora are shown to correlate to the responsiveness to the PD-1
blockade therapy (18). However, it is still elusive whether any of the microbiota-associated factors
could be responder biomarkers for the PD-1 blockade therapy.

Currently, PD-L1" expression on histological tumor tissue samples is used as a responder predic-
tive marker for non-small cell lung cancer (NSCLC) (19, 20). The FDA has recently approved micro-
satellite instability—high or mismatch repair deficiency as common responder biomarkers for various
solid tumors (21). These markers, however, cannot cover all the responsive patients, probably because
the responses of tumor-reactive CD8" T cells are affected not only by tumor properties but also by host
immune activity (21). Several groups have identified candidates for responder biomarkers by analysis
of various immune cell compartments at tumor sites or in peripheral blood. The proposed markers
include the frequencies of CD8* T cells, CD4" T cells, eosinophils, neutrophils, subsets of suppressive
macrophages, and subsets of T cells (16). Immune regulators, such as certain cytokines or chemokines,
were also listed as candidates of biomarkers (16). However, the predictive value of each of these single
markers for host immunity is not sufficient for clinical usage.

In the present studies using blood samples from 55 patients with NSCLC, we demonstrated that a com-
bination of several plasma metabolites and/or T cell markers could serve as good responder biomarkers
(AUC = 0.96 by cross-validation). The metabolite markers include those related to microbiota (hippuric
acid), FAO (butyrylcarnitine), and redox (cystine and glutathione disulfide). The cellular markers of T
cells in responders contain those associated with suppressive function (the PD-1" population) and mito-
chondrial activities (PGC-1 and ROS expression) in CD8" T cells. These T cell markers are linked with the
metabolite markers described above. Therefore, we propose that the combinatorial quantitation of either
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the specific plasma metabolites or PBMC T cell markers will be a highly predictive biomarker of the PD-1
blockade therapy for clinical usage.

Results

Microbiota metabolism— and energy metabolism—related metabolites correlate with responsiveness to the PD-1 block-
ade cancer immunotherapy. Accumulating evidence indicates there is a considerable association between
immune responses and the metabolome (22). However, it remains unknown whether particular metabolites
can serve as predictive biomarkers for the PD-1 blockade therapy in humans. In this study, we identified
plasma metabolites and T cellular markers from 55 NSCLC patients (discovery cohort) and validated the
markers in 24 patients (validation cohort) (Figure 1). To investigate how metabolites are associated with
antitumor immunity first, we analyzed metabolites and T cell functional markers in plasma and PBMCs,
respectively, in 55 patients with NSCLC before and after nivolumab treatment (Figure 2A and Supple-
mental Tables 1-4; supplemental material available online with this article; https://doi.org/10.1172/jci.
insight.133501DS1). Blood was harvested just before the injection of nivolumab at 0, 2, and 4 weeks,
and we designated these samples as the 1st, 2nd, and 3rd samples, respectively (Figure 2A). We defined
responsive and unresponsive patients based on the criteria of progression-free survival (PFS) more than 3
months or PFS no more than 3 months according to the PFS data of phase III clinical studies of NSCLC
patients where around 40% to 50% of patients died within 3 months (Supplemental Figure 1A and refs.
23, 24). Although PFS more than 6 months has often been used as a responder criterion, both criteria
(PFS > 3 months and PFS > 6 months) provided similar overall survival (OS) curves in the present study
(Supplemental Figure 1, B and C). Moreover, PD-L1 tumor proportion score (TPS) at tumor sites could
not discriminate between responders and nonresponders clearly in the present study (Supplemental Figure
1, D and E). We measured 247 metabolites in 55 patients, of whom 8 had to stop the therapy because of
severe side effects and other reasons, leaving us with the data of 47 patients for analysis (Figure 1 and
Figure 2A). Volcano plot analysis of these metabolites based on fold change and P value demonstrated
that hippuric acid in the 1st samples and hippuric acid, indoxyl sulfate, 4-cresol, and glutathione disulfide
(GSSQ) in the 3rd samples were significantly elevated in responders compared with nonresponders (Figure
2B and Table 1). On the other hand, the levels of a-ketoglutaric acid and butyrlcarnitine in the 3rd samples
were lower in responders, but there were no items with significant differences between responders and
nonresponders in the 2nd samples (Figure 2B and Table 1). Hippuric acid, indoxyl sulfate, and 4-cresol are
reported to be almost exclusively produced by microbiota in mammals (25), which is consistent with the
finding that patients treated with antibiotics within 3 months before the nivolumab treatment had lower
levels of these 3 metabolites (Supplemental Figure 2A). Importantly, responsive patients had higher levels
of the microbiota-derived metabolites (indoxyl sulfate and 4-cresol) than unresponsive patients, indicating
that stronger antitumor immune responses are associated with the gut microenvironment (Figure 2C and
Supplemental Figure 2B). We did not exclude those patients pretreated with antibiotics from this study
because there were no differences in survival between patients treated with and without antibiotics at any
time within 3 months before nivolumab injection (Supplemental Figure 2C). GSSG levels were higher in
responders than in nonresponders, especially in the 3rd samples (Figure 2, B and D, and Table 1). GSSG is
an oxidized form of glutathione, which controls the ROS levels appropriately in cells (26). Butyrylcarnitine
levels were higher in nonresponders than in responders (Figure 2, B and D, and Table 1). Butyrylcarnitine,
the 4-carbon acylcarnitine, serves as a fatty acid transporter into mitochondria to generate ATP. Acylcarni-
tine species with various amounts of carbon are released from cells once the function of FAO is attenuated
(27-29). It should be noted that butyrylcarnitine and other acylcarnitine species (isovalerylcarnitine and
hexanoylcarnitine) had a trend to increase in the later phase of therapy in nonresponders (Supplemental
Figure 2D). There was a trend of lower a-ketoglutaric acid in responders than in nonresponders (Figure 2,
B and D, and Table 1). In the tricarboxylic acid cycle in mitochondria for ATP production, a-ketoglutaric
acid is a core metabolite and is reduced in the blood because of consumption by activated T cells (10, 11).
Therefore, these data indicate that antitumor immune responses to the PD-1 blockade therapy are linked to
microbiota and energy metabolism.

A combination of plasma metabolites can be a predictive biomarker. We addressed the probability of each
predictive biomarker candidate selected above (Figure 2B and Table 1) by receiver operating character-
istic (ROC) curve analysis with logistic regression. The AUC of each candidate was not high enough for
prediction (right column in Table 1), though their AUCs were higher than that of PD-L1 TPS (0.66).
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Figure 1. CONSORT flow diagram. irAE, immune-related adverse event.
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Therefore, we next used stepwise discriminant analysis to elucidate superior biomarkers based on a combi-
nation of metabolites. We first selected those with a significant difference between responders and nonre-
sponders in their levels or in their ratio (fold change) of the different time points among 1482 items in total
(247 items X 3 time points + 247 items X 3 ratios) (Supplemental Table 5). A stepwise Akaike’s information
criterion (AIC) regression procedure against the markers listed in Supplemental Table 5 demonstrated that
metabolite combinations I, II, and III were most predictive for the 1st, Ist + 2nd, and 1st + 2nd + 3rd sam-
ples, respectively (Table 2 and Supplemental Figure 3). Linear discriminant analysis (LDA) demonstrated
that metabolic combination I distinguished between responders and nonresponders with a 23% error rate
for 1st samples (Figure 3A). To test the reliability of metabolite combination I, we assigned 47 samples to
LDA-R or LDA-NR based on the LDA cutoff value (Figure 3A). As shown in Figure 3B, prediction mark-
ers of metabolite combination I could significantly discriminate LDA-R from LDA-NR in PFS. We then
found that metabolite combination II distinguished responders and nonresponders with a 22% error rate,
and there was a significant difference in both PFS and OS between LDA-R and LDA-NR (Figure 3, C and
D). Finally, we found that metabolite combination III discriminated responders and nonresponders with
the lowest error rate, 19.6% (Figure 3, E and F). To calculate AUCs of metabolite combinations by discrim-
inant models, we conducted 5-fold cross-validation with logistic regression. In the 5-fold cross-validation,
we split the cohort into 5 folds, took the first 20% fold as test data, and trained the prediction model with
the remaining 80% to predict into the test data. We iterated this procedure 5 times for each fold and evaluat-
ed the model performance with the AUC. As a result, the calculated AUC values were 0.77, 0.83, and 0.91
for the metabolite combinations I, II, and III, respectively, suggesting combination III better discriminated
responders and nonresponders (Figure 3G).

Considering that patients are administered nivolumab 6 times over 3 months in the current clinical pro-
tocol for NSCLC, metabolite combinations I and II are useful as predictive biomarkers, while metabolite
combination III may be less valuable for clinical use despite having the highest reliability.

A combination of cellular markers including mitochondrial activities of CD8* T cells can distinguish between
responders and nonresponders. Our previous reports have shown that mitochondrial activation and energy
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Figure 2. Particular plasma metabolites are associated with nivolumab treatment response. (A) A schematic diagram of this study. GC-MS/
LC-MS, gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry. (B) Comparison of 247 metabolites between non-
responders and responders at each time point was summarized in volcano plots. Metabolites with log, |fold change| greater than 1.0 and ~log,, (P
value) greater than 1.3 were considered significant. Ten metabolites with significant difference between responders and nonresponders are listed in
Table 1. (C) The peak areas measured by GC-MS or LC-MS of each microbiota-related metabolite in nonresponders (NR) and responders (R). (B) The
peak areas of redox/energy metabolism-related metabolites. Each dot represents 1 patient. Error bars show median and interquartile range. *P <
0.05; **P < 0.01 by Kruskal-Wallis test followed by Dunn’s multiple-comparisons test (C and D).

insight.jci.org

metabolism in T cells are strongly associated with the response to the PD-1 blockade therapy (11, 13).

Therefore, we simultaneously investigated cellular markers for effector function, energy metabolism,

mitochondrial status, and immune activation in CD8* T cells of the patients’ PBMCs. Among the 52

markers shown in Supplemental Table 4 and their ratios between each time point, we found 26 items
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Table 1. Ten metabolites with significant difference between responders and nonresponders shown in Figure 2B

Numberin Metabolite name Timing Changes in responders Platform* P value® Fold change AUCt

Figure 2B relative to nonresponders
1 Hippuric acid st Higher LC 0.0056 2.3 0.74
2 Hippuric acid st Higher GC 0.0062 2.74 0.73
3 Hippuric acid 3rd Higher GC 0.0002 2.89 0.81
4 Hippuric acid 3rd Higher LC 0.0003 2.3 0.81
5 Indoxyl sulfate 3rd Higher LC 0.00M 219 0.78
6 Indoxyl sulfate 3rd Higher GC 0.0043 2.08 0.74
7 4-Cresol 3rd Higher GC 0.0023 2.41 0.76
8 GSSG 3rd Higher LC 0.0068 21 0.73
9 a-Ketoglutaric acid 3rd Lower GC 0.0238 042 0.69
10 Butyrylcarnitine 3rd Lower LC 0.0015 043 0.77

AThe analytical platform (GC-MS or LC-MS) used for metabolite measurement. 8P value for distinction between responders and nonresponders
(Wilcoxon's rank-sum test). ‘The area under the curve (AUC) of each metabolite in relation to responsiveness was calculated from univariate logistic

regression analysis.

with significant differences in the expression levels between responders and nonresponders (Supplemen-
tal Table 6). We further selected the best combination of predictive biomarkers from these 26 items
using the stepwise method as described for metabolites. As shown in Table 3, the best combinations
to predict responders in the Ist, 1st + 2nd, and 1st + 2nd + 3rd samples were designated as cellular
marker combinations I, II, and III containing 2, 4, and 4 items, respectively. The marker of responsive
patients having a lower PD-1" population among CD8* T cells in pretreated samples (in the 1st samples)
appeared in all 3 cellular marker combinations, I, II, and III (Figure 4A and Table 3). The cutoff for
PD-1" was defined by the 97th percentile of PD-1 expression intensity (Supplemental Figure 4A). It is
important to note that there was no difference between responders and nonresponders in the frequen-
cy of total PD-1*CD8* T cells (Supplemental Figure 4B). Although the PD-1"CD8* T cell population
appears to vigorously proliferate as the frequency of Ki-67 was higher than PD-1% or PD-1-CD8* T cells,
it produced less granzyme B and IFN-y (Supplemental Figure 5). In addition, in PD-1"CD8* T cells,
T-box expressed in T cells (T-bet) expression was lower, but eomesodermin (EOMES) expression and
intensity of Mito SOX were higher than in PD-1° or PD-1"CD8* T cells (Supplemental Figure 5). The
Ki-67* T cells increased after treatment (2nd + 3rd) compared with pretreatment (1st) in both PD-1% and
PD-1'" subpopulations, which corresponds to the previous report (Supplemental Figure 5 and ref. 30).
The PD-1° population showed stronger effector phenotypes, such as higher production of granzyme B,
IFN-y, and T-bet, while the PD-1" population showed lower production of these markers. These data
indicate that after PD-1 blockade, highly proliferated T cells express more PD-1 and go into a severe
exhaustion state, whereas moderately proliferated T cells express less PD-1 and keep a greater capacity
to revive to effector T cells. Indeed, the transcriptional expression array analysis in peripheral CD8*
T cells demonstrated that the frequency of PD-1 in CD8* T cells correlated well with the expression
levels of CTLA4 and TIM3, known as exhaustion markers (Supplemental Figure 6A). The frequency of
subpopulations among PD-1%CD8* T cells showed no significant differences between responders and
nonresponders, indicating that quantity rather than quality of CD8*PD-1" T cells was associated with
responsiveness (Supplemental Figure 6B). To test the correlation between the PD-1"CD8* T cells and
tumor antigen load, we also examined the tumor burden as previously described (31). Patients with only
nonmeasurable lesions, including 2 responders and 5 nonresponders, were excluded from this analysis of
tumor burden. As shown in Supplemental Figure 7A, there was no correlation between PD-1" frequency
and tumor burden. Notably, the tumor burden did not correlate to responsiveness to the PD-1 blockade
therapy (Supplemental Figure 7B), suggesting that the tumor burden may not be a determinant of the
severity of exhaustion in patients with NSCLC in our study.

Mitochondrial ROS, which is measured by a dye called Mito SOX, is one of the mitochondrial acti-
vation indicators (11). We found that the ratio of Mito SOX levels in CD8" and CD4" T cells (Mito SOX
CD8/CD4) was higher in pretreated responders (1st samples), and this marker was shared by all marker
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Table 2. The best predictive combination of metabolites selected by AIC regression procedure

Metabolite combination

Selected metabolite Change in responders Samples Platform Data in Supplemental
(time point) relative to nonresponders Figure 3
Cystine (1st) Higher st GC A

Unk8 (1st) Lower GC A
Hippuric acid (1st) Higher LC A
Arabinose (2nd) Higher 1st + 2nd GC B
Arginine (2nd) Higher LC B
Butyrylcarnitine (2nd) Lower LC B
Hippuric acid (1st) Higher 1st +2nd + 3rd LC A
Cystine (2nd) Higher GC C
GSSG (3rd) Higher LC C
Butyrylcarnitine (3rd) Lower LC C

insight.jci.org

combinations as with the PD-18CD8* T cell marker (Table 3 and Figure 4B). These results indicate that
higher mitochondrial activation status in CD8" T cells when normalized by that of CD4" T cells before
treatment is important for a better response (Figure 4B). Because PGC-1 is a master regulator of mitochon-
drial biogenesis and mitochondrial metabolic pathways, such as oxidative phosphorylation and FAO (32,
33), we addressed PGC-1 expression using a polyclonal antibody that recognizes both PGC-10 and PGC-1
(PGC-10f hereafter). Whereas the PGC-1ap expression in CD8" T cells decreased in responders between
the 1st and 2nd samples, it increased between the 2nd and 3rd samples (Table 3 and Figure 4C). Therefore,
the ratio of PGC-1af expression in the 2nd relative to 1st samples was lower in responders but higher in
the 2nd relative to 3rd samples (Figure 4C). To clarify the mechanism of the quick decline of PGC-1af
expression following the first nivolumab injection in responders, we investigated the PGC-1of3 expression
in each population of CD8* T cells. As shown in Supplemental Figure 8A, CCR7-CD8* (effector) T cells
have higher PGC-10f levels than CCR7*CD8" (naive) T cells. Importantly, the frequency of CCR7-CD8*
in PBMCs decreased after the first shot of nivolumab in responders (Supplemental Figure 8B). Therefore,
the quick decline is presumably because the frequency of CCR7-CD8* T cells, which have higher PGC-
lof, decreased in the peripherally circulating PBMCs in responders after nivolumab injection. This inter-
pretation will be discussed later. As other groups have already reported, we also found that the frequency
of CD4* T cells was increased after nivolumab treatment in responders (Table 3, Figure 4D, and ref. 34).
Further analysis revealed that nivolumab treatment increased the population of CD4*CD45RO*CCR7*
(central memory) in responders and decreased CD4*CD45RO CCR7" (terminally differentiated effector
memory CD45RA* T cells) (Supplemental Figure 9).

A combination of the cellular markers associated with suppressive state and mitochondrial status in T cells is
highly predictive. We assessed the error rate of cellular marker combinations I, II, and III by the method
described above. LDA demonstrated clear separation between responders and nonresponders with an
error rate of 19.1% for cellular combination I (Figure 5A). If we define responders and nonresponders
based on the LDA criteria as we did in the metabolic markers, this classification significantly discrim-
inated LDA-R and LDA-NR in both PFS and OS (Figure 5B). The cellular markers in combination
I showed higher AUC in a single or combined mode than the PD-L1 TPS usually used in the clinic,
indicating the importance of the markers derived from the immune properties of patients rather than
those from tumors (Supplemental Table 7, Figure 5B, and Supplemental Figure 1, D and E). LDA of
cellular marker combinations IT and III predicted both LDA-R and LDA-NR with 4.3% error rates, and
there were significant differences (P < 0.05) between LDA-R and LDA-NR in both PFS and OS (Figure
5, C-F). AUC:s for cellular marker combinations I, II, and III were 0.85, 0.96, and 0.93, respectively, by
5-fold cross-validation with logistic regression within the same cohort (Figure 5G). These data indicate
that a combination of cellular biomarkers obtained before the second therapy is sufficient to discrimi-
nate between responders and nonresponders. Although it has been reported that patients with EGFR
mutations show a different response to the PD-1 blockade therapy (24), those patients could be correctly
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Figure 3. A combination of plasma metabolites predicts responsiveness to nivolumab treatment. (A) Linear discriminant analysis (LDA) was used to evaluate
the accuracy of metabolite combination | as a predictive biomarker. Canonical plot of LDA for determination of responders (LDA-R) and nonresponders (LDA-
NR). Each dot represents 1 patient. The vertical dotted line indicates the cutoff value. (B) Kaplan-Meier plots of PFS and 0S of LDA-R (solid line) and LDA-NR
(dotted line) determined by combination I. (C) Canonical plot of LDA based on metabolite combination II. (D) Kaplan-Meier plots of PFS and OS of LDA-R and
LDA-NR in combination Il. (E) Canonical plot for LDA based on metabolite combination Ill. (F) Kaplan-Meier plots of PFS and OS of LDA-R and LDA-NR in combi-
nation Ill. *P < 0.05; **P < 0.01; ***P < 0.001 by log-rank test (B, D, and F). (G) The ROC curve of 5-fold cross-validation for metabolite combinations |, II, and Ill.

determined using our cellular marker combination II (Supplemental Figure 10), suggesting that these
combination markers based on immune properties may be more useful than tumor property—derived

markers alone.

To prospectively validate cellular marker combination II, we measured the 4 cellular markers in a new

cohort (validation cohort) of 24 patients (Figure 1). The LDA criteria of cellular marker combination II

based on the discovery cohort correctly identified responders and nonresponders with an 8.3 % error rate
and AUC was 0.919 with LDA (Figure 5H).
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Table 3. The best combination of cellular markers for prediction selected by AIC regression

Cellular marker combination

Selected cellular marker Change in responders relative Samples Data in Figure 4
(time point) to nonresponders
% of PD-1" among CD8* T cells Lower st A
(1st)
Mito SOX CD8/CD4 (1st) Higher B
% of PD-1" among CD8" T cells Lower 1st + 2nd A
(1st)
Mito SOX CD8/CD4 (1st) Higher
PGC-1o of CD8* T cells Lower C
(2nd/1st)
% of CD4* T cells among PBMCs Higher D
(2nd/1st)
% of PD-1""among CD8* T cells Lower 1st + 2nd + 3rd A
(1st)
Mito SOX CD8/CD4 (1st) Higher B
PGC-1ap of CD8* T cells Higher C
(3rd/2nd)
% of CD4* T cells among PBMCs Higher D
(2nd/1st)

insight.jci.org

The metabolic and cellular markers are linked. We next carried out the stepwise method to select the
best combination of markers among the total metabolic and cellular markers with significant differences
between responders and nonresponders (Supplemental Tables 5 and 6). Surprisingly, all selected markers
were derived from cellular markers, resulting in the same combination and results as shown in Table 3.
Therefore, we hypothesized that there might be a linkage between responsible metabolic and cellular
markers, which might lead us to exclude the metabolic markers. Because cellular combination II was
appropriate for prediction and practical for clinical use as described above, we focused on cellular marker
combination IT and investigated which metabolic markers correlated with each of the cellular markers in
the combination. Spearman’s correlation coefficients (r) were used to measure the association between
the cellular and metabolic markers. Generally, | 7| of more than 0.4 in Spearman’s is considered to have
a modest to strong correlation. We found that PGC-1op expression in CD8* T cells correlated with the
microbiota-related metabolic markers, the frequency of PD-1%CD8* T cells correlated with the FAO-re-
lated metabolic marker, and the T cell Mito SOX marker was correlated with redox-related metabolic
markers (Figure 6A). Note that cystine and pyroglutamic acid are components of glutathione, as shown
in Supplemental Figure 11. We further examined the correlation between the frequency of PD-1"CD8*
T cells and FAO-related gene expression in CD8" T cells. Importantly, the frequency of PD-1" (1st) was
negatively correlated with the transcriptional expression of carnitine palmitoyltransferase 1B (CpT1B)
(2nd) (r = —0.44), which transports acylcarnitine from the cytoplasm into the mitochondria (27-29), sug-
gesting the reduced function of acylcarnitine transportation in PD-1% T cells (Supplemental Figure 12).
Corresponding to this mechanism, in these patients, the frequency of PD-1* population also correlated
with butyrylcarnitine 3rd/1st and hexanoylcarnitine 2nd/1st (Figure 6A and Supplemental Figure 12),
demonstrating that the frequency of the PD-1" marker correlated with plasma increases in these acylcar-
nitine families after nivolumab treatment. This interpretation will be discussed later.

Cluster analysis showed a relative correlation weight between cellular combination IT and metabolic
markers, which can be classified into the 3 groups of (a) microbiota-related metabolites, (b) FAO-relat-
ed metabolites, and (c) redox-related metabolites (Figure 6B). Details of the correlation between cellular
markers and metabolite markers are summarized in Table 4. In conclusion, stepwise discriminant analysis
among all markers excluded the responsible metabolic markers because they were closely linked with par-
ticular cellular markers that had slightly more predictive value than the metabolic markers. The current
data support a link between microbiota activity and T cell energy metabolism, both of which contribute to
the power of antitumor immunity and responsiveness to the PD-1 blockade immunotherapy.
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Figure 4. Particular cellular markers,
including mitochondria status, were selected
to make up a combinatorial predictive
marker. (A) Two representative NSCLC samples
(nonresponder and responder) showing PD-1
and CCRY7 positivity after gating on CD8*
PBMCs (left). Frequency of PD-1"CD8* T cells

in nonresponders and responders in the 1st
samples (right). (B) Representative histograms
of Mito SOX on gated CD4* (black) and CD8*
(red) T cells (left). Ratio of Mito SOX levels

in CD8* and CD4* T cells (Mito SOX CD8/CD4)
for nonresponders and responders in the 1st
samples (right). (C) PGC-1ap of the 1st (black),
2nd (red), and 3rd (blue) samples among CD8*
PBMCs (upper left). MFI of PGC-1af between
the 1st, 2nd, and 3rd samples (upper right). The
solid line and dotted line represent responders
and nonresponders, respectively. Fold change
of PGC-1o3 expression between nonrespond-
ers and responders in the 2nd relative to 1st
samples (lower left) and the 3rd relative to 2nd
samples (lower right). (D) Frequency of CD4* T
cells among PBMCs in the 1st and 2nd samples
(left). The solid line and dotted line represent
responders and nonresponders, respectively.
Fold change of CD4* T cell frequency in the 2nd
relative to 1st samples between nonresponders
and responders (right). Each dot represents

1 patient. Error bars show median and inter-
quartile range. *P < 0.05; **P < 0.01; ****P <
0.0001 by Wilcoxon's rank-sum test.

In this study, we first demonstrated that the combination of several cellular markers of T cell activation status,
including T cell mitochondrial condition, could effectively discriminate responders from nonresponders. The
correlation analysis revealed that the functional activity of CD8" T cells was related to a complex network of
different higher-order function systems, such as the microbiome and energy metabolism. The advantages of
our findings are summarized as follows: (a) we showed that each AUC of our immune property—based markers
is higher than that of the hitherto clinically approved biomarker, PD-L1 TPS; (b) blood-based tests to examine
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Figure 5. A combination of cellular markers could predict survival more precisely. (A) LDA evaluated accuracy of cellular marker combination I. Canonical
plot of LDA for determination of LDA-R and LDA-NR. Each dot represents 1 patient. The vertical dotted line indicates the cutoff value. (B) Kaplan-Meier
plots of PFS and OS of LDA-R (solid line) and LDA-NR (dotted line) on cellular marker combination I. (C) Canonical plot for LDA based on cellular marker
combination Il. (D) Kaplan-Meier plots of PFS and OS of LDA-R and LDA-NR on cellular marker combination Il. (E) Canonical plot for LDA based on cellular
marker combination IIl. (F) Kaplan-Meier plots of PFS and OS of LDA-R and LDA-NR on cellular marker combination Ill. **P < 0.01; ***P < 0.001; ****P <
0.0001 by log-rank test (B, D, and F). (G) The ROC curve of 5-fold cross-validation for cellular marker combinations I, Il, and IlI. (H) Canonical plot and ROC
curve for prospective validation cohort with LDA based on cellular marker combination II.

immune cell properties and/or metabolites would be much simpler and more patient-friendly because testing
phenotypes of tumors usually puts a huge burden on patients; and (c) combination of immune property—based
biomarkers is more powerful than several single immune property—based biomarkers so far proposed (16).

One of the microbiota-derived metabolites, hippuric acid, which was higher in the pretreated samples of
responders, could be an indicator of microbiome diversity and is produced preferentially by Clostridiales (35,
36). Diversity of microbiota and the ratio of Clostridiales are reported to be higher in PD-1 blockade therapy
responders, which supports our results that hippuric acid is higher in responders. So far, identification of
particular strains of microbiota involved in antitumor activation is still quite difficult because of numerous
species of microbiota in the gut (17). However, measuring a few common metabolites, such as hippuric acid,
indoxyl sulfate, and 4-cresol, produced by numerous kinds of microbiota would facilitate the quick, com-
prehensive evaluation of microbiota status without deep sequencing of microbiota 16s rRNA. Considering
that the levels of microbiota-derived metabolites correlated with PGC-1af expression levels in CD8* T cells,
some components of microbiota may affect the mitochondrial activation of peripheral CD8* T cells, though
the mechanism behind microbiota regulation of peripheral CD8* T cells remains largely unknown (18).

We showed that the temporal reduction of PGC-1af may be due to the decrement of effector CD8* T cells
(CCRT7 population) from the blood, which express higher PGC-1ap than CD8* naive T cells (CCR7* popula-
tion). We and other groups previously indicated the cancer-immunity cycle theory is critical for robust antitumor
immunity where effector T cells traffic to the tumor site, guided by the gradient of IFN-y—induced chemokines
released from the tumor site during the PD-1 blockade therapy (8, 11). Therefore, it is anticipated that PD-1
blockade triggers the trafficking of peripheral effector T cells to the tumor site preferentially in the responders.
Given that microbiota affect the activation status of effector T cells (17, 35, 36), it would be reasonable that
plasma hippuric acid levels and PGC-1af3 expression in the peripheral CD8* T cells have moderate to high cor-
relation with each other because PGC-1af expression is higher in effector CD8* T cells than naive CD8* T cells.

We previously reported that FAO is important to produce sufficient ATP, which is required for longevity
in effector T cells (13). When FAO is promoted, acylcarnitines are substantially transported into the mito-
chondrial matrix, resulting in the reduction of acylcarnitine levels in the plasma (27-29, 37, 38). Therefore,
plasma levels of acylcarnitine species could be an indicator of robustness in mitochondrial function or FAO
usage in inflammation mediated by immunity (39—41). In the present study, acylcarnitines (butyrylcarnitine,
isovalerylcarnitine, and hexanoylcarnitine) were elevated in nonresponders, especially in the latter seconnd
and third phases, suggesting that the function of FAO in CD8" T cells is attenuated in nonresponders (38).
The substantial correlation between higher acylcarnitine levels and higher frequency of PD-1"MCD8* T cells
suggests the presence of a large number of severely exhausted CD8" T cells, which have a weaker FAO
function in nonresponders. Indeed, the frequency of PD-1" negatively correlated with the transcriptional
expression of CpT1B in CD8* T cells, which serves as a transporter of acylcarnitine families from cytoplasm
into mitochondria. Given that (a) PD-1°CD8* T cells proliferated less and retained the effector function and
(b) PD-1°CD8" T cells had lower levels of CTLA-4 and Tim-3 based on correlation analysis, it is likely that
PD-1MCD8* T cells are in irreversible exhaustion states associated with the FAO defect in the periphery.
However, the precise mechanistic linkage of FAO defect and T cell dysfunction is largely unknown.

Although we recruited 55 and 26 patients for the discovery and validation cohorts, respectively, the
cohorts are rather small to obtain high reliability. However, validation is difficult in a larger cohort under
the same conditions because the use of PD-1 blockade antibody single therapy is currently very rare because
of the clinical strategy of combination therapy in patients with NSCLC. It will be important to test our bio-
markers for the combination therapy as well in the future. Considering the convenience of specific metabolite
measurement and the difficulties in technical variations for cellular marker measurements between different
facilities, the combination of particular metabolites might be more practical in the clinic. Our new insight
sheds light on the use of combinatorial biomarkers for cancer immunotherapy, which would provide nonre-
sponders another opportunity to have immunotherapy and improve therapeutic efficacy.
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Figure 6. Modest correlation between particular cellular and metabolite markers excludes metabolite makers from the combinatorial candidate biomarker. (A)
Scatter plots between cellular markers (x axis) and metabolite markers (y axis). The dots represent the responders and the circles indicate the nonresponders. r,
Spearman’s correlation coefficients. Generally, |r| of more than 0.4 in Spearman’s is considered to have a modest to strong correlation. (B) A clustered heatmap of
absolute correlation coefficients over all marker pairs detected in A (using Spearman’s correlation distance and complete linkage). Dark denotes higher correlation
(|r| close to 1) and light lower correlation (|f| close to 0). The markers clustered into 3 groups, which were designated as metabolic categories |, II, and 1l
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Methods

Study design and participants. The study subjects, patients with NSCLC receiving nivolumab (anti—-PD-1
blocking antibody) at Kyoto University Hospital, consented to the collection and storage of blood sam-
ples during treatment and allowed review of their medical records for past medical history, cancer tumor
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Table 4. Correlation between cellular and metabolite markers

Cellular markers Metabolite markers Metabolite category
(Change in responders relative to nonresponders) (Change in responders relative to nonresponders)
PGC-1ap of CD8* T cells (2nd/1st) (lower) Indoxyl sulfate (3rd) (higher) (I) Microbiome-related metabolites

Hippuric acid (3rd) (higher)
Hippuric acid (3rd/1st) (higher)

Percentage of PD-1" among CD8* T cells Butyrylcarnitine (3rd/1st) (lower) (1) FAO-related metabolites

(1st) (lower)

Mito SOX CD8/CD4 (1st) (higher) Cystine (2nd) (higher) (1) Redox-related metabolites

Pyroglutamic acid (2nd/1st) (higher)

type, toxicity assessments, and clinical response, survival, and laboratory data. We enrolled 55 patients
with NSCLC, all of whom had previously received other chemotherapy. This study included 39 male and
16 female patients, aged between 31 and 83 years (median 68). Forty-three patients (78.2% among all
patients) were diagnosed with adenocarcinoma, including 9 patients with EGFR mutation (17.3% among
52 patients) and 3 patients with anaplastic lymphoma kinase translocation (6.8% among 44 patients) (Sup-
plemental Table 1). Patients received nivolumab (3 mg/kg) through i.v. infusion every 2 weeks (1 cycle)
until disease progression or the emergence of an unacceptable side effect. At a median follow-up time of
455 days (range, 29 to 861 days), the median PFS and OS were 147 days (95% CI, 76 to 300 days) and
629 days (95% CI, 408 days to not reached), respectively (Supplemental Figure 1A). Among 55 patients
enrolled, 8 patients had to stop the therapy because of severe side effects and other reasons (Figure 1).
Blood samples were collected just before the first, second, and third nivolumab injection. Tumor size was
measured by CT and evaluated for response using Response Evaluation Criteria in Solid Tumors 1.1.
Total measurable tumor burden was defined as the sum of the long axis of all measurable lesions of the
pretreatment CT as previously described (31). To assess PD-L1 expression, we performed PD-L1 ITHC
using the PD-L1 IHC 22C3 pharmDx kit (Agilent Technologies) as previously described (42). TPS was
defined as tumor PD-L1 expression frequency. PD-L1 TPS was classified into PD-L1 negative, weakly
positive, or strongly positive (<1%, 1%—49 %, and =50%, respectively) (42).

For the prospective validation study, 26 patients with NSCLC who had received nivolumab or pem-
brolizumab at Kyoto University Hospital were independently enrolled. Of these 26, 2 had to stop the
therapy because of severe side effects, leaving us with the data of 24 patients for analysis (Figure 1).
For functional analysis of the PD-1"CD8" T cell population, we assessed 16 patients among 24 patients
enrolled for the validation.

Thirty healthy blood donors were recruited at the Medical Examination Center at Takeda Hospital.
Their age was between 46 and 78 (mean 66) years, and they included 22 male and 8 female donors.

Sample preparation for plasma metabolome measurement. Peripheral blood samples were collected in 7-mL
EDTA vacutainers (Venoject I, VP-NA(070K), immediately stored in a CubeCooler (Forte Grow Medical
Co. Ltd.), and kept at 4°C until centrifugation at 4°C at 1800 g for 15 minutes. All the harvested plasma
samples were then stored at —80°C until analysis. For GC-MS analysis, 50 pL of plasma was mixed with
256 pL of a solvent mixture (methanol/water/chloroform = 2.5:1:1) containing 2.34 pg/mL of 2-isopro-
pylmalic acid (MilliporeSigma), which was used as an internal standard. The obtained mixture was shaken
at 1200 rpm for 30 minutes at 37°C (Maximizer MBR-022UP, Taitec). After centrifugation at 16,000 g for
5 minutes at 25°C, 150 pL of supernatant was collected and mixed with 140 pL of purified water followed
by vortex mixing for 5 seconds. After centrifugation at 16,000 g for 5 minutes at 25°C, 180 puL of superna-
tant was dried in a centrifugal evaporator (CVE-3100, Tokyo Rikakikai Co. Ltd.). The dried sample was
dissolved in 80 puL. of methoxyamine solution (20 mg/mL in pyridine, MilliporeSigma) and shaken at 1200
rpm for 30 minutes at 37°C. Forty microliters of N-methyl-N-trimethylsilyl-trifluoroacetamide solution
(GL Sciences) was added for trimethylsilyl derivatization, followed by agitation at 1200 rpm for 30 minutes
at 37°C. After centrifugation, 50 pL of supernatant was transferred to a glass vial and subjected to GC-MS
measurement. For LC-MS analysis, the metabolite extraction protocol was slightly changed. Fifty microli-
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ters of plasma was mixed with 256 pL of methanol and shaken at 1200 rpm for 10 minutes at 37°C. After
centrifugation at 16,000 g for 30 minutes at 25°C, 150 uL of supernatant was mixed with 90 uL of 1% acetic
acid in water and 120 puL of chloroform, followed by vortex mixing for 15 seconds. After centrifugation at
2000 g for 10 minutes at 25°C, 150 pL of the upper layer was dried and solubilized in 50 pL of 0.1% formic
acid in water and then subjected to LC-MS analysis.

Plasma metabolome analysis. GC-MS analysis was performed with a GCMS-QP2010 Ultra (Shimadzu).
The derivatized metabolites were separated on a DB-5 column (30 m x 0.25 mm inner diameter, film thick-
ness 1.0 um, Agilent Technologies). The helium carrier gas was set at a flow rate of 39 cm/s. The inlet tem-
perature was 280°C and the column temperature was first held at 80°C for 2 minutes, then raised at a rate of
15°C/min to 330°C and held for 6 minutes. One microliter of the sample was injected into the GC-MS in
the split mode (split ratio 1:3). The mass spectra were obtained under the following conditions: electron ion-
ization (ionization voltage 70 eV), ion source temperature 200°C, interface temperature 250°C, and full scan
mode in the range of m/z 85 to 500 and scan rate 0.3 s/scan. Identification of chromatographic peaks was
performed using the National Institute of Standards and Technology Research Library or Shimadzu GC/
MS database and further confirmed with authentic commercial standards. For semiquantitative analysis,
the area of each metabolite peak was calculated and divided by the area of the internal standard peak. LC
separation was conducted on a Shim-pack GIST C18-AQ column (3 pm, 150 mm X 2.1 mm id, Shimadzu
GLC) with a Nexera UHPLC system (Shimadzu). The mobile phase consisted of 0.1% formic acid in water
(A) and 0.1% formic acid in acetonitrile (B). The gradient program was as follows: 0 to 3 minutes, 0% B; 3
to 15 minutes, linear gradient to 60% B; 15.0 to 17.5 minutes, 95% B; 17.5 to 20.0 minutes, linear gradient
to 0% B; hold for 4 minutes; flow rate, 0.2 mL/min. The column oven temperature was maintained at 40°C.
The LC system was coupled with a triple-quadrupole mass spectrometer, LCMS-8060 (Shimadzu). LCMS-
8060 was operated with the electrospray ionization and multiple reaction monitoring mode. All ion transi-
tions and collision energies were optimized experimentally by using authentic standards of each metabolite.
Three microliters of the sample was injected into the LC-MS system. Quality control (QC, pooled plasma)
samples were subjected to the same preparation protocol and injected every 10 and 5 samples for GC-MS
and LC-MS analysis, respectively. Each metabolite’s signals were normalized with a QC-based correction
method using the smooth-spline algorithm (43-45). Information on all the measured metabolites, including
retention time, 7/z, and ion transitions, is summarized in Supplemental Tables 2 and 3.

Flow cytometry. Fresh PBMCs were isolated by Ficoll density gradient centrifugation. PBMCs were
immediately stained using the following antibodies: anti-CD8a (RPA-T8, TONBO), -CD8 (SK1, TON-
BO), -CD4 (RPA-T4, SK3, TONBO), -CD45RA (HI100, TONBO), -CD45RO (UCHL1, BioLegend),
-CCR7 (3D12, eBioscience), -PD-1 (EH12.2H7, BioLegend), -Tim3 (F38-2E2, BioLegend), -KLRG1
(13F12F2, eBioscience), -CD25 (BC96, BioLegend), -CXCR3 (G025H7, BioLegend), -CCR6 (G034E3,
BioLegend), —T-bet (4B10, BioLegend), -EOMES (WD1928, eBioscience), —-Ki-67 (SolA15, eBiosci-
ence), -CTLA-4 (BNI3, TONBO), -p-mTOR (MRRBY, eBioscience), —p-Akt1 (Ser473) (SDRNR, eBio-
science), —granzyme B (GB11, BioLegend), -IFN-y (4S.B3, BD Biosciences), and -FOXP3 (236A/E7,
BD Biosciences). PGC-1 expression was detected by anti-PGC-1a (rabbit polyclonal, Abcam, ab72230),
which recognizes both PGC-1a and PGC-1, followed by secondary staining with goat anti-rabbit IgG
(Santa Cruz Biotechnology, sc-3739). Live/dead cell discrimination was performed using 7-AAD stain-
ing solution (TONBO, 13-6993). Intracellular staining was performed using a FOXP3 fixation kit (eBio-
science). For assessment of intracellular phosphoproteins, cells were permeabilized with 0.5% Triton
X-100 and fixed with 1.5% paraformaldehyde before staining. Acquisition of samples was carried out
on the BD FACSCanto II cell analyzer (BD Biosciences). Data were collected using the BD FACSDiva
Software version 6.1.3 and further analyzed with FlowJo 10.4 (Tree Star Inc.). Data were gated on live
(7-AAD") and single cells. Determination of mitochondrial mass, membrane potential, mitochondrial
superoxide, and cellular ROS was performed using MitoTracker Green, MitoTracker Deep Red, Mito-
SOX Red, and CellROX Green reagents, respectively (all from Life Technologies). These dyes were add-
ed to cells and incubated at 37°C in a 5% CO, humidified incubator for 30 minutes, followed by surface
staining. Intracellular staining for granzyme B and IFN-y was performed following treatment with plate-
bound anti-CD3 (OKT3, TONBO) and anti-CD28 (55725, BD Pharmingen) for 6 hours in the presence
of Brefeldin A (eBioscience) and Monensin (eBioscience) for the last 4 hours. After nivolumab treat-
ment, anti-PD-1 (EH12.2H7, APC conjugated, BioLegend) antibody was added to cells and incubated
at 37°C in a 5% CO, humidified incubator for 60 minutes, followed by other surface staining.
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Microarray analysis of patients’ CD8" T cells. We isolated peripheral CD8" T cells from the same cohorts
available (1st samples, # = 33; 2nd samples, n = 27). CD8" T cells were purified from patients’ PBMCs by
AutoMACS according to the manufacturer’s instructions (Miltenyi Biotec, 130-045-201).

Total RNA was isolated with RNeasy Micro Kit (Qiagen). The quality of extracted RNA was analyzed
using TapeStation (Agilent Technologies). Five nanograms of total RNA was labeled using the GeneChip
WT Pico Reagent Kit (Thermo Fisher Scientific) and hybridized to GeneChip Clariom D Assay, Human
(Thermo Fisher Scientific). The array data were analyzed using Signal Space Transformation-Robust Multi-
Chip Analysis and Sketch-Quantile normalization (Expression Console Software). Then we applied the
Linear Models for Microarray Analysis (limma) package of Bioconductor software (46) and obtained dif-
ferentially expressed genes. Functional analysis of the decreased gene expression was performed using the
Database for Annotation, Visualization and Integrated Discovery (http://david.ncifcrf.gov) (47). Microar-
ray data have been deposited under Gene Expression Omnibus accession number GSE141479.

Statistics. Data are reported as the median and interquartile range. A Wilcoxon rank-sum test was con-
ducted to compare the 2 groups. A Kruskal-Wallis test followed by Dunn’s test for multiple comparisons
were conducted to compare the difference across independent groups. The stepwise AIC regression proce-
dure was performed to select the best marker combination. Then LDA was performed by using the estimated
biomarker combination to predict the reliability and failure rate. To adjust the cutoff value to 0, we changed
the constant value of the equation of LDA as shown in Supplemental Table 8. For the validation study, we
used the same equation as LDA combination II. The prediction model was evaluated with 5-fold cross-vali-
dation and LDA to calculate AUCs for the discovery and validation cohorts, respectively. The survival rates
of different groups of patients were calculated with the Kaplan-Meier method and presented graphically as
a survival curve. A comparison of survival curves between 2 groups was tested by log-rank test. Spearman’s
or Pearson’s correlation coefficient was used to calculate the association between the cellular markers, the
metabolic markers, and gene expression levels. JMP software (version 12.0.0; SAS Institute Inc.), R software
(version 3.4.4), DataRobot (version 4.3.0), and Prism software (version 6.0h; GraphPad Software) were used
for data management and statistical analyses. Significance levels were set at P < 0.05 for all tests.

Study approval. All patient and donor samples were obtained from subjects who provided informed
consent for blood use in accordance with the Declaration of Helsinki and with approval from the Ethics
Committee of Kyoto University (G1012).
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Supplementary Fig. S1. Survival rates are compared between sorted groups based on different
criteria. A) Kaplan—Meier plots of PFS and OS of all patients enrolled in this study. B) Kaplan—Meier
plots of PFS and OS of patients sorted by the criteria of PFS > 3 months (solid line) and PFS < 3 months
(dotted line). C) The solid line and dotted line show patients with PFS > 6 months and PFS < 6 months,
respectively. ****p < 0.0001 by Log-rank test. D) Kaplan—Meier plots of PFS and OS of patients sorted by
frequency of PD-L1 expression on tumors. The dashed line, solid line, and dotted line show patients with
high PD-L1 expression (greater than 50%), low PD-L1 expression (1-50%), and rare PD-L1 expression
(less than 1%), respectively. E) The solid line and dotted line show patients with positive expression
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(greater than 1%) and negative expression (less than 1%) of PD-L1, respectively.
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Supplementary Fig. S2. Behaviors of microbiota-derived metabolites and acylcarnitine species.
A) The peak area measured by GC- or LC-MS of each microbiome related metabolites in patients
without pre-antibiotics treatment (ATB(-)) and with pre-antibiotics treatment (ATB(+)) are shown. These
graphs display the data of the 1st + 2nd + 3rd samples. **p < 0.01, ****p < 0.0001 by Wilcoxon rank sum
test. B) The peak areas measured by GC-MS of hippuric acid and indoxyl sulfate in non-responders
(NR) and responders (R) are shown. Each dot represents one patient. Error bars show median and
interquartile range. *p < 0.05, **p < 0.01, ***p < 0.001 by Kruskal-Wallis test followed by Dunn’s multiple
comparisons test. C) Kaplan—Meier plots of PFS and OS of patients with (solid line) and without ATB
(dotted line) within 3 months prior to the first nivolumab injection. D) The peak area detected by LC-MS
of acylcarnitines between 1st, 279 and 34 samples are shown. The solid line and dotted line represent
responders and non-responders, respectively. *p < 0.05, **p < 0.01 by Wilcoxon rank sum test.
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Supplementary Fig. S3. Detailed data of metabolite markers selected by stepwise analysis.
A-C) Graphs show comparison of peak areas of metabolic markers selected by stepwise analysis
between non-responders and responders. Each dot represents one patient. Error bars indicate the
median and interquartile range. *p < 0.05, **p < 0.01 by Wilcoxon rank sum test.
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Supplementary Fig. S4. Definition of PD-1hish, A) Overlay histograms of PD-1 intensity gated on
CD8* T cells from age-matched 30 healthy donors. Lines show the 50th, 90t 97t and 99t percentile
of PD-1 intensity averaged with the donors. The correlation r values between % of PD-1"igh based on
each percentile and gene expression of exhaustion markers (CTLA-4, Tim-3 and Lag-3) in the
patients’ CD8* T cells are shown in the table. Since r values are highest in 97" percentile, the 97t
percentile was used as cut-off in this study. B) Graph shows total PD-1 positive frequency among
peripheral CD8* T cells in non-responders (NR) and responders (R) at the pre-treatment (1st) point.
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Supplementary Fig. S5. Detailed phenotypes of PD-1 positive subsets in CD8* T cells. FACS data
show the expression levels of PD-1, Ki-67, Granzyme B, IFN-y, T-bet, EOMES, and Mito SOX among
CD8* T cell in PBMC. Representative FACS plots of NSCLC samples are depicted (left panels).

Indicated parameters between PD-1", PD-1'ov, and PD-1 negative CD8* T cells are shown.

*p < 0.05,

**p < 0.01, *™*p < 0.001, ****p < 0.0001 by Kruskal-Wallis test followed by Dunn’s multiple comparisons
test.
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PD-1{high p-value* point Number of patients analyzed
Ki67+ (%) 0.31 1st 16
Ki67+ (%) 0.19 2nd 16
Ki67+ (%) 0.91 3rd 13
Granzyme B* (%) 0.18 1st 16
Granzyme B* (%) 0.85 2nd 16
Granzyme B* (%) 0.25 3rd 13
IFN-y* (%) 0.43 1st 16
IFN-y* (%) 0.51 2nd 16
IFN-y* (%) 0.65 3rd 13
T-bet* (%) 0.32 1st 16
T-bet* (%) 0.32 2nd 16
T-bet* (%) 0.71 3rd 13
EOMES* (%) 0.09 1st 16
EOMES* (%) 0.83 2nd 16
EOMES* (%) 0.15 3rd 13

*: p-value for distinction between R and NR (Wilcoxon rank sum test).

Supplementary Fig. S6. Characteristics of PD-1hish CD8* T cells. A) Scatter plots between frequency
of PD-1high (X-axis) and exhaustion marker gene expression in purified CD8* T cells from the same
cohort (Y-axis). r: Pearson correlation coefficients. Generally, |r| of more than 0.6 in Pearson are
considered to have strong correlation. B) p-values of each frequency among CD8* PD-1high T cells
between non-responders and responders are listed in the table.
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Supplementary Fig. S7. Correlation analysis between PD-1high CD8* T cells and tumor burden. A)
Scatter plots between frequency of PD-1hish (X-axis) and tumor barden (Y-axis). The dots and the circles
represent the responders and the non-responders, respectively. r: Spearman correlation coefficients. B)
Graphs show comparison of tumor burden between non-responders and responders. Each dot
represents one patient. Error bars indicate the median and interquartile range.
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Supplementary Fig. S8. CCR7- CD8* T cells with higher PGC-1a expression decreased by PD-1
blockade.

A) PGC-1ap expression (MFI) between CCR7- and CCR7* T cells in the 1st (left), 24 (middle), and 3
samples (right) were shown. Each dot represents one patient. Error bars indicate the median and
interquartile range. *p < 0.05 by Wilcoxon rank sum test. B) Frequency of CCR7- among peripheral CD8* T
cells in the 1st, 24, and 3@ samples (left). The solid line and dotted line represent responders and non-
responders, respectively. Fold change (2"9/1st) of CCR7- frequency among CD8* T cells in non-responders
and responders (right). **p < 0.01 by Wilcoxon rank sum test.
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Supplementary Fig. S9. Change of CD4* T cell subset ratios by PD-1 blockade. CD4* T cells are

divided into naive, Tcm, Tem, and Temra subsets according to the expression of CD45R0O and CCR7
(left panel). The frequency of CD4* Tcm and CD4* Temra in non-responders and responders is shown
(middle and right panels). **p < 0.01 by Wilcoxon rank sum test.



Supplementary Fig. S10

Cellular marker combination Il
(NSCLC patients with EGFR mutation, error rate: 0%)

R 4 o
NR 4 e o o o o ‘.
4 2 0 2 4
Canonical 1

Supplementary Fig. S10. Results of cellular marker combination Il in patients with EGFR mutation.
Canonical plot for NSCLC patients with EGFR mutation based on cellular marker combination Il.



Supplementary Fig. S11

Pyroglutamic acid === | -Glutamate Cysteine =2 Cystine
G—

A 4

L-y-Glutamylcysteine

Glycine

v

GSSG GSH

Supplementary Fig. S11. Schema showing biosynthesis and metabolism of glutathione.
L-Glutamate and Cysteine are combined to form L-y-Glutamylcysteine, which is then combined with
glycine to yield GSH. GSH is oxidized into its oxidized form (GSSG) after reaction with reactive oxygen
species (ROS).
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Supplementary Fig. S12. Modest correlation between % of PD-1hish among CD8* T cells and FAO-
related factors. Scatter plots between frequency of PD-1high (X-axis) and the FAO-related gene (left
panel) or metabolite marker (right panel) (Y-axis). r: Spearman correlation coefficients. |r| of more than
0.4 in spearman are considered to have modest to strong correlation.



Supplementary Table S1

Patient demographics (discovery cohort).

All patients responders non-responders dropout
Number 55 25 22 8
Age (range) 31-83 48-83 33-81 31-79
Age (median) 68 70 64.5 70
Male 39 (70.9%) 19 (76.0%) 15 (68.2%) 5 (62.5%)
Adenocarcinoma 43 (78.2%) 18 (72.0%) 18 (81.8%) 7 (87.5%)
EGFR mutation 9 (17.3%) 1(7.0%) 7 (35.0%) 1(12.5%)
ALK translocation 3 (6.8%) 0 (0%) 2(7.1%) 1(14.3%)
Antibiotics treatment 17 (30.9%) 6 (24.0%) 8 (36.4%) 3 (37.5%)




Supplementary Table S2

Metabolites measured by GC-MS.

Name Kegg ID HMDB ID Methyloxime/TMS derivative miz 5:::("':;’)‘ Name Kegg ID HMDB ID Methyloxime/TMS derivative m/z Retention
1,5-Anhydro-D-sorbitol C07326 HMDB0002712 1,5-Anhydro-D-sorbitol-4TMS 259.0 14.77 Hypotaurine C00519 HMDB0000965 Hypotaurine-3TMS 188.1 12.92
1,6-Anhydroglucose - HMDB0000640 1,6-Anhydro-beta-D-glucose-3TMS 204.0 13.70 Hypoxanthine C00262 HMDB0000157 Hypoxanthine-2TMS 265.0 14.50
1-Hexadecanol C00823 HMDB0003424 1-Hexadecanol-TMS 299.0 15.37 Indoleacetic acid C00954 HMDBO0000197 Indol-3-acetic acid-2TMS 202.0 15.68
2-Aminoadipic acid C00956 HMDB0000510 2-Aminoadipic acid-3TMS 260.0 13.62 Indolelactic acid C02043 HMDB0000671 Indolelactic acid-3TMS 202.0 17.08
2-Aminobutyric acid C02356 HMDB0000452 2-Aminobutyric acid-2TMS 130.0 8.69 Indoxyl sulfate - HMDB0000682 Indoxyl sulfate-2TMS 277.0 13.84
2-Aminoethanol C00189 HMDB0000149 2-Aminoethanol-3TMS 174.0 9.77 Isocitric acid C00311 HMDBO0000193 Isocitric acid-4TMS 245.0 14.41
2-Deoxytetronic acid - HMDB0000337 2-Deoxytetronic acid-3TMS 321.0 11.20 Isoleucine C16434 HMDBO0000172 Isoleucine-2TMS 232.0 9.99
2-Hydroxybutyric acid C05984 HMDB0000008 2-Hydroxybutyric acid-2TMS 131.0 8.17 Kynurenine C00328 HMDB0000684 Kynurenine-3TMS 307.0 17.07
2-Hydroxyisobutyric acid - HMDB0000729 2-Hydroxyisobutyric acid-2TMS 131.0 7.46 Lactic acid C00186 HMDBO0000190 Lactic acid-2TMS 219.0 7.39
2-Hydroxyisovaleric acid - HMDB0000407 2-Hydroxyisovaleric acid-2TMS 145.0 8.61 Lauric acid C02679 HMDBO0000638 Lauric acid-TMS 257.0 13.11
2-Hydroxypyridine C02502 HMDBO0013751 2-Hydroxypyridine-TMS 152.0 7.22 Leucine C00123 HMDB0000687 Leucine-2TMS 232.0 9.74
2-Oxobutyric acid C00109 HMDB0000005 2-Oxobutyric acid-methyloxime-TMS ~ 188.0 7.86 Linoleic acid C01595 HMDB0000673 Linoleic acid-TMS 337.0 17.06
i‘gggﬁ'f'a‘:g‘;ggi)d o C00026 HMDB0000208 2-Oxoglutaric acid-methyloxime-2TMS  198.0 12.47 Lysine €00047 HMDB0000182 Lysine-4TMS 1740 15.23
o on s g o e
ﬁﬁ,&ﬁ%’gﬁ:zﬂg; - HMDB0002643 ﬁ;f;’;;’;i;%ﬁg:ﬁ";’g}iﬁ,\ﬁs 267.0 14.68 Mannose €00159 HMDB0000169 Mannose-methyloxime-5TMS 319.0 15.05
3-Aminoisobutyric acid C05145 HMDB0003911 3-Aminoisobutyric acid-3TMS 304.0 11.67 Margaric acid - HMDB0002259 Margaric acid-TMS 117.0 16.58
3-Hydroxybutyric acid C01089 HMDBO0000357 3-Hydroxybutyric acid-2TMS 191.0 8.51 Methionine C00073 HMDB0000696 Methionine-2TMS 250.0 12.14
3-Hydroxyisobutyric acid C06001 HMDB0000023 3-Hydroxyisobutyric acid-2TMS 177.0 8.51 myo-Inositol C00137 HMDB0000211 myo-Inositol-6TMS 432.0 16.54
3-Hydroxyisovaleric acid - HMDB0000754 3-Hydroxyisovaleric acid-2TMS 131.0 9.09 Myristic acid C06424 HMDB0000806 Myristic acid-TMS 285.0 14.60
3-Indolepropionic acid - HMDB0002302 3-Indolepropionic acid-2TMS 202.0 16.50 Octanoic acid C06423 HMDB0000482 Octanoic acid-TMS 201.0 9.62
3-Methyl-2-oxobutyric acid C00141 HMDBO0000019 i}zﬂtﬁ;lrg)l”igx?%yrlc acid- 89.0 7.96 Oleic acid €00712 HMDB0000207 Oleic acid-TMS 339.0 17.08
3-Methyl-2-oxovaleric acid 00671 HMDB0000491 3-Methyl—_2—oxovaleric acid- 2000 8.97 0-Phosphoethanolamine C00346 HMDB0000224 O-Phosphoethanolamine-4TMS 299.0 14.29
methyloxime-TMS Ornithine €00077 HMDB0000214 Ornithine-4TMS 4200 14.52
3-Methylhistidine C01152 HMDBO0000479 3-Methylhistidine-2TMS 168.0 15.01 Oxalic acid £00209 HMDB0002329 Oxalic acid-2TMS 219.0 8.13
4-Cresol C01468 HMDBO001858 4-Cresol- TMS 1800 8.56 Palmitic acid 00249 HMDB0000220 Palmitic acid TMS 313.0 15.95
4-Hydroxyproline CO1157 HMDBO000725 4-Hydroxyproline-3TMS 1400 12.15 Palmitoleic acid 08362 HMDB0003229 Palmitoleic acid-TMS 3110 15.85
Acetoacetic acid C00164 HMDBO0000060 Acetoacetic acid-methyloxime-TMS 203.0 8.01 Paraxanthine C13747 HMDBO001860 Paraxanthine-TMS 237.0 15.77
Aconitic acid C02341 HMDBO0000958 Aconitic acid-3TMS 375.0 13.81 Phenol €00146 HMDBO000228 Phenol-TMS 166.0 7.45
Alanine €00041 HMDB0000161 Alanine-2TMS 218.0 7.91 Phenylalanine 00079 HMDBO0000159 Phenylalanine-2TMS 192.0 1312
Alanine €00041 HMDB0000161 Alanine-3TMS 1880 10.77 Phosphogycerol 03189 HMDBO000126 Phosphogycerol-4TMS 445.0 14.00
Allose C01487 HMDBOOD1151 Allose-methyloxime-5TMS 2050 15.00 Phosphoric acid 00009 HMDB0002142 Phosphoric acid-3TMS 225.0 9.76
Arabinonic acid . HMDB0000539. Arabinonic acic-5TMS 2920 14.23 Pipecolinic acid 00408 HMDBO000070 Pipecolinic acid-TMS 156.0 10.44
Arabinose C00259 HMDBO0000646 Arabinose-methyloxime-4TMS 307.0 13.26 Proline £00148 HMDBO000162 Proline-2TMS 216.0 10.12
Arabitol €01904 HMDB0000568 Arabitol-5TMS 2170 1378 Pyroglutamic acid C01879  HMDBO000267 5-Oxoproline-2TMS 2580 12.21
Asparagine C00152 HMDBO0000168 Asparagine-3TMS 231.0 13.32 Pyrophosphate ) HMDB0000250 Pyrophosphate-4TMS 4510 13.32
Aspartic acld C00043 HMDBODDD191 Aspartic acid-3TMS 2320 1203 Pyruvic acid 00022 HMDB0000243 Pyruvic acid-methyloxime-TMS 1740 7.23
Benzoic acid C00180 HMDB0001870 Benzoic acid-TMS 179.0 9.60 Ribitol C00474 HMDB0000508 Ribitol-5TMS 319.0 13.81
beta-Alanine C00099 HMDBO0000056 beta-Alanine-3TMS 290.0 11.31 Ribose €00121 HMDB0000283 Ribose-methyloxime-4TMS 307.0 13.38
Boric acid C12486 HMDBO035731 Boric acid-3TMS 263.0 6.49 Ribulose 00309 HMDB0000621 Ribulose-methyloxime-4TMS 263.0 13.38
Caffeine C07481 HMDBO001847 Caffeine 1940 15.08 scyllo-Inositol C06153 HMDB0006088 scyllo-Inositol-6TMS 318.0 16.11
Caproic acid C01585 HMDBO0000535 Caproic acid-TMS 173.0 7.52 Serine 00065 HMDB0000187 Serine-3TMS 306.0 10.58
Citric acid C00158 HMDB0000094 Citric acid-4TMS 363.0 14.45 Stearic acid 01530 HMDB0000827 Stearic acid-TMS 341.0 17.18
Citrulline ©00327 HMDBOO00S04. Citrulline-4TMS 256.0 14.48 Succinic acid C00042 HMDB0000254 Succinic acid-2TMS 247.0 10.10
Creatinine C00791 HMDBO0000562 Creatinine-3TMS 115.0 12.58 Sucrose 00089 HMDB0000258 Sucrose-8TMS 361.0 19.79
Cysteine 00097 HMDBO000574 Cysteine-3TMS 218.0 1244 Taurine 00245 HMDB0000251 2-Aminoethanesulfonic acid-3TMS 3260 13.50
Cysteinylglycine C01419 HMDBO0000078 Cysteinylglycine-3TMS 220.0 16.14 Threitol 16884 HMDBO004136 Thereitol-4TMS 217.0 11.84
Cystine C00491 HMDB0000192 Cystine-4TMS 4110 17.67 Threonic acid C01620 HMDB0000943 Threonic acid-4TMS 292.0 12.38
Decanoic acid C01571 HMDBO0000511 Decanoic acid-TMS 229.0 11.47 Threonine £00188 HMDBO000167 Threonine-3TMS 291.0 10.86
Elaidic acid C01712 HMDBO0000573 Elaidic acid-TMS 93.0 17.11 Tryptophan C00078 HMDB0000929 Tryptophan-3TMS 291.0 17.34
Erythritol C00503 HMDB0002994 Erythritol-4TMS 217.0 11.92 Tyrosine €00082 HMDB0000158 Tyrosine-3TMS 382.0 15.39
Fructose C00095 HMDBO0000660 Fructose-methyloxime-5TMS 307.0 14.92 Unki2* ) R R 196.0 14.50
Fucose C01019 HMDBO0000174 Fucose-methyloxime-5TMS 117.0 13.89 Unk3* ) R R 170.0 8.98
Fumaric acid coo122 HMDB0000134 Fumaric acid-2TMS 245.0 10.37 Unkd* N N - 319.0 9.56
Gluconic acid C00257 HMDBO0000625 Gluconic acid-methyloxime-5TMS 292.0 15.94 Unk6* - - - 320.0 11.66
Glucose C00031 HMDBO0000122 Glucose-methyloxime-5TMS 229.0 15.32 Unk8* - - - 116.0 13.96
Glucuronic acid C00191 HMDBO0000127 Glucuronic acid-methyloxime-5TMS 423.0 15.47 Unk9* - - - 217.0 14.04
Glutamic acid C00025 HMDBO0000148 Glutamic acid-3TMS 246.0 12.85 Urea C00086 HMDB0000294 Urea-2TMS 204.0 9.29
Glutamine C00064 HMDBO0000641 Glutamine-3TMS 362.0 14.11 Uric acid C00366 HMDB0000289 Uric acid-4TMS 367.0 16.40
Glutaric acid C00489 HMDBO0000661 Glutaric acid-2TMS 261.0 10.94 Uridine C00299 HMDB0000296 Uridine-4TMS 245.0 18.54
Glyceric acid C00258 HMDBO0000139 Glyceric acid-3TMS 292.0 10.28 Valine C00183 HMDB0000883 Valine-2TMS 218.0 9.19
Glycerol CO0116  1\iDBO000131 Glycerol-3TMS 218.0 9.69 Xanthine €00385 HMDB0000292 Xanthine-3TMS 353.0 15.92
Glycine C00037 HMDB0000123 Glycine-3TMS 174.0 10.20 Xlitol 00379 HMDBO002917 Xylitol-5TMS 2170 1366
Glycolic acid C00160 HMDB0000115 Glycolic acid-2TMS 205.0 7.53 Xylose 00181 HMDBO000098 Xylose-methyloxime-4TMS 307.0 1321
Hippuric acid C01586 HMDBO0000714 Hippuric acid-TMS 236.0 14.75
Histidine C00135 HMDBO0000177 Histidine-3TMS 371.0 15.28
Homocysteine C00155 HMDB0000742 Homocysteine-3TMS 234.0 13.33

*'Unk' means that these metabolites were not yet identified at the time of analysis.



Supplementary Table S3

Metabolites measured by LC-MS.

Name Kegg ID HMDB ID lon transition :T:::("r:::; Name Kegg ID HMDB ID lon transition 5;':3::;:3
4-Hydroxyproline C01157 HMDB0000725 132.10>68.05 1.89 Valine C00183 HMDB0000883  118.10>55.10 3.15
Acetylalanine - HMDB0000766  132.10>90.10 4.00 Xanthosine C01762 HMDB0000299  285.10>153.20 8.61
Acetylglycine - HMDB0000532  118.00>76.10 3.53 Xanthurenic acid C02470 HMDB0000881  206.00>160.00 9.75
Adenosine C00212 HMDB0000050  268.10>136.10 8.35 asy-Dimethylarginine C03626 HMDBO0001539  203.10>46.10 247
Adenosylhomocysteine C00021 HMDB0000939  385.10>136.10 8.23 sym-Dimethylarginine - HMDBO0003334  203.10>172.20 257
Adenosylmethionine C00019 HMDB0001185  399.10>250.10 218 trans-urocanic acid C00785 HMDB0000301  139.10>93.10 4.70
2-Aminoadipic acid C00956 HMDB0000510  162.10>98.20 235 2-Hydroxy-3-methylvaleric acid - HMDB0000317  131.10>85.15 11.52
Argininosuccinic acid C03406 HMDB0000052 291.10>70.10 2.08 2-Hydroxybutyric acid C05984 HMDB0000008  103.00>57.20 7.95
Asparagine C00152 HMDB0000168  133.10>74.05 1.85 2-Hydroxyglutaric acid C01087 HMDBO0000606  147.00>129.05 4.27
Aspartic acid C00049 HMDB0000191  134.10>88.00 1.85 2-Hydroxyisovaleric acid - HMDB0000407  117.10>71.10 9.89
Betaine C00719 HMDB0000043  118.10>42.05 2.07 2-Oxoglutaric acid (a-Ketoglutaric acid) C00026 HMDB0000208  145.10>57.10 3.24
Creatine C00300 HMDB0000064  132.10>44.05 2.30 3-Hydroxybutyric acid C01089 HMDB0000357  103.00>59.10 6.64
Creatinine C00791 HMDB0000562  114.10>86.10 218 3-Hydroxyisovaleric acid - HMDBO0000754  117.10>59.10 8.89
Cystathionine C00542 HMDB0000099  223.10>88.00 1.84 3-Methylglutaconic acid - HMDB0000522  143.00>99.05 10.07
Cysteine C00097 HMDB0000574  122.00>59.00 2.04 4-Hydroxybenzoic acid C00156 HMDB0000500  137.00>93.00 10.98
Cystine C00491 HMDB0000192  241.00>74.10 1.83 AMP - HMDBO0000045  346.10>79.05 4.14
GSH C00051 HMDB0000125  308.10>179.20 4.32 Aconitic acid C02341 HMDB0000958  173.00>85.15 8.17
GSSG C00127 HMDB0003337  613.20>231.00 8.17 Arabinonic acid - HMDB0000539  165.00>75.05 2.01
Glutamic acid C00025 HMDB0000148  148.10>102.05 1.98 Citric acid C00158 HMDB0000094  191.00>87.10 4.59
Glutamine C00064 HMDB0000641  147.10>130.05 1.92 Fumaric acid C00122 HMDB0000134  115.00>71.10 5.93
Glycine C00037 HMDB0000123  76.00>30.10 1.84 Glutaric acid C00489 HMDB0000661  131.00>87.15 8.71
Guanosine C00387 HMDB0000133  284.10>152.10 8.39 Hippuric acid C01586 HMDBO0000714  178.10>134.05 11.14
Histidine C00135 HMDB0000177  156.10>83.20 1.84 Indoxy! sulfate - HMDB0000682  212.00>132.20 10.58
Indoleacetic acid C00954 HMDB0000197  176.10>130.10 13.67 Isocitric acid C00311 HMDB0000193  191.00>73.10 2.96
Indolelactic acid C02043 HMDB0000671  206.10>118.10 12.62 Lactic acid C00186 HMDBO0000190  89.00>43.10 3.67
Indolepyruvic acid C00331 HMDB0060484  204.10>130.10 12.41 Malic acid Co0711 HMDB0000156  133.00>115.00 2.89
Inosine C00294 HMDB0000195  269.10>110.10 8.40 Phenyllactic acid C05607 HMDBO0000748  165.10>147.05 12.32
Kynurenic acid C01717 HMDB0000715  190.10>144.00 10.13 Pyridoxic acid C00847 HMDBO0000017  182.00>108.05 8.56
Kynurenine C00328 HMDB0000684  209.10>192.05 9.00 Succinic acid C00042 HMDB0000254  117.00>73.05 5.90
3-Hydroxykynurenine C02794 HMDB0000732  225.10>110.15 7.49 cAMP C00575 HMDB0000058  328.00>134.20 8.36
N'-Formylkynurenine C02700 HMDB0001200  237.20>146.05 9.02 Thyroxine C01829 HMDB0000248  777.70>731.50 15.07
Leucine C00123 HMDB0000687  132.10>43.10 7.06 Pipecolinic acid C00408 HMDB0000070  130.10>84.30 3.41
Isoleucine C16434 HMDB0000172  132.10>69.10 6.50 3-Indolepropionic acid - HMDB0002302  190.10>130.10 14.73
Lysine C00047 HMDB0000182  147.10>84.10 1.64 Quinolinic acid C03722 HMDB0000232  168.10>78.05 4.40
Methionine C00073 HMDB0000696  150.10>104.00 3.93 3-Methylhistidine C01152 HMDB0000479  170.10>81.10 1.85
S-Methylmethionine C05319 HMDB0038670  165.10>59.20 9.54 Carnitine C00318 HMDB0000062  162.10>85.10 213
N-Acetyl-Asp-Glu C12270 HMDB0001067  305.10>148.00 8.17 Acetylcarnitine C02571 HMDB0000201  204.10>85.10 4.16
N-Acetylaspartic acid C01042 HMDB0000812  176.10>134.00 4.08 Propionylcarnitine C03017 HMDB0000824  218.10>85.10 8.49
N-Acetylhistidine C02997 HMDB0032055 198.10>110.10 2.81 Isobutyrylcarnitine - HMDB0000736  232.20>85.15 9.38
Nicotinamide C00153 HMDB0001406  123.10>80.05 5.13 Butyrylcarnitine C02862 HMDB0002013  232.20>85.05 9.51
Phenylalanine C00079 HMDB0000159  166.10>103.10 8.94 2-Methylbutyrylcarnitine - HMDBO0000378  246.20>85.10 10.44
Phosphocholine C00588 HMDB0001565  184.10>125.00 1.85 Isovalerylcarnitine C20826 HMDBO0000688  246.20>85.15 10.58
Proline C00148 HMDB0000162  116.10>70.10 2.28 Hexanoylcarnitine - HMDB0000705  260.20>85.15 11.88
Pyroglutamic acid C01879 HMDB0000267  130.00>56.10 5.16 Glutarylcarnitine - HMDBO0013130  276.10>85.05 8.48
Riboflavin C00255 HMDB0000244  377.10>243.20 10.59 Adipoylcarnitine - HMDBO0061677  290.20>85.00 8.96
Serine C00065 HMDB0000187  106.10>60.00 1.85 2-Aminobutyric acid C02356 HMDB0000452  104.10>41.05 219
Serotonin C00780 HMDB0000259  177.10>160.20 8.73 Choline C00114 HMDB0000097  104.10>60.00 1.99
Putrescine C00134 HMDB0001414  89.10>72.10 1.60 3-Aminoisobutyric acid C05145 HMDB0003911  104.10>86.10 231
Spermidine C00315 HMDB0001257  146.20>129.20 1.39 Acetylcarnosine - HMDB0012881  269.10>110.10 4.25
Spermine C00750 HMDB0001256  203.20>112.20 1.33 Alanine C00041 HMDBO0000161  90.00>44.10 1.91
Taurine C00245 HMDB0000251  126.00>44.05 1.87 Ornithine C00077 HMDB0000214  133.10>116.05 1.65
Threonine C00188 HMDB0000167  120.10>84.10 1.94 Arginine C00062 HMDB0000517  175.10>70.10 1.83
Trigonelline C01004 HMDB0000875  138.00>94.10 2.39 Citrulline C00327 HMDB0000904  176.10>159.05 2.05
Trimethyllysine C03793 HMDB0001325  189.20>60.25 1.82 Glucuronic acid C00191 HMDB0000127  193.00>103.00 1.95
Tryptophan C00078 HMDB0000929  205.10>115.20 9.84 Gluconic acid C00257 HMDB0000625  195.10>129.00 1.96
Tyrosine C00082 HMDB0000158  182.10>136.20 7.30 N-Acetylglucosamine C00140 HMDB0000215  222.10>138.00 233
Urea C00086 HMDB0000294  61.00>44.05 2.05 N-Acetylneuraminic acid C00270 HMDB0000230  310.10>274.10 217
Uric acid C00366 HMDB0000289  169.00>126.05 5.26 4-Guanidinobutanoic acid C01035 HMDB0003464  146.10>86.15 3.82

Uridine C00299 HMDB0000296  245.10>113.10 7.51 N-Acetylornithine C00437 HMDB0003357  175.10>70.05 2.67




Supplementary Table S4

Cellular markers measured by flow cytometry.

Cellular markers

% of CCR6" cells among CD4* T cells

% of CD25" cells among CD4" T cells

% of CD4" T cells among PBMC

% of CD8" T cells among PBMC

% of CTLA4" cells among CD4* T cells

% of CXCR3" cells among CD4" T cells

% of FoxP3* cells among CD4* T cells

% of FoxP3"" cells among CD4* T cells

% of FoxP3"°" cells among CD4" T cells

% of FoxP3* CD25" cells among CD4* T cells
% of FoxP3"°" CD45RA" cells among CD4* T cells
% of FoxP3* CTLA4" cells among CD4* T cells
% of IFNy* cells among CD4* T cells

% of IFNy* cells among CD8" T cells

% of KLRG1* cells among CD4" T cells

% of KLRG1* CCR6" cells among CD4"* T cells
% of KLRG1" cells among CD8* T cells

% of PD-1* cells among CD4* T cells

% of PD-1* CD45" cells among CD4* T cells
% of PD-1* FoxP3* cells among CD4" T cells
% of PD-1* cells among CD8" T cells

% of PD-1"9" cells among CD8" T cells

% of T-bet* cells among CD4* T cells

% of T-bet"s" cells among CD4* T cells

% of T-bet® KLRG1" cells among CD4* T cells
% of T-bet" cells among CD8" T cells

% of T-bet"" cells among CD8* T cells

% of EOMES" cells among CD8" T cells

% of T-bet* EOMES" cells among CD8" T cells
% of T-bet* EOMES™ cells among CD8* T cells
% of T-bet EOMES™ cells among CD8" T cells
% of Tnaive among CD4" T cells

% of Tcm among CD4" T cells

% of Tem among CD4" T cells

% of Temra among CD4* T cells

% of Tnaive among CD8* T cells

% of Tcm among CD8" T cells

% of Tem among CD8" T cells

% of Temra among CD8" T cells

% of Tim3* cells among CD4" T cells

% of Tim3* cells among CD8" T cells

Cell ROX Green (MFI) of CD4* T cells

Cell ROX Green (MFI) of CD8* T cells

Mito SOX Red (MFI) of CD4" T cells

Mito SOX Red (MFI) of CD8" T cells

Mito Tracker Deep Red (MFI) of CD4" T cells
Mito Tracker Deep Red (MFI) of CD8" T cells
Mito Tracker Green (MFI) of CD4* T cells

Mito Tracker Green (MFI) of CD8* T cells
p-Akt (MFI) of CD8" T cells

p-mTOR (MFI) of CD8" T cells

PGC-1af (MFI) of CD8" T cells




Supplementary Table S5

Metabolites showing a significant difference between responders (R) and non-responders (NR).

Metabolites T”T‘e Chapges inR Modality p-value* . Ratiq of Changes in .

point relative to NR Metabolites two time R Modality p-value ™
Alanine Tst higher GC 0.0474 points relative to NR
4-Cresol 1st higher GC 0.0238 Creatinine 2nd/1st lower GC 0.0329
Cysteine 1st higher GC 0.0474 1,5-Anhydro-D-sorbitol 2nd/1st higher GC 0.0367

. i . . X Cystine 2nd/1st higher GC 0.0419
Hippuric acid Ist higher Ge/Le 0090006526/ Glutamine 2nd/st higher LC 0.0114
Oleic acid 1st higher GC 0.0281 Glycine 2nd/1st higher LC 0.0095
Indoxyl sulfate 1st higher GC/LC 00.00321235/ Lysine 2nd/1st higher LC 0.0329
B Pyroglutamic acid 2nd/1st higher LC 0.0095
Ribose 1st higher GC 0.0081 Taurine 2nd/1st lower LC 0.0348
Unk8 1st lower GC 0.0273 asy-Dimethylarginine 2nd/1st higher LC 0.0176
Indoleacetate 1st higher LC 0.018 AMP 2nd/1st lower LC 0.0198
Uric acid 1st higher LC 0.0126 Isovalerylcarnitine 2nd/1st lower LC 0.0454
Trans-urocanic acid 1st higher LC 0.0498 Hexanoycarnitine 2nd/1st lower LC 0.0367
Pipecolic acid 1st lower LC 0.0252 Acetylcamosine 2nd/1st higher LC 0.0264
N-Acetylglucosamine 1st higher LC 0.0281 Arginine 2nd/1st higher LC 0.0329
Uric acid ond higher GC/LC 00-90111746/ Citrullne 2nd/1st higher LC 0.0348
N-accetylorinitine 2nd/1st higher LC 0.0037
Indolelactic acid 2nd higher GC 0.0387 ) i 0.0330 /
Arabinose ond higher GC 0.0186 3-Hydroxybutyric acid 3rd/1st lower GC/LC 0.0281
QTZSESL acid g:g ::Z::: gg 88222 2-Hydroxyisovaleric acid 3rd/1st lower GC/LC 0(5.00004208/
Cystine 2nd higher GC 0.0043 Creatinine 3rd/1st lower GC 0.0099
. 0.0454 / Hippuric acid 3rd/1st higher GC 0.0016
Indoxyle sulfate 2nd higher GC/LC 0.0348 Oleic acid et lower G 0.0252
Gluconic acid 2nd higher GC 0.0454 Acetoacetic acid 3rd/1st lower GC 0.0483
Citrulline 2nd higher GC/LC 00'90311222/ Ribose 3rd/1st lower GC 0.0008
GSSG 3rd/1st higher LC 0.0367

Creatinine 2nd higher LC 0.0198 Tryptophan 3rd/st higher Lc 0.0367
N-Acetylaspartic acid 2nd higher LC 0.0311 2-Hydroxyglutaric acid 3rd/st lower LC 0.0099
Pyroglutamic acid 2nd higher Le 0.0064 Malic acid 3rdist lower Lc 0.0266
Trimethyyllysine 2nd higher Lc 0.0408 Quinolinic acid 3rd/st lower Lc 0.0407
Asy-Dimethylarginine 2nd higher LC 0.0028 Butyrylcarnitine 3rd/st lower Lc 0.0043
Sym-Dimethylarginine 2nd higher LC 0.0078 Caproic acid 3rdi2nd higher fere) 0.0408
Pipecolic acid 2nd lower LC 0.0329 4-Cresol 3rdi2nd higher GC 0.0138
Methylhistidine 2nd higher LC 0.0176 |soleucine 3rdi2nd higher fee) 0.0408
Butyrylcarnitine 2nd lower LC 0.0101 Arabinose 3rd/2nd lower GC 0.0114
3-Aminoisobutyric acid 2nd higher LC 0.0122 Ribose 3rdi2nd lower GC 0.0028
Acethykcarnosine 2nd higher LC 0.0367 GSH 3rdi2nd higher Lc 0.0089
Alanine 2nd higher LC 0.0348 GSSG 3rdi2nd higher Lc 0.0008
Arginine 2nd higher LC 0.0114 3-OH-Kynurenine 3rd/2nd lower LC 0.0408
N-accetylorinitine 2nd higher LC 0.0387 Hippuric acid 3rdi2nd higher Lc 0.0165
4-Cresol 3rd higher GC 0.0023 Isobutyrylcarnitine 3rd/2nd higher LC 0.0095
3-Hydroxyisovaleric acid 3rd lower GC/LC 00'00211139/
Pyruvic acid 3rd lower GC 0.0348
a-ketoglutaric acid 3rd lower GC 0.0238
Hippuric acid 3rd higher GC/LC 00'90000023/
Cystine 3rd higher GC 0.0201
Indoxyl sulfate 3rd higher GC/LC 00'900611%/
Unk13 3rd higher GC 0.0451
GSSG 3rd higher LC 0.0068
Uric acid 3rd higher LC 0.0348
2-Hydrobutyric acid 3rd lower LC 0.0281
Pipecolic acid 3rd lower LC 0.0348
Butyrylcarnitine 3rd lower LC 0.0015

*: p-value for distinction beween R and NR (Wilcoxon rank sum test).



Supplementary Table S6

Cellular markers showing a significant difference between responders (R) and non-responders (NR).

Time point .
Cellular markers or gr;ir:/geetzlﬂg p-value *
ratio of two time points

% of CD4"* T cells among PBMC 2nd higher 0.0107
% of CD4"* T cells among PBMC 2nd/1st higher 0.0001
% of CD8"* T cells among PBMC 2nd higher 0.0478
% of CD8"* T cells among PBMC 2nd/1st higher 0.0348
% of Tnaive among CD8" T cells 2nd/1st higher 0.0176
% of Tcm among CD4* T cells 2nd/1st higher 0.0095
% of Tcm among CD8* T cells 2nd/1st higher 0.0138
% of Tem among CD8" T cells 3rd/1st higher 0.0213
% of Temra among CD4" T cells 2nd/1st lower 0.0107
% of Temra among CD4* T cells 3rd/2nd higher 0.0081
% of Temra among CD8" T cells 2nd/1st lower 0.0009
Mito SOX CD8/CD4 1st higher 0.0028
Mito SOX CD8/CD4 2nd higher 0.0089
Mito SOX CD8/CD4 3rd higher 0.018
Mito SOX CD8/CD4 3rd/1st lower 0.019
Mito mass CD8/CD4 1st higher 0.0451
Mito mass CD8/CD4 3rd higher 0.0348
PGC-1af (MFI) of CD8" T cells 2nd lower 0.0176
PGC-1af (MFI) of CD8" T cells 2nd/1st lower 0.0052
PGC-1af (MFI) of CD8" T cells 3rd/2nd higher 0.0001
% of PD-1"9h among CD8* T cells 1st lower 0.013
% of FoxP3°* CD45RA* among CD4" T cells 1st lower 0.027
% of T-bet"e" among CD4* T cells 3rd/1st higher 0.03
% of T-bet® among CD4* T cells 3rd/1st higher 0.0214
% of T-bet” among CD8* T cells 3rd/2nd higher 0.0295
% of T-bet” EOMES* among CD8* T cells 3rd/2nd higher 0.0408

*: p-value for distinction between R and NR (Wilcoxon rank sum test).



Supplementary Table S7

AUC value of each marker in pretreatment.

Area under the number of
Marker name Time point curve (AUC) patients
analyzed
Mito SOX CD8/CD4 1st 0.75 47
% of PD-1hish among CD8* T cells st 0.71 47
9
PD-L1 TPS 1st 0.66 31




Supplementary Table S8

Equation of LDA for each marker combination.

Marker combination Before the adaptation

After the adaptation

9.92x[Cysteine 1st]-44.7x[Unk8 (1st)]

Metabolite combination | +5.41x107 x [Hippuric acid (1st)] ~1.50

207x[Arabinose (2nd)]+3.17x10-7 X [Arginine

Metabolite combination Il 5 4y."3 77 x 107 x [Butyrylcamitine (2nd)]-1.99

4.43x10-7 X [Hippuric acid (1st)]+12.1x[Cystine (2nd)]
Metabolite combination 111 +3.55%x10-5 x [GSSG (3rd)]
—-8.81%108 x [ Butyrylcarnitine 3rd]-2.71

-0.302%[% of PD-1high among CD8+ T cells (1st)]

Cellular combination | +2.95x[Mito SOX CD8/CD4(1st)]-1.91

-0.252x%[% of PD-1high among CD8+ T cells (1st)]
+3.58x[Mito SOX CD8/CD4(1st)]
Cellular combination Il -1.22x[PGC-1ap of CD8+ T cells (2nd/1st)]
+1.93%[% of CD4+ T cells among PBMC
(2nd/1st)]-3.35

-0.281x%[% of PD-1high among CD8+ T cells (1st)]
+3.30x[Mito SOX CD8/CD4(1st)]
Cellular combination Ill +2.00x[PGC-1ap of CD8+ T cells (3rd/2nd)]
+1.55%[% of CD4+ T cells among PBMC
(2nd/1st)]-6.04

9.92x[Cysteine 1st]-44.7x[Unk8 (1st)]
+5.41 x 107 x [Hippuric acid (1st)] -1.46

207x[Arabinose (2nd)] +3.17 X 107 X [Arginine
(2nd)]-3.77 x 107 x [Butyrylcarnitine (2nd)]-1.96

4.43 x 107 X [Hippuric acid (1st)]+12.1 x [Cystine
(2nd)]
+3.55% 108 x [GSSG (3rd)]
—-8.81 % 108 X [ Butyrylcarnitine 3rd]-2.67

-0.302%[% of PD-1high among CD8+ T cells (1st)]
+2.95%[Mito SOX CD8/CD4(1st)]-1.87

-0.252x%[% of PD-1high among CD8+ T cells (1st)]
+3.58x[Mito SOX CD8/CD4(1st)]
-1.22x[PGC-1ap of CD8+ T cells (2nd/1st)]
+1.93%[% of CD4+ T cells among PBMC
(2nd/1st)]-3.30

-0.281x%[% of PD-1high among CD8+ T cells (1st)]
+3.30x[Mito SOX CD8/CD4(1st)]
+2.00x[PGC-1ap of CD8+ T cells (3rd/2nd)]
+1.55%[% of CD4+ T cells among PBMC
(2nd/1st)]-5.97




